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Abstract 

 

D. F. McGlynn. Understanding long-term variations in surface ozone in United States (U.S.) 

National Parks. 95 pages, 2 tables, 10 figures, 2018. Atmosphere style guide used. 

In the troposphere, surface ozone is an air pollutant that has deleterious effects on human 

respiratory function and crop yields. Therefore, an understanding of spatial and temporal ozone 

concentration changes is necessary. The Ensemble Empirical Mode Decomposition (EEMD) 

method was used to analyze processes on varying time scales for surface ozone data from 25 

U.S. National Park Service sites. Time scales of interest include the seasonal cycle, large-scale 

climate oscillations, and long-term (>10 years) trends. Variability in each of these oscillatory 

components is determined. Further analysis was done at one site after initial analyses yielded 

findings disparate from the rest of the study pool. For this site (DENA-HQ) variability in the El 

Niño Southern Oscillation and Pacific Decadal Oscillation was shown to affect the trajectory of 

pollutants to the site. The findings from this study can assist predictions regarding the timing and 

amplitude of peak ozone across the US and inform policy makers where emission reductions 

have been effective, enlightening future policy decisions. 

 

Keywords: ozone; trends; Ensemble Empirical Mode Decomposition; seasonal cycle; El Niño 

Southern Oscillation; Pacific Decadal Oscillation; National Park Service 
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Chapter 1: Introduction 

 

The atmosphere is comprised of many gaseous compounds. The lowest of the 5 layers of 

the atmosphere, the troposphere, contains 75% of the atmosphere’s mass. Anthropogenic 

activities heavily influence this layer, making it the subject of many scientific and political 

discussions and regulations. Anthropogenic emissions have long affected atmospheric 

composition, visibility, and meteorological factors such as temperature [1]. In the troposphere, 

ozone (O3), is of great concern due to its negative effects on human health, vegetation, and 

agricultural crops [1].  

An ozone layer naturally forms in the stratosphere, the layer above the troposphere 

(Figure 1.1). This layer shields the biosphere from harmful UV radiation [2]. Concentrations of 

tropospheric ozone are lower than concentrations of ozone in the stratosphere. In the 

Figure 1.1: Concentration of ozone within the stratosphere and 

troposphere. A large stratospheric ozone layer occurs above the 

troposphere while the presence of "smog” can be seen in the 

lowest portion of the troposphere. This figure has been adapted 

from the National Oceanic and Atmospheric Administration [2].  
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troposphere, ozone is a secondary air pollutant because it readily forms when its precursor 

emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx) are exposed to 

abundant sunlight [3,4]. This mixes with aerosols and particulate matter to form a “smog” layer 

at the surface of the earth (Figure 1.1).   

Sources of precursor emissions in the troposphere include biofuel combustion, methane 

emitted from swamps and wetlands, lightning strikes, emission from soils, and combustion of 

fossil fuels [5]. Current models estimate that 30% of ozone formed from these precursor 

emissions are attributable to human activity [6] and that background mixing ratios have nearly 

doubled in the past 100 years [5]. Precursor emissions emitted through combustion of fossil fuels 

concentrates surface ozone in large urban areas. As such, high  pollution events can affect an 

area as large as 600 square miles [7]. These types of events have been known to occur in the 

eastern U.S. and California. However, increased pollution is not limited to cities. Ozone 

precursors readily travel several hundred kilometers from urban regions [7]. This can cause 

increased ozone concentrations in areas far away and across oceans from emission centers.  

 Human health impacts are the primary motivation in reducing U.S. surface ozone levels. 

Inhalation of ozone can cause chest pain, throat irritation, airway inflammation, and reduce lung 

function [8]. In addition, it has a damaging effect on crops and vegetation [8], which can have an 

economic impact. As a result of these findings, National Ambient Air Quality Standards 

(NAAQS) are set for ozone by the United States Environmental Protection Agency (EPA) under 

the authority of the Clean Air Act of 1970 [9,10]. The NAAQS for ozone has changed 

periodically since then, with the most recent change to the standard occurring in 2015 when it 

was lowered from the 2008 level of 0.075 ppmv to 0.070 ppmv [11,12].  
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Given all the factors affecting ozone concentrations, setting and maintaining standards 

requires extensive examination and study. This document focuses on several of the drivers of 

variability in ozone concentrations using data from National Parks across the U.S. These are 

mostly remote areas without the influence of fresh anthropogenic emissions. We examine sites 

that are a part of the United States National Park Service Gaseous Pollutant Monitoring Program 

(U.S. NPS GPMP) using a data decomposition technique, the Ensemble Empirical Mode 

Decomposition (EEMD). Decomposing ozone data helps to better understand the factors driving 

ozone trends and variability. To do so, long-term ozone data were decomposed into long-term 

trends and seasonal, interannual, and interdecadal time-scales. First, long-term trends were 

quantified. The date the trends changed from positive to negative was determined, if present, 

then, each oscillatory component was analyzed in turn. Spatial and temporal variability for long-

term trends and the seasonal cycle was determined. The seasonal cycle was examined further, 

where the effect of low frequency climate modes on this component was quantified. With this 

information, implications of the effect of lower frequency oscillatory components on higher 

frequency components were drawn.  

1.1 References 

1.  IPCC Climate Change 2014: Mitigation of Climate Change. Summary for Policymakers 

and Technical Summary; 2014; ISBN 9781107415416. 

2.  US Department of Commerce, N. E. S. R. L. C. S. D. Scientific Assessment of Ozone 

Depletion 1994 - Common Questions About Ozone. 

3.  Chameides, W.; Walker, J. C. G. A photochemical theory of tropospheric ozone. J. 

Geophys. Res. 1973, 78, 8751–8760, doi:10.1029/JC078i036p08751. 

4.  Crutzen, P. J. Photochemical reactions initiated by and influencing ozone in unpolluted 
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tropospheric air. Tellus 1974, 26, 47–57, doi:10.1111/j.2153-3490.1974.tb01951.x. 

5.  Vingarzan, R. A review of surface ozone background levels and trends. Atmos. Environ. 

2004, 38, 3431–3442, doi:10.1016/j.atmosenv.2004.03.030. 

6.  Cooper, O. R.; Parrish, D. D.; Ziemke, J.; Balashov, N. V.; Cupeiro, M.; Galbally, I. E.; 

Gilge, S.; Horowitz, L.; Jensen, N. R.; Lamarque, J.-F.; Naik, V.; Oltmans, S. J.; Schwab, 

J.; Shindell, D. T.; Thompson, A. M.; Thouret, V.; Wang, Y.; Zbinden, R. M. Global 

distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. 

Anthr. 2014, 2, doi:10.12952/journal.elementa.000029. 

7.  Sillman, S. The relation between ozone, NO(x) and hydrocarbons in urban and polluted 

rural environments. Atmos. Environ. 1999, 33, 1821–1845, doi:10.1016/S1352-

2310(98)00345-8. 

8.  US Environmental Protection Agency Overview of EPA’s Updates to the Air Quality 

Standards for Ground-Level Ozone; 2015; 

9.  EPA Air Quality Criteria for Ozone and Related Photochemical Oxidants Volume I of III; 

2006; Vol. I; 

10.  US EPA Epa’s 2015 ozone standard: concerns over science and implementation 2015, 1–

354. 

11.  US Environmental Protection Agency National ambient air quality standards for ozone; 

final rule-2008; 2008; Vol. 73;. 

12.  US Environmental Protection Agency National Ambient Air Quality Standard for Ozone; 

final Rule-2015; 2015; Vol. 80;. 
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Chapter 2: Review of Current Literature 

2.1 Tropospheric ozone  

Tropospheric ozone (O3), or ozone of the lowest layer of the atmosphere [1] forms 

through photochemical reactions of ozone precursor emissions with sunlight [2,3]. Ozone’s 

precursor gases include methane (CH4), carbon monoxide (CO), volatile organic compounds 

(VOCs), and nitrogen oxides (NOx) [4,5]. Sources of precursor emissions include lightning 

(NOx), soils (NOx), wildfires, wetlands (CH4), and anthropogenic emissions [4]. According to the 

EPA, 90% of NOx emissions come from mobile, fuel combustion other than transportation, or 

industrial emissions and, the vast majority (90%) of fossil fuel combustion occurs in the 

Northern Hemisphere [4], resulting in rising surface ozone concentrations in this region [6].  In 

recent decades, ozone declined in the U.S., due to the implementation of air quality standards. 

However, decreasing concentrations have not been consistent across the country [6]. Ozone air 

quality standards in the western U.S. face challenges from increasing emissions in East Asia and 

the transport of these emissions to this region [6]. Therefore, careful assessment of ozone 

concentrations promises insight to further reduce surface ozone. 

2.2 Formation and destruction of tropospheric ozone 

Ozone forms through a set of complex chemical reactions, initiated by the oxidation of 

VOCs or carbon monoxide (CO) [7]. Reaction by either of these with a hydroxy radical (•OH) 

forms an intermediate radical which rapidly reacts with oxygen to form a peroxy radical (HO2
•
 or 

RO2
•) (R1 and R2) [7]. HO2

• or RO2
• goes on to react with nitric oxide (•NO) to yield nitrogen 

dioxide (•NO2) (R3) [7]. Nitrogen dioxide is photolyzed at λ < 424 nm to yield atomic oxygen 

(R4) [7,8]. In the last step, atomic oxygen reacts with molecular oxygen to form ozone (R5). 
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Ozone formation initiated by reaction of CO with a hydroxy radical described in the above-

mentioned steps, is illustrated in the reaction mechanism below [7,8]:  

R1                                          •OH + CO → HOCO• 

R2                                     HOCO• + O2 → HO2
• + CO2 

R3                                       HO2
• + •NO → •OH + •NO2 

R4                    •NO2 + hν (λ < 424 nm) → •NO + O(3P) 

R5                                        O(3P) + O2 → O3 

Initiation of ozone formation starting with ethane is illustrated here: 

R6                                CH3CH3 + •OH → CH3C
•H2 + H2O 

R7                                  CH3CH2
• + O2 → CH3CH2OO• 

R8                         CH3CH2OO• + •NO2 ↔ CH3CH2OONO2 

R9                           CH3CH2OO• + •NO → CH3CH2O
• + •NO2 

R10                              CH3CH2O
• + O2 → CH3CHO• + HO2

• 

R11                                     HO2
• + •NO → •OH + •NO2 

R12                  •NO2 + hν (λ < 424 nm) → •NO + O(3P) 

R13                                      O(3P) + O2 → O3 

The reaction mechanism above is initiated with ethane and a hydroxy radical (R6), rather than 

CO with a hydroxy radical [7,9]. Please note that R can represent any length of organic chain. 

