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ABSTRACT 

 

H. B. Goldspiel. Forest Legacy Effects on Amphibian Populations: Integrating Land and Life 

Histories in Conservation. 102 pages, 6 tables, 8 figures, 7 appendices, 2018. APA style guide 

used. 

 

Understanding how forests are shaped by historical disturbances is essential for developing 

effective conservation plans for forest-dwelling organisms threatened by habitat loss, such as 

amphibians. Salamander and frog populations and microhabitats were sampled using visual 

encounter surveys and forest habitat assessments in uplands varying in aquatic habitat resources 

(i.e., vernal pool densities) and disturbance history (i.e., secondary to residual forests) to assess 

agricultural land-use legacy effects on populations and terrestrial habitats of amphibians with 

different life histories. Pool-breeding, stream-breeding, and fully terrestrial salamanders were 

negatively associated with secondary forests, which featured shallower leaf litter, denser 

understory vegetation, and fewer cover objects than residual forests. Only wood frogs were 

unaffected by disturbance history, being solely influenced by available aquatic habitat. These 

results demonstrate the utility of historical ecology for amphibian population studies and suggest 

that secondary forests may not provide the same conservation value as residual forests for many 

amphibian species.  

 

Key Words: agriculture, amphibians, binomial N-mixture model, central New York, climate 

extremes, habitat augmentation, land-use legacies, life histories, occupancy model, vernal pool   
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PROLOGUE 

Land use history is fundamental to the ecology and conservation of forested ecosystems. 

The story of the expansively forested contemporary landscapes of the eastern United States is 

one of human interaction—from longstanding management practices of indigenous peoples to 

the rapid development and abandonment of farmlands by European settlers, and their subsequent 

transition to a myriad of new land uses. These processes have drawn much recent attention, as 

researchers and policymakers recognize the importance of land-use legacies to understanding 

modern forest ecosystems (Foster et al. 2003; Bürgi et al. 2017). Eastern forests have 

experienced dramatic transitions in the past century; after hundreds of years of forest destruction 

and the development of farmlands, agricultural fields have been largely abandoned and the 

region has experienced widespread forest regeneration (Whitney 1996). This period of forest 

regrowth has appeared to plateau and the region is again beginning to experience modest losses 

in forest cover due to various human activities (Drummond & Loveland 2010), to the potential 

detriment of the forest biota. Anthropogenic disturbances are responsible for modern global 

forest losses and agricultural activities remain a primary driver of contemporary forest change in 

many world regions (Hansen et al. 2013).  

These recent forest declines and projected future losses highlight the need for 

comprehensive planning that considers the long-term impacts of historical land use activities 

such as agriculture on forest ecosystems and constituent organisms. A wide array of literature 

has emphasized the diverse and persistent impacts of agriculture on modern forest vegetation 

(Bellemare et al. 2002; Flinn & Vellend 2005; Thompson et al. 2013), ecosystem processes, and 

geochemical characteristics (Foster et al. 2003; Fraterrigo et al. 2005; Flinn & Marks 2007). 

Forest land-use legacies provide valuable opportunities to understand longitudinal effects of 
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human disturbance on wildlife communities and to guide land management decisions to mitigate 

impacts of contemporary disturbances on forest-dwelling organisms of conservation concern. 

Within the forest-dependent biological community, amphibians are highly sensitive to land 

modifications and are thus a useful model for understanding the effects of land use legacies on 

forest ecosystems. 

For over four decades, amphibian populations have steadily declined globally due to a 

combination of factors including habitat loss, climate change, invasive species, and pathogens 

(Stuart et al. 2004; Mendelson et al. 2006). Despite concerted international conservation efforts 

to confront stressors and preserve biodiversity, declines continue to worsen even in highly 

protected areas such as U.S. National Parks (Adams et al. 2013). As of 2017, 41% of all extant 

amphibians were listed as threatened by the International Union for Conservation of Nature 

(IUCN 2017). Habitat loss poses one of the greatest threats to amphibian biodiversity and 

population persistence (Collins & Storfer 2003; Gallant et al. 2007). Global population declines 

due to systemic factors such as climate change and pathogens are difficult to address directly, but 

declines stemming from habitat loss can potentially be mitigated by strategic management efforts 

on local and regional scales (Semlitsch 2002). Successful management programs must be 

tailored to their specific ecosystem and species assemblages in the context of life history 

requirements and current landscape conditions (Calhoun et al. 2014).  However, much research is 

still needed to identify how past disturbances can influence management outcomes for 

populations of amphibians with different life histories. 

Wetland-breeding species and landscape context 

Most amphibians have complex life cycles, requiring both aquatic and terrestrial habitat 

to complete. Concurrently with historical changes to forested uplands, human disturbances have 
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heavily influenced aquatic habitats across the same landscape. Many biphasic amphibians rely on 

freshwater wetlands for breeding, larval development, and refuge. Wetlands have been severely 

depleted over the past two centuries, with total wetland area in the conterminous 48 states 

decreasing by 53% between the 1780s and the 1980s (Johnston 1994). Much of these losses 

stemmed from the immense land and resource demands of agriculture (e.g., tile drainage); 

however public perception of wetlands as centers of disease was also a critical factor in historical 

wetland drainage (Whitney 1996). Changes to public education, drainage incentives, government 

policies, and conservation initiatives have contributed to gradual declines in wetland losses in the 

late 20th century and recent net gains in national wetland coverage (Mahaney & Klemens 2008; 

Dahl 2011). However, these gains are mostly limited to the preferential reestablishment of 

emergent freshwater ponds; forested wetlands, including forested vernal pools, remain 

vulnerable to losses (Windmiller & Calhoun 2008; Dahl 2011). 

Lacking many of the regulatory protections that other larger (> 1 ha) and more permanent 

wetlands now receive, forested vernal pools are among the most threatened types of wetlands in 

post-glacial northeastern forests, where they are easily disturbed or destroyed by land 

modifications and extreme droughts caused by climate change (Baldwin & deMaynadier 2009; 

Calhoun et al. 2017). These small, isolated ephemeral wetlands constitute important breeding 

and larval habitat for several amphibian species in eastern forests, such as wood frogs 

(Lithobates sylvaticus) and mole salamanders (Ambystoma spp.) and function as necessary 

buffers to environmental stochasticity. Networks of vernal pools provide habitat connectivity for 

dispersal-limited species and are vital for maintaining robust metapopulations of pool-breeding 

organisms in forested landscapes (Gibbs 1993; Marsh & Trenham 2001; Petranka 2007). Vernal 

pools are largely omitted from federal and state wetland protections (Mahaney & Klemens 
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2008), despite growing evidence for their biological, biogeochemical, and hydrological 

connectivity to surrounding aquatic and terrestrial resources and their socioeconomic benefits 

(Cohen et al. 2016; Calhoun et al. 2017). With recent revisions to the implementation of the U.S. 

Clean Water Act that disregard wetland-related benefits in determining regulatory status (Boyle 

et al. 2017), vernal pools and other ephemeral aquatic habitats are likely to remain less protected 

than permanent wetlands.  

Stream-breeding species and landscape context 

 Many biphasic amphibians are adapted to riparian breeding environments, such as 

forested streams, which have been heavily impacted from historical anthropogenic disturbances. 

For example, stream-dependent salamanders comprise roughly 40 percent of North American 

caudates, the majority of which are limited to forests in the eastern United States (Petranka 

2010). Most of these species belong to a single family of lungless salamanders (Plethodontidae) 

that are widely distributed in eastern forests where they play important ecological roles, coupling 

riparian and terrestrial forest wood webs. These organisms can attain enormous densities where 

they occur (e.g., up to 2 individuals / m2 in some southern Appalachian species, Petranka & 

Murray 2001) and are often the dominant vertebrate predators in temporary and ephemeral 

headwater streams (Davic & Welsh 2004). Forest clearance and agricultural land-use legacies are 

prevalent in these riparian systems and include long-term changes to chemical and physical 

stream processes (Maloney et al. 2008) as well as to biological communities (Harding et al. 

1998; Maloney & Weller 2010). Very few studies have examined agricultural land-use legacy 

effects on stream salamanders, but some evidence from southern Appalachia has revealed 

negative population impacts that can persevere for at least 50 years after farm abandonment 

(Hicks & Pearson 2003; Surasinghe & Baldwin 2014). Like vernal pools, many small headwater 



 

5 

 

streams and riparian zones are highly vulnerable to land modifications and climate change and 

receive inadequate protections under current legal and political frameworks (Acuña et al. 2017; 

González et al. 2017), threatening the population status of many stream-dependent salamander 

species. 

Terrestrial-breeding species and landscape context 

 An extensive group of salamanders, mainly of the family Plethodontidae, in forests of the 

eastern United States are fully terrestrial. Terrestrial plethodontid salamanders have long been 

proposed as potentially useful indicators of forest biodiversity and ecosystem health, owing to 

their broad distribution throughout eastern forests and frequent high abundance where they 

occur, as well as their efficiency to sample, interactivity across forest food webs and trophic 

levels, and unique physiological restrictions and sensitivities (Welsh & Droege 2001). For these 

reasons, terrestrial salamanders and their habitat associations are relatively well-studied, and 

decades of research have tested these claims in the context of historical and contemporary forest 

changes (e.g., Pough et al. 1987; Petranka et al. 1993; DeMaynadier & Hunter, Jr. 1998; Harper 

& Guynn 1999; McKenny et al. 2006; Homyack & Haas 2009a; Hocking et al. 2013). Forest 

clearcutting and other intensive silvicultural practices can have devastating impacts on terrestrial 

salamander populations via sustained biological legacies in multiple forest strata, from the soil-

litter interface to coarse woody debris quantities to understory and tree canopies (DeMaynadier 

& Hunter, Jr. 1998; Waldick et al. 1999). Furthermore, these impacts can extend beyond 

management areas, causing persistent legacy edge effects in undisturbed forests (Semlitsch et al. 

2007; Hocking et al. 2013). Despite this wealth of evidence for land-use legacy effects on 

terrestrial salamanders, there is still considerable uncertainty regarding how long populations 

require for recovery and how species-specific responses vary with different intensities of 
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disturbance (e.g., silviculture versus agriculture) and in different spatial regions (e.g., southern 

Appalachia versus the northeast).  

Conservation strategies and knowledge gaps for forest-dwelling amphibians 

Conservation and management strategies for forest-dwelling amphibians may include 

state and federal regulatory protections for threatened species and their biological habitat 

components (e.g., breeding pools, riparian zones, terrestrial buffers), public and private protected 

land designations (e.g. conservation easements), landowner engagement and incentives to 

stimulate management decisions on private lands (Baldwin & deMaynadier 2009; Smith et al. 

2017), and habitat augmentation programs (e.g., structural complexity enhancements, vernal pool 

construction—McKenny et al. 2006; Otto et al. 2013; Calhoun et al. 2014).  Identifying and 

implementing suitable conservation strategies requires the integration of species-specific life 

history processes with a comprehensive understanding of the past, present, and future landscape 

disturbances that limit them. These processes are often missing key ecological details, 

particularly for species with complex life cycles. For example, vernal pool creation is an 

increasingly common strategy for promoting growth of populations of pool-breeding forest-

dwelling amphibians. These larval aquatic habitats should be complimented with equally suitable 

juvenile/adult terrestrial habitats; however, the relative roles of each habitat type in regulating 

population dynamics are largely unknown (Marsh and Trenham, 2001; Semlitsch and Skelly, 

2008). These uncertainties are complicated further by landscape-setting factors and deterministic 

stressors such as climate change that can place additional limitations on population persistence. 

Conservation planners and managers must simultaneously consider how many pools are 

necessary to sustain robust populations and where in the landscape pool creation should be 

prioritized to guarantee long-term viability. Incorporating ancillary historical details directly into 
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these difficult decision-making processes is essential for advancing amphibian conservation 

objectives.  

Research objectives and hypotheses 

 I sought to address knowledge gaps concerning habitat requirements of forest-dwelling 

amphibians with respect to historical anthropogenic disturbance, focusing on the long-term 

effects of agriculture on frog and salamander populations in a northeastern forest. Compared to 

the effects of silviculture, the impacts of historical agriculture on contemporary forest-dwelling 

amphibians are poorly understood and demand greater attention than they have previously 

received. As agriculture constitutes a complete landscape transformation, both in structure and 

function, its legacies for contemporary forests persist longer than those of historical timber 

management. These legacies are further extended by historical reforestation practices on 

abandoned fields, which often included the establishment of conifer plantations that are typically 

less hospitable to amphibians such as plethodontid salamanders (Pough et al. 1987; Waldick et 

al. 1999). In two years with very different climate patterns, I surveyed amphibians and terrestrial 

habitat characteristics in upland sites varying in aquatic habitat availability (0–10 vernal pools) 

and disturbance history (post-agricultural secondary to primary forest gradient) to determine (1) 

the long-term effects of agriculture on amphibian terrestrial habitat characteristics in modern 

forests; (2) which landscape and habitat features are limiting for populations of species with 

different life histories (pool-breeding, stream-breeding, terrestrial-breeding); and (3) how 

landscape and habitat limitations on populations differ between years with different climate 

patterns (i.e., drought period versus wet period). 

This thesis reflects the results of these two years of research at Heiberg Memorial Forest 

in Tully, New York, and contains two manuscripts written in format for eventual publication in 
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academic journals. The first chapter, which focuses on pool-breeding amphibians, is titled 

“Integrating history into pool-breeding amphibian conservation: a case study of vernal pool 

creation and forest land use legacies,” and is prepared for submission to the journal Biological 

Conservation. The second chapter, which focuses on plethodontid salamanders, is titled 

“Agricultural land use legacy effects on forest dwelling plethodontid salamanders,” and is 

prepared for submission to the journal Forest Ecology and Management.  
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CHAPTER 1: INTEGRATING HISTORY INTO POOL-BREEDING AMPHIBIAN 

CONSERVATION: A CASE STUDY OF VERNAL POOL CREATION AND FOREST LAND 

USE LEGACIES  

 

Abstract 

Understanding how populations of organisms with complex life cycles, such as amphibians, are 

simultaneously affected by available larval versus adult habitat is critical for developing land 

management plans to conserve biodiversity. I examined for forest-dwelling amphibians the 

relative contributions of forest quality pertinent to adult life stages versus breeding pool 

enhancement pertinent to larval stages to the distribution of two pool-breeding and upland-

dwelling species. Using area-constrained daytime visual encounter surveys in a mixed hardwood 

forest in central New York, USA over two consecutive years with strongly contrasting climate 

(extreme drought and extreme rainfall), I estimated occupancy of wood frogs (Lithobates 

sylvaticus) and spotted salamanders (Ambystoma maculatum) and characterized terrestrial 

microhabitats in 29 population neighborhoods (9.3 ha) varying in aquatic habitat availability (0 – 

10 vernal pools) and disturbance history (residual versus post-agricultural secondary forest). 

