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Abstract 

E. A. Stephan. Development of a Parsimonious Urban Landscape Nutrient Model Using 
Representations of Terrestrial Denitrification Controls, 148 pages, 8 tables, 15 figures, 
2017. 
 

Nonpoint source pollution of nitrogen (N) and phosphorus (P) creates pervasive 
water quality and eutrophication problems around the world, adversely affecting rivers, 
lakes, and estuaries. Urban land use generates excess N and P pollutants and land use 
conversion removes natural N and P filtration services provided by undeveloped 
ecosystems. Management of these problems might first be approached using scoping 
level nonpoint source runoff models that are defined as balancing process complexity 
and algorithm simplicity, as well as balancing data availability and predictive accuracy. 
The contributing area / dispersal area (CADA) concept brings land cover and elevation 
data along with runoff and filtering likelihood algorithms into the Export Coefficient (EC) 
model to map likely variations in nutrient loading across the landscape. In this research, 
we enhance scoping level models by 1) adding spatial variation through the mapping of 
runoff and buffering likelihoods, 2) introducing the temporal driver of rainfall intensity to 
enhance nutrient export, and 3) determining the environmental variables most highly 
correlated with denitrification. 

In this study, we enhance the EC model to account for spatial and temporal 
variations, allowing for better estimates of nutrient loading across space and time. This 
research also determines key predictors of denitrification potential in mixed-use 
watersheds, through which denitrification hotspots can be identified. The creation of 
spatially- and temporally-distributed scoping models for nutrient loading through the 
landscape will assist managers in identifying areas of high loading potential, which 
generate high concentrations of nutrients and have little opportunity for downslope 
filtration. The identification of high denitrification potential zones also allows for 
facilitation of nitrate removal by routing nitrate-rich water to these zones. The low-level 
data needs and process-based features of the scoping model allow for its 
implementation into the i-Tree Hydro toolkit, a peer-reviewed software suite that is used 
to assess the effects of management and land use change on water quality and 
quantity. 

 

Keywords: nonpoint source pollution, watershed management, nutrients, runoff, land 
use/land cover change, urbanization, rainfall intensity, denitrification 
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CHAPTER 1: INTRODUCTION 

Overview 

Nonpoint source pollution is a pervasive water quality problem around the world, 

adversely affecting rivers, lakes, and estuaries (e.g., Carpenter et al., 1998; Kaushal et 

al., 2011). Eutrophication, the enrichment of waters by excess nutrients, causes 

excessive plant and algae growth. Cultural eutrophication, acceleration of natural 

eutrophication in response to human nitrogen (N) and phosphorus (P) enrichment, is the 

primary impairment facing most surface waters today (Smith & Schindler, 2009). 

Watershed management seeks to reduce nitrogen (N) and phosphorus (P) loading from 

human activities to protect aquatic ecosystem health (Conley et al., 2009; Lewis, 

Wurtsbaugh, & Paerl, 2011). Urban land use generates excess N and P pollutants 

(Kaye, Groffman, Grimm, Baker, & Pouyat, 2006) and diminishes the extent of aquatic 

ecosystems and environmental services of N and P filtration provided by natural 

processes in undeveloped ecosystems (Bettez & Groffman, 2012). 

Urban biogeochemical cycles and their influence on N and P loading are more 

complex than widely studied rural N and P loading mechanisms due to interactions 

between society and the built environment (Kaye et al., 2006). Nutrient limitations within 

ecosystems are influenced by the N:P ratio of external inputs, which tends to be lower in 

urban systems, favoring N limitation (Howarth & Marino, 2006). Inland waters which 

drain urban systems also transport high N loads to receiving coastal waters, creating 

problems of eutrophication downstream.  Predictive models of N and P cycling were 

initially developed in agricultural ecosystems to focus on nonpoint source loading (e.g., 
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Young, Onstad, Bosch, & Anderson, 1989); consequently, complex urban 

biogeochemistry has not been incorporated into N and P loading models. 