The steady-state Leighton relationship quantifies the amount of ozone produced in areas 

polluted with nitrogen oxides (NOx) [8]. Through photolysis at wavelengths less than 424 nm, 

NOx is the primary precursor species for ozone production, as seen in the last three reactions of 

the mechanisms illustrated above. This relationship also shows how the production of ozone is 

directly related to solar radiation intensity [8]. The mechanism determining the Leighton 

https://en.wikipedia.org/wiki/Hydrocarboxyl
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relationship is listed below. These are also the last three reactions represented in the mechanisms 

previously discussed. 

R14                •NO2 + hν (λ < 424 nm) → •NO + O(3P)                             J14 

R15                           O (3P) + O2 + M → O3 + M                                     k15 

R16                                       O3 + •NO → •NO2 + O2                                                k16 

The steady-state Leighton relationship is as follows [8]: 

[𝑂3] =
𝐽14[𝑁𝑂2]

𝑘16[𝑁𝑂]
 

The primary loss process of tropospheric ozone is photolysis [8] and is shown here: 

R17                  O3 + hν (λ < 320 nm) → O2 + O(1D) 

In a NOx – rich environment, ozone destruction will also follow this mechanism [8]: 

R16          O3 + •NO → O2 + •NO2 

In a NOx – poor environment, ozone destruction will more likely follow this mechanism [8]: 

R18              CO + •OH → H• + CO2 

R19                                      H• + O2 + M → HO2
•
 + M 

R20                                         HO2
• + O3 → •OH + 2O2 

Furthermore, ozone destruction can occur directly through a reaction with •OH: 

R20                           •OH + O3 → HO2
•
 + 2O2 

2.3 Health effects from elevated surface ozone 

Ground-level ozone is the subject of many studies given its detrimental health effects 

[10,11]. At high concentrations, ozone causes irritation of the respiratory system resulting in 

chest and throat irritation [10,11]. This sensation is due to the inflammation to the lining of the 

lungs which reduces lung function and makes rigorous activities difficult [10,11]. An increased 

number of asthma attacks occur when ozone concentrations are high [12]. In addition, there is an 

https://en.wikipedia.org/wiki/Ozone
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increased susceptibility to respiratory infections [10,11]. People that have the highest risk of 

having symptoms from high ozone include people with asthma, children and older adults, and 

people who regularly work outside [10,11]. When ozone concentrations rise above 50 ppbv, 

unusually sensitive groups are encouraged to reconsider long-term strenuous activities [12]. 

When ozone exceeds 100 ppbv, any persons that are at elevated risk such as those with asthma, 

the elderly, and children should reduce long-term outdoor activities [12]. Concentrations above 

150 ppbv are unhealthy for all people for extended periods of time [12].  

In addition to ozone’s effect on human respiratory function, it also has adverse effects on 

vegetation. Ozone enters through gas exchange pores or stomata on plant leaves [13]. It then 

dissolves in water in the plant and reacts with other chemicals and fatty acids. Reactive oxygen 

species produced by this ozone interferes with the function of plant mitochondria [13]. This 

results in the slowing of photosynthesis which stunts plant growth and decreases the number of 

flowers and fruits produced by the plant [13]. Plants weakened by high concentrations of ozone 

are more susceptible to drought, pests, and disease [13].  

2.4 Establishment of Environmental Protection Agency Ozone Standards 

 Given the health effects instigated by elevated levels of ozone, the United States 

Environmental Protection Agency (EPA) established National Ambient Air Quality Standards 

(NAAQS) under the authority of the Clean Air Act of 1970 [14]. For each of the six pollutants 

covered under the NAAQS, primary and secondary standards are set [15]. The primary standards 

are designed to protect human health while secondary standards protect crops, forests, and 

infrastructure [15]. For ozone, both the primary and secondary standards require that the annual 

fourth-highest daily maximum rolling 8-hour concentration, averaged over 3 years, remain below 

0.070 ppmv [15]. When a new standard is set, within one year each state must submit an 
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assessment of all counties, indicating if the standard is met. Following this, the EPA will 

designate areas of the U.S. as either attainment or non-attainment areas, which is done within 

two years after a change to the standard [15]. At this time, there are approximately 300 counties 

in the United States that are designated as non-attainment areas, and they are typically within and 

around large urban areas [16].  

2.5 Ozone Monitoring Network used in this study 

The standards set by the EPA resulted in the establishment of a large network of 

monitoring sites. One such monitoring network is the National Park Service Gaseous Pollutant 

Monitoring Program (NPS GPMP) [17,18]. The NPS Air Resources Monitoring Division 

monitors air quality throughout the park system [18]. The network assesses air quality conditions 

and long-term trends in ozone, and other air pollutants that affect human health and vegetation 

[19]. Another primary use of these data is to check for compliance with the NAAQS for criteria 

air pollutants [19] such as ozone. All NPS data are collected by the NPS GPMP and accessed by 

its data access page: http://ard-request.air-resource.com/. 

2.6 Background ozone, baseline ozone, and trends in surface ozone at different percentiles 

NPS and several other monitoring networks aide in determining compliance with ozone 

standards and variability in trends. Studies focusing on ozone trends look for compliance within 

areas of non-attainment, as well as areas of  well-mixed air, which are typically rural areas [20–

25]. The 95th, 50th, and 5th percentiles of ozone observations are frequently used to evaluate the 

status of ozone. The 95th percentile identifies variation in the frequency of high ozone events, 

while variability in the 50th percentile is indicative of changes in median ozone concentrations, 

and changes in the 5th percentile are suggested to indicate changes in the inflow of baseline 

ozone [14].  

http://ard-request.air-resource.com/
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In general, the eastern half of the U.S. has benefited more from emission reductions than 

the western half [14,21,24,25].  In the summer, ozone concentrations at the 95th percentile have 

dropped across the country, which is likely caused by regulations targeting NOx concentrations 

[4,14,20,21,26]. Less significant summer decreases at the 95th percentile have occurred in the 

west due to the aforementioned influx of precursor emissions from East Asia. This influx has 

resulted in ozone concentration increases at the 5th and 50th percentiles in all seasons in the west 

[14]. In the winter, ozone concentrations have increased across the country at the 5th percentile 

due to decreases in NOx concentrations. Ozone increases as a result of decreasing NOx because it 

is destroyed by reaction with NO. Therefore, a decrease in NO results in an increase in O3. 

Reaction R16 in section 2.2 depicts this ozone loss mechanism [14,21].  

The U.S. Environmental Protection Agency also reviews trends in Policy Relevant 

Background (PRB) ozone. PRB ozone is defined as concentrations that would occur in the U.S. 

in the absence of anthropogenic emissions in continental North America [27,28]. Background 

ozone in the U.S. includes the influence of Asian anthropogenic emissions and wildfire 

emissions, which is quantified with the use of atmospheric models [27]. These areas are more 

likely to exceed the standard given that these sources cannot be helped by US ozone standards. 

[21].  

Baseline ozone is ozone that has not been influenced by recent, locally emitted, or 

produced pollution [29,30]. In recent years, baseline ozone has been rising [25,31], affecting 

ozone concentrations across the US. This is of concern in the spring and summer months when 

ozone concentrations are the highest, making it difficult to maintain standards during this time. 

In a recent study by Parrish et. al [29], one site in the western U.S. (LAVO-ML) is identified as 

having a reversal in baseline ozone trends. The trend changed from positive to negative in the 
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early to mid-2000s. This date varied for different seasons. Parrish et. al [29] also verified this for 

the North American Free Troposphere and the Pacific Marine Boundary Layer. This reversal is 

attributed to a decrease in the influx of baseline ozone. This is the first study to find that ozone 

trends have changed from increasing to decreasing. The authors also point out that model studies 

may be misrepresenting the state of baseline ozone trends [29].  

2.7 The ozone seasonal cycle 

 The ozone seasonal cycle is characterized by annual spring/summer maxima and late 

fall/winter minima in the northern mid-latitudes [32–34]. Furthermore, the variance was found to 

be the largest at one site analyzed frequently for variability in the ozone seasonal cycle, Mace 

Head, Ireland [35]. This is likely the case at most sites in the northern mid-latitudes due to 

ozone’s dependence on sunlight and temperature [33,35,36]. Additionally, the seasonal cycle is 

driven more by the varying levels of precursor emissions rather than by transport from the 

stratosphere [37,33]. At Mace Head, Ireland, the timing of peak ozone changed and the 

amplitude (between peak and minimum ozone) has increased between 1990 and 2004 by 0.18 ± 

0.04 ppbv yr-1 [33,35,38].  

 Parrish et. al [36] and Cooper et. al [4] further analyzed the timing of annual ozone peaks. 

In these studies, a total of five sites in Europe and six sites in the US, all in the northern mid-

latitudes, were analyzed. A total of five of the European and three of the US sites were found to 

have a significantly (p<0.05) earlier occurring peak by 1 to 3 months. These 5 studies indicate 

that the change in timing of peak ozone occurred largely because of decreasing summertime 

precursor emissions [4,36,38]. These studies also suggest that an increase in early spring and 

wintertime ozone result from less ozone lost by reaction with NO [39]. Other suggested causes 

include changes in atmospheric transport pathways, changes in transport from the stratosphere, 
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and factors related to climate change.  The last-mentioned includes increasing temperature, 

variations in water vapor concentrations, or changes in natural emissions [36].  