Secondary forests featured shallower leaf litter, denser understory vegetation, and fewer natural 

cover objects than adjacent residual forest stands. Wood frog presence was solely affected by 

pool densities in both years whereas spotted salamander presence depended on both available 

wetland and upland conditions and with more positive associations with residual forests and pool 

densities during the drought year. These results suggest that pool construction can boost upland 

populations of amphibians, but climate and land-use disturbances may mediate conservation 

outcomes for long-lived habitat specialists.  

Key words: Ambystoma maculatum, amphibians, complex life cycles, land-use history, 

occupancy, Rana sylvatica, spotted salamanders, wood frogs, vernal pools 
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Introduction  

 Most amphibians have biphasic life histories, requiring connected aquatic and terrestrial 

habitats to meet the demands of larval (aquatic) and adult (terrestrial) life stages. Such species, 

often with limited dispersal capabilities, are especially vulnerable to local and regional 

population declines; losses of either habitat type can increase susceptibility to stochastic 

environmental events (e.g., drought) and threaten broader metapopulation viability (Marsh & 

Trenham 2001). Accordingly, amphibians are among the most imperiled of vertebrate animals 

(Stuart et al. 2004b) with habitat loss and climate change as major contributing factors to global 

amphibian population declines (Collins & Storfer 2003; Cushman 2006). Maintaining intact 

landscapes that include core aquatic and terrestrial habitats is a critical element of amphibian 

population recovery plans (Semlitsch 2002), but practitioners should also consider the potential 

resiliency and functionality of both features to climate change to ensure conservation plans yield 

long-term population benefits. 

In the United States, greater emphasis is typically placed on management of aquatic than 

terrestrial environments for the conservation of biphasic amphibians (Semlitsch & Jensen 2001). 

This bias in management approach is reflective of important concerns about wetland loss impacts 

on larval habitats. Historical legacies of forest clearance, agriculture, and wetland drainage have 

led to tremendous declines in wetland coverage in the conterminous 48 states, with 53% of total 

wetland area lost between the 1780s and the 1980s (Johnston 1994) and forested wetlands 

experiencing the greatest losses (Dahl 2011). Forested vernal pools are small ephemeral wetlands 

that provide critical habitat for multiple amphibian species and are highly vulnerable to losses 

from current and future land use practices (Baldwin & deMaynadier 2009) as well as climate 

change (Calhoun et al. 2017).  
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Despite abundant research highlighting the ecological value of vernal pools (Gibbs 1993; 

Semlitsch & Bodie 1998) and their biological, biogeochemical, and hydrological connectivity to 

surrounding landscapes (Cohen et al. 2016), these small aquatic habitats are largely not subject to 

federal and state wetland regulation  under current legal frameworks (Mahaney & Klemens 

2008; Calhoun et al. 2014). Vernal pool creation provides one means to augment larval habitats 

in areas where pools and other breeding sites have been destroyed. There is a growing consensus 

that vernal pool construction projects should reflect the physical and spatial characteristics of 

natural pools, but the areas targeted for conservation are often heavily degraded or lacking 

suitable “natural” conditions (Calhoun et al. 2014). In the absence of reference data, the number 

of pools needed to support robust amphibian populations is unclear. Wetland density is an 

important element of amphibian population structure (Semlitsch 2002) and connected networks 

of vernal pools serve to minimize upland dispersal distances and provide amphibians a needed 

buffer against stochastic events such as extreme drought (Semlitsch & Bodie 1998; Gibbs 2000; 

Petranka & Holbrook 2006; Karraker & Gibbs 2009). High levels of spatial connectivity of 

constructed pools are known to be beneficial for larval production of pool-breeding salamanders 

(Peterman et al. 2013), but how these spatial arrangements actually influence adults in forested 

uplands is unclear and confounded by the rich history of human disturbance found in most 

forests.  

The vast majority of forests in the eastern United States are secondary forests, established 

in the early 1900s following three centuries of widespread forest removal and agricultural 

activities (Whitney 1996; Drummond & Loveland 2010). This history of intensive human 

disturbance creates additional complexity for pool-breeding amphibian conservation, as the 

presence of terrestrial land use legacies may place additional limitations on upland populations in 
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many potential pool construction sites. Historical forest clearance and agriculture has long term 

effects on various structural habitat components associated with pool-breeding amphibians, 

including physical and chemical soil properties (Foster et al. 2003; Flinn & Marks 2007; Piché & 

Kelting 2015), the quantity and quality of organic substrates like coarse woody debris and leaf 

litter (Hughes & Fahey 1994; Hooker & Compton 2003), and the composition of understory and 

overstory plant communities (Bellemare et al. 2002; Flinn & Marks 2007). These structural 

changes to terrestrial habitats and associated microclimates (e.g., moisture, temperature) can 

have direct effects on amphibian populations, by creating stressful microclimate conditions, as 

well as indirect effects via impacts to other forest fauna (Bowen et al. 2007) that can restrict 

foraging opportunities and/or increase predation rates. Additionally, limited dispersal capabilities 

of forest-dwelling amphibians can further restrict species from successional sites due to 

prolonged recolonization times (Cosentino & Brubaker, in review). Amphibians generally 

display lower richness and abundance in secondary forests (Thompson & Donnelly 2018), likely 

due to a combination of these structural, biological, and dispersal mechanisms. However, despite 

these documented legacy effects of historical human disturbance on forest-dwelling amphibians, 

no research has addressed these effects on common pool-breeding species like wood frogs 

(Lithobates sylvaticus) and spotted salamanders (Ambystoma maculatum). These legacies require 

greater attention for understanding upland habitat preferences and designing successful 

management plans for species with complex life cycles. 

Both aquatic (larval) and terrestrial (adult) habitats are essential for pool-breeding 

amphibians, yet the relative roles of each in regulating population dynamics are largely unknown  

(Marsh & Trenham 2001; Semlitsch & Skelly 2008). Aquatic larvae and terrestrial juveniles and 

adults have distinct behavioral and physiological adaptations, reflective of the unique 
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opportunities and challenges presented by aquatic and terrestrial habitats. Many theoretical 

models have been developed to explain the life histories of species with complex life cycles. 

Most classic studies have focused on aquatic life history stages, stressing factors affecting larval 

performance and recruitment rates as the primary drivers of overall population dynamics 

(reviewed in Bruce 2005); however, recent research has highlighted the equal if not greater 

importance of terrestrial stage processes (Biek et al. 2002; Vonesh & De la Cruz 2002; Schmidt 

et al. 2005; Harper & Semlitsch 2007; Petranka 2007; Berven 2009). 

There is a clear need for more integrated research on the aquatic and terrestrial drivers of 

amphibian populations to design effective conservation plans for complex organisms. The goal 

of the research was to examine how the relative availability and quality of larval and adult 

habitats limit distributions of pool-breeding amphibians in forested uplands of central New York.  

My objectives were to (1) quantify amphibian occupancy in forests varying in pool density and 

terrestrial habitat quality, (2) determine the relative contributions of larval habitat quantity and 

adult habitat quality to variation in habitat occupancy, (3) assess the relationships between 

historical land-use and terrestrial microhabitat features relevant to pool-breeding amphibians, 

and (4) evaluate the effectiveness of vernal pool creation on enhancing amphibian populations in 

forests with different histories of human disturbance. I expected occupancy to be positively 

influenced by pool availability and to increase with residual forest cover, where quality of 

terrestrial microhabitat features would be more suitable for adult life stage requirements. In 

addition to filling basic knowledge gaps on the dual requirements of species with complex life 

cycles, these results should provide further guidance to practitioners in selecting sites for 

conservation and optimizing pool construction projects to promote long-term population 

benefits. 
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Methods and Materials 

Study Sites 

This study was conducted in Heiberg Memorial Forest (HMF) (42°46'19" N, 76°5'6" W), 

a 1,600-ha Northeastern Mixed Forest (McNab et al. 2007) in Tully, New York. The northern 

portion of the site contains an array of 39 vernal pools constructed in 2010 (Figure 1.1). Pools 

were small (< 0.01 ha) and were placed in clusters of three quantities (one, three, and nine pools) 

assigned to the center of hexagonal land units (incircle radius: 164 m, area: 9.3 ha) selected to 

represent individual breeding “neighborhoods” of the targeted species – spotted salamanders and 

wood frogs (Rittenhouse and Semlitsch, 2007; Semlitsch, 1998; Semlitsch and Jensen, 2001). A 

small number of natural pools and preexisting constructed wetlands (constructed in the 1930s as 

water sources for fighting fires or incidentally created as borrow pits for extracting material for 

road construction) were also scattered across the study site. The land-use history of this site is 

representative of much of the northeastern United States, with a large percent of the native forest 

historically cleared for agriculture (mostly pasture and hayfields with scattered croplands) before 

abandonment in the early 1900s. Most of the property that was historically in agriculture has 

since regenerated to secondary mixed hardwood forest (Acer, Fraxinus) or been replaced with 

conifer plantations (Picea, Pinus) (Figure 1.1).  

For simplicity, I define secondary forest as any stand, naturally regenerated or human-

planted, that was previously cleared for agriculture, and residual forests as sites that have been 

continuously wooded throughout this historical period (Peterken 1981). Unlike old-growth 

forests, residual forests have experienced some degree of human disturbance (e.g., selective 

logging and grazing) while retaining a persistent canopy and relatively undisturbed soil organic 
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layer. I obtained residual and secondary forest extents for the study region by georeferencing and 

manually delineating historical forest cover from six 1936 aerial photographs (USDA, 1936) in 

ArcMap 10.4.1 (Environmental Systems Research Institute, Inc., Redlands, California, USA) and 

comparing those coverages with 2015 orthoimagery (NYS GIS Clearinghouse, 2015) and land 

cover data (NLCD 2011, Homer et al., 2015). These images, which were the oldest accessible 

aerial photographs for the site, were used to establish a baseline of historical conditions at the 

peak of forest clearance and contrasted with a historical image series from 1966 to approximate 

the range of secondary forest stand ages. Amphibian populations and terrestrial habitat 

characteristics were sampled in 30 hexagonal plots representing a range of aquatic habitat 

resources, stand age, and forest composition. Half of the plots contained constructed and/or 

natural vernal pools. For the remaining hexagons lacking pools, I selected a stratified random 

sample of hexagons containing forested uplands throughout HMF to include equal representation 

with respect to forest disturbance history (residual, secondary) and composition (deciduous, 

residual hemlock stands, secondary conifer plantations) such that hexagons with and without 

pools would encompass a similar gradient of forest disturbance history and modern composition.  

Amphibian surveys 

I conducted area-constrained daytime visual encounter surveys (VES) to sample 

amphibians in the summers of 2016 and 2017. Visual encounter surveys are an effective method 

for sampling the diversity and relative abundance of terrestrial amphibian assemblages in large 

areas (Dodd Jr. 2011). Each hexagon was searched during daylight for roughly three hours by 

walking in a standardized path and thoroughly inspecting under all large cover objects (≥ 10 cm 

in diameter), recording the total number of frogs and salamanders observed. I conducted 2–3 

rounds of surveys each year to estimate site occupancy while accounting for imperfect detection, 
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assuming closed populations. For each survey occasion, air temperature was measured with a 

digital thermometer and daily precipitation was documented by surveyors in situ and with 

supplementary data from the Cortland County Airport (42°35′33″N, 076°12′53″W). I recorded 

other factors potentially influencing detection rates, including time of day, survey duration, 

survey effort (relative number of objects sampled), and number of observers (one or two). 

Terrestrial habitat sampling 

Terrestrial habitat characteristics were sampled between August and September of 2016 

by systematically establishing six, 100-m transects and 30 1-m2 quadrats in each hexagon. 

Transects were oriented at equidistant 60° angles from the hexagon center with the start point 

randomly staggered 0-30 m from the center. I measured the diameter and intercept length of all 

coarse woody debris (≥ 10-cm diameter) that intersected the transects, noting the decay status of 

each object on a 1-5 scale (Class 1 = freshly fallen and containing intact branches; Class 5 = 

mostly incorporated into the soil (Sollins 1982a). These metrics were used to estimate volume, 

surface area, and decomposition of coarse woody debris in each hexagon (Marshall et al. 2003). 

Percent canopy cover (hemispheric photography), leaf litter depth (cm, ruler), and percent 

understory cover were measured in the quadrats, which I distributed evenly at 20-m intervals 

along transects. I took canopy photographs in the center of each quadrat with a smartphone and 

fisheye lens attachment, and manually calculated canopy cover from each hemispheric 

photograph in the program ImageJ (Rasband 2017). Leaf litter depth was estimated by averaging 

three ruler measurements from two corners and the center in each quadrat. Understory cover was 

recorded by visually estimating the proportion of vegetation under chest height (1.4 m) 

obstructing the ground within a gridded 1-m2 quadrat.  

https://tools.wmflabs.org/geohack/geohack.php?pagename=Cortland_County_Airport&params=42_35_33_N_076_12_53_W_region:US-NY_type:airport
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Statistical analysis 

I performed all analyses in R Version 3.3.2 (R Core Team 2017). Amphibian occurrence 

data was examined with single-species single-season occupancy models (Mackenzie et al. 2002) 

in the package “unmarked” (v0.12-2, Fiske and Chandler, 2011). I fit all hierarchical models 

with maximum likelihood estimation and compared candidate models using Akaike’s 

Information Criterion corrected for small sample sizes (AICc), which prioritizes model 

parsimony and penalizes for overfitting (Burnham & Anderson 2002). I used the package 

“AICcmodavg” (v2.1-1, Mazerolle, 2017) to generate model selection statistics. Models within 

two AICc units (ΔAICc < 2.00) of the top ranked model and containing a similar model weight 

(ωi) and deviance (-2log[L]) were considered to have equivalent support (Burnham & Anderson 

2002). When models did not converge, I omitted those from the rankings and proceeded with 

selection from the remaining model list. I “stacked” the data across years and included a 

categorical year covariate (0 = 2016, 1 = 2017) in each detection (p) and occupancy (Ψ) model, 

thus enabling me to examine species responses over two distinct climate regimes (MacKenzie et 

al. 2017). An alternative approach would have been to fit dynamic multi-season occupancy 

models that explicitly model extinction and colonization rates; however this design can produce 

large parameter biases and uncertainty when number of visits, sites, and/or detection rates are 

low (McKann et al. 2013). Prior to constructing models, all continuous covariates were 

standardized to a mean of zero and a standard deviation of 1, and categorical variables were set 

as factors. I additionally selected only one from each pair of highly correlated variables (r > 0.7) 

in the same model to avoid collinearity among covariates.  
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Model selection was done in two parts: I first assessed a suite of 34 detection models for 

wood frogs (Appendix 1.1) and 32 for spotted salamanders (Appendix 1.2) from a combination 

of abiotic and biotic variables and their interactions (Table 1.1), using the occupancy model 

logit(Ψ) = β1 +  β2(pools) + β3(upland) + β4(pools * upland) + β5(year)  

and selected the detection model with the greatest support to compare 14 occupancy models that 

represented a priori hypotheses of larval and adult habitat requirements and potential mediating 

effects of climate on these life history components. This candidate set of models consisted of 

univariate larval (pools) and adult habitat (upland) models, additive (pools + upland) and 

interactive (pools * upland) habitat models, and either additive or interactive climate effects for 

each covariate (e.g., pools + year versus pools * year), as well as a detection model and null 

model. I assessed model fit of the most complex converging model for each species with a 

Pearson’s χ2 test of observed and bootstrapped data, using 1000 parametric bootstrapped samples 

(MacKenzie & Bailey 2004; Mazerolle 2017). From these tests I estimated overdispersion (ĉ) by 

dividing the observed χ2 statistic by the mean simulated statistic. Models with a p-value > 0.05 

and ĉ ~ 1.0 were considered to structurally adequate (Burnham & Anderson 2002). I used the top 

model for subsequent inference, or if there was model selection uncertainty I based inferences on 

model-averaged predictions. 