In this research we consider, and seek to improve, scoping level models for N 

and P pollutant loading that are relatively simple and attempt to balance complexity with 

data availability and accuracy. The Export Coefficient (EC) model (Reckhow & Simpson, 

1980) is a scoping model initially designed for rural areas that uses empirically derived 

export coefficients to represent the annual N or P load for each land cover type. The 

Event Mean Concentration (EMC) model (U.S. Environmental Protection Agency, 1983) 

is another scoping model developed for urban watersheds that uses a statistical 

distribution of empirically-derived storm event pollutant concentrations representing a 

lumped land cover class, together with runoff volume to predict the pollutant load. The 

EC or EMC models do not consider how spatial arrangement of land cover and 

landscape features alter nutrient processing in the pollutant loading to surface waters. 

Export Coefficient Modeling 

The export coefficient (EC) model framework provides a relatively simple, 

manageable way to predict loading of N and P to an outlet based on the land use of the 

catchment. Traditionally, models developed to predict changes in N and P loading 

based on land use changes have been complex, physically based, and developed 

specifically for the study area of interest (Johnes, 1996). EC models can be easily 

calibrated based on observed water quality data from catchments composed of varying 

land uses, or export coefficient values can be derived from literature sources (Johnes, 

1996). These EC values represent annual nutrient loads from each land class, 

expressed in units of mass per area per time. 
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The total export of nutrient N can be expressed using the following equation: 

!" = $% ∗ '% + )
*
%+,         (1) 

Where !" is the basin nutrient load (kg/yr), $% is the export coefficient (kg/ha/yr) for land 

class i, '% is the area of the watershed in land class i, and P represents point sources 

(Endreny & Wood, 2003; Reckhow & Simpson, 1980). 

Due to the lack of spatial consideration of buffering potential, the EC model was 

modified to include weighting by buffering likelihoods along flowpaths through the 

landscape. Endreny and Wood [2003] introduced the CADA framework into the EC 

model to represent the likelihood for runoff and likelihood for buffering downslope for 

each cell in a gridded watershed of interest. Endreny and Wood [2003] expressed 

relative potential for runoff using the topographic index, developed by Beven and Kirkby 

[1979], which represents saturation and runoff likelihood in landscapes. The topographic 

index, as originally devised by Beven and Kirkby, appears in the following form: 

-. = ln	(
3

4567
)          (2) 

where a is the upslope contributing area per unit contour length (m) and (tanβ) is the 

local surface topographic slope. 

Buffering likelihood in the CADA weighted EC model is calculated based on the 

presence of vegetated buffer strips in the dispersal area from each cell. Dispersal area 

is calculated by applying the flow accumulation routine in ArcMap to a negated DEM 

(Endreny & Wood, 2003). This application focuses specifically on particulate 

phosphorus for simplicity, which proves to be the dominant form in agricultural and 
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forested runoff, and thus is the focus of mitigation and management efforts (Endreny & 

Wood, 2003).  

The representation of runoff and filtering likelihoods across landscapes has been 

developed to identify critical pollutant areas in landscapes. In areas without artificial 

inflows or drainage, runoff likelihood at any watershed location can be represented as a 

function of the contributing area and local slope (Beven & Kirkby, 1979), and downslope 

pollutant filtering potential can be represented as a function of exposure to vegetative 

buffers in the runoff dispersal area (Haycock, 1997). Endreny and Wood [2003] utilized 

the contributing area and dispersal area (CADA) framework to represent runoff and 

filtering likelihoods for P in the EC model, based on assumptions of P having primarily 

shallow subsurface or surface runoff pathways. N loading simulations, however, must 

consider more transformation processes, pathways, and sinks than P loading 

simulations (Endreny & Wood, 2003). The complexity of nitrogen sources, sinks, 

pathways, and transformations introduces challenges in application of this CADA 

weighted EC model; in particular, the important of landscape denitrification highlights 

the need to model denitrification areas. 

Denitrification 

Denitrification, the conversion of nitrate, NO3
-, to N2 gas, provides a N sink which 

removes reactive N permanently from the environment (Robertson & Groffman, 2007). 