2.8 Effects of large-scale climate oscillations  

 Several large-scale climate oscillations are known to affect surface ozone concentrations 

[40]. Two such modes of variability include the El Niño Southern Oscillation (ENSO) and the 

Pacific Decadal Oscillation (PDO). Using the Geophysical Fluid Dynamic Laboratory Global 

Chemistry-Climate model (GFDL AM3), Lin et al. [40,41] found that ozone in the western U.S. 

is enhanced in the spring following an El Niño event. The same is true during a La Niña event 

for the Northwestern US. It is believed that ozone enhancements at these locations and phases of 

ENSO, are related to variability in the location of the subtropical and polar jet streams as a result 

of the atmospheric response to ENSO [40–43]. Lin et al. [41] also found that the PDO phase shift 

from warm to cold between 1998 and 1999 directed the flow of ozone-rich air from East Asia to 

the northwestern U.S.  In addition, Newman et al. [44] and Wang et al. [45] found that ENSO is 

more likely to be in the El Niño state when PDO is positive and in the La Niña state when PDO 

is negative.  
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Figure 2.1: Teleconnections and location of the pacific (subtropical) and 

polar jet streams during El Niño (a) and La Niña (b). This figure was adapted 

from the National Oceanic and Atmospheric Administration [46]. 
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 Figure 2.1 depicts how transport of pollutants varies during the two phases of ENSO. 

When ENSO is in the El Niño phase, the subtropical jet stream is strengthened across the 

southern U.S. At this time, quick transport of pollutants from East Asia enhances ozone 

concentrations to this region (Figure 2.1 (a)) [40,41,46]. Weakening of the polar jet stream also 

occurs during El Niño. The subtropical jet weakens when ENSO is in the La Niña state but the 

flow of ozone-rich air from East Asia is directed to the Northwestern U.S. The polar jet stream is 

directed to latitudes above Alaska during La Niña (Figure 2.1 (b)) due to a high-pressure zone 

southwest of Alaska.  

 As previously mentioned, PDO influences the state and strength of ENSO. PDO is 

considered to be a long-lived, ENSO-type pattern of North Pacific climate variability on 

interdecadal timescales [44]. Figure 2.2 (a), depicts the cold phase of the PDO, presenting as a 

horseshoe type pattern along the western US and Aleutian Islands [47]. Cool sea surface 

Figure 2.2: Surface skin anomalies in the North Pacific Ocean during a cold PDO (a) and a warm PDO (b) 

(adapted from Ross 2009) [47]. 

(b) (a) 
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temperature (SST) anomalies occur along the coast while a warm SST anomaly occur throughout 

the middle of the North Pacific between the East Asian continent and North America [44]. The 

opposite occurs during a warm phase PDO, as shown in Figure 2.2 (b) [47].  

2.9 Methods for analyzing data on different timescales 

A frequency modulated time-series decomposition method, the Ensemble Empirical 

Mode Decomposition (EEMD), [48] is an algorithm that decomposes a time series into the 

temporal signals that make up the variability in a data set. The EEMD method introduces white 

noise of finite amplitude to the data set. This allows for components to be extracted in a thorough 

and finite manner and makes components distinguishable when sifting [48]. One issue is that the 

first couple of components do not always have a statistically significant difference from white 

noise [49].  

EEMD splits a time series into k oscillatory components where components of higher 

frequency are extracted first [48]. The oscillatory components or signals are referred to as 

Intrinsic Mode Functions (IMFs) [48]. The number of IMFs of a data set are estimated to be 

log2(N-1) [48,49], where N is the number of data points. Component IMFs obey two properties, 

(i) the number of local maxima and minima differ at most by 1 and (ii) an IMF has a mean value 

of zero [48,49]. The sifting process repeats until the mean of the signal is sufficiently close to 

zero. After all signals are extracted from the time series, the residual (Rn) of the raw data remains 

[48].  

The use of this method is more economical than methods used in other studies. For 

example, trend analyses and the effect of climate on ozone concentrations require different 

methods for analyses. Ordinary Linear Regression (OLR) and Theil-Sen estimation is used for 

mean and quantile trend assessments while climate models are the only way of assessing trends 
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in background ozone. These methods do not allow for determination of how the trend of a data 

set has changed with time. A few methods are used in the extraction of ozone seasonal cycles. 

These include sinusoidal curve fitting to determine variability in the timing of peaks and troughs 

[36] and applying a simpler data decomposition technique to pull out seasonal variability and 

trends [35]. Global chemistry-climate models are used to assess background ozone trends and to 

determine the effect of large-scale climate patterns on wind, temperature, and pressure pattern 

changes [40,41]. Lin et al. [21,40,41] frequently use a Global Fluid Dynamic Model to quantify 

the effect of climate modes on ozone. However, the use of models can sometimes misestimate 

these effects. Therefore, it is important to use observational data to validate the findings from 

models.  

In the past, detecting low frequency climate oscillations in a data set was difficult. 

However, this is now feasible with the Ensemble Empirical Mode Decomposition (EEMD) [48] 

which has been applied in several climate studies [50–55]. In each of these studies, the 

variability on timescales of days to several decades is elucidated from a data series. In some 

cases, interannual and multidecadal variability from the Atlantic Multidecadal Oscillation 

[50,51], the El Niño Southern Oscillation [54,55], the North Atlantic Oscillation [54], and long-

term trends are identified and analyzed for variability or their effect on higher frequency 

components, such as the seasonal cycle [53]. In this work, this method was employed for 

determining changing surface ozone trends, ozone seasonal cycle variability, and the effects of 

large-scale climate oscillations on higher frequency components. It is also the first study to apply 

EEMD in ozone analysis. 

In this study, ozone observations were taken from a multitude of National Park Service 

sites, some of which had never been analyzed. The sites across the U.S. National Parks had at 
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least 10 years of data, which could provide for a robust spatial and temporal analysis of ozone 

variability. Of these sites, only six had been analyzed for variability in the seasonal cycle in the 

U.S. In addition, worldwide, only 5 studies focused on variability in the seasonal cycle of ozone 

[4,33,35,36,38]. This was the first study to assess the effect of large-scale climate perturbations 

on ozone observations and to quantitatively determine the time-varying trend in surface ozone 

[29]. Understanding changes in the seasonal cycle, the effect of climate modes on ozone 

concentrations, and where emissions reductions have been effective can assist policy makers. 

This information can be used as solid scientific input for developing ozone mitigation strategies.  

 It is also important to determine how ozone levels have changed in the National Parks 

because many of these areas are Class 1 protected areas [56]. A Class 1 protected area is a 

geographic region recognized by the EPA as being of highest environmental quality [56]. 

Therefore, it is important to assess the state of environmental pollutants and determine if 

significant deleterious change has occurred [10,11].   
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Chapter 3: Understanding long-term variations in surface ozone in United States (U.S.) 

National Parks 

 

Abstract 

  

 Long-term surface ozone observations at 25 National Park Service sites across the United 

States were analyzed for processes on varying time scales using a time scale decomposition 

technique, the Ensemble Empirical Mode Decomposition (EEMD). Time scales of interest 

include the seasonal cycle, large-scale climate oscillations, and long-term (>10 years) trends. 

Emission reductions were found to have a greater impact on sites that are nearest major urban 

areas. Multidecadal trends in surface ozone were increasing at a rate of 0.07 to 0.37 ppbv year−1 

before 2004 and decreasing at a rate of −0.08 to −0.60 ppbv year−1 after 2004 for sites in the 

East, Southern California, and Northwestern Washington. Sites in the Intermountain West did 

not experience a reversal of trends from positive to negative until the mid- to late 2000s. The 

magnitude of the annual amplitude (=annual maximum–minimum) decreased at eight sites, two 

in the West, two in the Intermountain West, and four in the East, by 5–20 ppbv and significantly 

increased at three sites; one in Alaska, one in the West, and one in the Intermountain West, by 3–

4 ppbv. Stronger decreases in the annual amplitude occurred at a greater proportion of sites in the 

East (4/6 sites) than in the West/Intermountain West (4/19 sites). The date of annual maximums 

and/or minimums has changed at 12 sites, occurring 10–60 days earlier in the year. There 

appeared to be a link between the timing of the annual maximum and the decrease in the annual 

amplitude, which was hypothesized to be related to a decrease in ozone titration resulting from 

NOx emission reductions. Furthermore, it was found that a phase shift of the Pacific Decadal 

Oscillation (PDO), from positive to negative, in 1998–1999 resulted in increased occurrences of 

La Niña-like conditions. This shift had the effect of directing more polluted air masses from East 

Asia to higher latitudes of the North American continent. The change in the Pacific Decadal 

Oscillation (PDO)/El Niño Southern Oscillation (ENSO) regime influenced surface ozone at an 

Alaskan site over its nearly 30-year data record. 

 

Keywords: ozone; trends; Ensemble Empirical Mode Decomposition; annual amplitude; 

seasonal cycle; El Niño Southern Oscillation; Pacific Decadal Oscillation; National Park Service 
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3.1 Introduction 

 High concentrations of tropospheric ozone can have adverse effects on human health and 

vegetation. The United States (U.S.) Environmental Protection Agency (EPA) recently lowered 

the National Ambient Air Quality Standard (NAAQS) for ozone from 75 ppbv to 70 ppbv [1,2], 

in 2015. To attain the ozone NAAQS, a monitor’s fourth-highest annual daily maximum 8-h 

average ozone concentration (DM8HA) averaged over three consecutive years (i.e., the 

monitor’s design value) must not exceed 70 ppbv [1,2]. Regional emission controls for nitrogen 

oxides (NOx) have aided in the decrease of summertime ozone in the eastern U.S. as well as parts 

of California [3,4]. There are concerns that the influx of East Asian emissions [4–6], and the 

influences by interannual and interdecadal variability in the El Niño Southern Oscillation 

(ENSO) and the Pacific Decadal Oscillation (PDO) may make ozone attainment difficult for 

regions of higher elevation in the western U.S. [5,7–9]. Meeting and maintaining lower ozone 

standards may also be more difficult in a warming climate [11]. A quantitative understanding of 

the spatiotemporal variability in observed ozone on time scales of days to decades can assist 

policy makers in developing effective mitigation strategies for ozone abatement. 

