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Abstract 

Poly-[(R)-3-hydroxyalkanoates] (PHAs) are biodegradable polyesters produced by 

diverse microbial strains and genetically modified organisms. Increasing our 

understanding of different metabolic pathways within PHA-producing organisms is 

highly desired so as to bolster PHAs as economically competitive alternatives to 

petroleum-based plastics. Some pseudomonads, including Pseudomonas putida, 

Pseudomonas aeruginosa, and Pseudomonas oleovorans, commonly biosynthesize PHA 

polyesters composed of side chains containing between 6-14 carbons (medium chain 

length or MCL PHAs) derived from intracellular fatty acid feedstocks. The metabolic 

link between fatty acids and PHA biosynthesis is the enzyme PhaG, which was reported 

to exhibit 3-hydroxyacyl-ACP:CoA transferase activity. However, recent studies have 

suggested PhaG can alternatively function as a 3-hydroxyacyl-ACP thioesterase to 

produce free 3-hydroxyfatty acids which, coupled with a 3-hydroxyfatty acid:CoA ligase 

(AlkK), yields the CoA-activated substrates needed for polymerization by the PHA 

synthase, PhaC. In this study, we hypothesize that PhaG acts preferentially as a 3-

hydroxyacyl-ACP thioesterase, effectively increasing the pool of free 3-hydroxyfatty 

acids available for their downstream CoA activation and polymerization. To test our 

hypothesis we cloned phaG (PP 1408) from P. putida KT2440 into expression plasmids, 

and heterologously expressed/purified PhaG fused with either N or C terminal 

polyhistidine tags. To investigate the enzyme's activity in vitro, an N-acetylcysteamine 

(SNAC) thioester of rac-3-hydroxydecanoic acid was synthesized. Additionally, we are 

performing the enantioselective syntheses of (R)-3-hydroxydecanoic acid and its SNAC 

analog to carry out a thorough kinetic analysis of PhaG. 
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1. Introduction 

1.1. The Case for Biodegradable Polymers 

Polymer degradation of occurs via photochemical, mechanical and/or biological 

mechanisms. 1 Commonly employed petroleum-based polymers such as polyethylene, 

polypropylene, and polystyrene are typically degraded via photochemical and mechanical 

processes.2 Though effective in decreasing the polymer's physical dimensions over time, 

these pathways do not affect its chemical character, which remains altogether intact. 

Nowhere is this more evident, and to a devastating degree, than in the approximately 

250,000 tons of petroleum-based plastic pollution distributed across the world's ocean 

gyres (Fig. 1). 1 These plastic "hot-spots" have been well documented to exert deleterious 

effects on marine biota, from microscopic zooplankton to larger animals, resulting in 

ecological disturbances at different trophic levels.2
•
3 

1,000,000 

100.000 

10,000 

1,000 

100 

10 

1 

Figure I. Model results showing the global distribution and density of microplastics in the oceans (pieces 
km- 2; see colorbar), classified in four class sizes (0.33-1.00 mm, 1.01--4.75 mm, 4.76-200 mm, and >200 
mm. Figure adapted from Eriksen et al., 20143 used without permission. 

Alternatively, and as opposed to non-biodegradable plastics, biodegradable 

polymers are fully mineralized into carbon dioxide and water through biological 
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mechanisms.4 Polymer biodegradability is dependent on the material' s macromolecular 

structure as well as the intrinsic characteristics of the free monomers, as they must 

conform to the metabolic repertoire of individual organisms.1 For example, microbes 

posses the appropriate enzymes (amylases) that break down starch, a natural 

polysaccharide, into glucose, a molecule key to their metabolic processes and survival.5 

Other examples of polymeric materials often amenable to microbial degradation are 

comprised within the large family of biodegradable polyesters (Fig. 2), such as 

adipate/terephthalate, polylactic acid (PLA), and poly-[(R)-3-hydroxyalkanoates] 

(PHAs).5 The ester functionalities are degraded by the enzymatic action lipases and 

hydrolases consequently releasing their monomeric units as organic acids, and rapidly 

decreasing the molecular weight and size of the polymeric particles. 6 

: f ~ ············· ~ 1 ·: 

!~0 ~ o~nl 
: •.•.••••. ~ •.•.•.•. PBSA _____ O : 

0 Naturany produced 

D Synlhe~ reneweb'lo 

c:~:) svnthetic oon-<enewable 

ALIPHATIC 

POLYESTERS 

AROMATIC 

Figure 2. Biodegradable polyesters. PBS = polybutylene succinate, PCL = polycaprolactone, PBSA == 
polybutylene succinate adipate, PHAscL = short-chain length polyhydroxyalkanoates, PHAMcL = medium­
chain length polyhydroxyalkanoates, PLA = polylactic acid, PGA = polyglycolic acid, PET = polyethylene 
terephthalate, AAC = aliphatic- aromatic copolyesters, PTMA T = polymethylene adipate/terephthalate. Of 
all of the given plastics, PHAs have great potential to replace petroleum-based plastics. Figure adapted 
from Kasirajan and Ngouajio 201 I , used without permission.8 

1.2. Poly-[(R)-3-hydroxyalkanoates] (PHAs): Biodegradable Microbial Polyesters 

PHAs are water insoluble inclusions within the cytoplasm of various 

microorganisms ranging in molecular weight from 200,000 to 3,000,000 Da.7 Due to the 

low solubility in the cytoplasm and high molecular weight, PHAs serve as carbon source 
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for organisms during starvation conditions. 7 In order for PHAs to be synthesized within a 

bacterial cell, carbon sources (sugars/fatty acids) are enzymatically converted to (R)-3-

hydroxyacyl-CoA intermediates, which are subsequently polymerized by a PHA 

synthase, or PhaC.7 

Depending on the organism and carbon source availability, PHAs with different 

compositions and repeating units can be biosynthesized.8 For example, in Ralstonia 

eutropha the repeating units of isolated PHAs have been observed to contain 3-5 carbon 

atoms, consequently suggesting its cognate PhaC is specific towards short chain length 