Occupancy models contain several assumptions that I addressed with our sampling and 

analytical framework. Detection and occupancy probabilities were modeled with various 

temporal and spatial covariates to address potential sources of heterogeneity in detection and 

occupancy probabilities. Sites were designed at the approximate home range size for target 

species, with pools generally arranged close to plot centers to satisfy the closure assumption. 

Wood frogs and spotted salamanders typically display low movements within upland refugia 
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during the summer when we conducted surveys (Madison 1997; Faccio 2003; Rittenhouse & 

Semlitsch 2007b). One plot was in proximity (< 150 m) to an open field containing a large 

breeding pond as well as an experimental array of 16 vernal pools and removed from the analysis 

to prevent confounding sources of upland amphibian activity. I also omitted all late summer 

observations of recently metamorphosed amphibians from the analysis, as these individuals 

constitute new entries to sites during the sampling period.  

To enable inference about the potential mechanisms driving site occupancy patterns, I 

examined relationships between forest type (i.e., proportion residual forest) and upland habitat 

characteristics by creating simple linear regression models with microhabitat variables as 

dependent covariates. Assumptions of normality and homogeneity of variance were examined 

with residual plots and respectively confirmed with the Shapiro-Wilk (Royston 1982) and 

Breusch-Pagan (Breusch & Pagan 1979) tests. I additionally assessed descriptive scatter plots for 

nonlinear patterns of covariation. Canopy cover estimates were uniform across all sites (𝑥̅ = 0.92 

± 0.02); therefore, I did not model this variable.  

 

Results 

Amphibian occupancy relationships with landscape features 

 A total of 37 adult wood frogs and 32 adult spotted salamanders were detected at 22 out 

of 29 sites over the two seasons of study. Naïve occupancy (proportion of sites where a species 

was detected) differed between the study years: in 2016, naïve occupancy estimates were 0.17 

(five sites) for wood frogs and 0.21 (six sites) for spotted salamanders whereas in 2017 naïve 

occupancy estimates were 0.45 (13 sites) for wood frogs and 0.41 (12 sites) for spotted 

salamanders.  
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The bootstrapped analyses showed no evidence of a lack of model fit for either species 

(wood frogs: p = 0.585; spotted salamanders: p = 0.184). One occupancy model for wood frogs 

(pools * uplands * year) produced parameter estimates with non-number (i.e., “NaN”) error 

messages, and was dropped from the analysis. Of the remaining 13 candidate occupancy models 

for wood frogs, the top ranked model contained two terms — pools + year — with a model 

weight of 0.49 (Table 1.2). No other models were within two ΔAICc units.  According to this 

model, probability of occupancy increased with increasing vernal pool density (Table 1.3) and 

did not differ between the two study years (Figure 1.3).  Occupancy probability increased up to 

densities of 4 pools/ha (Figure 1.4). Two detection models had a ΔAICc less than 2, with the top-

ranked model containing an indicator for whether it rained in the previous 24 hours to a survey 

and the second model containing an indicator for whether it rained during the survey. These 

models received nearly identical levels of support (Appendix 1.1); however, their deviances 

strongly differed (111.6 and 106.1, respectively), indicating that the second model was likely 

more appropriate. According to this model, detection of wood frogs decreased with increasing 

depth of the leaf litter (Table 1.3) yet this effect was reversed in the presence of rain as the 

interaction of rain and leaf litter depth was positive and greater than the main effect of litter 

depth (Table 1.3), and the predicted values support the strength of this interaction (Figure 

1.3a,b). Overall, detection of wood frogs tended to be greater in 2017, when site conditions were 

wetter, although 95% confidence limits contained 0 (Table 1.3).  

 Three spotted salamander models — ψ(uplands + pools * year), ψ(uplands * year + 

pools * year), and ψ(uplands * pools * year) — were unable to converge and were subsequently 

dropped from the analysis. Of the remaining 11 models, one — ψ(upland * pools + pools * 

year) — was within ΔAICc of 2.00 with a model weight of 0.56 (Table 1.2). According to this 
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model, probability of occupancy was influenced by the relative availability of vernal pools and 

residual forest cover (Table 1.3), but these patterns differed between years (Figure 1.5). In the 

drought year (2016), both aquatic and terrestrial habitats jointly limited occupancy given the 

interaction between pool density and residual forest (Table 1.3), with few salamanders observed 

in post-agricultural secondary forests with few to no pools (Figure 1.5). Salamanders exploited a 

greater diversity of habitats in the wet year (2017) and were less limited by pool concentrations 

under the moist conditions (Figure 1.5).  There was greater detection model uncertainty for 

spotted salamanders. Six models had a ΔAICc less than 2.00 (Appendix 1.2). Models containing 

both litter depth and an indicator of rain seemed to perform better than the other detection 

models in this top list, according to model deviances. I did not detect a strong interaction 

between litter and rain (βlitter*rain1 = -1.35 ± 2.17) and opted to use the more parsimonious additive 

model (litter + rain + year) for modeling detection in the candidate occupancy model set. Both 

leaf litter and rain tended to inhibit detection of spotted salamanders (Figure 1.3c,d) although 

95% confidence limits on the parameter estimates overlapped 0 (Table 1.3).  

Terrestrial microhabitats relationships with forest disturbance history  

 Terrestrial microhabitat characteristics displayed several relationships with forest 

disturbance history. With increasing residual forest cover, leaf litter depth increased (R2 = 0.26, 

P = 0.004) and understory vegetation density decreased (R2 = 0.28, P = 0.003) (Figure 1.2). Leaf 

litter and understory vegetation both exhibited slight nonlinear relationships with residual forest 

cover, which was likely due to confounding variation in forest composition (i.e., deciduous 

versus coniferous) within the disturbance history gradient. I did not detect any direct general 

relationships between quantity or decay quality of coarse woody debris and residual forest 

extent, though residual forests tended to have more decayed debris (P = 0.08). There was a 
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strong pattern in the variance of estimates across our land-use gradient, with secondary forests 

displaying greater heterogeneity in coarse woody debris quantities than residual forests (Figure 

1.2c). Additionally, debris quantities declined with increasing secondary deciduous forest cover 

(R2 = 0.48, P < 0.0001), suggesting there are important interactions between historical land-use 

and compositional trajectories of forest regeneration that may affect available microhabitat 

features in this system. 

 

Discussion 

Pool-breeding amphibians displayed species-specific occupancy patterns with aquatic and 

terrestrial habitat gradients. Whereas both the distribution of wood frogs and spotted salamanders 

were similarly affected by the availability of vernal pools, spotted salamanders were additionally 

influenced by landscape setting and climate, displaying an affinity for sites where the forest 

consisted of a minimum threshold of 25% residual forest cover and for pool densities that were 

lower the wet year. These results imply that historical agricultural and subsequent reforestation 

influence occurrence of pool-breeding salamander populations in contemporary forested 

landscapes and so should be considered in the development of conservation plans.  

The relationships between forest history and amphibian occurrence are likely due to 

differences in life history traits and physiological limitations between the species studied. 

Spotted salamanders are a relatively larger, longer-lived species capable of breeding four or more 

times throughout their life span (Husting 1965). Wood frogs are relatively short-lived, with most 

individuals breeding only once or twice during their 3–4 year life span (Berven 1990, 2009). 

This reproductive constraint can be observed in their seasonal dispersal patterns. Both species are 

highly philopatric (Whitford & Vinegar 1966; Berven & Grudzien 1990); however, their 
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movements in relation to breeding sites differ considerably. Although capable of dispersing 

farther into uplands than spotted salamanders in the spring and summer (Rittenhouse and 

Semlitsch, 2007b), wood frogs tend to overwinter closer to breeding sites (Regosin et al. 2005) 

indicating a stronger dependency on aquatic habitat availability and future breeding 

opportunities. Several studies have found contrasting relationships between breeding effort and 

habitat availability for wood frogs and spotted salamanders. Newcomb-Homan et al. (2004) 

observed species-specific occupancy trends in relation to surrounding forest cover in eastern 

Massachusetts, with wood frogs most sensitive to habitat loss closest (< 30 m) to breeding 

habitats and spotted salamanders more affected by forest loss at larger (i.e., > 1000 m) spatial 

scales. These results are consistent with those of Baldwin et al. (2006), who assessed amphibian 

populations in secondary forests that varied in pool assemblages and succession status following 

a catastrophic fire in the late 1940s.  In their study, density and hydroperiod of pools were both 

important predictors of wood frog and spotted salamander breeding populations; however, 

spotted salamanders were additionally driven by forest age, displaying an affinity for pools 

surrounded by older forested uplands. Variation in life history traits is critical in determining 

species responses to habitat change; evidence from studies of other amphibian taxa suggests that 

anthropogenic disturbances may be more damaging to large, long-lived, habitat specialists 

(Surasinghe & Baldwin 2014), such as spotted salamanders. 

Climate had an important mediating effect on where these species occurred and how 

likely they were to be found. The study region experienced consecutively extreme climate 

events, with 2016 the worst recorded drought on record (Sweet et al. 2017) and 2017 an 

abnormally wet spring and summer (NOAA 2017). Detection estimates were higher for wood 

frogs under the wetter conditions in 2017. While overall detection of spotted salamanders was 
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similar in both years, occupancy was more variable. Spotted salamanders were less restricted by 

pool densities in 2017, with several individuals encountered in forests devoid of known vernal 

pools. This difference in occupancy between wet and dry years suggests adaptive migration to 

exploit alternative upland habitats in the wetter year. Spotted salamanders display strong 

avoidance to conspecifics in upland habitats (Regosin et al. 2003), which may have also 

displaced some individuals to marginal sites.  

 I detected several signatures of historical agriculture in terrestrial microhabitats that could 

influence populations of forest-dwelling amphibians. Secondary forests featured denser 

understory vegetation, shallower leaf litter, and more variable quantities of coarse woody debris 

than residual forests. These structural and functional differences are informative in the context of 

previous research on the long-term effects of agriculture on temperate forests. Forest-dwelling 

amphibian populations have been positively associated with understory vegetation cover (Pough 

et al. 1987; DeMaynadier & Hunter, Jr. 1998; Faccio 2003). Shrubs and herbaceous plants are 

important forest substrates that provide additional shade, moisture, and foraging habitat for many 

amphibian species. I estimated greater understory cover in secondary forests, however much of 

this vegetation consisted of dense patches of ferns and spruce seedlings in conifer plantations and 

thickets of invasive blackberries in some deciduous secondary stands. These uniform understory 

strata may not offer the same benefits for forest dwelling amphibians as the diverse herbaceous 

flora typically found in residual forests.  

Coarse woody debris is a limiting upland habitat feature for most terrestrial salamanders, 

which heavily rely on cover objects for foraging and refuge. Quantity and especially quality (i.e., 

decay status) of coarse woody debris can determine habitat suitability in forests (Otto et al. 

2013).  The lack of a clear relationship between debris quantities and residual forest cover likely 
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reflects forest management practices in residual stands and conifer plantations at HMF. Northern 

hardwood forests typically require at least 100 years for coarse woody debris to accumulate to 

pre-disturbance levels following canopy removal (McGee et al. 1999; Currie & Nadelhoffer 

2002; Hooker & Compton 2003), but this successional relationship is confounded in managed 

forests, like HMF.  The heteroscedastic coarse woody debris patterns at HMF may be a function 

of the range in secondary forest stand ages in this study (50–80 years) and limited amounts of 

management, the latter of which produces a steady influx of large woody objects to the forest 

floor in conifer plantations and prevents natural biomass accumulation patterns in established 

residual forests. Either source of heterogeneity could have potentially produced the greater 

observed variance of debris in secondary sites. However, spotted salamanders may have still 

been influenced by the availability of coarse woody debris, which was limited in secondary 

deciduous sites, and the quality of debris, which tended to be more decayed in residual forests. 