 Regional U.S. ozone control strategies have successfully decreased DM8HA ozone in the 

eastern U.S., California, and the Intermountain West at the 95th, 50th, and 5th percentiles in the 

summer months [7]. Similar decreases in the DM8HA ozone was found in spring, at the 95th and 

50th percentile, but at fewer sites across the U.S. [7,9]. However, increases at the 5th percentile 

were observed in most regions in springtime [7,9]. Recently, a leveling of the mean trend, 

followed by a slight decrease has been observed in the Pacific Northwest [12]. In addition to 

these observed changes, model simulations indicated that the springtime transport of East Asian 

pollution enhanced surface ozone at western U.S. sites by about 5 ppbv [13,14] and by up to 8–
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15 ppbv during high pollution episodes [14]. Transport of ozone precursors from East Asia may 

be linked to increases in springtime ozone concentrations in portions of the western U.S. 

However, the transport of East Asian emissions varies with the transport pathway that is 

facilitated by large-scale circulation patterns, which may affect ozone concentrations on time 

scales of days to decades [7,8]. 

 The effect of ENSO and PDO on ozone has been identified previously in both model and 

observation-based studies. ENSO and PDO influenced the origin and fate of air masses that are 

arriving to the U.S. [10,15]. Using an observation-based approach, Langford et al. [16] found 

that the effect of ENSO on ozone was largely dependent on the strength of the ENSO event in 

the Western U.S., and that ozone was anticorrelated with the Southern Oscillation Index (SOI). 

While using a model based approach, Koumoutsaris et al. [17] and Lin et al. [8] found that ozone 

transported to the northern mid-latitudes was enhanced in spring following an El Niño event and 

diminished following a La Niña event. Lin et al. [8] also suggested that transpacific transport of 

East Asian emissions to the western U.S. decreased after 1998 following a shift in the PDO 

phase from positive to negative. The negative phase of PDO is concurrent with a La Niña event, 

which shifts the subtropical jet stream to the north, thereby weakening transport of ozone-rich air 

from East Asia to the central west coast of the U.S., subsequently decreasing the transport of 

East Asian pollutants across the southern U.S. [8]. During peak La Niña periods, ozone-rich air 

was preferentially transported to the Pacific Northwest, thereby enhancing ozone concentrations 

to this area [8]. The peak phases of these climate modes potentially altered the timing, frequency, 

and magnitude of pollutant influx entering the western U.S. This, as well as regional ozone 

control standards, is believed to have played a role in the timing and magnitude of maximums 

and minimums of the seasonal ozone cycle across the northern mid-latitudes [18–20]. The effect 
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of these large-scale climate processes on surface ozone has yet to be sufficiently investigated and 

quantified using observation-based approaches. 

 Tropospheric ozone records show a pronounced seasonal cycle with peaks in late spring 

to summer and minimums in late fall to winter, which is largely driven by the photochemical 

production of ozone and temperature [21,22]. Monitoring sites in and around urban areas tend to 

have a mid-summer ozone peak resulting from maximum photochemical production during this 

season [23]. On the other hand, some high-elevation remote regions experience a late spring 

ozone maximum that is associated with stratospheric intrusions and hemisphere-wide 

photochemical production at this time of year [18–20]. Significant increases in springtime free 

tropospheric ozone over North America have been thought to largely result from the transport of 

polluted air masses from East Asia [9,24]. In addition, decreasing NOx emissions in the northern 

mid-latitudes of Europe have resulted in less ozone titration by NO in early spring, further 

leading to a shift in the ozone annual maximum to earlier in the year [18,25]. At five sites in 

Europe and North America, peaks in the ozone seasonal cycle have shifted earlier by three to six 

days per decade; this trend was explained by changes in atmospheric dynamics, which may have 

aided in the change in distribution of precursor emissions throughout the year. Increased westerly 

flow related to changes in the North Atlantic Oscillation (NAO) in the 1980s and 1990s may 

have increased pollution levels and subsequently, ozone in the spring and winter months across 

the northern mid-latitudes [18]. Cooper et al. [26] focused on 8 sites between the U.S. and 

Europe, and found that between 1990 and 2010, five sites had peak ozone occurring 1–3 months 

earlier in the year. A systematic study is needed to understand how various long-term processes 

impact ozone on multiple timescales across the U.S. by using remote sites over the entire period 

of availability of ozone data sets. 
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  Therefore, this study focuses on ozone trends from National Park Service sites as the 

remote locations of many of these sites are ideal for studying the long-term variation in surface 

ozone. Here, we examine ozone observations between 1983 and 2015 at 25 National Park sites 

that are operated by the U.S. National Park Service (NPS). The Ensemble Empirical Mode 

Decomposition (EEMD) method [27] was employed to analyze ozone on multiple temporal 

scales. When compared to other data analysis methods that are commonly used in the literature, 

EEMD is unique in its nonlinear trend assessment and more economic computing time. 

3.2 Data and Methods 

 Daily data averaged from hourly data, collected by the NPS Gaseous Pollutant 

Monitoring Program (NPS GPMP), was used in this study (http://ard-request.air-resource.com/) 

[28]. Ozone is the primary gas monitored throughout the network that follows all EPA protocols 

and that is certified annually by the NPS to the EPA. The certification is supported by the 

Quality Assurance Project Plan (QAPP) [29], which specifically addresses the procedures used 

by the NPS to operate and certify ozone measurements at NPS-operated sites with EPA-certified 

analyzers. The data sets used here were all acquired from regulatory ozone monitoring stations; 

the sampling methods for gaseous and meteorological monitoring are based on the 40 CFR Part 

58 requirements. All GPMP ambient ozone data is processed through several layers of rigorous 

validation by staff analysts. To ensure that each GPMP site and ozone monitor is operating 

properly and calibrated correctly, the full suite of GPMP network data are reviewed daily by a 

different independent analyst [29]. All data analysts follow the same quality assurance/quality 

control (QA/QC) protocols that are set by the QAPP [29]. Data analysts also monitor the amount 

of valid data acquired from each site and compare it to the expected amount under normal 

conditions in order to assess that data completeness criteria requirements are met or to 
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immediately identify a problem at a site. Additionally, the comparability of the data sets is 

monitored to ensure all final validated data is meaningfully comparable. Data validation for the 

entire GPMP network is performed monthly and uploaded to the EPA Air Quality System (AQS) 

database and is made available on the NPS Data Request web page. Further details regarding site 

operation and data processing can be found in the GPMP QAPP [29]. 

 To study the variability of ozone on decadal to interdecadal time scales, all of the data 

sets used in this work had a minimum length of ten years. The locations and information for each 

site can be found in Table 3.1 and Figure 3.1. A total of 25 sites were available for this study 

which span time periods over 1983–2015. Of the sites used, six sites are in the eastern U.S., 18 

are in the West and Intermountain West, and one is in Alaska. All of the sites are effectively far 

from urban centers and are representative of a well-mixed atmosphere [9]. Please note that the 

data series for ROMO-LP, in Colorado, started in 1987 however, between 1987 and 1997, 39% 

of the data during this period was missing. After this period, incomplete data dropped 

dramatically, with only 5% missing data between 1998 and 2015. Completeness of a data series 

is also a requirement for accurate EEMD results. Therefore, data at this site was analyzed 

beginning in January 1998. 
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State ABBR National Park Site North Lat. West Long. Start Date End Date Elevation(m)

AK DENA-HQ Denali Headquarters 63.7258 148.9633 7/1/1987 661

WA MORA-TW Mount Rainier Tahoma Woods 46.7583 122.1244 7/1/1991 10/1/2013 415

WA NOCA-MM North Cascades Marblemount Ranger Stn. 48.5397 121.4472 2/1/1996 1/31/2008 109

WA OLYM-VC Olympic Visitor Center 47.7372 123.1653 8/1/1985 2/28/2005 427

CA DEVA-PV Death Valley Park Village 36.5092 116.8481 12/1/1993 125

CA LAVO-ML Lassen Volcanic Manzanita Lake Fire Stn. 40.5403 121.5764 10/1/1987 1756

CA PINN-ES Pinnacles SW of East Entrance Stn. 36.485 121.1556 4/1/1987 335

CA SEKI-LK Sequoia & Kings Canyon Lower Kaweah 36.5658 118.7772 6/1/1984 1890

CA YOSE-TD Yosemite Turtleback Dome 37.7133 119.7061 1/1/1992 3037

TX BIBE-KB Big Bend K-Bar Ranch Road 29.3022 103.1772 9/15/1990 1052

UT CANY-IS Canyonlands Island in the Sky 38.4586 109.8211 7/1/1992 1809

MT GLAC-WG Glacier West Glacier Horse Stbls 48.5103 113.9956 1/1/1992 976

NV GRBA-MY Great Basin Maintenance Yard 39.0053 114.2158 8/24/1993 2060

AZ GRCA-AS Grand Canyon The Abyss 36.0597 112.1822 1/1/1993 2073

CO MEVE-RM Mesa Verde Resource Mngment Area 37.1983 108.4903 3/1/1993 2165

AZ PEFO-SE Petrified Forest South Entrance 34.8225 109.8919 1/1/2002 1723

CO ROMO-LP Rocky Mountain Long's Peak 40.2778 105.5453 1/5/1998 28

WY YELL-WT Yellowstone Water Tank 44.5597 110.4006 6/1/1996 2400

UT ZION-DW Zion Dalton's Wash 37.1983 113.1506 1/1/2004 1213

NC GRSM-CM Great Smoky Mountains Cove Mountain 35.6967 83.6086 7/1/1988 1243

NC GRSM-LR Great Smoky Mountains Look Rock 35.6331 83.9422 7/1/1988 793

KY MACA-GO Mammoth Cave Great Onyx Meadow 37.2178 86.0736 12/1/1984 7/31/1997 219

KY MACA-HM Mammoth Cave Houchin Meadow 37.1317 86.1481 7/1/1997 258

VA SHEN-BM Shenandoah Big Meadows 38.5231 78.4347 5/1/1983 1072

MN VOYA-SB Voyageurs Sullivan Bay 48.4128 92.8292 6/1/1996 429

Northwest

West

Intermountain West

East

Table 3.1. Names and locations of the 25 National Park Service Gaseous Pollutant Monitoring Program rural ozone monitoring sites

Figure 3.1 Locations of the 25 U.S. National Park Service sites used in this 

study. 
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 For the assessment of variability in these data, the EEMD method [27] is used. The 

algorithm decomposes a time series into the temporal signals that make up its total variability. 