(SCL) substrates.7 In other cases however, pseudomonads biosynthesize medium chain 

length (MCL) PHAs from alkanes, alkanols, or alkanoates,9 derived from (R)-3-

hydroxyacyl-CoA substrates ranging in size from 6 to 14 carbons in length, yielding 

PHAs with a wider range of structural diversity.7 

There are three well-understood PHA biosynthetic pathways (Fig. 3) that take place 

m microorganisms.7 Poly-[(R)-3-hydroxybutyrate] (PHB) synthesis takes place by 

condensation of two acetyl-CoA substrates (products of glycolysis) by PhaA, a P-

ketothiolase, followed by a NADPH reduction with PhaB, to produce (R)-3-

hydroxybutyryl-CoA monomer (Pathway I, Fig. 3). For the production of other PHA 

compositions, microorganisms can alternatively increase the availability of (R)-3-

hydroxyacyl-CoA, through the careful stereochemical tailoring of the enoyl-CoA 

intermediates produced during the fatty acid degradation ( or P-oxidation) pathway 

(Pathway II, Fig. 3). In this pathway, CoA-activated alkyl fatty acids are oxidatively 

transformed to key enoyl-CoA derivatives, which function as substrates to (S)-specific 

enoyl-CoA hydratases FadB/FadJ. Likewise, PhaJ hydrates enoyl-CoA substrates but 
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instead it does so specifically to (R)-3-hydroxyacyl-CoA derivatives. These enzymes thus 

control the facial selectivity of water on the prochiral substrate and consequently 

determine their metabolic fate: either into the energy-producing transformations of the P­

oxidation pathway or as substrates for PHA production (Pathway II, Fig. 3).7 

Pathway I 
Glycolysis 

Acee 

Carbon Source 
(Sugars) 

l 

Acetyl-CoA 

Ph>A j 

Carbon Source 
(Fatty Acids) 

0 

R~S.CoA V Acyl-CoA \ 

0 0 0 

Pathway II 
Beta-Oxidation 

R)(_)l5 ,CoA R~S.CoA 

0 0 3-Ketoacyl-CoA Enoyt-CoA 

)l___)l. S. CoA J 
:::ajrecy>CoA FabG \,,~::.::~: / J PhaJ 

OHO / 
~ ,CoA 

R S --. 
OH 0 

~
5

.coA 

(R)-3-Hydroxyj butyryl-Co:haC/ 

PhaC / 

(R)-3-Hydroxyacyl-CoA \ AlkK? 

(R)-3-Hydroxyfatty acid 

• 

PHA 

FabD 

oH o / PhaG? 
~ ACP ,,-

FabG / R s · ~ FabA 
( (R)-3-Hydroxyacyl-ACP \ FabZ 

0 0 0 

R)(_)l5 .ACP R~S.ACP 

3-Ketoacyt-ACP 

FabB~ 
FabF I '---

0 

RJl
5

.ACP 

Acyl-ACP 

Enoyt-ACP 

_) Fabl 

Pathway Ill 
Fatty Acid Biosynthesis 

Malonyl-CoA Malonyl-ACP 

Figure 3. Metabolic pathways that supply (R)-3-hydroxyacyl-CoA substrates for PHA biosynthesis. 
Pathway I = production of PHA through acetyl-CoA from glycolysis. Pathway II = production of PHA 
through fatty acid breakdown via the ~-oxidation pathway. Pathway III = production of PHA through fatty 
acid synthesis from non-fatty acid carbon sources. The latter pathway summarizes the contrasting 
hypotheses concerning PhaG' s role in PHA production. 
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Lastly, PHA can also be accessed through fatty acid biosynthesis, where the 

enzyme PhaG plays a fundamental role.7
•
10

•
11 In this pathway, the fatty acyl backbone is 

extended by two carbons through decarboxylative condensations of malonate extender 

units derived from monosaccharide carbon sources. The resulting ~-ketoacyl 

intermediates are subsequently reduced to produce fully saturated fatty acid backbones 

(Pathway III, Fig. 3).7 To shuttle (R)-3-hydroxyacyl-ACP intermediates from the fatty 

acid biosynthetic pathway into production of PHA, the enzyme PhaG has been identified 

and recognized as their fundamental link (see Section 2.1).7 The enzyme has been 

classified as a 3-hydroxyacyl-ACP:CoA transferase yet recent evidence has cast doubts 

on the validity of this classification.9
· '

0 The work herein describes our rationale and 

approach towards describing the true role of PhaG in the biosynthesis of PHAs. 

2. Background 

2.1. PhaG: The Key Link Between Fatty Acid Synthesis and P HA production 

To cost-effectively scaled up the fermentative production of PHAs with defined chemical 

compositions, the use of abundant and inexpensive feedstocks, such as sugars, is highly 

desirable. In 1992, Huijberts et al. showed that through de novo fatty acid synthesis P. 

putida KT2442 can use glucose, fructose, and glycerol to produce PHA. 12 However, the 

precise metabolic link driving PHA biosynthesis from sugars via fatty acid biosynthesis 

had remained elusive, until a study by Rehm et al. exposed the involvement of the 

enzyme PhaG. 10 According to this study, recombinant PhaG purified from P. oleovorans 

"catalyzes the transfer of the acyl moiety from in vitro synthesized 3-hydroxydecanoyl­