Furthermore, given their highly subterranean status, salamanders may have been affected by 

quantities of belowground coarse woody debris, including decaying roots and buried wood, 

which comprise the majority of dead woody biomass in managed forests (Debeljak 2006; 

Olajuyigbe et al. 2011) and can remain limited in post-agricultural successional sites (Marin-

Spiotta et al. 2008). Leaf litter is another critical component of wood frog and spotted 

salamander terrestrial habitats, providing additional foraging opportunities and protection from 

stressful environmental conditions like drought. In radiotelemetry studies, both species have 

been found to seek out microhabitats that include well developed deciduous litter layers (Faccio, 

2003; Rittenhouse and Semlitsch, 2007b). These results suggest that despite reduced litter 

availability, relatively mature secondary forests (≥ 50 years old) provide sufficient microhabitats 

for wood frogs during their terrestrial life stage.  
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Other structural and functional habitat components may additionally explain agricultural 

legacy effects on pool-breeding salamanders. A typical long-term consequence of agriculture in 

contemporary forests is the shift in plant species composition resulting in potential losses of 

species and genetic diversity (Bellemare et al. 2002; Foster et al. 2003; Vellend 2004; Flinn & 

Marks 2007; Rhemtulla et al. 2007). In central New York, conversions from sugar maple (Acer 

saccharum), American beech (Fagus grandifolia), and eastern hemlock (Tsuga canadensis) 

dominated stands to those composed of red maple (Acer rubrum), white ash (Fraxinus 

americana), and white pine (Pinus strobus) are typical (Flinn & Marks 2007) and largely 

representative of current conditions at HMF. Whereas primary forests may appear structurally 

similar to secondary forests in some regards 50–80 years following agricultural abandonment, 

intensive land-use practices and drastic changes to plant communities can have broad effects on 

functional traits, including decomposition rates of coarse woody debris and litter (Compton & 

Boone 2000; Post & Kwon 2000), soil nutrient dynamics (Bellemare et al., 2002; Flinn and 

Vellend, 2005; Fraterrigo et al., 2005; Flinn and Marks, 2007), and resistance to exotic 

organisms, such as invasive plants and earthworms (Szlávecz & Csuzdi 2007; Kuhman et al. 

2011). Examining dual effects of structural and functional characteristics of forests with different 

land-use histories on amphibians should provide a greater understanding of potential 

mechanisms that limit species responses. 

Although not recorded in this study, subsurface environmental characteristics and 

community interactions may additionally explain spotted salamander preference for older forests. 

Another important physical legacy of cultivation is the spatial homogenization and physical 

compaction of soil organic layers that can persist for at least 60–100 years following forest 

regeneration, with slow recovery of subsoil root channels (Foster et al. 2003; Piché & Kelting 
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2015). As a fossorial species, spotted salamanders are highly dependent on underground niches, 

such as small mammal burrows, outside of the breeding season (Madison 1997; Regosin et al. 

2003; Rothermel & Luhring 2005). These subterranean structures, and the assemblage of 

mammals that construct them, may be influenced by forest microtopography and associated with 

pit and mound features that are characteristic of primary forests (Faccio 2003; Flinn & Marks 

2007). Spotted salamanders are particularly dependent on short-tailed shrew (Blarina 

blevicauda) burrows (Madison 1997), which may be more abundant in older forests (Ford et al., 

1997). Small mammal burrows are an important component of core terrestrial habitat for many 

amphibian species (Semlitsch & Bodie 2003). Assessing these community interactions in forests 

with different land-use histories would provide necessary context for understanding these 

mechanisms and their relevance to pool-breeding amphibian conservation. 

 A primary benefit of occupancy modeling is the ability to account for imperfect detection 

in species occurrence estimates. Detection of both species was reduced in deep leaf litter 

environments, but this effect was reversed for wood frogs and intensified for spotted salamanders 

in the presence of precipitation. These effects can be explained by limitations of the survey 

method as well as the physiological constraints of amphibians. Due to time restrictions and the 

large plot sizes, we did not actively sample leaf litter profiles. Wood frogs are easily obscured in 

deep litter environments, and cover object surveys may have missed spotted salamanders 

exploiting these other substrates. Amphibians are reliant on cutaneous respiration and highly 

sensitive to changes in air moisture, as such they are typically more active in higher humidity 

conditions when desiccation risk is lower (Duellman & Trueb 1994). Accordingly, precipitation 

likely increased the proportions of surface active frogs and litter active salamanders, the latter of 

which would have been more difficult to detect. While occupancy is often utilized as a proxy for 
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assessing population dynamics, caution should be exercised when attempting to translate 

occupancy to abundance (Efford & Dawson 2012; Bailey et al. 2014). This is particularly true 

for short-term studies of animal occurrence. Wood frog populations can fluctuate rapidly in 

response to extreme climate conditions and subsequent effects on pool hydroperiods (Berven 

2009), such as those experienced over the course of this study. Spotted salamander populations 

are generally more stable; however, their relative longevity necessitates a longer study to better 

understand population trends, habitat associations, and the specific mechanisms driving these 

relationships.  

 

Conclusions 

 

A growing challenge for wildlife conservation is identifying and developing feasible 

management strategies for species facing numerous interrelated threats. This is particularly true 

for organisms with complex life cycles, which operate on multiple trophic and spatial 

dimensions. Intervention that does not consider threats in the context of life history processes 

and landscape setting may fail at supporting resilient populations in the long term. As I 

demonstrate, land-use legacies can play an important role in amphibian conservation efforts and 

better contextualize habitat augmentation practices for pool-breeding species with different life 

histories. Vernal pool construction can enhance populations in forests with limited breeding 

habitat, but stakeholders should consider pool density and site history with regards to focal 

populations to maximize conservation outcomes; focusing exclusively on secondary forests with 

limited leaf litter, denser and less diverse understory plants, and less decayed woody debris as 

candidate sites for pools may yield unfavorable outcomes for long-lived and highly fossorial 

organisms such as mole salamanders (Ambystoma spp.). Heterogenous designs that include a 
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gradient of pool densities over large spatial scales are essential to support genetically diverse 

local and regional populations (Smith & Green 2005; Calhoun et al. 2014). I found that moderate 

densities (1 – 4 pools per 9.3 ha) can provide reasonable benefits for co-occurring amphibians 

with different life histories.  Developing complex systems of pools with varying hydroperiods, 

rather than single isolated wetlands, are preferable for philopatric species with high dispersal 

capabilities; these designs provide needed buffers against environmental threats such as climate 

change and/or disease and promote long-term population persistence (Petranka & Holbrook 

2006). 

Finally, conservation plans that solely focus on current and future threats without 

carefully considering previous site conditions may ignore historical restraints on habitat 

suitability (Calhoun et al. 2003). Forest disturbance history might be more relevant for spotted 

salamanders when selecting sites for pool creation. Situating pools across a gradient of residual 

and secondary forests can help address historical wetland losses while also supporting the 

terrestrial habitat requirements of both pool-breeding species. Though this study only focused on 

the legacy effects of forest clearance and agriculture over the past two centuries, even older 

anthropogenic disturbances can contribute to forest conservation plans as well (Whitlock et al. 

2018). Extending historical perspectives to include a comprehensive spatiotemporal range of 

land-use patterns can be informative to understanding ecological responses to current threats and 

developing adaptive management plans for species with complex life cycles. 
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Tables 

 

Table 1.1. Summary of detection and occupancy model parameters assessed in this 2016–2017 

study of aquatic and terrestrial habitat limitations of two vernal pool-breeding amphibians in 

forests with distinct land-use histories in central New York, USA. 

Model Variable Description Unit 

Detection     

 date survey date Julian date (1 – 98) 

 rain24 rain 24 hrs prior to a survey  0: no, 1: yes 

 rain rain during a survey  0: no, 1: yes 

 temp air temperature  °C 

 obs number of observers  0: 1, 1: 2 

 litter leaf litter depth  centimeters 
 unda understory cover  proportion 
 effortb relative # objects flipped index (max: 1) 

 year survey year 0: 2016, 1: 2017 

Occupancy    

 upland residual forest cover  proportion 

 pools vernal pool density number of pools (0–10) 

 year survey year 0: 2016, 1: 2017 
a Parameter only included for L. sylvaticus 
b Parameter only included for A. maculatum 

 

 

  



 

31 

 

Table 1.2. Model selection results for 2016–2017 wood frog and spotted salamander occupancy 

data in relation to larval versus adult habitat gradients in central New York. Only models with a 

ΔAICC ≤ 2.0 and the null model are shown. Model symbols: Ψ = occupancy, p = detection. 

Modela K ΔAICC wi Deviance 

Wood frogs         

      Ψ(pools + year) p(litter * rain + year) 8 0.00 0.49 106.20 

      Ψ(.) p(.) 2 9.12 0.01 130.04 

     

Spotted salamanders     

      Ψ(upland * pools + pools * year) p(litter + rain + year) 10 0.00 0.56 104.90 

      Ψ(.) p(.) 2 4.63 0.06 129.99 
a  Full list of model rankings for each species are available in Appendices 1.1–1.4.  
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Table 1.3. Parameter estimates for best supported wood frog and spotted salamander models 

relating occupancy to larval versus adult habitat gradients during divergent climate regimes from 

2016–2017 in central New York. 

Species Model parameter Regression parameter β  SE Lower CI Upper CI 

Wood frogs Occupancy          

   Intercept    0.40 1.16 – 1.88    2.67 

   pools    2.25 1.03    0.23    4.27 

   year1    0.06 1.20 – 2.29    2.41 

 Detection      

  Intercept – 1.47 0.68 – 2.80 – 0.14 

  litter – 0.94 0.47 – 1.86 – 0.02 

  rain1    1.20 1.07 – 0.90    3.30 

  year1    1.44 0.78 – 0.09    2.97 

  litter*rain1    2.62 1.12    0.42    4.82 

Spotted 

salamanders Occupancy      

  Intercept    2.61 2.06 – 1.43    6.65 

  upland    3.25 1.78 – 0.24    6.74 

  pools    8.12 3.63    1.01   15.23 

  year1 – 2.97 2.33 – 7.54    1.60 

  upland*pools    6.55 2.99    0.69  12.41 

  pools*year1 – 9.67 4.28  – 18.06 – 1.28 

 Detection      

  Intercept – 0.60 0.52 – 1.62    0.42 

  litter – 1.40 0.79 – 2.94    0.15 

  rain1 – 0.72 0.39 – 1.48    0.05 

   year1    0.46 0.69 – 0.89    1.81 
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Figures 

 

   

Figure 1.1. Region of study of aquatic and terrestrial habitat limitations of two vernal pool-

breeding amphibians in forests with distinct land-use histories in central New York, USA during 

2016 and 2017. Left panel: Overview of historical (1936) and current (2017) forest extent and 

vernal pools distributions at Heiberg Memorial Forest (HMF). Right panel: sampling plots and 

pool locations. Forest types were delineated from georeferenced historical aerial photographs and 

modern orthoimages. Secondary forests (light grey) were in agriculture prior to 1936 and 

residual forests (dark grey) have been continuously wooded throughout this historical period. 
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Figure 1.2. Upland habitat regression results from study on aquatic and terrestrial habitat 

limitations of pool-breeding amphibians in forests with distinct land-use histories in central New 

York between 2016–2017. Relationships between proportion cover by residual forest and (a) leaf 

litter depth, (b) understory vegetation, and (c) coefficient of variation (CV) of coarse woody 

debris (CWD) surface area. Plot (d) displays the relationship between proportion cover by 

secondary deciduous forest and CWD surface area. 
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Figure 1.3. Predicted effects of leaf litter depth on detection of wood frogs during surveys with 

rain (a) and without rain (b) and spotted salamanders with rain (c) and without rain (d) from 

2016–2017 in central New York. Model estimates are plotted for both study years (solid lines = 

2016, dashed lines = 2017). The distribution of leaf litter depth values from all sites is shown as 

a rug plot at the bottom of each figure. 
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Figure 1.4. Predicted occupancy estimates for wood frogs versus pool density from 2016–2017 

in central New York, based on the top supported model. 95% prediction intervals are shown.  

Predictions were identical between study years, but with less confidence in 2016 (not shown).  
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Figure 1.5. Relationship between spotted salamander occurrence and breeding pool availability 

in the context of forest disturbance history in (a) a dry year (2016) and (b) a wet year (2017) in 

central New York.  Figure depicts model-averaged predictions of spotted salamander occupancy 

from the full suite of candidate occupancy models.  
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CHAPTER 2: AGRICULTURAL LAND-USE LEGACY EFFECTS ON FOREST-DWELLING 

PLETHODONTID SALAMANDERS 

 

Abstract 

Developing effective conservation strategies for plethodontid salamanders—a group of terrestrial 

salamanders displaying tremendous amounts of biomass and nutrient cycling in many forests—

requires a comprehensive understanding of the long-term effects of landscape modifications to 

species and their associated habitats; however, most research has only focused on the impacts of 

timber management and very few studies have explored the longitudinal effects of more 

intensive land-use practices such as agriculture. To address these knowledge gaps, I investigated 

the legacy effects of agriculture on plethodontid salamanders and terrestrial microhabitats over 

two years in central New York. Using forest habitat assessments and daytime visual encounter 

surveys, I described terrestrial microhabitat relationships with disturbance history and estimated 

abundance patterns of two plethodontid species—red-backed salamanders (Plethodon cinereus) 

and dusky salamanders (Desmognathus sp.)—from upland plots (N = 30) along a post-

agricultural secondary to residual forest gradient. Secondary forests contained shallower leaf 

litter, denser understory vegetation, and fewer natural cover objects than neighboring residual 

forests. These habitat components were all strongly implicated in salamander abundance 

patterns, with both species limited by the availability of natural cover objects, red-backed 

salamanders negatively associated with dense understory vegetation, and dusky salamanders 

positively associated with leaf litter depth and negatively associated with increasing distance to 

streams. These results suggest that agriculture imparts persistent legacies on modern forested 

landscapes and that terrestrial and stream-dependent woodland salamanders are sensitive to these 

effects for at least 50–80 years after farm abandonment.  
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Key words:, agriculture, land-use history, microhabitat, N-mixture model, terrestrial 

salamanders  

 

Introduction 

 

Forest ecosystems are governed by disturbance and successional cycles across multiple 

spatial and temporal scales (Perry et al. 2008). These dynamic processes are fundamental to the 

establishment and persistence of different biological communities associated with specific 

successional habitats and environmental conditions. Anthropogenic activities, such as 

clearcutting and agriculture, are important drivers of global forest change (Hansen et al. 2013). 

These intensive land-use practices can impart numerous long-lasting legacies on ecosystem 

structure, composition, and function (Foster et al. 2003) and affect forest responses to 

disturbance regimes modified by climate change (Dale et al. 2001). Understanding how legacies 

of historical agriculture impact forest-dependent species can provide valuable insight for 

conservation and management plans of contemporary forests and guide protections for organisms 

with specific habitat requirements.  

The northeastern United States offers rich opportunities for studying land-use legacies in 

forest ecosystems. Over the past century, northeastern forests have undergone a swift 

transformation. After hundreds of years of extensive forest clearing and agricultural activity, 

farmlands have largely been abandoned and the region has experienced widespread regeneration 

(Whitney 1996). The prospect of future forest losses in this region (Drummond & Loveland 

2010) underscores the need to fill knowledge gaps on agricultural legacy effects on forest 

organisms of conservation concern. There is a wide gap of knowledge on forest land use legacy 
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effects on wildlife in temperate forests, and this is particularly true for forest-dwelling 

amphibians like terrestrial salamanders (Bowen et al. 2007; Thompson & Donnelly 2018). 