Specifically, a time series is broken down into k oscillatory components where components of 

higher frequency are extracted first. The oscillatory components or signals are referred to as 

Intrinsic Mode Functions (IMFs). The number of IMFs of a dataset was estimated to be log2(N-

1) [27,30], where N is the number of data points, which, in our case, was daily data averaged 

from hourly data. Component IMFs obey two properties: (i) the number of local maxima and 

minima differ at most by 1, and (ii) an IMF has a mean value of zero. The sifting process is 

repeated until the mean of the signal is sufficiently close to zero. After all of the signals are 

extracted from the time series, the residual (Rn) of the raw data results. 

 It is important to note that 12 components were extracted for all sites (determined by be 

log2(N-1) but for shorter time series such as ZION-DW and NOCA-MM, the variance associated 

with components 11 and 12 is very small. This is because the time period associated with these 

components is longer than the length of these short data series therefore, components 11 and 12 

do not complete a full oscillation at these sites. Therefore, data that is unable to be decomposed 

into components will end up in the residual and add to the trend. The percent variance that is 

contributed by lower frequency components such as 11 and 12 is under a percent. Therefore, 

these long-term components do not contribute significant uncertainty to the overall trend of 

shorter data sets. 

 The time derivative of Rn was calculated to determine the long-term trend in ozone at 

each site and the date on which the ozone trend changed, if at all. The trends resulting from the 

EEMD method are representative of the trends depicting ozone impacted by processes on 

multidecadal times scales. Some of the main factors that could have influenced ozone on 
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multidecadal timescales include the effect of regional ozone controls, land use and cover change, 

natural climate variability, and the 11-year solar cycle. It must be pointed out that this trend 

differs from the trends in baseline or background ozone that have been studied extensively in the 

current literature. The U.S. Environmental Protection Agency defines Policy Relevant 

Background (PRB) ozone as those concentrations that would occur in the U.S. in the absence of 

anthropogenic emissions in continental North America [31]. Background ozone needs to be 

quantified with the use of atmospheric models [31]. Baseline ozone is defined as ozone that has 

not been influenced by recent, locally emitted, or produced pollution [31]. Per the definition of 

background ozone and baseline ozone, both can be impacted by processes on time scales of days 

to decades, and certainly bear seasonal to interannual variations. In the literature, trends in 

background ozone reflect the trends in model simulated influence from outside of the study 

domain, which excludes changes in all sources, sinks, and processes inside the study domain, and 

is also affected by model uncertainties [7,14]. Trends in baseline ozone are measurement-based, 

but are mostly a singular trend, or lack thereof, for the entire study period. In comparison, the 

trend resulting from the EEMD method is one that does not include processes on time scales that 

are shorter than the variability on interdecadal timescales, and there could be more than one trend 

within the study period. To distinguish from the baseline or background trend in the literature, 

the trend that is identified in this study is referred to as the multidecadal trend. 

 To investigate the impact of atmospheric dynamics on ozone at one site, we used gridded 

datasets from the European Center for Medium Range Weather Forecasts (ECMWF) 

(http://www.ecmwf.int/) [32], including monthly 2.5° × 2.5° gridded reanalysis fields of zonal 

and meridional winds, as well as 500 hPa geopotential height for the study period 1987–2015. 

We also used the NOAA Hybrid Single Particle Lagrangian Integrated model (HYSPLIT), 



35 

 

Figure 3.2: The four components (ppbv) of interest, C7, C9, C10, 

and Rn shown here for one site, Rocky Mountain National Park 

(ROMO-LP). Data capture at this site began in January 1987, but 

because of a data completeness requirement for EEMD, the start 

year for this site begins in 1998. 

 

dispersion version [33] to identify the origin of air masses of interest driven by NCEP/NCAR 

2.5° × 2.5° meteorological data at the same site. 

3.3 Results 

 The ozone data were decomposed into 12 oscillatory components using EEMD. For this 

study, we will focus on three of these components, including the 7th, 9th, and 10th component, and 

the residual, which were referred to as C7, C9, C10, and Rn, respectively. Our components of 

interest vary seasonally, interannually (by ENSO and PDO), and, as mentioned in Section 2, the 

residual Rn is the multidecadal variability. The components of interest at one site, ROMO-LP, are 

shown in Figure 3.2 as an example of EEMD results. 
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3.3.1 The multidecadal trend 

 The multidecadal trend in ozone, reported as the mean rate of change and one standard 

deviation of the mean and after the date of trend change for each site can be found in Table 3.2, 

and the spatial variability in trends can be found in Figure 3.3. It is worth noting that the trends at 

20 out of the 25 sites changed from positive to negative at some point in time during the study 

period, and a clear divide in the date of the trend change was observed. Additionally, the trends 

at sites in closer proximity to regions of higher population changed before 2004, while those at 

sites in the West and Intermountain West changed during or after 2004. Therefore, the rates of 

positive and negative trends were identified with the date of trend change as occurring either 

before 31 December 2003 or after 1 January 2004. The monitoring at MACA-GO ended in 1997 

and was replaced by MACA-HM, which is seven miles away, in the same year; therefore, trends 

in this region were considered to have changed from increasing to decreasing in the year 1997. 

Excluding MACA-GO, two sites exhibited constant increasing trends (BIBE-KB (TX) and 

GLAC-WG (MT)), and one with a constant decreasing trend (PINN-ES (CA)). 
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 Of the sites in the western half of the U.S., positive trends were the lowest mostly in 

Central California and Texas, ranging from 0.07 to 0.11 ppbv year−1, while stronger positive 

trends of 0.37–0.44 ppbv year−1 were found largely in the Intermountain West at GRCA-AS, 

MEVE-RM, and ZION-DW (Figure 3.3a). Trends in the West changed from positive to negative 

over a broad range of time, between 1997 and 2008 (Table 3.2). Within that time period, three 

Site Trend (ppbv yr
-1
) Date of trend changes Trends (ppbv yr

-1
)

Northwest

DENA-HQ 0.04 ± 0.02 1/8/2006 -0.02 ± 0.01 

MORA-TW 0.27 ± 0.15 7/20/2002 -0.32 ± 0.18

NOCA-MM 0.16 ± 0.10 7/21/2001 -0.20 ± 0.11

OLYM-VC 0.25 ± 0.15 1/13/1998 -0.08 ± 0.05

DEVA-PV 0.23 ± 0.13 1/13/2007 -0.18 ± 0.10

LAVO-ML 0.23 ± 0.13 10/17/2007 -0.10 ± 0.06

PINN-ES - - -0.34 ± 0.10

SEKI-LK 0.08 ± 0.04 4/16/1997 -0.12 ± 0.07

YOSE-TD 0.07 ± 0.04 10/19/1998 -0.26 ± 0.15

BIBE-KB 0.11 ± 0.01 - -

CANY-IS 0.001 ± 0.001 2/10/2001 -0.08 ± 0.04

GLAC-WG 0.18 ± 0.02 - -

GRBA-MY 0.28 ± 0.16 9/16/2006 -0.20 ± 0.11

GRCA-AS 0.37 ± 0.21 9/28/2006 -0.25 ± 0.14

MEVE-RM 0.40 ± 0.23 8/15/2007 -0.24 ± 0.14

PEFO-SE 0.03 ± 0.02 3/21/2004 -0.23 ± 0.13

ROMO-LP 0.29 ± 0.18 3/6/2009 -0.25 ± 0.13

YELL-WT 0.19 ± 0.11 10/23/2006 -0.17 ± 0.10

ZION-DW 0.44 ± 0.26 12/16/2008 -0.63 ± 0.37

GRSM-CM 0.07 ± 0.04 1/18/1995 -0.35 ± 0.20

GRSM-LR 0.35 ±  0.20 7/18/2003 -0.35 ± 0.20

MACA-GO* 0.09 ± 0.01 - -

MACA-HM* - - -0.60 ± 0.01

SHEN-BM 0.37 ± 0.21 10/27/2002 -0.27 ± 0.16

VOYA-SB 0.26 ± 0.15 10/21/2003 -0.44 ± 0.25

West

Intermountain West

East

Table 3.2. Multidecadal ozone trend change (ppbv yr
-1

)
 
and date of trend 

changes. The trends in the 2nd and 4th column are the trends before and 

after the date of trend change, where the dates are indicated in the 3rd 

column. Sites in bold indicate that the trend changes occurred prior to 2004.  

*The monitoring at MACA-GO ended in 1997 succeeded by MACA-HM, 7 

miles away, in the same year, and therefore trends in this region were 

considered to have changed from increasing to decreasing in the year 1997. 
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sites changed from positive to negative prior to 2004 and nine sites after 2004. Ozone levels have 

been trending downward at 17 of the 19 western sites at rates that range between −0.02 to −0.63 

ppbv year−1, since their respective dates of trend change (Table 3.2). The strongest negative 

trends in the West were found at ZION-DW at −0.63 ppbv year−1, followed by PINN-ES, at 

−0.34 ppbv year−1. Note that PINN-ES exhibited a constant decreasing trend averaging −0.34 

ppbv year−1 throughout its monitoring period (1987–present). Trends at SEKI-LK and YOSE-

TD, located in the west, changed from positive to negative in 1997 and 1998, respectively, 

marking these two sites the second and third to change their trend status from positive to 

negative, while GRSM-CM, located in the east, changed trends status in 1995, marking this as 

the first site, to change its trend status from positive to negative. CANY-IS, which is located in 

southeastern Utah, is the fourth site to shift to negative prior to 2004 and is the only site in the 

Intermountain West to change trend status from positive to negative prior to 2004. Of the nine 

sites with a change from positive to negative after 2004, all but CANY-IS are located in the 

Intermountain West, excluding LAVO-ML, which is located in northern California. 
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 At GLAC-WG (MT) and BIBE-KB (TX), ozone trends have been increasing at 0.18 and 

0.11 ppbv year−1 since the start of monitoring in 1992 and 1990, respectively. Both of these sites 

have exhibited a leveling of ozone trends beginning in 2014, but neither site has shown a reversal 

of trends. DENA-HQ had a weakly positive trend of 0.04 ppbv year−1 between 1987 and 2006, at 

which point the trend shifted downward at a rate of −0.02 ppbv year−1. In the East, trends at all of 

the sites changed from positive to negative prior to 2004. Rates of positive trends ranged from 

0.07 ppbv year−1 at GRSM-CM to 0.35 ppbv year−1 at GRSM-LR. GRSM-CM had a trend shift 

from positive to negative, the earliest of all sites, but also had the weakest positive trend. Since 

2004, ozone has been trending downward at all five of the eastern sites (MACA-GO is no longer 

monitoring). Overall, surface ozone levels are decreasing at 22 of the 25 NPS sites across the 

U.S. 