CoA to acyl carrier protein, indicating that PhaG exhibits a 3-hydroxyacyl-CoA-acyl 

carrier protein transferase activity." 10 Enzymatic transfer assays were completed utilizing 
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heterologously expressed/purified PhaG fused with an N terminal polyhistidine tag, as 

well as native enzyme from crude extracts, with commercially-available acyl carrier 

protein (ACP) and in situ generated rac-3-hydroxydecanoyl-CoA (3HD-CoA). Although 

assays were setup as the reverse reaction (i.e. acyltransfer from acyl-CoA to acyl-ACP), 

results preliminarily showed PhaG is involved (Fig. 4). Interestingly, controls employing 

saturated thioesters (octanoyl-CoA and decanoyl-CoA) showed no transfer activity, 

showing that PhaG is specific for 3-hydroxythioesters. 10 

a C 

b d 

1T 
T 

)ffl)-M;P 11 ~1 ·1 -
10 .., :,e JO --(· ---..ue---1 

Figure 4. HPLC analysis of reaction products from enzymatic assay with PhaG. (a) Empty vector with heat 
inactivated PhaG (Negative control) (b) Crude PhaG extracts with 3HD-CoA (c) Heat inactivated PhaG 
with 3HD-CoA (negative control) (d) Purified PhaG with 3HD-CoA. Peaks were identified based on their 
R1 values by co-chromatography and by their spectra. Figure taken from Rehm et al. 1998 without 
permission. 15 

More recently, contradictory studies have reported the direct conversion of 3-

hydroxyacyl-ACP to the corresponding 3-hydroxy fatty acids. 10
•13 Wang et al. concluded 

that "results suggest that PhaG functions as a 3-hydroxyacyl-ACP thioesterase to produce 

3-hydroxy fatty acids." In this study, the transcriptional levels of genes involved in fatty 

acid synthesis for P. putida KT2442 were analyzed under low/high nitrogen conditions, 

while grown on non-fatty acid carbon sources. This resulted in a 220-fold increase in the 

transcription of phaG, as well as 10.5-fold increase in the transcription of a putative 
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MCL-3-hydroxyacyl-CoA ligase (gene PP0763), suggesting that these enzymes play a 

key role in PHA production via de novo fatty acid synthesis. Wang et al. proposed that 

the PP0763 gene in P. putida encodes a putative medium-chain-fatty-acid CoA ligase 

similar to the AlkK enzyme from P. oleovorans. 10 Satoh et al. described the alkK gene 

product, AlkK, as having "a relatively high specificity for medium-chain-length fatty 

acids."14 PP0763 shares 36% identity and 54% similarity to AlkK from P. oleovorans. 14 

Combined, these results have elicited questions regarding the accepted mechanism in 

which MCL PHAs are produced from fatty acid biosynthesis by direct conversion of (R)-

3-hydroxyacyl-ACP to (R)-3-hydroxyacyl-CoA. Furthermore, the results suggest that a 

thioesterase-mediated step is operative, and that both PhaG and Alk.K cooperatively 

convert (R)-3-hydroxyacyl-ACP to (R)-3-hydroxyacyl-CoA, via the key (R)-3-

hydroxyalkanoic acid intermediate (Fig. 5). 

OH O PhaG? 
~ .ACP ·----~- ---".. 

R S / \ 
(R)-3-Hydroxyacyl-ACP ' 

H2O ACP 

OH O AlkK? OH 0 

R ~ OH ----;• --.-,-- • R ~ S,CoA 

:' ' (R)-3-Hydroxyfatty acid (R)-3-Hydroxyacyl-CoA 
ATP+ ADP+ 

CoASH H2O 

Figure 5. Proposed hypothes is of PhaG functioning as a (R)-3-hydroxyacyl-ACP thioesterase and AlkK 
functioning as a medium chain fatty acid:CoA ligase. 

2.2. PhaG: A putative thioesterase involved in MCL-PHA production 

Acyltransferases and thioesterases are enzyme classes belonging to the a./P 

hydrolase superfarnily, which is characterized by a highly conserved catalytic triad 

consisting of Serine-Histidine-Aspartate residues (Ser-His-Asp, Fig. 7). 15 
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Pathway I: 
PhaG as a Thioesterase 

(R)-3-hydroxyfatty acid 

PhaG PhaG / 
(R)-3-hydroxyacyl-ACP w S. 

CoA 

OH~-

~ OH 0 

Pathway II: 
R~5 .CoA 

PhaG as an Acyltransferase (R)-3-hydroxyacyl-CoA 

Figure 6. Mechanisms of thioesterases and acyltransferases. Characterized by a charge relay mechanism, 
the active site serine is first deprotonated in the loading step, and a new O-acyl-enzyme intermediate is 
formed upon its attack on an S-hydroxyacyl-ACP. In this charge relay mechanism, the conserved catalytic 
triad composed of active site Serine-Histidine-Aspartate residues attack the ACP-bound substrate yielding 
an enzyme-bound intermediate, which in turn is either hydrolyzed (Pathway I) to produce free hydroxy 
acid or undergoes a transthioesterification (Pathway H) with a CoASH substrate, affording hydroxyacyl­
CoA product. 

Though of a similar mechanistic paradigm, their key differentiating characteristic is 

acyltransferases preferentially allow attack of a nucleophile other than water (i.e. 

alcohols, amines, thiols) on the O-acyl-enzyme intermediate.16 Jiang et al. have recently 

studied structural differences between acyltransferases and hydrolases (thioesterases) and 

have identified key residues within their active sites arranged to activate their respective 

nucleophiles for attack. Notably, this study cautions against the use of a protein's primary 

sequence (via BLAST, for example) for the purpose of identifying the activity of these 

two enzyme classes. 16 No crystal structure of PhaG has been reported/deposited in the 

Protein Data Bank so we have decided to take a biochemical approach to solve this 

problem. 

The distinct structural similarities present between TEs and ATs along with the 

results reported by Wang et al. give reason to question whether or not PhaG has TE 

activity.11 Furthermore, when this enzyme was first characterized (Rerun et al.), there 
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were no tests completed to disprove that this enzyme' s TE activity.10 Additionally, Rehm 

et al. did not provide any mass spectrometry results from their HPLC assays nor did they 

provide the appropriate the co-chromatography results deciphering between apparent 

starting material (3HD-CoA) and product (3HD-ACP) peaks. 10 

Given these concerns, we hypothesize that PhaG acts preferentially as a 3-

hydroxyacyl-ACP thioesterase, effectively increasing the pool of free 3-hydroxyfatty acids 

available for their downstream CoA activation and polymerization. 