Landscape N mass balance studies demonstrate substantial terrestrial N losses via 

denitrification, accounting for 51% of N loss in some northeastern U.S. watersheds 

(Breemen et al., 2002). This provides an opportunity to actively manage landscapes for 

denitrification, which is dependent on NO3
- availability, organic carbon availability as 
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energy for heterotrophic denitrifiers, anoxic conditions for the anaerobic denitrifiers, and 

the presence of denitrifiers (Boyer et al., 2006). Laboratory tests of denitrification 

potential allow for the identification of landscape locations which have the capacity for 

substantial NO3
- removal. 

Since soil moisture and soil organic matter have been shown to correlate well 

with denitrification processes (P.M. Groffman & Crawford, 2003), landscape mapping of 

high soil moisture and soil organic matter likelihoods may help identify areas of high 

denitrification potential. Efforts to model landscape denitrification potential have 

explored the use of topographic controls as a proxy for soil moisture, to simulate 

suitable anaerobic denitrifying conditions (e.g., Anderson, 2013; Florinsky, McMahon, & 

Burton, 2004). These studies, however, fail to consider the impact of urban 

infrastructure on soil moisture likelihoods, including pipe leakage, sewer drainage, and 

altered physical soil properties (i.e. compaction, urban fill). In addition, contributions of 

organic matter in urban environments are expected to increase, due to the presence of 

leaves and eroded soils trapped in gutters, curbs, and swales (Kaushal & Belt, 2012). 

Strong correlations between denitrification potential and both soil moisture and soil 

organic matter (Groffman & Crawford, 2003) highlight the need for understanding these 

variables in urban landscapes. 

This research seeks to improve scoping level models to account for variation in 

biogeochemical cycles in urban environments. The CADA weighting framework has 

represented spatial variation in P loading, and will be modified and enhanced to 

represent N loading via runoff and filtration likelihoods, including vegetative buffering 

and denitrification potential. The simplicity of this model will allow for first-order 
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estimates of high N and P loading areas on the landscape using widely available 

datasets, and will help identify critical areas for management and pollutant reduction. 

The regulatory drivers of the N and P cycles, altered urban hydrology, and the 

emergence of a new “urban biogeochemistry” (Kaye et al., 2006), provide context for 

challenges to modelling N and P loading to surface waters in urban landscapes. In the 

following section, prior research is used to contextualize questions of N and P transport, 

as well as denitrification drivers and potential modeling opportunities. Existing 

landscape-scale denitrification models are discussed to highlight the conditions and 

processes that drive these models, as well as the framework in which they are used. 

Urban denitrification studies are evaluated to evaluate correlations between 

denitrification potential and soil moisture and organic matter. Landscape soil moisture 

and organic matter trends are reviewed, emphasizing the differences between these 

two variables in urban and undisturbed landscapes. 

Landscape denitrification processes and models 

Human activity has accelerated fixation of atmospheric N to plant-available N 

forms (Vitousek et al., 1997), and increased availability of reactive N has encouraged 

studies of regional N fate and transport. Breemen et al. [2002] performed such analysis 

in sixteen large watersheds in the northeastern United States. Landscape denitrification 

was estimated as the remaining N loss once known input, output and storage terms 

were considered. Although these landscape denitrification estimates incorporate 

accumulated uncertainties from other terms, soil denitrification reflects the dominant 

sink for N inputs to the watersheds, accounting for 34% of total storage and loss on 

average (Breemen et al., 2002). Regional mass balances are helpful in quantifying the 
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large magnitude of landscape denitrification occurring, but provide no predictive power 

or spatial variation in denitrification potentials. 

Regional-scale denitrification models vary in complexity and driving factors, as 

well as in their approach (Boyer et al., 2006). Rather than attempting to model microbial 

processes and dynamics, these regional models explore environmental conditions in 

which denitrification is expected to occur. The DAYCENT model (Parton et al., 1996) 

assumes denitrification is controlled by soil NO3
- concentration, organic carbon 

availability, and oxygen availability. The DNDC model (Li, 1996) is a soil 

biogeochemistry model which utilizes sub-models of soil climate, plant growth, and 

decomposition to predict soil environmental factors, which drive kinetics of relevant 

biochemical or geochemical reactions. Agricultural management models often simulate 

denitrification in soils; one such model is EPIC (J. R. Williams, C. A. Jones, & P. T. 