3.3.2 The Seasonal Cycle 

 The ozone seasonal cycle (C7), considered to be changing with the seasons but having 

one peak and one minimum per year, has varied in timing and amplitude at several sites. The 

most distinctive feature of the seasonal cycle is the spring/summer maximum and fall/winter 

minimum at all sites, which is characteristic of the Northern Hemisphere [34,21,22]. DENA-HQ 

has a very different seasonal cycle from the other sites in the study domain, with maxima in late 

March and minima in late August. Of all the components, the seasonal cycle contributed the 

greatest, 31.8% on average, of the total variance. Therefore, the seasonal cycle is the most 

important characteristic of the data controlling variation in ozone. 

3.3.2.1 Change in Amplitude of Seasonal Cycles 

 The annual amplitude is the difference in ppbv between the annual ozone maximum and 

minimum. To determine significant changes in annual amplitude, linear regression was 



41 

 

performed. The magnitude of annual 

amplitude decreased significantly (p < 

0.10) by 5 to 20 ppbv at four sites in 

the West and four sites in the East 

during their respective monitoring 

periods (Figure 3.4a,b; Table 3.1). 

Amplitude decreases in the West 

ranged between 5–7 ppbv for all four 

sites (Figure 3.4a), while the sites in 

the East have decreased by 5 ppbv at 

MACA-GO, 10 ppbv at MACA-HM, 

and 20 ppbv at GRSM-CM and 

SHEN-BM during their respective 

monitoring periods (Figure 3.4b). 

Stronger amplitude decreases were 

observed in the East than in the West, 

and proportionately more sites 

experienced decreases in the East than 

the West. Three sites had significant 

increases in annual amplitude, none 

of which were located in the East 

(Figure 3.4c). Specifically, LAVO-

ML, which is located in northern 

Figure 3.4: Sites with a significant negative change 
in annual amplitude for western (a) and eastern sites 
(b) and a significant positive change in annual 
amplitude (c).  

(a) 

(b) 

(c)



42 

 

California, had an increase of 3 ppbv between 1987 and 2015. DENA-HQ had an increase of 4 

ppbv over the same time-period. GLAC-WG had an overall increase of 3 ppbv between 1992 and 

2015. In comparison, sites with increases in annual amplitude were not as significant in 

magnitude as sites with decreases in annual amplitude.  

3.3.2.2 Change in Timing of Seasonal Cycles 

 A shift to earlier in the year was observed in the annual maximums and minimums at 12 

of the 25 sites. Sites with a significant shift are indicated in Figure 3.5. Figures 3.5a and b depict 

the nine sites that had a significant shift in peak date with 5 in the West, including the one site in 

Alaska (DENA-HQ) (Figure 3.5a), while Figure 3.5b shows four sites in the East. The sites with 

significant peak shifts in the West had shifted 10 to 60 days earlier during their respective 

monitoring periods (Figure 3.5a), while in the East, sites have moved 35 to 60 days earlier 

(Figure 3.5b). A closer examination revealed that the annual peaks at eight of the nine sites 

occurred in June and July prior to 2000, but afterward gradually shifted to late April/early May 

(Figure 3.5a,b). The annual maxima at DENA-HQ in Alaska shifted earlier by 10 days from 

early April in 1987 to late March beginning around 2003 (Figure 3.5b). Eight sites had an earlier 

occurring annual minimum, while four of these sites also had a shifting annual maximum (Figure 

3.5c,d). Five of the eight sites with shifting annual minima were in the West, while the other 

three reside in the East. The annual minimum shift was more significant in the three eastern sites 

(28–34 days) than the five western sites (14–21 days). 
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 Proportionately more sites in the East had a shift in the seasonal cycle than in the West 

for both the annual maximum and minimum. Of the nine sites with significant   changes in the 

annual amplitude, six had significant (p < 0.10) changes in the date of annual maximums and 

minimums (SHEN-BM, GRSM-CM, MACA-HM, PINN-ES, DENA-HQ, CANY-IS, LAVO-

ML), while three had insignificant (p > 0.10) shifts to an earlier date (GRSM-LR, MACA-GO, 

GRBA-MY). Conversely, only three sites with significant changes in amplitude had significant 

shifts in the minimum date (PINN-ES, GRSM-CM, and MACA-HM). 

 

 

Figure 3.5: Significant shifts in the date of annual ozone peak values for the western (a) and 

eastern (b) sites. Significant shifts in the date of annual ozone minimum values for western (c) 

and eastern sites (d). 
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3.3.3 Variability by Large-Scale Climate Circulation Linked to Components C9 and C10 

 Surface temperature data have been widely analyzed and its time scales have been 

identified in the literature [10,35,36]. Zhang et al. [36] examined the correlation of the 

Precipitation Condition Index, Vegetation Condition Index, and decomposed precipitation and 

temperature data with the Niño 3.4 SST index. They identified the lag and correlation coefficient 

between this climate mode and the components representing ENSO to determine if ENSO was 

the main driver of variability [36]. However, the correlation and lag response of a variable that is 

associated with PDO is not as clear. Therefore, given the robustness of EEMD and the suggested 

linkage between ENSO/PDO and surface temperature [35,37], surface temperature data at each 

site (obtained from the same source as the ozone data used in this study) were decomposed by 

EEMD and were used as a proxy to determine if there was a similar linkage between ENSO/PDO 

and surface ozone. The EEMD time scales for components 9 and 10 for temperature oscillate 

every 3–7 years and 9–12 years, respectively, which match with the variability identified for 

ENSO and PDO [38,39].  

 Further, correlation coefficients between component 9 (C9) and component 10 (C10) for 

temperature and ozone were calculated. Given that both of the components are distributed 

nonparametrically, correlation coefficients were determined using the Spearman Rank Order 

Correlation test. Resulting correlation coefficients for each site are shown in Figure 3.6. Values 

of significance for correlation coefficients between C9 for temperature and ozone were all within 

the 95% confidence limit, except for DENA-HQ (p = 0.24) and MACA-GO (p = 0.21). Values of 

significance for correlation coefficients between the two C10 signals were all within the 95% 

confidence limit. C9 correlation coefficients (Figure 3.6a) were strongly correlated (r > 0.5 or r < 

−0.50) at 2 of 25 sites and were weakly correlated (0.25 < r < 0.5) at 10 of 25 sites. Signal C9 of 
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ozone oscillates on a similar timescale to this component in temperature therefore, it is suggested 

to represent ENSO. Its significant correlation with that of ozone thus indicated the contribution 

of ENSO to surface ozone. Signal C10 in temperature and ozone were strongly correlated (r > 

0.50 or r < −0.50) at 8 of 25 sites and were weakly correlated (0.25 < r < 0.50 or −0.25 < r < 

(b) 

(a) 

Figure 3.6: Spearman rank correlation coefficients between the C9 components for 

ozone and temperature (a), and the C10 components for ozone and temperature (b).  
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−0.50) at 9 of 25 sites (Figure 3.6b). Signal C10 for ozone oscillates about every 8–12 years, 

which is a similar time scale to temperature, and was thus suggested to represent PDO. Its 

correlation with C10 in ozone hence alludes to the same process driving ozone. 

 Individually, components C9 and C10, or variability by ENSO and PDO, contribute 

about 1–2% to the variance in ozone concentrations. However, both of the components have a 

modulating effect on the seasonal cycle as well as subsequent higher frequency components. The 

modulation effect of lower frequency signals on higher frequency signals can be illustrated using 

the seasonal cycle of Rocky Mountain National Park (ROMO-LP). In Figure 3.7, signals of the 

seasonal cycle (C7), ENSO (C9), and PDO (C10) for Rocky Mountain National Park (ROMO-

LP) are superimposed. Black arrows indicate that ENSO and PDO are out-of-phase, while gray 

arrows indicate that the components are in-phase. For example, in spring 2003, 2011, and 2012 

the seasonal cycle was enhanced by 3–4 ppbv from the previous year, while ENSO and PDO 

were in phase. Therefore, when ENSO and PDO act in concert and the regimes in these climate 

modes have reached a peak, maximums in the seasonal cycle were enhanced. Modulation, or the 

Figure 3.7: The various effects of C9 and C10 on C7, the seasonal component, depending on the 

cycle phase. Black arrows indicate that C9 and C10 are out-of-phase; grey arrows indicate that the 

components are in-phase. 
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enhancement of the seasonal cycle, by lower frequency components occurs at all sites in the 

study domain.  

3.4 Discussion 

3.4.1 Impacts of Domestic Emissions Reductions on Rural Ozone Trends 

 Declining trends were found to be −0.27 to −0.6 ppbv yr−1 in the East and −0.02 to −0.63 

ppbv yr−1 in the West/Intermountain West (Figure 3.3b). The most significant trend decreases in 

the West/ Intermountain West were seen at ZION-DW with decreases at a rate of -0.63 ppbv yr-1. 