3. Experimental Design 

To test our hypothesis it is necessary for PhaG to be heterologously expressed, 

purified and assayed for activity with an appropriate 3-hydroxyfatty acid. In this study, 

we describe the successful expression and purification of a C-terminal His-tagged PhaG 

fusion protein from recombinant E. coli BL21 (DE3). Additionally we demonstrate the 

partial synthesis of an SNAC analogue of (R)-3-hydroxydecanoyl-ACP, in order to carry 

out our enzymatic assays. 

3.1. Heterologous expression of an active PhaG-His tag fusion protein 

In the past, PhaG was heterologously expressed (C-terminal His-tagged) in E. coli 

JM109 and later purified by Ni-NTA chromatography.10 However, in this study, PhaG 

could only be isolated under denaturing conditions by and was after refolded. 

Additionally, PhaG was partially purified by native preparative PAGE. 

In order to test our hypothesis, we planed of expressing and purifying PhaG at a 

functional pH, avoiding denaturing steps. The first step for this project was to design the 

appropriate primers to amplify phaG for later expression into both C-terminal and N­

terminal expression vectors. After amplification and purification, cloning of phaG into a 
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pJET cloning vector followed by cloning into the appropriate C-terminal [pET-21c(+)] 

and N-terminal [pET-28b(+)] expression vectors yields the appropriate plasmid 

constructs. Transformation into E. coli TOPIO and DNA purification, followed by 

transformation into E. coli BL21(DE3) yields cells that produce PhaG protein under lac 

promoter control. Large-scale growth of these cells and followed by addition of IPTG 

induces PhaG expression. Lysis of harvested cells by French Press, followed by addition 

of Ni-NTA resin to supematants, results in the binding of His-tagged protein. Elution 

with irnidazole EBs thereafter leads to purification of desired PhaG protein. 

3.2. Retrosynthetic Design of Enantiopure Substrates 

In the past, thioesters have been characterized with panels of synthetic N­

acetylcysteamine thioesters (SNAC) to mimic the functionality of ACP thioesters. 17 In 

order to determine the role of PhaG, a synthetic analog of (R)-3-hydroxyacyl-ACP will be 

synthesized (8, Scheme 1). 

Scheme 1: Retrosynthetic analysis of(R)-3-hydroxydecanoyl-SNAC thioester (8) 

OH O ThioesterifiC<!tion OR O Oxidative Cleavage OR 
_, ,l 1l & Deprotect,on -' ,I ll & Pinnick Oxidation .,_, ,l .J... 

/ M~....._,,.,,,,SNAC I > /t--/rs---.....,,.,' ,' OH I > / M.~~ 
5 5 

8 6 4 

: H : 
: SNAC = f.8 ...........___,N...,.,.......: 
, II , 
: ______________ __ ____ o __ : 

0 

~ H 

Octanal (1) 

Grignard Addition 

<-~ 

R =THP 

~ Lipase Kinetic 
Resolution 

& Protection 

OH 

~ 5 

2 

In the retrosynthetic sense, an alcohol deprotection step and hydrolytic cleavage of 

the chiral SNAC thioester 8 leads to protected acid 6. Access to the latter is envisioned to 

arise from a key two-step sequence involving the oxidative cleavage of homoallylic 
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alcohol 4 followed by the adjustment of the Cl oxidation state via a Pinnick oxidation.18 

Chiral protected alcohol 4 is proposed to arise from an enzymatic kinetic resolution of 

racemic homoallylic alcohol 2, which will be generated by a Grignard addition to 

commercially available octanal (1). 

3.3. Retrosynthetic Design of Racemic Substrate 

To be able to quickly and qual~tatively analyze our enzyme's activity in vitro, an 

efficient one-step synthesis was designed to access functional racemic SNAC substrate 

(17) from commercially-available rac-3-hydroxydecanoic acid (16) (Scheme 2). The 

route will be accomplished through a carbodiimide coupling of 16 and free HSNAC. 

Scheme 2. Retrosynthesis of rac-3-hydroxydecanoyl-SNAC tbioester (I 7) 

,- Thioesterification 
OH O / H OH 0 

~--;~Ny ~1 -~> ~ OH 
17 o 16 

4. Experimental Methods & Results 

4.1. Cloning of phaG 

Construction of Plasmids. The DNA region containing the putative phaG was 

amplified by PCR with the primers listed in Table 1. The gel-purified phaG PCR product 

was cloned into pJET cloning vector according to the manufacturer's instructions to yield 

plasmids pJGG0Ol and pJGG002. The phaG gene from pJGG00l was subcloned into the 

Ecor I/Nde I restriction sites of pET-21c(+) and the phaG gene from pJGG002 was 

subcloned into the Xba I/EcoR I restriction sites of pET-28b(+) to yield the respective 

plasmids pJGG003 and pJG004 (Table 2). The new constructs were used to transform E. 

coli TOPIO cells. After DNA purification, sequence results verified the correct 

incorporation of terminal histidine tags in both cloning vectors. E. coli BL21 (DE3) was 

transformed with pJGG003 for subsequent protein expression. 
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Table I. Primers used in this study 
Primer Sequence (5'-3 ' ) Description 

JG0 l.f GCCA TA TGAGGCCAGAAATCGCTGT Primers for phaG amplification with 
a Ndel site. The phaG sequence is 
underlined. 