Dyke, 1984), which simulates all major N cycling processes in agricultural soils (i.e., 

mineralization, nitrification, immobilization) on a daily time step. EPIC requires specific 

field validation to obtain necessary parameters. Like other models, EPIC denitrification 

processing is governed by the NO3
- availability, carbon availability, soil temperature, 

and soil moisture content (Boyer et al., 2006). SWAT (Soil Water Assessment Tool), 

developed by the United States Department of Agriculture Agricultural Research 

Service, uses climate, soil, topography, vegetation, and land management data to 

predict water movement, sediment transport, crop growth, and nutrient cycling. Inputs 

required for SWAT are extensive, in order to simulate processes in watersheds of 

varying characteristics. RHESSys (Tague & Band, 2004) couples hydrology with C and 

N cycling, simulating denitrification through computation of a maximum denitrification 
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rate (based on available soil nitrate), which is then scaled by soil moisture, temperature, 

and carbon availability (Tague & Band, 2004). While these models cover a wide range 

of perspectives and conceptual frameworks (i.e., agricultural, hydrological, ecological), 

none are explicitly designed for use in urban landscapes, where hydrology and 

biogeochemistry depend on human inputs and alterations of the system. The models all 

require extensive knowledge of the specific landscape system being studied, which 

limits use to highly specialized purposes. 

Urban denitrification studies 

Field studies are necessary to validate the above models, as well as to 

understand trends of denitrification as they relate to spatial land use and management 

patterns. Denitrification is difficult to model at a landscape scale because of the 

presence of hotspots and hot moments (Groffman et al., 2009; Groffman, 2012), and 

better predictive capacity requires more field measurements to assess the spatial 

variation of these disproportionately high nitrate sinks (Groffman et al., 2009). Although 

there are numerous means of calculating denitrification processes, denitrification 

potential measurements measure the denitrification enzyme activity (DEA), revealing 

the biological capacity of soils for denitrification to occur (Groffman et al., 2006). This 

has proven a useful metric for comparing soil properties in undisturbed forested areas, 

as well as agricultural or urban landscapes (e.g., Bettez & Groffman, 2012; Bruland, 

Richardson, & Whalen, 2006; Groffman & Crawford, 2003). These studies focus on the 

surficial soils (0-10cm), since overland flow is likely to dominate in these urban 

landscapes. 
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Studies of DEA in urban riparian zones have demonstrated that urban conditions 

do not necessarily lead to low denitrification potentials. Much of this work has been 

focused on the Baltimore Ecosystem Study Long Term Ecological Research Station 

(BES LTER). A study conducted in watersheds with various levels of disturbance in the 

Baltimore area demonstrated no significant differences in DEA between urban versus 

rural, or between forested versus herbaceous sites (Groffman & Crawford, 2003). As 

long as these soils were wet and with high levels of organic matter, they had high 

denitrification potentials (Groffman & Crawford, 2003). These correlations are useful in 

determining methods for identifying key denitrification zones in the landscape of the 

area of interest. 

In another Baltimore LTER study, denitrification potentials were compared 

between natural riparian areas and stormwater control measures (SCMs), structures 

designed to mitigate the increased volume and intensity of runoff from urban 

landscapes (Bettez & Groffman, 2012). Because SCMs are becoming used increasingly 

in urban areas (i.e. Save the Rain in Syracuse, NY; Green City, Clean Waters in 

Philadelphia, PA; Green LA in Los Angeles, CA), there is increasing interest in 

determining their effectiveness in mitigating nutrient loading into receiving waters. 

Bettez and Groffman found that the SCM denitrification potential was significantly higher 

than that of the natural riparian areas. Even though the drivers of denitrification 

potential, soil moisture and organic matter, were similar between the riparian and SCM 

areas, the SCM DEA values were higher, indicating that SCMs may function as 

hotspots of denitrification (McClain et al., 2003). The overall effect of these SCMs on 

water quality at a watershed scale remains uncertain, and variability between different 
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SCMs in N removal effectiveness is large (Bettez & Groffman, 2012). The unique 

conditions in these built SCMs, then, must differ from the natural riparian areas, and the 

differences between these structures is important in assessing relative magnitudes of 

denitrification within an urban area. 