The second most significant decreases in this region were seen at PINN-ES, where decreasing 

trends (Figure 3.3b) were observed throughout the monitoring period (Figure 3.1). This site has 

some of the earliest ozone measurements in the study domain, beginning in 1987, and is 

currently still monitoring. The eastern U.S. has the earliest shift in trend status from positive to 

negative (with sites in central California and the Northwestern U.S. following suit thereafter 

(Table 3.2). The first sites in the west to change from positive to negative trends were SEKI-LK 

(16 April 1997) and YOSE-TD (19 November 1998), which are the closest in proximity to 

PINN-ES (Table 3.2; Figure 3.3). It should be noted that, of the sites with the earliest shift from 

positive to negative (1995–2003), all of them are located near urban regions, which include 

central California, Northwestern Washington, and the Eastern U.S., which have experienced 

more significant decreases in ozone trends relative to rural areas [9]. This trend was found by 

Cooper et al. [9] but it should be pointed out that their work did not include sites in the 

Northwestern U.S. Three sites in this work MORA-TW, NOCA-MM, and OLYM-VC are 

located in the Northwest and are in close proximity to the Seattle metropolitan area. The timing 

of the ozone reductions within the greater Seattle metropolitan area coincides with the findings 

of Simon et al. [3], which showed that both NOx and VOC emissions decreased by 39.6% and 
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14%, respectively, in the Northwestern U.S. between 2000 and 2011. The decrease in these 

precursor emissions likely facilitated the decrease in ozone for MORA-TW, NOCA-MM, 

OLYM-VC 

 Cooper et al. [9] identified the Denver Metropolitan area as a region that did not have 

significant reductions in ozone precursor emissions, while they attributed Los Angeles Basin 

ozone decreases to VOC emission reductions, based on nation-wide emission inventories within 

the 1980–1995 time period. The U.S. EPA’s State Tier 1 database reported Colorado’s estimated 

2000 NOx emissions were reduced by 1762 tons when compared against 1990 levels, decreasing 

from 33,381 tons to 31,619 tons, for a 5.3% reduction [40]. California’s estimated NOx 

emissions between the same period were reduced by 16.0%, decreasing from 171,382 tons to 

143,936 tons, for a reduction of 27,446 tons [40]. This difference in emission reduction could 

explain why decreasing trends in ozone were not observed until 2009 at ROMO-LP, which is 

located downwind of the Denver Metropolitan region (Table 3.2) [40]. In contrast to Colorado, 

the Los Angeles Basin, ozone levels decreased by 50 ppbv between 1979 and 1997 (followed by 

no decreases over 1997–2008), which is potentially the cause of the earlier start of decreasing 

trends in ozone at two sites downwind of Los Angeles (YOSE-TD and SEKI-LK). PINN-ES has 

exhibited a decreasing trend in ozone since its inception as an ozone monitoring site, but it is in 

relatively close proximity to the coast when compared to the other central California sites where 

it is influenced by marine air; therefore, it is less likely to be affected by the Los Angeles Basin, 

like the other central California sites. In the eastern states of Virginia and Kentucky and the 

western states of Washington and California, where all of the sites with the earliest of trend 

reversals are located (prior to 2004), the State Tier 1 NOx emission reductions between 1990 and 

2000 were −12.0% in VA, −10.5% in KY, −14.3% in WA, and −16.0% in CA [40]. The earliest 
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emission reduction implementation in the Intermountain West occurred in the Denver 

Metropolitan area of Colorado in 1997. However, many states in the Intermountain West have 

seen a significant shift in source sectors, in addition to increases in frequency and magnitude of 

wildfires [41–44], all of which may be influencing the increasing ozone trends that were 

observed at BIBE-KB and GLAC-WG. 

3.4.2. Variability in the Seasonal Cycle of U.S. Surface Ozone 

 Parrish et al. [18] suggested several hypotheses to explain the shift in the seasonal cycle 

which include changes in precursor emissions and ozone photochemistry, variability in transport 

pathways, and climate factors. Emission reductions have likely impacted the trends in ozone at 

sites nearest large urban areas, which could have also affected the annual amplitude and the shift 

in seasonal cycles. Rising springtime ozone of ~0.6 ppbv year−1 in the western U.S. from 1984 to 

2008 was identified by Cooper et al. [24,26], and was thought to result from the changing 

distribution of ozone precursors; this subsequently caused the shift in seasonal cycles and 

decreased annual amplitude [26]. Specifically, decreased NOx emissions could have decreased 

annual ozone peaks, but it also reduced ozone removal via NO titration [25], the latter of which 

has led to increased wintertime and early springtime ozone levels [4,9,18,45]. Hence, increased 

springtime ozone and decreased summertime ozone may be a key driver of the shift in the ozone 

annual peak to earlier in the year [26]. 

 There was greater regional continuity in the East than the West, with four out of six sites 

showing significant decreases in the magnitude of annual amplitude (Figure 3.4b), four out of six 

sites with a significant shift in annual maximum (Figure 3.5b), and three out of six sites with a 

significant shift in annual minimum (Figure 3.5d). In comparison, 5 out of 19 west coastal sites 

have had changes in the magnitude of annual peaks and minimums. Of the sites in the West, 
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three out of four sites had significant decreases in annual amplitude. Three out of five, and four 

out of five sites for annual maximum and minimum, respectively, were located in the regions 

with the earliest shift in trends from positive to negative (Figure 3.5a,c). Parrish et al. [18] 

suggested that the shift in the seasonal cycle may be a phenomenon occurring across northern 

mid-latitudes. Our study suggests that this shift did not seem to occur uniformly at all mid-

latitudinal locations, as overall across the U.S. 9/25 (8/25), NPS sites have had a change in 

timing of annual maximums (minimums), and 11/25 have had a change in annual amplitude. 

3.4.3. Effects of Large-Scale Climate Circulation on Seasonal cycles of U.S. Surface Ozone 

 Studies have suggested that various modes of climate variability and related dynamical 

mechanisms are responsible for the changes in free tropospheric and surface ozone [5,7,43–46]. 

Lin et al. [6,8,48] investigated the impact of large-scale climate perturbations on U.S. surface 

ozone trends using a global chemistry climate model, and their results show that they have a 

clear impact on the seasonal variability in ozone. For instance, the positive PDO over 1977–1998 

was accompanied by stronger and more prolonged El Niño events, followed by a negative PDO 

between 1999 and 2015 with stronger and more prolonged La Niña events. [8]. This has 

implications for the transport of East Asian pollution and subsequently the seasonal cycle of U.S. 

surface ozone. 

 The dynamics of PDO and ENSO could explain the modulatory effect of ENSO and PDO 

on the seasonal cycle of ozone at the majority of the NPS sites, as shown in Section 3.3. In the 

positive phase of ENSO and PDO, zonal winds in winter are heightened [8,38,49]. This 

manifests as an increase in transpacific transport of Asian pollution to the southwestern U.S. via 

a strengthened subtropical jet stream in late winter and early spring [10,50], likely leading to 

springtime ozone and perhaps higher annual maximum ozone there. During La Niña and 
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negative PDO periods, the northward shifting subtropical jet stream directs East Asian pollution 

to the Pacific Northwest [6,51], likely increasing the surface ozone levels in Alaska and the 

northwestern U.S., whereas in other parts of the U.S. surface ozone was lowered. The long term 

increasing trend in surface ozone in Alaska will be discussed further in Section 4.4. In addition to 

variability in transport, El Niño episodes bring warm and dry conditions to the central and 

southern part of the country, ripe conditions for ozone formation [38], whereas La Niña episodes 

bring increased storms and cloudiness as well as cooler temperatures; therefore, ozone formation 

is not as strong during La Niña periods [38]. This also seems consistent with the modulatory 

effect of ENSO/PDO on the seasonal cycle. 

3.4.4 Increasing Annual 4th-Highest DM8HA and Annual Amplitude of Ozone at DENA-

HQ over 1987–2015 

 Denali National Park (DENA-HQ) (63.7258° N, 148.9633° W) is the only location where 

an increase in annual amplitude was found throughout the monitoring period. The annual 

maximum DM8HA value increased by 2 ppbv between 1987 and 2015 (Figure 3.4c), while the 

annual minimum value decreased by 2 ppbv (Figure 3.5a). In addition to this, there has been a 

statistically significant increase in the annual 4th-highest DM8HA. The annual 4th-highest 

DM8HA is found to be increasing at a rate of 0.33 ppbv year−1 (R2 = 0.29, p < 0.05) (a total 

increase of ~9 ppbv) (Figure 3.8). The annual 4th-highest DM8HA does not occur during 

DENA-HQ’s peak ozone season of late March to early April, but rather late April to May. This is 

likely due to the influence of higher solar irradiance coupled with transpacific transport [52]. It is 

important to note that the overall multidecadal trend at this site has not changed. However, the 

increasing trend in the annual 4th-highest DM8HA coupled with the increase in annual peak 

ozone values could signal the beginning of a multidecadal ozone trend increase at DENA-HQ in 
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the future. As aforementioned, the persistence of the negative PDO since 1998–1999, concurrent 

with more La Niña events, has resulted in a shift in transport of East Asian pollution to higher 

latitudes (45°–50°), which has subsequently increased the number of polluted air masses that are 

arriving to this region. To demonstrate the influence of polluted air masses that are transported 

from East Asia to DENA-HQ, back trajectories were conducted for the seven days before and 

after the date of the annual 4th highest DM8HA value occurrence at 22:00 UTC (14:00 Alaskan 

time), the average 8-hour rolling average start time for two time periods, 1987–1998 and 1999–

2015. Of the 29 DM8HA values for the DENA-HQ record, 27 of them occurred in the months of 

April or May. Seven day back trajectories were calculated from DENA-HQ during these months, 

following the works of Jaffe et al. [53], Berntsen et al. [54], Yienger et al. [55,56], and Holzer et 

al. [57], which found that the average transport time in the spring between North America and 

Figure 3.8: The annual 4th highest DM8HA at Denali 

National Park in Alaska (DENA-HQ) and a best fit linear 

regression line showing a coefficient of determination of 

0.29. 
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Asia was ~7 days. These trajectories were plotted and the area around the arrival point (DENA-

HQ) was divided into eight sectors of 45° (Figure 3.9).   

 Over 1987–1998, 72% of trajectories were from the area East-North-East to South (ENE–

S) of DENA-HQ (Figure 3.9), which suggests that the majority of air masses that are arriving at 

the site originated from the marine boundary layer and western Canada. Over 1999–2015, 13% 

more trajectories came from West to South (W–S) of DENA-HQ, while 12% less from the east-

south directions when compared to the 1987–1998 period. This means that during the time 

period from 1999 to 2015, air mass transport was more frequent from the North Pacific, with an 

increased potential of transporting East Asian pollution to DENA-HQ, and less frequently from 

above the Arctic Circle over land and near coastal regions of Canada, where the air is mostly 

pristine.  

Figure 3.9: The percent of trajectories that fell in 8 radial sections around DENA-HQ. Rolling 

7-day back trajectories were calculated using the HYSPLIT model. Trajectories were 

calculated seven days before and after the date of the annual 4th-highest DM8HA at DENA-

HQ for the periods 1985 - 1998 (a) and 1999 - 2012 (b). The grey boxes indicate the area 

where an increase in trajectories were seen from period one (a) to period two (b) and the black 

box indicates where a decrease in trajectories were seen from period one (a) to period two (b). 