JG0l.r GCGAATTCTCAGATGGCAAATGCATGCTG 
JG02.r GCGAATTCGCGATGGCAAATGCATGCTGCC Primer for phaG amplification with 

an £ corf site. The phaG sequence is 
underlined. JG0 l.f was used as the 
forward primer 

Table 2. Strains and plasmids used in this study 
Strain/Plasmid Description 
P. putida strain 

KT2440 

E. coli strains 
TOPI0 

BL21 (DE3) 

Plasmids 
pJET 

pET-28b(+) 

pET-21c(+) 

pJGG00J 
pJGG002 
pJGG003 

pJGG004 

ATCC 47054 

Host for DNA cloning and manipulation 

Host for protein expression 

A routine cloning vector for blunt end PCR products 

A cloning vector that incorporates a N terminal 
polyhistidine tag 
A cloning vector that incorporates a C terminal 
polybistidine tag 
pJET!phaG vector for subcloning into pET-2 Jc(+) 
pJET!phaG vector for subcloning into pET-28b(+) 
pET-2 I c( + )/ phaG expression vector containing a C 
terminal polyhistidine tag 
pET-28b(+)/phaG expression vector containing a N 
terminal polyhistidine tag 

4.2. PhaG Protein Purification 

Source 

American Type Culture 
Collection 

Life Technologies 
(Thermo Fisher Scientific) 
New England BioLabs, 
Inc. 

Life Technologies 
(Thermo Fisher Scientific) 
EMD Chemicals 

EMD Chemicals 

This study 
This study 
This study 

This study 

Expression and Purification of PhaG. Expression and purification of the 

recombinant PhaG (C-terminal fusion protein) was performed as follows. Seed cultures 

were grown in LB media (supplemented with 100 µg/mL ampicillin or 100 µg/mL 

kanamycin) at 37°C at 200 rpm for 2 hours. These cultures were subsequently diluted 

1/100 in 2x YT medium, with same concentration of appropriate antibiotics, and grown at 

37°C at 200 rpm until 0D6oo ~0.8 was reached. Protein expression was induced with 

IPTG (200 µM) followed by incubation at l 6°C for 16-18 hours. Cells were harvested by 
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centrifugation at 3000 x g at 4°C for 30 minutes and resuspended in lysis buffer (l00mM 

Na3PO4, 100 mM NaCl, pH 8.0) with lysozyme and 1 µg/m.L leupeptin and pepstatin A 

and DNase. The suspension was lysed via French Press and after centrifugation (9000 x g 

at l 0°C, l hour) and the resulting lysate was applied to a Ni-NTA resin and eluted using a 

gravity protein column. The elution was carried out using 20, 100 and 250 mM imidazole 

buffers (imidazole, 300 mM NaCl, 100 mM Tris, pH 7.5). Analysis by SDS-PAGE shows 

that protein at 34 kDa was eluted off in a pure fraction at 1 0OmM imidazole (Fig. 7). 

Final protein concentration was determined by Bradford assay using a BSA calibration 

curve yielding 414µg/L of media. 

170 
130 

9S 
72 
S3 

43 

34 

26 

17 
10 

Figure 7. SOS-PAGE results. (1) SDS-Prestained Ladder. (2) Concentrated PhaG fractions. (3) 250 mM 
imidazole fraction. (4) 100 mM imidazole fraction #2. (5) 100 mM imidazole fraction # 1. (6) 20mM 
imidazole fraction. (7) Original Ni-NT A column flow through. (8) Crude lysate before Ni-NT A column. 

4.3. Synthesis 

Route Optimization via Synthesis of Racemic Substrate Analogs. To optimize 

the chemistry involved in the synthesis of enantiopure substrate 8, a model racemic 

synthesis was concomitantly explored and partially completed (Scheme 3). Three 

specific and key transformations in our proposed route are of concern and in need of 
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optimization: the kinetic resolution of 2 (for details, see Scheme 4), the oxidative 

cleavage of alkene 18, and its oxidation to carboxylic acid 21 via a Pinnick oxidation.18 

Intermediate 2 was subsequently protected with 3,4-dihydro-2H-pyran (DHP) in the 

presence of Amberlyst® 15 cationic resin in DCM at room temperature to generate 

tetrahydopyranyl ether (THP) 18 at 69% yield. The protected alcohol was dihydroxylated 

employing Sharpless conditions [K3Fe(CN)6, K20s02(0H)4] to afford vicinal diol 19 

which was treated with Pb(0Ac)4 in EtOAc at room temperature for 10 minutes to 

furnish aldehyde 20 (24% yield over two steps). 19 Due to the low yielding steps from 

alkene 18 to aldehyde 20, we have begun exploring, with great success, the ozonolysis of 

racemate 18 (not shown). With aldehyde 20 in hand, an often-predictable Pinnick 

oxidation should lead to acid 21, a stable intermediate in the synthesis of our desired 

SNAC thioester analog. By exploring key reactions through the use of racemic 

intermediates, we have thus gained confidence in their applicability to the synthesis of 

enantioenriched substrates. 

Scheme 3. Racemic model study for the synthesis of (R)- 3-hydroxydecanoyl-SNAC thioester (8) 

0 BrMg ~ 

~ H THF 
RT 

OH DHP OTHP K3Fe(CN)s THPO OH 

~ ----~ K20s0 2(0H)4 ~ OH 

s DCM s tBuOH s 
Amberlyst H+ 18 RT 19 

RT 
2 

65% 69% 24% j Pb(OAc)4 
over 2 steps EtOAc 

THPO O NaCto2 THPO 0 _, J. Ji _ _____ ____ _, ,1 II 
/'\'-1

5
"-./'0H /~

5
"-./~H 

21 20 

Synthesis of (R)-3-hydroxydecanoyl-SNAC Thioester (8). Synthesis of 

enantiopure (R)-3-hydroxy SNAC thioester 8 has been partially completed. Racemic l­

undecen-4-ol (2), was obtained by reaction of commercially available octanal (1) with 
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vinyl magnesium bromide in Et20 at 0°C in 65% yield. 19 Access to ( 4R)-1-undecen-4-ol 

(3), was attempted by performing an enzymatic kinetic resolution of 1-undecen-4-ol (2) 

with lipase B from Candida antarctica (CAL-B).20 Treatment of homoallylic alcohol 2 

with vinyl acetate in iPr20, at room temperature, provided 3 in 65% yield and 63% ee 

(Scheme 4).20 

Scheme 4. Progress towards the synthesis of(R)-3-hydroxydecanoyl-SNAC thioester (8). 