Topographic controls on denitrification 

The topographic index is used to predict areas of likely runoff generation, and 

therefore maps areas of likely soil wetness across landscapes. A slight variation on the 

topographic index presented in Equation 2 is the soil topographic index (STI) (e.g., 

(Agnew et al., 2006; Lyon, Walter, Gérard-Marchant, & Steenhuis, 2004): 

9-. = ln
:;<=3

456 7 ∗:
= -. − ln - + ln	(-3?@)     (3) 

where -3?@ is the mean transmissivity (m2/day) of the watershed and T is the 

transmissivity of the specific cell (Sivapalan, Beven, & Wood, 1987). Transmissivity is 

generated through soil databases by multiplying the depth to water table (m) by the 

saturated hydraulic conductivity (m/day). As soil datasets become more widely available 

(e.g., SSURGO, STATSGO), the hydraulic conductivity and soil depth are incorporated 

to assess likelihood of saturation in shallow soils (Agnew et al., 2006; Lyon et al., 2004; 

Walter et al., 2002). 

The soil topographic index (Eq. 2), which combines many primary denitrification 

controls such as 1) upland drainage-area size, 2) depth and permeability of saturated 

sediments, and 3) topographic slope, has shown to correlate well with field rates of 

denitrification in an agricultural watershed (T. Anderson, 2013). This correlation has not 

been proven for urban areas, but proves promising for application in urban areas due to 
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its applicability in a disturbed, albeit rural, setting. It is important to note that Anderson 

measured in situ denitrification rates, not denitrification potentials. 

Nitrate transport to streams 

Because urban environments represent a new frontier in ecological and 

hydrological modeling, nutrient sources and sinks must be identified and further 

characterized in urban environments (Carey et al., 2013). In the same sixteen 

northeastern United States watersheds used to produce large-scale N budgets 

(Breemen et al., 2002), inputs of anthropogenic N were characterized and assessed in 

their contribution to riverine nitrate (Boyer, Goodale, Jaworski, & Howarth, 2002). This 

study explored watersheds of varying characteristics and helps quantify N inputs for 

various distributions of land uses, as human influence becomes more pervasive with 

regards to nutrient inputs. 

Nitrate yield in suburban and urban watersheds has also been shown to be more 

than 10 times higher than that of completely forested watersheds, and yet retention of N 

in these disturbed watersheds was surprisingly high, approaching that of forested 

catchments (Groffman, Law, Belt, Band, & Fisher, 2004). The sources of N in disturbed 

watersheds, as well as the flowpaths and removal mechanisms in these watersheds, 

must be linked in order to get a full picture of how we can manage N water quality 

concerns. The mechanism of transport of nitrate between soil water and surface 

streamflow in disturbed and undisturbed streams was examined in a review paper by 

(Sudduth, Perakis, & Bernhardt, 2013), and no pattern or relationship was found for the 

disturbed stream nitrate concentrations. While we will not be explicitly exploring nitrate 

pathways in this study, we will attempt to map nitrate throughout the surface landscape 
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in urban environments, informing where we expect nitrate to concentrate. Further work 

is necessary to quantify nitrate loading mechanisms in urban watersheds. 

This research will enhance understanding of nitrate removal processes in urban 

environments, and guide management decisions to protect the areas of high removal 

capacities. It will also help managers by informing placement of green infrastructure, 

where the confluence of soil moisture and soil organic matter would assist in removal of 

high nitrate water. This hotspot mapping model will also be incorporated into i-Tree 

Hydro, giving land managers a parsimonious model which can guide management 

decisions and help explore alternative scenarios and the impact on nutrient loading. 

Research Questions 

1)      Land cover specific export coefficients (EC) and event mean concentration (EMC) 

values for nitrogen do not account for spatial variation in hydrological transport 

processes in the runoff contributing area and dispersal area (CADA). Can the 

topographic index theory for runoff likelihood and the buffer index theory for nitrogen 

filtration likelihood (e.g., uptake, immobilization, transformation) in surface and 

subsurface flow through natural and constructed buffers (combined soil and vegetation 

systems) be used to weight land cover specific EC and EMCs to represent the likely 

spatial variation in nitrogen loading to waterbodies across the landscape? 