Terrestrial salamanders (family: Plethodontidae) have long been advocated as indicators 

of forest biodiversity and ecosystem integrity in North America, owing to their extreme 

sensitivity to habitat modifications, interactivity across multiple forest trophic levels, and high 

population densities (Welsh & Droege 2001; Davic & Welsh 2004). These lungless salamanders 

are completely reliant on cutaneous respiration in terrestrial environments and are therefore 

highly sensitive to fine-scale habitat disturbances that increase desiccation risk (Feder 1983). 

Plethodontid salamanders may play significant roles in eastern forests, as both top predators in 

soil-litter food webs and important prey for a variety of reptiles, birds, and small mammals 

(Wyman 1998; Davic & Welsh 2004). Species such as red-backed salamanders (Plethodon 

cinereus) often display extremely high densities where they occur and comprise a significant 

proportion of animal biomass in forests (Burton and Likens, 1975a; Jaeger, 1980), highlighting 

their ecological importance and utility for quantifying the long-term effects of disturbances on 

forest ecosystems.  

Most studies of land-use legacy effects on plethodontid salamanders have focused on 

historical impacts of silviculture and alternative forest management practices (e.g., DeMaynadier 

and Hunter, Jr., 1998; Dupuis et al., 1995; Ford et al., 2002; Harper and Guynn, 1999; Semlitsch 

et al., 2007). Salamander populations typically experience sharp declines immediately following 

clearcutting (Ash 1997; Hocking et al. 2013), as the loss of the forest canopy, vegetation, and 

ground-level substrates temporarily reduces foraging opportunities (Harper & Guynn 1999) and 

increases desiccation risk (Petranka et al. 1993). The expected population recovery time 

following timber extraction in southern Appalachia ranges from 20–70 years (Petranka et al. 
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1993; Ash 1997), or longer where abandoned logging roads can have persistent negative effects 

on salamander communities (Semlitsch et al. 2007). Fewer studies have explicitly examined the 

long term effects of agriculture and subsequent reforestation processes on plethodontid 

salamanders, which may be equal to or greater than those resulting from silviculture (Pough et al. 

1987; Hicks & Pearson 2003; Surasinghe & Baldwin 2014). More research is needed to fully 

parse these effects in different forested regions with distinct salamander communities, 

particularly in the northeastern United States (Thompson & Donnelly 2018).  

To address these knowledge gaps, I assessed populations of plethodontid salamanders and 

terrestrial microhabitat characteristics along a secondary to residual forest gradient in central 

New York. The goal of this research was to identify potential long-term effects of agriculture on 

terrestrial salamander microhabitats in modern northeastern forests.  The objectives were to (1) 

estimate patterns of salamander abundance in relation to microhabitat components along a 

historical disturbance gradient, and (2) compare population responses of red-backed salamanders 

and dusky salamanders (Desmognathus spp.), two plethodontid species with distinct life histories 

(fully terrestrial versus semiaquatic), to agricultural legacies. I expected abundances of both 

species to be reduced in secondary forests, where persistent modifications of leaf litter, coarse 

woody debris, understory vegetation, and canopy cover would limit adult populations. From this 

approach, I sought to expand on the literature of agricultural legacy effects in eastern forests, 

quantify these effects on established indicators of ecosystem integrity, and elaborate on the 

species-specific habitat requirements of forest-dwelling salamanders and their sensitivity to 

landscape change. 
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Methods and Materials 

Study Sites 

I conducted fieldwork at Heiberg Memorial Forest (HMF), a 1,600-ha property located 

33 km south of Syracuse, NY (42°46'19" N, 76°5'6" W) and owned by the State University of 

New York College of Environmental Science and Forestry. The site is part of the northern 

glaciated Alleghany Plateau in the Northeastern Mixed Forest Province, a region characterized 

by moderately long winters, summer peaking precipitation, and a mixture of broadleaf deciduous 

and boreal coniferous vegetation (McNab et al. 2007). The forest is currently composed largely 

of sugar maple (Acer saccharum), red maple (Acer rubrum), American beech (Fagus 

grandifolia), and eastern hemlock (Tsuga canadensis), with scattered plantations of Norway 

spruce (Picea abies) and red pine (Pinus resinosa) and smaller amounts of poplar, cherry, and 

oak. The property was originally purchased under the New York State Reforestation Law of 

1929 and the Hewitt Amendment of 1931, by which the state acquired abandoned farmlands and 

designated them for reforestation (R. Nyland, personal communication). Roughly half of the 

original forest was cleared for agriculture (mostly pasture and hayfields with scattered croplands) 

during the 18th and 19th centuries prior to abandonment and reforestation in the early 20th century 

(Figure 2.1). The site currently consists of patches of residual and secondary forests, including 

naturally restored stands, conifer plantations, and actively managed sugar bushes. I define 

secondary forest as any stand (naturally regenerated or human planted) that was previously 

cleared for agriculture and residual forest as stands that have been continuously wooded 

throughout this historical period (Peterken 1981).  The site’s residual forest stands were largely 

maintained by farmers as personal woodlots and selectively cut for fuelwood, timber, and 

supplementary sources of income, without being cleared (R. Nyland, personal communication).  
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This investigation was performed as part of ongoing study of created wetlands and pool-

breeding amphibians at HMF such that sampling plots reflected home range sizes of wood frogs 

(Lithobates sylvaticus) and spotted salamanders (Ambystoma maculatum) and was distributed in 

part according to configurations of natural and constructed wetlands throughout the site. 

Salamanders and terrestrial habitat characteristics were surveyed in 30 large (9.3 ha) hexagonal 

plots that encompassed complete gradients of forest type (secondary to residual) and composition 

(coniferous to deciduous). Primary and secondary forest extents for HMF were obtained by 

manually delineating forest cover from six georeferenced historical aerial photographs (circa 

1936) and comparing those coverages with contemporary orthoimages (circa 2015) (NYS GIS 

Clearinghouse, 2015) and land cover data (NLCD 2011, Homer et al., 2015) in ArcMap 10.4.1 

(Environmental Systems Research Institute, Inc., Redlands, California, USA, 2016). Half of the 

plots contained vernal pools and were established prior to the start of this study, with nine plots 

clustered on a single experimental array of constructed wetlands that was split evenly between 

adjacent residual and secondary forest stands. The remaining plots were stratified randomly 

selected from a grid of hexagons to include a representative sample of disturbance extent (i.e., 

proportion secondary forest cover) and forest composition (i.e., proportion deciduous versus 

coniferous cover). 

Salamander surveys 

I inventoried salamanders on sampling sites May-August 2016 and 2017 using area-

constrained visual encounter surveys. Visual encounter surveys is an effective method for 

sampling terrestrial amphibian populations in large areas (Dodd 2011). Each plot was searched 

between 0800-1500 for approximately three person-hours by walking in a standardized path and 

thoroughly examining under all moveable “cover objects” (≥ 10 cm in diameter) that might 
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provide refuge for amphibians, including rocks, logs, and bark, recording the total number of 

salamanders observed. To maximize survey efficiency in our large plots, I did not sift through 

leaf litter for additional observations. Two to three rounds of surveys were conducted in each 

plot each year to estimate abundance while accounting for imperfect detection, assuming closed 

populations within single seasons. Precipitation was documented in situ by surveyors and with 

supplementary data from the Cortland County Airport (42°35′33″N, 076°12′53″W) to determine 

time-since-rain (TSR) in days for each survey. Air temperature was measured with a digital 

thermometer at the start of each survey. I additionally recorded other visit details relevant to 

detection, including time of survey, survey effort (number of cover objects flipped relative to the 

site maximum), and number of surveyors (one to two persons).  

Terrestrial habitat sampling 

Forest microhabitat characteristics were sampled between August and September of 

2016, with some additional vegetation sampling in 2017. Habitat variables were measured at the 

plot level to quantify differences between forest types and model salamander responses to these 

components. I interpreted the maximum number of cover objects flipped at each site as the 

density of available cover objects, including all moveable logs, bark, and rocks. I used a 

combination of line intersect and small quadrat sampling to estimate several ground and 

vegetation substrates predicted to be associated with forest salamanders. Six 100-m long 

transects and 30 1-m2 quadrats were stratified randomly established in each plot to collect data 

on coarse woody debris (CWD) volume, surface area, and decay status, canopy cover, leaf litter 

depth, and understory vegetation cover. Transects were arranged at equidistant 60° angles along 

the plot circumradii with the start points randomly staggered 0-30 m from the hexagon center. 

We measured the diameter and intersection length of all downed CWD (≥ 10 cm in diameter) 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Cortland_County_Airport&params=42_35_33_N_076_12_53_W_region:US-NY_type:airport
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crossing the transects to calculate total estimated volume (m3 ha-1) and surface area (m2 ha-1) of 

CWD for each plot (Marshall et al. 2003). Decay class was recorded for each intersecting CWD 

object (Class 1 = freshly fallen, containing intact branches; Class 5 = mostly incorporated into 

the soil) (Sollins 1982b), which we used to calculate quantities of less decayed (decay class 1 – 

2) and more decayed (decay class 3 – 5) CWD. All other habitat components were measured in 

the quadrats, which were arranged at 20 m intervals along transects. I sampled canopy cover by 

taking single hemispheric photographs (iPhone 5s camera, 2-cm diameter fisheye lens 

attachment) from the center of each quadrat and manually calculating percent coverage for each 

image in the program ImageJ (Rasband 2017). Leaf litter depth was averaged from three ruler 

measurements taken in two random corners and the center each quadrat. Understory cover was 

recorded by visually estimating the proportion of woody and herbaceous vegetation under chest 

height (1.4 m) obstructing the ground within the gridded quadrat.  

Statistical analysis 

All analyses were performed in R Version 3.3.2 (R Core Team 2017). A description of 

habitat analyses relating forest disturbance history (i.e., secondary versus residual forest) to 

terrestrial microhabitat characteristics can be found in Chapter 1 (Methods).  

Salamander abundances were estimated with binomial N-mixture models (Royle 2004) in 

the package “unmarked” (v0.12-2, Fiske & Chandler 2011). I used the pcount function to fit all 

hierarchical models with maximum likelihood estimation and compared candidate models using 

the corrected Akaike’s Information Criterion (AICc), which adds an additional penalty for 

overfitting with a small sample size (Burnham & Anderson 2002). Model rankings were 

generated with the aictab function from the “AICcmodavg” package (v2.1-1, Mazerolle 2017). 

Models within two AICc units (ΔAICc < 2.00) of the top ranked model and containing a similar 
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model weight (ωi) and deviance (–2log[L]) were considered to have similar support. I combined 

the data across years by “stacking” the site count data and included a categorical covariate for 

year (0 = 2016, 1 = 2017) in each detection (p) and abundance (λ) model, allowing me to 

examine species responses to habitat gradients over two years (Kéry & Royle 2016). All 

continuous covariates were standardized on a z-scale to zero mean and single unit of standard 

deviation to promote model convergence, with categorical variables set as factors prior to model 

development. Individual covariates were not included in the same model when they displayed 

high correlation (r > 0.7). 

Model selection was done sequentially to first identify important detection covariates and 

then examine a candidate list of a priori habitat abundance models. I examined a total of 39 

detection models from a suite of abiotic and biotic variables (Table 2.1), using a global 

abundance model for each species, and selected the detection model with the greatest support for 

comparing habitat abundance models. Amphibian surveys spanned consecutively extreme 

climate periods: 2016 was the driest year on record for New York (Sweet et al. 2017) and 2017 

was an abnormally wet year; therefore, before constructing the final candidate model list, I 

compared univariate abundance models containing either additive or interactive year effects to 

identify any important climate mediated habitat relationships to include in the final model set. 

Abundance models consisted of univariate and bivariate groupings of litter, cover object, and 

vegetation components, including additive and interactive effects to account for multiple sources 

of terrestrial salamander population regulation. For stream salamanders, terrestrial habitat 

covariates were paired with an aquatic habitat covariate (i.e., distance to streams) to account for 

biphasic habitat requirements. I assessed goodness-of-fit of the global model for each species 

with a bootstrapped Chi-square statistic, using 1000 replicates (Mazerolle 2017), and estimated 
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overdispersion (ĉ) by dividing the observed Chi-square statistic by the mean of simulated values. 

Models with a p-value > 0.05 and ĉ ~ 1.0 were considered to be structurally adequate (Burnham 

& Anderson 2002); goodness-of-fit statistics and residual diagnostic plots were compared 

between Poisson and negative binomial models in instances when the Poisson distribution was 

inadequate. Zero-inflated Poisson models were not considered because of the low frequency of 

zero counts for both species. I selected the best fitting distribution for model comparison and 

inference, correcting for overdispersion by using quasi-likelihood values (QAICc) and adjusting 

parameter uncertainty (SEs and CIs) by the level of ĉ (Burnham & Anderson 2002).  

Binomial N-mixture models have been widely used since their development as they can 

provide abundance estimates from count data of unmarked organisms by simultaneously 

modeling two processes: the state process (i.e., abundance or λ, typically a Poisson distribution) 

and the observation process (i.e., detection or p, a binomial distribution). The model has several 

important assumptions to avoid biased parameter estimates: (1) sites should be closed (i.e., no 

births, deaths, or movements in or out of sites) between visits within the same season; (2) species 

must be identified correctly (i.e., no false-positive errors); (3) individuals must be detected 

independently from each other; (4) detection should be homogenous or modeled with appropriate 

covariates; and (5) N-mixture models make specific parametric assumptions, which I tested using 

the goodness-of-fit procedure described earlier to specify the most appropriate error distribution. 

Plethodontid salamanders exhibit vertical migrations between surface and underground refugia 

during summer months; however these movements should not constitute closure violations 

because they are generally temporary and random and only modify the interpretation of 

abundance to have a superpopulation meaning (Kéry & Royle 2016). To ensure that there were 

no false positives I grouped counts of dusky salamanders (Desmognathus fuscus and 
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Desmognathus ochrophaeus) by genus, as these species are often difficult to distinguish. 

Woodland plethodontid salamanders typically display high territoriality (Bruce et al. 2000) under 

discrete cover objects; therefore, detection is largely independent among individuals.  