0 BrMg~ 

~ H THF 
RT 

65% 

OH Vinyl Acetate OH DHP 
~ CAL-B ~ ______ __ ___ _ 

s '-:::: iPr 20 s '-:::: DCM 

2 RT 3 Amberlyst H+ 
RT 

67% 
(63% ee) 

OTHP 

~ 
5 

4 

:o3 ; PPh3 
; DCM 

t 

OH O Amberly5I H+ THPO O THPO O N CIO THPO 0 

~SNAC - -~~~~--- · ~SNAC -~~~~-~--~OH-- -~---~-- ~ H 

8 7 6 5 

Synthesis of rac-3-hydroxydecanoyl-SNAC Thioester (17). Synthesis of the 

racem1c 3-hydroxydecanoyl-SNAC thioester 17 has been completed. Rac-3-

hydroxydecanoic acid 16 was dissolved in anhydrous DCM at room temperature and 

DCC, DIPEA, and DMAP coupling reagents were added, following addition of HSN AC. 

After purification this reaction resulted in a 64% yield (Scheme 5). 18 

Scheme 5. Synthesis of rac-3-hydroxydecanoyl-SNAC thioester (17). 

~ HSNAC,iPr~Et ~ 
OH DCC, DMPA SNAC 

DCM 
16 64% 17 

5. Discussion & Conclusions 

Based on transcription levels of phaG and gene PP0763 during PHA production in 

P. putida KT2442, as well the accumulation of 3HD in recombinant E. coli with over 

expressed phaG, we believe that PhaG preferentially acts as a thioesterase rather than an 
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ACP:CoA acyl transferase.16 Due to the lack of concrete evidence in support of the AT 

activity of PhaG, we believe that it is necessary to further probe the activity of this 

enzyme.15 Design of primers JG0l.f, JG0l.r and JG02.r led to the successful 

amplification of phaG and correct incorporation into expression vectors yielding 

pJGG003 and pJGG004. The constructed expression vector, pJGG003 led to expression 

of PhaG, which was then successfully purified through Ni-NT A chromatography, giving 

the first procedure to purify active PhaG at a functional pH. Synthesis of rac-3-

hydroxydecanoyl SNAC thioester afforded the correct substrate to carry out biochemical 

and kinetic assays. Preliminary results using DTNB as a colorimetric agent, detecting 

release of free thiol, appear to support our hypothesis (not reported). Upon optimization 

of biochemical and kinetic assays, an accurate and precise profile of PhaG will be 

developed to once and for all settle the controversy surrounding this imperative enzyme. 

6. Future Work 

To complete this study there are a few experiments that need to be carried out to 

definitively define PhaG. Most importantly, this includes completion of the biochemical 

and kinetic assays. Currently, efforts are being made to optimize the biochemical reaction 

conditions, as well as a spectroscopic procedure to detect starting material and product. 

Ideally, we will be able to obtain mass spectrometry results from these assays to 

undisputedly determine the enzyme products. Once this is established a kinetic profile 

utilizing the Michaelis-Menten kinetic model will be generated. Additionally, we would 

like to express purify halo-ACP to test if PhaG also conducts transferase activity. If this 

were the case, we would employ both the SNAC substrate along with halo-ACP to test if 

there is a preferential reaction for PhaG with both substrates available. Lastly, much work 
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needs to be completed to finish the synthesis of enantiopure SNAC substrates. In order 

for this to be an obtainable goal, it is crucial to optimize the lipase resolution step, ideally 

giving an ee of 90% or higher. 
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8. Supporting Information 

General Molecular Biology Methods. DNA was purified using Promega 

(Madison, WI) nucleic acid purification kits. Restriction enzymes and ligases were 

products of New England BioLabs (Ipswich, MA). PrimeStar polymerase (TaKaRa 

Biosciences, Japan) was used for all PCR reactions. PCR amplifications were done, 

following the recommended protocols for the Prime-Star polymerase protocol. All 

ligation processes were completed with T4 DNA ligase (NEB) and essential sequences 

verified by GENEWIZ Inc. 

General Synthetic Methods. Reactions were carried out under an argon 

atmosphere with dry solvents and oven-dried glassware under anhydrous conditions 

unless specified otherwise. Tetrahydrofuran (THF), dichloromethane (DCM), 

dimethylsulfoxide (DMSO) and dimethylformarnide (DMF) were purchased and 

employed without further purification. Solvents such as ethyl acetate (EtOAc) and 

hexanes, employed in workup and chromatographic separations, were used without 

further purification, unless otherwise stated. Brine refers to a saturated aqueous solution 

of sodium chloride (NaCl). Reagents were purchased at the highest commercial quality 

and used without further purification, unless otherwise stated. Yields refer to 

chromatographically and spectroscopically (1H and 13C NMR) homogeneous materials, 

unless otherwise stated. Reactions were monitored by analytical thin-layer 

chromatography (TLC) and carried out on 250 µm E. Merck silica gel plates (60F-254) 

using UV light as the visualizing agent and an acidic solution of p-anisaldehyde (PA) and 

heat, or ninhydrin and heat as developing agents. Flash column chromatography was 

performed with SiliCycle SiliaFlash F60 silica gel (pore size 60 A, particle size 40-63 
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µm). NMR spectra were recorded on Bruker AVANCE III HD 800 MHz and Bruker 

AVANCE III 600 MHz instruments, and were calibrated using residual undeuterated 

solvents as internal reference (chloroform, o = 7.26 ppm, 1H NMR; 77.0 ppm, 13C NMR; 

dimethylsulfoxide, o = 2.50 ppm, 1H NMR; 39.52 ppm, 13C NMR). Chemical shifts (8) 

are reported in parts per million (ppm); NMR peak multiplicities are denoted by the 

following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, dd == 

doublet of doublets, dt = doublet of triplets, m = multiplet, br = broad; coupling constants 

(J) are reported in Hertz (Hz). 