2)      Models using export coefficients (EC) and event mean concentration (EMC) 

values fail to represent temporally changing conditions which may explain differences in 

seasonal and annual nutrient loading. Although temporal variation in nutrient loading 

has been represented in select catchments of interest through modification of the EC 

model, a widespread methodology for these analyses has not been developed. The 



 13 

application of temporal variation has thus far depended on the availability of site-specific 

data. Can national datasets which represent temporal variation in potential discharge 

rates be incorporated into a modified EC model to represent changing weather and 

discharge conditions to better predict annual nutrient loading variation? 

3)      Soil moisture and soil organic matter have been shown to correlate well with 

denitrification potential (Groffman & Crawford, 2003). Topographic indices have been 

used as predictors for denitrification hotspots in agricultural landscapes (T. R. 

Anderson, Groffman, & Walter, 2015), but have not been developed for mixed-use and 

urban watersheds. Maps of denitrification potential, approximated by relevant soil 

variables (e.g., soil moisture, organic matter) are needed to identify key nitrogen-

processing areas. Which key soil variables have the largest influence on denitrification 

potential in urban and mixed-use landscapes, and how can these variables be 

combined to develop a predictive denitrification model? 

Overall, this study seeks to improve the capability of scoping level models to 

represent variation in nutrient loading both spatially and temporally. Chapter 2 focuses 

on the inclusion of runoff likelihood and buffering likelihood indices to distribute nutrient 

loading contributions to pixels based on their landscape orientation. Chapter 3 

enhances the Export Coefficient model with daily rainfall data, to represent likely runoff 

magnitudes and therefore, introduce temporal variation to an otherwise static model. 

Chapter 4 explores the most influential soil variables in predicting denitrification 

potential in the mixed-use sampling locations of the Baltimore Long-Term Ecological 

Research site. These improvements on scoping models enhance nutrient loading 

predictions without requiring more extensive data collection. The implications of this 



 14 

research extend to community organizations, planners, and managers seeking a better 

understanding of the effects of different decisions on water quality. This research will 

also enhance understanding of nitrate removal processes in urban environments, and 

guide management decisions to protect the areas of high removal capacities. 
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CHAPTER 2: WEIGHTING NITROGEN AND PHOSPHORUS PIXEL POLLUTANT 

LOADS TO REPRESENT RUNOFF AND BUFFERING LIKELIHOODS 

ABSTRACT: Watershed models often estimate annual nitrogen (N) or phosphorus (P) 

pollutant loads in rural areas with export coefficients (EC) (kg/ha/yr) values based on 

land cover, and in urban areas as the product of spatially uniform event mean 

concentration (EMC) (mg/L) values and runoff volume. Actual N and P nonpoint source 

(NPS) pollutant loading has more spatial complexity due to watershed variation in runoff 

likelihood and buffering likelihood along surface and subsurface pathways, which can 

be represented in a contributing area dispersal area (CADA) NPS model. This research 

develops a CADA NPS model to simulate how watershed properties of elevation, land 

cover, and soils upslope and downslope of each watershed pixel influence nutrient 

loading. The model uses both surface and subsurface runoff indices (RI), and surface 

and subsurface buffer indices (BI), to quantify the runoff and buffering likelihood for 

each watershed pixel, and generate maps of weighted EC and EMC values that identify 

NPS pollutant loading hotspots. The research illustrates how CADA NPS model maps 

and pixel loading values are sensitive to the spatial resolution and accuracy of elevation 

and land cover data, and model predictions can represent the lower and upper bounds 

of NPS loading. The model provides managers with a tool to rapidly visualize, rank, and 

investigate likely areas of high nutrient export. 