(b) (a) 
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 To determine the key factors driving the variability in the direction of backward 

trajectories between the two periods (1987–1998 and 1999–2015) for the months of April and 

May, monthly mean geopotential height fields with wind speeds at 500 hPa for 1987–2015, 

1987–1998 (period one), and 1998–2015 (period two) were examined for April and May during 

each period (Figure 3.10). Anomalously low geopotential heights occurred to the west of Alaska 

for period one (Figure 3.10b); during period two, anomalously high geopotential heights 

occurred in the same area (Figure 3.10c). These findings are in agreement with Bond and 

Harrison’s [58] study on the variability and relationship between ENSO and the Arctic 

Oscillation on the climate of Alaska, but for the winter months of November through February. 

The increased number of El Niño events that occurred during the positive PDO phase over 1987–

1998 resulted in a low-pressure system to the southwest of Alaska during April and May, the 

months when transport over the Pacific is the greatest [57], allowing for air masses to 

preferentially move from the U.S. West Coast and the marine regions south of Alaska. During 

the second period 1999–2015 in the months of April and May, a high-pressure system resulted in 

increased westerly flow across the North Pacific to DENA-HQ and a decrease in the air masses 

from the marine regions south of Alaska. Air masses originating from this region for the week 

before and after a peak ozone event at DENA-HQ are presumably more polluted. It is likely that 

there was pollution outflow during these times from East Asia, causing the increase in ozone at 

this site. Therefore, the changing circulation regimes enhanced the transport of western polluted 

air masses to Alaska during period two, ultimately leading to the increasing trends in the annual 

4th highest DM8HA values and the magnitude of the annual amplitude after 1999 at DENA-HQ. 
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Figure 3.10: (a) Mean geopotential height in meters (colored contours) and 

mean wind speed in m/s (wind vectors) at 500 hPa for April–May of 1987–

2015. Anomalous geopotential height and wind speed were calculated and 

plotted for the period April–May of 1987–1998 (b) and 1999–2015 (c). 
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3.5 Summary 

 In this study, 25 U.S. NPS datasets were analyzed for spatial and temporal variability in 

long-term ozone using EEMD. This method has allowed for an analysis of the spatial and 

temporal variability of long-term ozone data on four time-scales, which include seasonal, 

interannual, interdecadal, and multidecadal. Peak values in the ozone seasonal component have 

shifted to earlier in the year at nine sites by 10–60 days, while minimum values have shifted to 

earlier in the year at eight sites by 14–34 days. There has been a decrease in annual maximum 

values and an increase in annual minimum values at eight sites by 5–20 ppbv year−1. The 

changes that were seen in the seasonal cycle were likely the result of decreasing NOx 

concentrations that would result in a change in the distribution of ozone throughout the year, 

leading to an increase in minimum ozone values and a decrease in maximum ozone values. 

Interannual and interdecadal cycles resulting from ENSO and PDO have a constant effect on 

higher frequency components. This effect was examined using the seasonal component where we 

found the greatest enhancement in ozone concentrations of 3–4 ppbv in the annual maximum 

value when ENSO and PDO were both positive and in-phase. Multidecadal trends were 

identified to change from increasing to decreasing at 20 of the 25 sites. Increasing trends were 

found to be between 0.001 ppbv and 0.4 ppbv year−1, while decreasing trends were found to be 

between −0.02 to −0.63 ppbv year−1. The multidecadal trend shifted from positive to negative 

prior to 2004 at sites in the Eastern U.S., Southern California, and the Pacific Northwest. In the 

Intermountain West, trends shifted from positive to negative most predominately after 2004. 

Decades of increasing annual amplitude, annual 4th highest DM8HA, as well as a shift in date for 

both of these variables at Denali National Park in Alaska (DENA-HQ) may have resulted from a 

change in transport pathways related to the PDO. These changes likely stemmed from an 
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increase in the strength and longevity of La Niña events over 1999–2015, and a negative PDO 

period, which increased the transport of heavily polluted air masses from East Asia by 13% from 

the previous PDO period of 1987–1998. 

 The findings from this study can be used to aid in future ozone mitigation strategies and 

policies in the United States. For example, the US EPA requires large energy plants to keep NOx 

emission below a certain budget during the ozone season of May to September [59]. In this 

study, we found that peak ozone concentrations were occurring as early as March at some sites. 

Therefore, the period of decreased NOx emissions should be pushed earlier in areas that peak 

ozone is occurring out of the ozone season. The modulatory effects of large circulation processes 

on higher frequency components can be useful in predicting high ozone events in the U.S. A 

more extensive analysis incorporating other components of the ozone data sets is warranted to 

better understand and assess the impact of major climate modes on U.S. ozone trends and 

variability. 
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Chapter 4: Conclusions 

This study investigated the processes affecting the spatial and temporal variability in 

long-term surface ozone at 25 National Park Service sites. The EEMD technique decomposed 

ozone data into all the components driving variability. Four components of the ozone data set 

were explored for variability and the greatest factors affecting ozone concentration change across 

the continental U.S. and Alaska was determined. The ozone components analyzed include 

seasonal, interannual (El Niño Southern Oscillation), interdecadal (Pacific Decadal Oscillation), 

and long-term (multidecadal) variability. 

 Given that all data sets had greater than 10 years of data and that all processes on times 

scales < 10 years were removed, the residual was considered to be the trend on multidecadal time 

scales and was referred to as the multidecadal trend. The multidecadal trends across the U.S. 

National Parks suggested that ozone began decreasing earlier in areas that were closest to urban 

areas. These findings also showed that the effect of transport is far reaching beyond the local 

emission scale. As such, the multidecadal trends were increasing and are now decreasing at 20 of 

the 25 sites, while two have leveled off, two were decreasing from the start of monitoring, and 

one has ceased monitoring. Increasing trends were found to be between 0.001 ppbv yr-1 and 0.44 

ppbv yr-1. Of the 22 sites that exhibited decreasing trends, ozone decreased at rates between -0.02 

ppbv yr-1 and -0.63 ppbv yr-1. 

 The seasonal cycle is the shortest timescale analyzed in this study and has the largest 

variance (an average of 31.8%) of all components of the ozone data sets. At eight sites in the 

study domain, Peak ozone values of the seasonal component significantly decreased by 5 to 20 

ppbv. Decreases in annual amplitude were more significant in the East (5-20 ppbv) than the West 

(5-7ppbv). In addition, the timing of ozone peak values shifted 10 to 60 days earlier at nine sites, 
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while minimum values shifted 14 to 34 days earlier at eight sites. The changes seen in the 

seasonal cycle were likely the result of decreasing NOx concentrations. As mentioned previously, 

a decrease in NOx decreases the frequency of high ozone events in the summer but increases 

ozone in the early spring and winter. This ultimately results in an increase in minimum ozone 

values, a decrease in maximum ozone values, and a shift in some extreme values to earlier in the 

year. Analysis of lower frequency components, ENSO and PDO, revealed a modulating effect on 

a higher frequency component, the seasonal cycle. When ENSO and PDO were acting in phase, 

the seasonal cycle was enhanced by increasing the annual peaks and lowering annual minimums 

by 3-4 ppbv compared to when the two components were acting out-of-phase.   

 An analysis of DENA-HQ, in Alaska revealed intriguing results. The EPA annual 

DM8HA, significantly increased at DENA-HQ at a rate of 0.33 ppbv yr-1. This site was the only 

site that had a significant positive trend in the annual DM8HA value. In addition, this site had a 

significant increase in annual amplitude where the annual maximum had increased by 2 ppbv and 

the annual minimum decreased by the same amount. Therefore, the annual amplitude increased 

by 4 ppbv between 1987 and 2015. It was also found that the change in the PDO regime from 

positive to negative resulted in stronger and more frequent La Niña’s between 1999 and 2015. 

This led to an anomalously low-pressure system over the region when transport is at its strongest, 

in April and May.  During this period, the frequency of southwesterly wind increased by 13%. 

This change indicated a likely increase in transport of polluted air masses from East Asia to 

DENA-HQ.  

 From this study, we learned that on multidecadal timescales EPA ozone standards are 

effective, and more so near areas of higher population. This is reasonable given that prior to the 

implementation of ozone standards, high concentrations of precursor emissions in urban regions 
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traveled to NPS monitoring sites, resulting in higher concentrations of ozone. As concentrations 

of precursor emissions in urban areas decreased, lower concentrations of ozone occurred in NPS 

sites, by the same mechanism. Further study is required to understand the variabilities found in 

the magnitude of the annual amplitude and timing of annual peaks and minimums. The findings 

in these variables did not have as clear of a pattern as that found in the multidecadal trends.  

 Decreasing NOx concentrations explains the change in timing of peaks from summer to 

spring and the decrease in annual amplitude. However, it does not explain why significant 

changes in these variables were not seen for all sites in a region. For example, in central 

California, PINN-ES and SEKI-LK had significant decreases in annual amplitude while YOSE-

TD did not. This is also the case for this geographical area regarding the timing of peak and 

minimum annual ozone. For the same sites, PINN-ES had a significantly earlier occurring peak 

date while the date of peak ozone for SEKI-LK and YOSE-TD did not have significant changes. 

Despite the lack of regional similarities, knowing that peak ozone is occurring earlier for an area 

will assist policy makers in preparing the public for high ozone events at appropriate times. It 

can also help policy makers target and decrease high ozone concentrations. At this time, large 

energy plants have a budget for the amount of NOx that can be emitted from the plant during the 

ozone season of May to September. The period that the budget applies may need to be expanded 

given that ozone peaks are now occurring in April at some sites in the study domain. 

 Analysis of large-scale climate oscillation allowed for the quantification of the 

contribution of these components to the seasonal cycle. Variability in these climate modes 

changed atmospheric transport patterns to a site in Alaska. In a future study, the total 

contribution by these climate modes to all higher frequency components should be considered. 

The effect of changing transport patterns in response to variability in climate modes and 
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transported emission levels should also be quantified at all sites. In addition, a more precise 

determination of the point of origin of ozone promoting pollutants transported to Alaska would 

inform future global policy decisions. 
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