Experimental Procedures and Selected NMR Spectra 

1-Undecen-4-ol (2) 
Vinyl MgBr 

Et20 OH 

~ 0 

1 

o· 
65% ~ 

2 

To a 250 mL round-bottom flask, 4.11 g (32.1 mmol) of octanal (1) was dissolved in 

EtiO (62 mL) and was cooled to O °C while under an argon atmosphere. To this, vinyl 

magnesium bromide solution (34 ml, 1.0 M in Et2O) was added slowly while monitoring 

the exotherm. The reaction was allowed to warm to room temperature overnight and was 

then deemed complete via TLC. The reaction was cooled back down to 0°C and quenched 

with an aqueous saturated solution of ammonium chloride (NRiCl, 20 mL) and water (20 

mL). The layers were separated and the aqueous was extracted with EtOAc (3 x 100 mL). 

The combined EtOAc extractions were washed with brine (3 x 100 mL) and subsequently 

dried over anhydrous MgSO4. The mixture was filtered through a 100 mL fritted glass 

funnel and the filter cake was washed with 50 mL of EtOAc. The filtrate was 

concentrated in vacuo to afford a crude yellow oil (5.01 g, 29.4 mmol, 92%). The oil was 
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purified by silica column chromatography (6% EtOAc/hexanes) to yield a clear pure oil 

(3.55 g, 20.9 mmol, 65%). 

Analytical data for 23 

M.W.: 170.29 g/mol 

TLC (R.rt 0.575 (10% EtOAc/hexanes): PAA Stain 

1H NMR: (600 MHz, CDCh) 
8 5.90-5.80 (m, 1 H), 5.15-5.12 (m, 2 H), 3.66-3.62 (m, lH), 2.32-2.28 (m, 
1 H), 2.16-2.11 (m, 1 H) 1.50-1.44 (m, 12 H), 0.87-0.89 ppm (t, 1 H, J= 
6.6Hz). 

13C NMR: (150 MHz, CDCb) 
8134.95, 118.01 , 70.73, 41.99, 36.86, 31.84, 29.61, 29.27, 25.67, 22.65, 
14.08 ppm 

Reference: Donohoe, T. J.; Sintim, H. 0. Org. Lett. 2004, 6 (12), 2003- 2006. 

a Alcohol 2 was identical to its previously reported spectroscopic values 

1H NMR: l-Undecen-4-ol (2) 
••.-CD-OM O'>• ... O"> ,-. ...... 
OO'>GD..011'1.MN .... O\ ••N 
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,..,.. ...... 
\OU"l • MN 
l,0\,0\,0\0\0 