Counts of dusky salamanders were significantly different between survey rounds (p < 

0.0001, Pearson’s chi-square), with the highest counts recorded toward later survey dates; 

however, this trend was not explained by survey effort or site-specific precipitation events. Due 

to concerns of possible closure violations because of migration and/or recruitment of dusky 

salamanders from streams, I decided to use negative binomial generalized linear models (GLMs) 

with the glm.nb function in the MASS package (v7.3-47, Venables and Ribley, 2002) to examine 

relative abundance in relation to terrestrial habitat characteristics and stream availability (Barker 

et al. 2017). Streams were delineated from a 3 m digital elevation model in ArcMap and average 

distance to streams was calculated for each plot. Categorical survey and year variables, as well as 

a stream distance covariate, were included in each model and paired with terrestrial habitat 

components according to different additive combinations. I included a quadratic effect of leaf 

litter to account for possible sources of imperfect detection under natural cover objects in plots 

with deeper litter.   

 

Results 

Terrestrial microhabitat relationships with forest disturbance history  

Several terrestrial salamander microhabitat characteristics displayed significant 

relationships with forest disturbance history, with shallower leaf litter (R2 = 0.26, p = 0.004), 

denser understory vegetation cover (R2 = 0.28, p = 0.003, and more variable quantities of coarse 
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woody debris in secondary forests (Table 2.2, Figure 1.2). Detailed habitat regression model 

results can be found in Chapter 1 (Results).  

 

Salamander abundance relationships with microhabitat features 

A total of 2,344 red-backed salamanders and 806 dusky salamanders were observed over 

the course of the study. Red-backed salamanders were detected on all study plots and dusky 

salamanders in 27 out of 30 plots. The bootstrapped analyses showed evidence of poor model fit 

for red-backed salamanders under a Poisson distribution (p < 0.001) with moderate 

overdispersion (ĉ = 2.60). A negative binomial global model was less overdispersed (ĉ = 1.58) 

and favored by AICc (Poisson ΔAICc = 25.90), so I used this distribution in the final candidate 

set of models and calculated quasi-likelihood statistics (QAICc) for model selection, adjusting 

the uncertainty of parameter estimates for additional overdispersion.  

Cover object density and understory cover additively best explained red-backed 

salamander abundance, with one model showing strong support (wi = 0.71): 

log(λ) = β1 +  β2(objects) + β3(und) + β5(year) 

and no other models having ΔQAICc < 2. (Appendix 2.2). Abundance was greater with more 

available cover objects and less understory vegetation, and similar between years (Table 2.3, 

Figure 2.1). These abundance estimates had greater precision in 2017, corresponding to the 

additional count data from a third survey round. One detection model had clear support in 

explaining detections of red-backed salamanders (wi = 1.00): 

logit(p) = β1 +  β2(effort) + β3(effort2) + β4(date) + β5(year)  
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According to this model, detection was greater with increasing survey effort and gradually 

declined later into the summer (Figure 2.2). Detection was also greater in 2017, when site 

conditions were wetter (Table 2.3, Figure 2.2).  

A Chi-squared goodness-of-fit test indicated sufficient fit (p = 0.23) for the global model 

for dusky salamanders. One model received relatively strong support (wi = 0.60) according to 

AICc. Dusky salamander counts were strongly driven by leaf litter depth cover object density and 

stream availability with higher observed counts in sites with deeper leaf litter, more abundant 

cover objects, and less distance to streams (Table 2.3, Figure 2.3). The positive effect of leaf 

litter tended to plateau with deeper litter levels (> 5 cm), where detection under natural cover 

objects may have been more restricted. Counts were greater in successive surveys, but not 

different between years. 

 

Discussion 

Historical agriculture exerted multiple legacy effects on contemporary upland forest 

conditions in central New York. Despite 50–80 years of forest regeneration, key components of 

salamander habitats such as leaf litter, cover object availability, and understory vegetation 

remain strongly dependent on site disturbance history. Salamander abundances varied along 

these habitat gradients, implying that historical agriculture and subsequent regeneration can have 

long-lasting effects on amphibian populations via their associated microhabitat conditions. These 

legacy effects were apparent for both plethodontid salamanders, evidently with slightly different 

habitat mechanisms for each. 

The observed negative association between red-backed salamanders and understory 

vegetation in this study may be more a function of changes to plant composition than cover. 
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Much of the dense vegetation in secondary sites consisted of homogenous patches of ferns and 

spruce seedlings in conifer plantations and thickets of invasive blackberries in many deciduous 

stands. Post-agricultural forests are more susceptible to invasions of shade-tolerant vegetation 

(Kuhman et al. 2011).  These uniform and weedy understory strata may not offer the same 

foraging and microclimate benefits for forest dwelling amphibians as diverse herbaceous flora, 

which are more associated with residual forests (Bellemare et al. 2002). Dense understory 

vegetation may also result in drier soil conditions due to greater evapotranspiration or be a 

symptom of other factors more directly affecting salamander populations, such as non-native 

earthworms and their detrimental effect on leaf litter and litter-dependent organisms (Maerz et al. 

2009). There is a general lack of knowledge regarding plant community interactions with 

plethodontid salamanders (but see Maerz et al., 2009); studies that investigate these fine-scale 

ecological relationships would be useful for understanding forest legacy effects on amphibians 

and their relevance to contemporary landscape change. 

My results are consistent with other studies documenting agricultural legacy effects on 

plethodontid salamanders via changes to vegetation and ground cover characteristics, and the 

first to measure these impacts while accounting for imperfect detection. Hicks and Pearson 

(2003) recorded lower abundances of plethodontid salamanders in post-agricultural forests in 

southern Appalachia, which featured a greater proportion of herbaceous vegetation. Cosentino 

and Burbaker (in review) found a similar negative association between red-backed salamanders 

and herbaceous vegetation in post-agricultural forests in central New York. Understory 

vegetation is typically positively associated with terrestrial salamanders (Pough et al., 1987; 

Dupuis et al. 1995), providing necessary shade, moisture, and foraging habitat for species such as 

red-backed salamanders (Jaeger 1978, 1980).  
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Abundance of both species in this study were strongly associated with the density of 

available cover objects, which was 73% lower in secondary than primary forests. The 

relationship between forest disturbance history, cover object density, and salamander abundance 

has been noted in other regional studies on forest legacy effects on amphibians (Cosentino and 

Burbaker, in review). This relationship did not hold up for CWD quantities, which displayed 

complex associations with forest composition and disturbance history. CWD gradually 

accumulates following agricultural abandonment and can require up to a century to be restored to 

reference levels (Currie & Nadelhoffer 2002; Hooker & Compton 2003). The observed 

heterogeneity in CWD among our secondary sites may reflect differences in management, where 

conifer plantations receive supplementary fuels from occasional logging and deciduous 

secondary stands represent a more natural trajectory of slow detrital recovery following 

agriculture. Regardless of these trends with historical and modern land-use, neither salamander 

species displayed strong abundance associations with CWD variability in the landscape. Density 

of cover objects may be more limiting than size of cover objects for plethodontid salamanders 

(McKenny et al. 2006), which are highly aggressive and territorial in forested uplands (Maerz & 

Madison 2000). Adult red-backed salamanders and dusky salamanders exhibit high degrees of 

inter- and intraspecific competition, actively defending individual cover objects and associated 

underground retreats (Smith & Pough 1994). Secondary forests that lack sufficient densities of 

cover objects may be inadequate for supporting robust populations of these species, particularly 

where they co-occur.  

Leaf litter showed a strong relationship with land-use history, with litter 1.5 times deeper 

in primary than secondary forests. Forest floor biomass accumulation can be slow in regenerating 

forests (Compton & Boone 2000), requiring at least 50 years to return to pre-disturbance levels 
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(Hughes & Fahey 1994) and may be further limited by faster litter decomposition rates due to 

altered plant species assemblages (Kuhman et al. 2011) or greater abundances of earthworms 

(Hooker & Compton 2003; Szlávecz & Csuzdi 2007). Deep piles of leaf litter are associated with 

pit and mound topographic structures, which are greatly reduced in forests following agriculture 

(Flinn & Marks 2007). Moist leaf litter is a critical resource for plethodontid salamanders, 

functioning as both a protective buffer against dehydration and an important location for 

foraging and reproduction (Bruce et al. 2000; Maerz et al. 2009). Curiously, variation in leaf 

litter only explained the abundance patterns of dusky salamanders in our sites, with salamander 

counts increasing with plot litter depth until an average depth of 5 cm, whereafter there was a 

slight decline in counts that may reflect the detection limitations of natural cover object surveys. 

While ample evidence suggests that red-backed salamanders are strongly dependent on deep 

deciduous litter (Jaeger 1980; DeMaynadier & Hunter, Jr. 1998; Maerz et al. 2009), the range of 

litter depths in our study region (2–6 cm) may have been adequate to satisfy their physiological 

requirements and provide sufficient foraging opportunities. Dusky salamanders have complex 

life cycles and are dually impacted by the availability of aquatic and terrestrial resources 

(Crawford & Semlitsch 2008). Their biphasic life history and stream-dependence may create 

greater moisture demands than fully terrestrial species, especially in the context of extreme 

drought when there is a higher risk of desiccation in semi-permanent streams and seepage 

habitats. Variation in life history characteristics likely plays an important role in mediating the 

effects of historical agriculture on amphibians (Chapter 1) and deserves greater attention.  

Salamander abundances appeared to be similar between the two study years despite 

striming differences in climate conditions. In contrast, detection probabilites for red-backed 

salamanders were significantly lower in 2016, when the study region experienced one of its 
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strongest recorded droughts (Sweet et al. 2017). Terrestrial salamander activity and microhabitat 

use patterns is strongly associated with moisture conditions, with individuals displaying vertical 

(subsurface burrows to cover objects) and horizontal (cover objects to leaf litter) movements 

with increasing precipitation and moisture  (Jaeger 1980; O’Donnell et al. 2014). Because no 

sampling occurred prior to the drought 2016, it is unclear how population levels may have 

differed from pre-drought conditions. Limited and extended periods of drought can have harmful 

effects on salamander population size (Currinder et al., 2014), demography (Price et al. 2012), 

and physiology (Bendik & Gluesenkamp 2013; Caruso et al. 2014). Climate change and land 

cover changes are prominent factors driving amphibian declines (Milanovich et al. 2010; Hof et 

al. 2011), and land-use legacies may play an important role in mediating the effects of climate 

extremes on plethodontid salamanders.  

Other potential mechanisms that may provide additional explanations for these legacy 

effects include diet, quality of stream habitats, availability of subsurface retreats, and 

colonization restrictions. The primary prey of plethodontid salamanders are small invertebrates 

(Burton 1976). Agriculture can have lasting negative effects on stream and terrestrial 

invertebrates after abandonment (Harding et al. 1998; Callaham Jr. et al. 2006), and potentially 

drive demographic patterns (births, deaths, emigration, imigration) of salamanders dependent on 

these communities. More research is needed to understand agricultural legacy effects on forest 

detrital food webs. Forested streams are heavily influenced by watershed-scale disturbances, 

such as intensive agriculture. These land conversions have longitudinal impacts on erosion, 

sedimentation, and streamflow processes (Jackson et al. 2005; Ambers et al. 2006) that could 

place additional stress on stream salamander populations and further limit their distribution in 

uplands. Plethodontid salamanders spend a considerable portion of their life cycle underground 
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in subterranean retreats. These subsurface structures, and the assemblage of invertebrates and 

small mammals that construct them, may be influenced by disturbance history and its effects on 

forest soils and microtopography (Mitchell et al. 1997). Salamanders may also be limited by 

more internal population processes, such as colonization rates. Red-backed and dusky 

salamanders have small home ranges typically less than 30 m in radius (Barthalmus & Bellis 

1972; Kleeberger & Werner 1982). Such dispersal-limited organisms may require many 

generations to colonize novel habitats following agricultural abandonment, particularly when 

connectivity to residual primary forests is limited (Cosentino et al., 2014; Cosentino and 

Burbaker, in review). Collectively, these habitat gradients, ecological interactions, and 

demographic processes could play important roles in determining salamander responses to 

historical land-use. 

Long-term effects of human disturbance on salamanders is likely more nuanced than the 

abundance relationships captured in this study, which has some limitations. Amphibian habitat 

suitability is mediated by demographic processes and varies between larvae, juveniles, and adults 

(Welsh et al. 2008; Homyack & Haas 2009b). While abundance provides a valuable measure of 

population status, additional data on demography and body condition would provide more 

insight into population health beyond population size (Welsh et al. 2008). The predicted 

abundances in this study are significantly lower than those estimated by Burton and Likens 

(1975a) and others for plethodontid salamanders in eastern forests. Whereas natural cover object 

searches are efficient for sampling large areas, this method does not capture subterranean 

individuals or those at the litter-soil interface which require more intensive and destructive 

sampling techniques to observe. Salamanders are highly cryptic and perform frequent vertical 

migrations that are difficult to detect in observational studies of unmarked populations. More 
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precise parameter estimates can be obtained by explicitly modeling temporary emigration 

(O’Donnell et al. 2015), which is strongly driven by variable weather conditions and climate 

extremes like those experienced during this study. Though they provide a flexible alternative for 

modeling abundance data in the case of a closure violation, count models may produce biased 

results when a single variable produces variation in both state and observation processes. Finally, 

the effects of historical land-use on plethodontids is highly context dependent and is known to 

vary regionally and taxonomically; therefore, caution should be exercised when making 

inferences about forest legacy effects across species and physiographic provinces (Ford et al., 

2002). Due to site limitations, this study did not explicitly compare the effects of different types 

of agriculture; contrasting the effects of historical grazing and more intensive cultivation 

practices would better contextualize these legacies and provide useful information for land 

managers.  

Conclusion 

Land-use history plays an important role in shaping contemporary ecological processes  

and biological communities (Bürgi et al. 2017). Historical ecology provides a useful framework 

for reconciling past disturbances with current landscape changes and informing conservation and 

management objectives for forests and forest-dependent organisms, such as plethodontid 

salamanders. Measuring longitudinal effects of anthropogenic disturbances on plethodontid 

salamanders can address important questions about ecological (e.g., habitat suitability) and 

evolutionary (e.g., adaptation — Cosentino and Droney, 2016) processes, while also providing 

valuable references for understanding population recovery times and overall forest health. A 

large amount of research has measured salamander responses to historical timber practices, 

estimating population recovery times ranging from 20–70 years (Petranka et al. 1993; Ash 1997) 
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that can vary by species (Ford et al., 2002; Tilghman et al., 2012) and disturbance intensity 

(Grialou et al. 2000; Karraker & Welsh 2006; Tilghman et al. 2012). This study contributes to a 

growing body of evidence that suggests that populations of terrestrial and stream-dependent 

plethodontid salamanders can be negatively impacted by historical agriculture for at least 50–80  

years due to sustained modifications to microhabitat quality following forest regeneration. These 

effects may be mediated by the regeneration histories of secondary forests (i.e., naturally restored 

stands versus plantations), as plethodontids tend to perform poorly in the conifer plantations that 

comprise many post-agricultural eastern forests (Pough et al. 1987; Waldick et al. 1999).  