,...,MMMM 
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N .... .... ..... 11'\f'-• 000 MN ... 

~~~~~~~~~~ ~~~ ::~ 

~~ iVW 
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13C NMR: 1-Undecen-4-ol (2) 

0 

m 
0 
~ 

I 

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm 

(4R)-l-Undecen-4-ol (3) 

lsopropyl e1her 

OH Vln~:t:a1e 
I RT 
~ - ~-

2 65% 
63%ee 

OH 

~+ 
3 

To a 25 mL round-bottom flask, 204 mg (1.2 rnrnol) of 1-Undecen-4-ol (2), 103 mg 

(1.2 mmol) of vinyl acetate and 48 mg of CAL-B were clissolved in iPr2O (3.6 mL). This 

was allowed to shake at room temperature on Recipro-Shaker at 154 min-1
• The reaction 

was monitored by GC and deemed complete after 21 hours (1: 1 ratio of products), 

filtered and concentrated in vacuo to give a crude oil. The oil was purified by silica 

column chromatography at 20% EtOAc/hexanes to give 66 mg (3.88 rnrnol, 65%) of pure 

alcohol. Optical rotation gave a value of +0.220° ( 4.4 g/1 00mL) giving an ee of 63%. 

Analytical data for 3a 

M.W.: 170.29 g/mol 

TLC (R1t 0.575 (10% EtOAc/hexanes): PAA Stain 

1H NMR: (600 MHz, CDCl3) 
8 5.90-5.80 (m, 1 H), 5.15-5.12 (m, 2 H), 3.66-3.62 (m, lH), 

2.32-2.28 (m, 1 H), 2.16-2.1 l(m, 1 H) 1.50-1.44 (m, 12 H), 0.87-
0.89 (t, 1 H, J = 6.6Hz) ppm. 
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13C NMR: (150 MHz, CDCh) 
o 134.95, 118.01, 70.73, 41.99, 36.86, 31.84, 29.61, 29.27, 

25.67, 22.65, 14.08 ppm. 

Reference: Feng, J.-P.; Shi, Z.-F.; Li, Y.; Zhang, J.-T.; Qi, X.-L.; Chen, J.; 
Cao, X.-P. J Org. Chem. 2008, 73 (17), 6873-6876 

a Alcohol 3 was identical to its previously reported spectroscopic values 

1H NMR: (4R)-1-Undecen-4-ol (3) 
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13C NMR: (4R)-1-Undecen-4-ol (3) 
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2-(Undec-1-en-4-yloxy)tetrahydro-2H-pyran (19) 

DHP D 
OH Amb~:I H• 0 0 

~ RT ~ 
2 69% 19 

To a 25 mL round-bottom flask, 50 mg (0.29 mmol) of 1-Undecen-4-ol (2) was 

dissolved in DCM (0.5 mL) and was stirred at room temperature while under an argon 

atmosphere. To this, 10 mg of Amberlyst®l5 cation exchange resin was added followed 

by 29 mg of 3,4-dihydropyran (0.35 mmol, DHP). The reaction was allowed stir at room 

temperature overnight and was then deemed complete via TLC. The reaction was filtered 

and the filtrate was concentrated in vacuo to afford a crude yellow oil. The oil was 

purified by silica column chromatography (3% EtOAc/hexanes) to yield a mixture of 

diastereomers as a yellow oil (51.2 mg, 0.201 mmol, 69%). It is important to note that 

there are unknown few peaks in both the 1H NMR and 13C NMR that do not correspond 

to 19. Additionally, there are no spectral references of 19 to compare. 

Analytical data for 19 

M.W.: 254.41 g/mol 

TLC (~rt 0.29 & 0.27 (5% EtOAc/hexanes): PAA Stain 

1H NMR: (600 MHz, CDCh) 
o 5.92-5.75 (m, 1 H), 5.15-5.04 (m, 2 H), 3.95-3.83 (m, lH), 3.71-3.61 

(m, 1 H), 3.55-3.45 (m, 1 H), 2.40-2.11 (m, 2 H) 1.91-1.57 (m, 2 H), 1.50-
1.19 (m, 18 H), 0.87-0.89 ppm (m, 3 H). 

13C NMR: (150 MHz, CDCh) 
o 135.52, 135.01 , 118.11, 116.64, 98.14, 96.89, 75.50, 70.83, 63.09, 62.64, 

41.93, 39.82, 37.95, 36.92, 34.82, 33.45, 31.86, 31.80, 31.12, 30.89, 30.67, 
29.75, 29.70, 29.61, 29.19, 25.69, 25.64, 25.54, 25.09, 22.64, 19.74, 
14.1 lppm 
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1H NMR: 2-(undec-l-en-4-yloxy)tetrahydro-2H-pyran (19) 
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nc NMR: 2-(undec-l-en-4-yloxy)tetrahydro-2H-pyran (19) 
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3-((Tetrahydro-2H-pyran-2-yl)oxy)decanal (21) 
r'°"1 K:z()s,0,(0H)4 r'°"1 
l _ ,l Kj'e(CN)1 l _ ,l 

o o K~03 0 0 OH Pb(OAc). 0 0 
~ H20ir-BuOH I I ~ I 

's:: --- ~ OH 24% ~ O 
19 20 21 

A solution of 19 (25 mg, 0.098 mmol) in 0.25 mL of H20 and 0.25 mL of t-BuOH 

was treated with potassium ferricyanide (K2Fe(CN)6, 96.8 mg, 0.294 mmol), potassium 

resulting solution was stirred at room temperature for 18 hours before being deemed 
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complete by TLC. To the reaction, 2 mL of both H2O and EtOAc were added and the 

layers were subsequently separated. The aqueous was extracted 3 x 15 mL of EtOAc and 

pooled. The organics were washed 2 x 50 mL of brine and dried over Mg2SO4, filtered 

and concentrated to give the diol as a brown oil. The oil was run through a small plug of 

silica and eluted with 60 % EtOAc/hexanes to give a clear oil (20). 

The diol was dissolved in 3 mL of EtOAc and treated with 51.65 mg (0.1164 

mmol) of Pb(OAc)4 and stirred at room temperature under argon for ten minutes. The 

reaction was deemed complete by TLC and was filtered through 30 mL of silica using 

I 00 mL of 50% EtOAc/hexanes. The filtrate was washed 1 x 50 rnL of satd NaHCO3, 1 x 

50 mL of brine, dried over Mg2SO4, filtered and concentrated to give 10 mg of a yellow 

oil. The aldehyde was purified by silica column chromatography (10% EtOAc/hexanes) 

to yield 6 mg (0.23 rnmol, 24 %) of a clear oil. 

Analytical data for 21 

M.W.: 256.39g/mol 

TLC (Rrt 0.58 (20% EtOAc/hexanes): PA Stain 

(S)-(2-Acetamidoethyl)-3-hydroxydecanethioate (17) 

OH 0 

~ OH 
16 

HSNAC 
DIPEA 
DCC 
DMP 
DCM 

64% 

OH O H 

~ S ~ Ny 
17 0 

In a 5 mL vial, 10 mg (0.05 mmol) of racemic 3-hydroxydecanoic acid (16) was 

dissolved in 2.0 rnL of DCM and treated with 1 mg (0.005 mmol) of DMAP, 17 mg (0.08 

mmol) of DCC, 8 mg (0.06 mmol) ofDIPEA, and 7 mg (0.06 mmol) ofHSNAC at room 

temperature for 18 hours. Reaction was deemed complete by TLC and was evaporated to 

25 



dryness. Thioester product (17) was purified by silica column chromatography (3% 

MeOH/DCM) to afford 9.6 mg of a clear oil (0.032 mmol, 64 %). 

Analytical data for 17a 

M.W.: 289.43 g/mol 

TLC (Rrt 0.24 (10% MeOH/DCM: PAA Stain) 

1H NMR: (600 MHz, CDCh) 
o 5.85 (bs, lH), 4.08-4.04 (m, lH), 3.49-3.42 (m, 2H), 3.09-3.01 (m, 2H), 

2.77-2.66 (m, 2H), 1.96 (s, 3H), 1.52-1.37 (m, 3H), 1.38-1.21 (m, IOH), 
0.88 (t, 3H, J = 6.6 Hz) ppm. 

13C NMR: (150 MHz, CDCh) 
o 199.59, 170.48, 69.03, 51.01, 39.32, 36.74, 31.84, 29.45, 29.19, 28.80, 

25.48, 23.17, 22.60, 14.05 ppm 

Reference: Schwab, J.M.; Habib, A.; Klassen, J.B. J Am. Chem. Soc. 1986, 108 (17), 
5304-5308 

a 17 was identical to its previously reported spectroscopic values 

1H NMR: S-(2-acetamidoethyl)-3-hydroxydecanethioate (17) 
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13C NMR: S-(2-acetamidoethyl)-3-hydroxydecanethioate (17) 
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