Comparing the effects of different types of former agriculture (e.g., pasture, croplands) and 

reforestation pathways on amphibian communities could better define these legacy effects and 

their implications for forest health.  

Land-use demands are driving many regional and global forest changes (Drummond & 

Loveland 2010; Hansen et al. 2013), with the latter shifts largely a consequence of the increasing 

agricultural demands of growing urban populations in the tropics (Defries et al. 2010). 

Simultaneously, habitat loss is a major contributing factor to global amphibian population 

declines (Collins & Storfer 2003) and identifying landscape factors that influence populations of 

different species and is essential for developing successful amphibian conservation strategies 

(Cushman 2006). Site history should be carefully considered when making conservation and 

management decisions for forest ecosystems. Prioritizing protections for primary forests and 

ensuring the continued restoration of suitable successional sites would likely benefit many 

sensitive organisms, such as forest-dwelling plethodontid salamanders.  
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Tables 

 

Table 2.1. Summary of detection and abundance covariates assessed in this 2016–2017 study of 

agricultural legacy effects on plethodontid salamanders in central New York. For model, p = 

detection and λ = abundance.  

Variable Description Unit Model 

Survey components       

    date survey date Julian date (1 – 98)  p 
      effort relative no. cover objects sampled index (min: 0, max: 1) p 

    obs number of observers  0: 1, 1: 2 p 

    rain24 rain 24 hrs prior to survey  0: no, 1: yes p 

    rain rain during survey  0: no, 1: yes p 

    temp air temperature during survey °C p 

    TSR time-since-rain  days p 

    year survey year 0: 2016, 1: 2017 p, λ 

Habitat components    

      cwdvol total volume of CWD  m3 ha-1 λ 

    cwdarea total surface area of CWD  m2 ha-1 λ 

    decayhigh more-decayed CWD area  m2 ha-1 λ 

    decaylow less-decayed CWD area  m2 ha-1 λ 

    litter leaf litter depth  centimeters p, λ 

    objects density of available cover objects integer λ 

    streamsa mean distance to streams  meters λ 
      und understory cover  proportion λ 

 

a Stream proximity was only included in dusky salamander models. 

 

 

 

 

 

 

 

 



 

59 

 

 

Table 2.2. Mean (SE) habitat variables and salamander counts in relation to forest type 

(secondary to residual forest gradient) from data collected during 2016–2017 in central New 

York.  

 

 

 

 

 

 

 

 

 
 

  

 Forest type (percent residual forest cover) 

 

Variable 

Young (< 33%)  

(N = 10) 

Mixed (33 - 67%) 

(N = 13) 

Mature (> 67 %) 

(N = 7) 

Mean (SE) 

    Leaf litter depth (cm) 3.35 (0.31) 3.19 (0.15) 4.99 (0.35) 

    CWD area (m2 ha-1) 265.60 (25.10) 245.85 (19.03) 306.81 (13.75) 

    CWD area (DC 1–2) 129.51 (14.59) 106.27 (12.86) 118.23 (11.43) 

    CWD area (DC 3–5) 136.09 (15.12) 139.58 (12.02) 188.57 (9.44) 

    Object density (ha-1) 25.13 (2.61) 34.55 (1.71) 34.28 (1.90) 

    Understory cover (prop.) 0.33 (0.03) 0.24 (0.02) 0.23 (0.02) 

    Canopy cover (prop.) 0.92 (0.01) 0.92 (0.01) 0.94 (0.01) 

    Stream distance (m) 167.01 (29.60) 103.70 (18.46) 162.73 (25.19) 

 Mean count (SE) 

    Plethodon cinereus count 10.3 (1.8) 19.4 (1.5) 16.6 (2.4) 

    Desmognathus spp. count 1.4 (0.5) 5.5 (1.9) 6.5 (2.0) 
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Table 2.3. Parameter estimates and 95% confidence intervals for top-ranked (ΔQAICc or ΔAICc  

≤ 2.0) plethodontid salamander models relating abundance to forest microhabitat components 

from 2016–2017 in central New York. 

Species Model parameter Regression parameter β estimate SEb Lower CIa Upper CIa 

Red-backed Detection      
salamanders       Intercept  – 1.70 0.24 – 2.18 – 1.22 

       effort     0.19 0.05    0.10    0.28 

       effort2  – 0.06 0.04 – 0.14    0.02 

       date  – 0.13 0.03 – 0.19 – 0.07 

       year1     0.66 0.27    0.13    1.19 

 Abundance          

       Intercept     4.42 0.20    4.01    4.83 

       und  – 0.15 0.05 – 0.25 – 0.05 

       objects     0.37 0.07    0.24    0.50 

       year1     – 0.37 0.24 – 0.85    0.11 

Dusky  Relative abundance     

salamanders       Intercept     0.43 0.22    0.00    0.86 

       survey2     0.55 0.23    0.10    1.00 

       survey3     0.83 0.30    0.24    1.42 

       year1     0.46 0.26 – 0.05    0.97 

       TSR     – 0.18 0.11 – 0.40    0.04 

       litter     0.39 0.13    0.14    0.64 

       litter2     – 0.16 0.08    0.00    0.32 

       objects     0.56 0.12    0.32    0.80 

       streams  – 0.77 0.12 – 1.01 – 0.53 
 

a SEs and 95% CIs were adjusted for overdispersion in Plethodon cinereus with ĉ = 1.58. 
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Figures 

 

 

Figure 2.1. Relationship between eastern red-backed salamander abundance and number of 

cover objects (a) and understory vegetation cover (b) over two years (solid lines = 2016, dashed 

lines = 2017) in central New York. Predicted parameter estimates and error (95% prediction 

intervals) are presented. The distribution of cover object and understory cover values from all 

sites is shown as a rug plot at the bottom of each figure. The average values of complementary 

habitat variables were used to make the individual covariate predictions. 
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Figure 2.2. Relationship between survey effort (a), Julian date (b), and detection of red-backed 

salamanders over two years (solid lines = 2016, dashed lines = 2017) in central New York. 

Predicted parameter estimates and error (95% prediction intervals) are presented. The 

distribution of survey effort and Julian date values from all sites is shown as a rug plot at the 

bottom of each figure. The average values of complementary survey variables were used to make 

the individual covariate predictions. 
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Figure 2. 3. Relationships between dusky salamander counts and leaf litter depth (a, b), cover 

object density (c, d), and distance to streams (e, f) in forest plots in central New York from 

2016–2017. Predicted parameter estimates are shown for each survey (solid lines = May–June 

dashed lines = June–July, dotted lines = July–August) and year (2016 = a, c, e; 2017 = b, d, f). 

The distribution of habitat values from all sites is shown as a rug plot at the bottom of each 

figure. The average values of each remaining habitat variable were used to make the individual 

covariate predictions. 
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EPILOGUE 

 

The interplay between natural environmental disturbances and human activity have 

driven substantial change over the last century in eastern forests of the United States. Human 

activities are directly modifying forest ecosystems with intensive land-use practices and 

indirectly via altered environmental disturbance regimes (e.g., invasive species, climate change). 

These anthropogenic stressors present synergistic challenges for amphibians, populations of 

which are in global decline, and for which conservation is a priority for many stakeholders. This 

research sought to better understand how historical human activities drive modern forest 

conditions and what that means for current amphibian populations and conservation strategies.  

I found evidence for multiple land-use legacies in amphibian microhabitats 50–80 years 

after agricultural abandonment and stand recovery. Compared to residual forests, post-

agricultural secondary forests contained less leaf litter, fewer natural cover objects, more variable 

coarse woody debris quantities, and denser understory vegetation. These findings were consistent 

with many previous studies in eastern forests, but displayed some inconsistencies with others, 

which may reflect regional heterogeneity in forest recovery and the confounding effects of 

conifer plantations, which comprise many secondary forest stands, and management practices, 

which disrupt natural succession patterns. Explicitly comparing these legacies in these two types 

of “secondary forests” — passively regenerated stands and actively planted conifer stands — 

would bring greater clarity to these issues and strengthen the applications for amphibian 

conservation. 

 Occupancy rates and abundance estimates of amphibians displayed distinct relationships 

with aquatic and terrestrial macrohabitat and microhabitat components, likely reflecting 

differences in species longevity and other life history traits. As expected, both pool-breeding 
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species were driven by vernal pool densities in forested uplands, but these patterns were more 

complex for spotted salamanders than wood frogs. Whereas wood frog occupancy was solely 

influenced by available breeding habitat, spotted salamander occupancy was additionally driven 

by forest disturbance history and climate conditions. Spotted salamanders appeared to display an 

aversion to secondary forests, and this occupancy pattern was stronger during the abnormally wet 

season of 2017. These findings confirm that vernal pool construction is effective as a 

conservation strategy for maintaining adult populations of pool-breeding species in sites with 

few natural breeding sites. However, site history should be carefully reviewed prior to restoration 

as pool additions to secondary forests may not yield the same benefits for species with different 

life histories. Wood frog occupancy was greatest in sites with four or more pools, regardless of 

landscape setting or climate, whereas spotted salamander occupancy only peaked in sites where 

some of the surrounding forest was mature and relatively undisturbed, and that shoulder was 

different depending on climate conditions (> 25% primary forest cover in the dry year of 2016, > 

60% residual forest cover in the wet year of 2017, with some marginal secondary sites 

additionally displaying high levels of occupancy).  

According to these results, managers should expect to yield stable wood frog populations 

after constructing a moderate density of pools (i.e., four or more per 9.3 ha) in primary or 

maturing secondary forests. Producing the same benefits is more complicated for spotted 

salamanders; Sites with a minimum threshold of relatively undisturbed forest may need to be 

prioritized for habitat restoration for this species and other large-bodied, long-lived Ambystoma 

salamanders. These suggestions obviously assume that the quality of the pools themselves is 

sufficient for breeding, which is a difficult assumption as there can be tremendous variation in 

reproduction and recruitment among similarly sized pools. While this research did not attempt to 
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determine those suitable pool-level criteria, many others have addressed those questions and 

continue to do so.  

Climatic variation produced unexpected amphibian occupancy patterns with habitat 

covariates, with wood frog and spotted salamander dependence on pool densities seemingly 

unaffected by precipitation extremes and spotted salamanders more constrained to predominantly 

mature primary forests during wet periods. Because this study was limited to two years of 

observations, the first of which taking place in the middle of an extreme drought, these data only 

capture a snapshot of amphibian occurrence dynamics which could fluctuate more over the 

course of a longer sampling period. The complementary effects of “droughts” and “floods” on 

amphibians may produce time-lagged colonization and extinction events that require longer to 

observe in upland juvenile and adult populations than in pools themselves.  

Both plethodontids were generally limited in predominantly secondary forests and 

displayed strong abundance patterns with corresponding microhabitat land-use legacies. If we 

assume plethodontid salamanders are accurate indicators of forest health, as suggested by others, 

these results would indicate that secondary forests have not yet fully “recovered” the valuable 

processes and functionalities that residual forests provide for a diverse community of organisms. 

However, recent skepticism of the utility of amphibians as effective indicator organisms may 

challenge these conclusions, as some evidence shows greater tolerance of environmental 

contamination than previously thought in many species (Kerby et al. 2010).  

Some similarities were observed between the population patterns of plethodontid species 

in this study, with both red-backed and dusky salamander abundances positively influenced by 

cover object densities which were greater in primary forests. The different observed species 

associations with leaf litter and understory vegetation could reflect the differences in life 
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histories discussed earlier (Chapter 2) but may also be a consequence of the sampling design and 

different analytical methods used. Plots were designed at the scale of pool-breeding species’ 

home ranges. Though I was able to collect ample abundance data on plethodontid salamanders, 

these organisms operate at much smaller spatial scales than wood frogs and spotted salamanders 

(thus the choice to estimate microhabitat relationships and not larger landscape effects on 

abundance). Red-backed and dusky salamanders were clearly limited in sites with little available 

residual forest cover (Table 2.2), but the mechanisms behind these limitations are likely more 

complex than the simple habitat relationships estimated here and may require even more fine-

scale data (e.g., soil chemistry and physical characteristics, litter-soil moisture profiles, prey 

availability, and small mammal and earthworm burrow densities) to understand. Likewise, 

daytime natural cover object surveys are a convenient method for sampling amphibians over 

large spatial areas, but this choice of sampling method misses (a) the available litter-soil 

population and (b) nocturnal activity patterns that could be more effectively measured with 

trapping techniques, litter searches, and/or nighttime surveys.  

Detection played an interesting role in these analyses, particularly for pool-breeding 

species which were greatly affected by leaf litter gradients. This effect of habitat on amphibian 

detection raises questions about survey methodologies for these organisms, especially if the 

desired objective is a greater understanding of how habitat influences state processes. Sampling 

natural cover objects (e.g., logs) without investigating leaf litter can lead to biased interpretations 

of occupancy and abundance if only a small percentage of the available population is under the 

natural cover objects. This single-stratum method also fails to distinguish between vertical 

migrations (i.e., between burrows and leaf litter) and horizontal migrations (i.e., between cover 

objects and leaf litter), both of which frequently occur among salamanders in response to climate 
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variability. Estimating these movements is important, not only to account for imperfect 

detection, but also to move beyond a static understanding of species-habitat relationships. 

 Beyond their ecological utility, conservation concern, and positive public valuation, 

amphibians function as useful model organisms for understanding long-term effects of human 

disturbance on forest ecosystems. Their diverse suite of life histories and activity patterns over 

space and time provide a useful window into land-use legacies in forested landscapes. The 

conservation challenges facing amphibians are complex and cannot be resolved in a vacuum. An 

awareness and integration of these land-use legacies in conservation and management plans is 

essential for guaranteeing long-term population persistence and biodiversity benefits for 

amphibians and other forest-dwelling organisms. 
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APPENDICES 

 

Appendix 1.1. Full detection model AICc rankings for wood frogs. 

Model K AICc ΔAICc wi 
Cum. 

wt. 
Deviance 

rain24 + year 8 130.53 0.00 0.25 0.25 111.59 

litter * rain + year 10 130.79 0.26 0.22 0.47 106.11 

litter + rain24 + year 9 132.91 2.38 0.08 0.54 111.16 

und + rain24 + year 9 133.10 2.57 0.07 0.61 111.35 

obs + rain24 + year 9 133.30 2.77 0.06 0.67 111.55 

null 2 134.26 3.73 0.04 0.71 130.04 

temp + year 8 134.87 4.34 0.03 0.74 115.93 

litter * rain24 + year 10 134.94 4.41 0.03 0.77 110.26 

rain + year 8 135.07 4.54 0.03 0.79 116.13 

und * rain24 + year 10 135.37 4.84 0.02 0.81 110.69 

year 4 135.59 5.06 0.02 0.83 126.84 

temp + temp2 + year 9 135.64 5.11 0.02 0.85 113.89 

litter + year 8 136.19 5.66 0.01 0.87 117.25 

date + year 8 136.37 5.84 0.01 0.88 117.43 

und + year 8 136.42 5.89 0.01 0.89 117.48 

litter + temp + year 9 136.67 6.14 0.01 0.91 114.92 

litter + rain + year 9 136.84 6.31 0.01 0.92 115.09 

obs + year 8 136.92 6.39 0.01 0.93 117.99 

und + temp + year 9 136.99 6.46 0.01 0.94 115.24 

date + date2 + year 9 137.16 6.63 0.01 0.95 115.41 

litter + litter2 + year 9 137.56 7.03 0.01 0.95 115.81 

obs + temp + year 9 137.67 7.14 0.01 0.96 115.92 

und + rain + year 9 137.71 7.18 0.01 0.97 115.96 

obs + rain + year 9 137.88 7.35 0.01 0.97 116.13 

litter + und + year 9 138.69 8.16 0.00 0.98 116.94 

litter + obs + year 9 138.93 8.40 0.00 0.98 117.18 

litter * temp + year 10 138.98 8.45 0.00 0.98 114.30 

obs + date + year 9 139.18 8.65 0.00 0.99 117.43 

und + obs + year 9 139.23 8.70 0.00 0.99 117.48 

und + und2 + year 9 139.23 8.70 0.00 0.99 117.48 

und * rain + year 10 139.55 9.02 0.00 1.00 114.87 

und * temp + year 10 139.72 9.19 0.00 1.00 115.04 

und * obs + year 10 142.10 11.57 0.00 1.00 117.42 

global 13 147.04 16.51 0.00 1.00 112.76 
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Appendix 1.2. Full detection model AICc rankings for spotted salamanders. 

Model K AICc ΔAICc wi 
Cum. 

wt. 
Deviance 

litter + year 8 131.66 0.00 0.11 0.11 112.72 

litter + rain + year 9 131.71 0.06 0.11 0.23 109.96 

rain + year 8 132.17 0.51 0.09 0.31 113.23 

litter * rain + year 10 132.71 1.05 0.07 0.38 108.03 

date + year 8 132.90 1.24 0.06 0.44 113.96 

litter + date + year 9 133.15 1.49 0.05 0.50 111.40 

date + date2 + year 9 133.66 2.00 0.04 0.54 111.91 

effort + year 8 133.73 2.07 0.04 0.58 114.79 

temp + year 8 134.10 2.45 0.03 0.61 115.17 

rain24 + year 8 134.11 2.45 0.03 0.65 115.17 

obs + year 8 134.14 2.48 0.03 0.68 115.20 

null 2 134.21 2.55 0.03 0.71 129.99 

litter +effort + year 9 134.21 2.55 0.03 0.75 112.46 

litter + rain24 + year 9 134.39 2.73 0.03 0.77 112.64 

litter + litter2 + year 9 134.42 2.77 0.03 0.80 112.67 

litter + temp + year 9 134.47 2.81 0.03 0.83 112.72 

effort + rain 9 134.56 2.90 0.03 0.86 112.81 

obs + rain + year 9 134.82 3.17 0.02 0.88 113.07 

obs + date + year 9 135.65 3.99 0.02 0.90 113.90 

litter * date + year 10 135.98 4.32 0.01 0.91 111.30 

effort + obs + year 9 136.36 4.70 0.01 0.92 114.61 

effort + rain24 + year 9 136.53 4.87 0.01 0.93 114.78 

temp + temp2 + year 9 136.89 5.24 0.01 0.94 115.14 

obs + temp + year 9 136.90 5.24 0.01 0.95 115.15 

obs + rain24 + year 9 136.90 5.24 0.01 0.96 115.15 

litter * effort + year 10 136.93 5.27 0.01 0.96 112.25 

year 4 137.11 5.45 0.01 0.97 128.36 

litter * temp + year 10 137.19 5.53 0.01 0.98 112.51 

litter * rain24 + year 10 137.21 5.55 0.01 0.99 112.53 

effort * rain + year 10 137.24 5.58 0.01 0.99 112.56 

effort * rain24 + year 10 137.55 5.89 0.01 1.00 112.87 

global 13 143.33 11.67 0.00 1.00 109.05 

litter + year 8 131.66 0.00 0.11 0.11 112.72 

litter + rain + year 9 131.71 0.06 0.11 0.23 109.96 

rain + year 8 132.17 0.51 0.09 0.31 113.23 

litter * rain + year 10 132.71 1.05 0.07 0.38 108.03 

date + year 8 132.90 1.24 0.06 0.44 113.96 

litter + date + year 9 133.15 1.49 0.05 0.50 111.40 

date + date2 + year 9 133.66 2.00 0.04 0.54 111.91 

effort + year 8 133.73 2.07 0.04 0.58 114.79 
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Appendix 1.3. Full occupancy model AICc rankings for wood frogs. 

Model K AICc ΔAICc wi Cum. wt. Deviance 

pools + year 8 125.134 0.000 0.494 0.494 106.200 

pools * year 9 127.280 2.146 0.169 0.663 105.530 

upland + pools + year 9 127.886 2.751 0.125 0.788 106.140 

upland * year + pools * year 11 129.150 4.016 0.066 0.854 101.410 

upland + pools * year 10 130.084 4.949 0.042 0.895 105.400 

upland * year + pools 10 130.320 5.185 0.037 0.932 105.640 

upland * pools + year 10 130.790 5.656 0.029 0.962 106.110 

detection 7 132.794 7.660 0.011 0.972 116.550 

upland * pools + pools * year 11 133.070 7.936 0.009 0.982 105.330 

upland * pools + upland * year 11 133.322 8.188 0.008 0.990 105.580 

null 2 134.257 9.123 0.005 0.995 130.040 

upland + year 8 134.911 9.777 0.004 0.999 115.970 

upland * year 9 137.172 12.038 0.001 1.000 115.420 
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Appendix 1.4. Full occupancy model AICc rankings for spotted salamanders. 

Model K AICc ΔAICc wi Cum. wt. Deviance 

upland * pools + pools * year 10 129.579 0.000 0.560 0.560 104.900 

upland * pools + year 9 131.714 2.135 0.193 0.752 109.960 

null 2 134.211 4.632 0.055 0.808 129.990 

upland * pools + upland * year 10 134.262 4.683 0.054 0.861 109.580 

upland + year 7 134.420 4.841 0.050 0.911 118.180 

detection 6 135.749 6.170 0.026 0.937 122.100 

pools * year 8 136.402 6.823 0.018 0.955 117.460 

upland + pools + year 8 136.562 6.982 0.017 0.972 117.620 

upland * year 8 136.732 7.153 0.016 0.988 117.790 

pools + year 7 138.303 8.724 0.007 0.995 122.060 

upland * year + pools 9 139.084 9.505 0.005 1.000 117.330 
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Appendix 2.1. Full detection model AICc rankings for red-backed salamanders. 

Model K AICc ΔAICc wi Cum. wt. Deviance 

effort + date + year 12 1021.66 0.00 1.00 1.00 991.03 

effort + obs + year 12 1042.29 20.63 0.00 1.00 1011.66 

effort * rain + year 14 1046.37 24.71 0.00 1.00 1009.04 

effort + year 11 1048.81 27.15 0.00 1.00 1021.31 

effort + rain + year 12 1049.46 27.80 0.00 1.00 1018.82 

litter * effort + year 14 1049.51 27.85 0.00 1.00 1012.18 

litter + effort + year 11 1049.93 28.27 0.00 1.00 1022.43 

effort + TSR + year 12 1051.10 29.44 0.00 1.00 1020.47 

effort + rain24 + year 12 1051.93 30.26 0.00 1.00 1021.29 

litter + effort + TSR + year 12 1052.17 30.51 0.00 1.00 1021.53 

effort * TSR + year 14 1056.91 35.24 0.00 1.00 1019.57 

effort * rain24 + year 14 1058.29 36.62 0.00 1.00 1020.95 

date + date2 + year 11 1076.19 54.53 0.00 1.00 1048.69 

date + year 10 1086.17 64.51 0.00 1.00 1061.68 

obs + date + year 11 1088.97 67.31 0.00 1.00 1061.47 

temp + year 10 1117.98 96.32 0.00 1.00 1093.49 

litter * temp + year 12 1119.76 98.10 0.00 1.00 1089.12 

litter + temp + year 11 1120.23 98.57 0.00 1.00 1092.73 

temp + temp2 + year 11 1120.31 98.65 0.00 1.00 1092.81 

temp + rain + year 11 1120.42 98.75 0.00 1.00 1092.92 

obs + temp + year 11 1120.98 99.31 0.00 1.00 1093.48 

litter * rain24 + year 12 1130.01 108.35 0.00 1.00 1099.38 

TSR + year 10 1131.63 109.97 0.00 1.00 1107.14 

TSR + TSR2 + year 11 1132.26 110.60 0.00 1.00 1104.76 

litter + TSR + year 11 1134.12 112.46 0.00 1.00 1106.62 

rain + year 10 1134.30 112.64 0.00 1.00 1109.81 

obs + TSR + year 11 1134.64 112.98 0.00 1.00 1107.14 

rain24 + year 10 1134.89 113.22 0.00 1.00 1110.40 

litter + year 10 1135.90 114.23 0.00 1.00 1111.41 

obs + year 10 1136.17 114.51 0.00 1.00 1111.69 

litter + litter2 + year 11 1136.85 115.19 0.00 1.00 1109.35 

litter + rain + year 11 1136.86 115.20 0.00 1.00 1109.36 

litter * TSR + year 12 1136.91 115.24 0.00 1.00 1106.27 

obs + rain + year 11 1137.13 115.47 0.00 1.00 1109.63 

litter + rain24 + year 11 1137.29 115.63 0.00 1.00 1109.79 

obs + rain24 + year 11 1137.82 116.16 0.00 1.00 1110.32 

litter * rain + year 12 1139.73 118.07 0.00 1.00 1109.10 

year 4 1351.01 329.35 0.00 1.00 1342.29 

null 2 1438.02 416.35 0.00 1.00 1433.81 
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Appendix 2.2. Full abundance model AICc rankings for red-backed salamanders. 

Model K AICC ΔAICC wi 
Cum. 

wt. 
Deviance 

und + objects + year 11 636.94 0 0.66 0.66 609.44 

und * objects + year 12 639.11 2.17 0.22 0.89 608.47 

objects + year 10 641.11 4.17 0.08 0.97 616.62 

litter + objects + year 11 643.69 6.75 0.02 0.99 616.19 

global 14 646.10 9.16 0.01 1.00 608.77 

litter + lowdecay + highdecay + objects + year 13 648.53 11.59 0.00 1.00 614.62 

und + year 10 657.07 20.12 0.00 1.00 632.58 

und + highdecay + year 11 659.31 22.37 0.00 1.00 631.81 

und + cwdarea + year 11 659.88 22.94 0.00 1.00 632.38 

und + litter + year 11 659.96 23.02 0.00 1.00 632.46 

und + und2 + year 11 660.07 23.13 0.00 1.00 632.57 

detection + year 8 660.38 23.44 0.00 1.00 641.56 

und * cwdarea + year 12 660.41 23.47 0.00 1.00 629.77 

und * litter + year 12 662.15 25.21 0.00 1.00 631.51 

und * highdecay + year 12 662.28 25.34 0.00 1.00 631.64 

litter + year 10 665.70 28.76 0.00 1.00 641.21 

cwdvol + year 10 665.88 28.93 0.00 1.00 641.39 

cwdarea + year 10 666.01 29.06 0.00 1.00 641.52 

highdecay + year 10 666.03 29.09 0.00 1.00 641.54 

litter + highdecay + year 11 668.60 31.65 0.00 1.00 641.10 

litter + cwdvol + year 11 668.69 31.75 0.00 1.00 641.19 

litter + cwdarea + year 11 668.71 31.77 0.00 1.00 641.21 

lowdecay + highdecay + year 11 668.88 31.94 0.00 1.00 641.38 

litter + lowdecay + highdecay + year 12 671.65 34.71 0.00 1.00 641.01 

null 4 738.63 101.68 0.00 1.00 729.90 
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Appendix 2.3. Full abundance model AICc rankings for dusky salamanders. 

Modela K AICC ΔAICC wi 
Cum. 

wt. 
Deviance 

litter + objects 10 681.70 0.00 0.60 0.60 660.11 

litter + cwdarea + objects 11 683.77 2.07 0.21 0.81 659.86 

global 13 684.89 3.19 0.12 0.93 656.21 

objects 8 687.03 5.33 0.04 0.97 670.01 

und + objects 9 687.75 6.05 0.03 1.00 668.46 

und + litter 10 694.78 13.08 0.00 1.00 673.20 

litter + cwdvol 10 696.21 14.52 0.00 1.00 674.63 

litter + litter2 9 696.83 15.13 0.00 1.00 677.54 

litter + cwdarea 10 698.80 17.10 0.00 1.00 677.21 

litter + lowdecay + highdecay 11 699.18 17.48 0.00 1.00 675.27 

litter + highdecay 9 699.82 18.12 0.00 1.00 680.54 

cwdvol 8 702.21 20.51 0.00 1.00 685.18 

highdecay 8 704.52 22.82 0.00 1.00 687.50 

streams 7 705.14 23.44 0.00 1.00 690.35 

und 8 705.22 23.53 0.00 1.00 688.20 

und + highdecay 9 705.61 23.92 0.00 1.00 686.33 

lowdecay + highdecay 9 706.34 24.64 0.00 1.00 687.05 

cwdarea 8 706.77 25.07 0.00 1.00 689.75 

und + und2 9 706.93 25.23 0.00 1.00 687.64 

und + cwdarea 9 707.27 25.57 0.00 1.00 687.98 

survey + year + TSR 6 733.29 51.60 0.00 1.00 720.71 

null 2 753.88 72.18 0.00 1.00 749.80 
 

a all models (except for the null) contain a time-since-rain (TSR) variable and categorical 

variables for survey occasion and sampling year. 
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