KEY TERMS: nonpoint source pollution, watershed management, nutrients, runoff, land 

use/land cover change, urbanization 
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INTRODUCTION 

Nonpoint source (NPS) pollution is a pervasive water quality problem around the 

world, delivering excess nitrogen (N) and phosphorus (P) nutrients to rivers, lakes, and 

estuaries and causing cultural, or accelerated, eutrophication with excessive plant and 

algae growth (Carpenter et al., 1998; Kaushal et al., 2011). Cultural eutrophication due 

to N and P runoff from human activities is the primary impairment facing most surface 

waters today (Smith & Schindler, 2009). To address this impairment and improve 

aquatic ecosystem health, watershed management programs often seek to identify and 

then reduce human generated N and P loading (Conley et al., 2009; Lewis, 

Wurtsbaugh, & Paerl, 2011). Management for NPS runoff must consider that some 

loading of N and P is required to support aquatic plant and algae growth, and the 

relative abundance of these limiting nutrients in rivers, lakes, and estuaries is what 

triggers cultural eutrophication (Conley et al., 2009).  Concentrated human activities 

within urban areas represents a unique problem, both generating complex sources and 

elevated magnitudes of N and P pollutant runoff  (Kaye, Groffman, Grimm, Baker, & 

Pouyat, 2006) and diminishing interaction between runoff and vegetated land cover that 

provide nutrient sinks through filtration and transformation (Bettez & Groffman, 2012). 

Watershed water quality models can assist with NPS identification nutrient loading 

hotspots, but must balance model accuracy and complexity with data availability and 

feasibility (e.g., Borah & Bera, 2004; Zhang et al., 2012).  

Urban managers seeking spatially distributed, rainfall-runoff watershed models to 

identify NPS hotspots and predict receiving water loading of N and P often model 

mixed-use watersheds, comprised of urban, agricultural, and forested land covers. A 
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variety of tools are available for urban runoff simulation, including the EPA SWMM 

(stormwater management model) (Huber, 1995), RHESSys (Regional Hydro-Ecologic 

Simulation System) (Tague & Band, 2004) and USDA i-Tree Hydro (Wang, Endreny, & 

Nowak, 2008). SWMM simulates the routing of pervious and impervious runoff from 

user-defined sub-watersheds into storm sewers, with the option for the user to insert a 

best management practices upstream of the storm sewer. The SWMM tool does not use 

elevation and land cover data to predict runoff pathways and the intersection of runoff, 

pollutants, and filtration, but instead has the user define connections between runoff 

sources, treatments, and sinks. RHESSys is a continuous simulation, spatially-

distributed tool using advanced governing equations to represent the hydrologic budget 

within a spatially distributed geographic information system (GIS) representation of 

watershed elevation and land cover data, operating at a daily time step to predict runoff 

generation, flow paths, and N nutrient processes (Tague & Band, 2004). This tool is 

typically applied to highly instrumented watersheds, requiring extensive 

parameterization, and might be considered a higher order model. By contrast, the i-Tree 

Hydro (v5) model is a continuous simulation, statistically-distributed first order, or 

parsimonious, model of the hydrologic budget, using the basic governing equations to 

predict the distribution of soil saturation and runoff response to rainfall and snowfall for 

each hydrologically similar area, defined by the topographic index (Beven & Kirkby, 

1979). The i-Tree Hydro model uses nationally available datasets with a database of 

location data, including leaf on and off dates, to represent the influence of elevation, 

soils, and vegetation on saturation excess and infiltration excess runoff (Wang, 

Endreny, & Nowak, 2008). The i-Tree Hydro model, like SWMM, combines the total 



 25 

surface runoff with Event Mean Concentration (EMC) values (mg/L) to simulate the NPS 

pollutant load entering receiving waters.  

Simulation of rural watershed areas should account for agricultural and forest 

land cover, and popular continuous simulation, spatially-distributed models include the 

USDA’s SWAT (Soil Water Assessment Tool) (Douglas-Mankin, Srinivasan, & Arnold, 

2010), EPA’s HSPF (Hydrologic Simulation Program - Fortran) (Donigian, Bicknell, & 

Imhoff, 1995), and AgNPS (Agricultural NonPoint Source) (Young, Onstad, Bosch, & 

Anderson, 1989), each developed more than thirty years ago. While these models can 

represent the spatial heterogeneity of land cover, only AgNPS simulates the effect of 

runoff flow paths on changes in water quality, with user defined flow paths establishing 

connectivity between land use types (Fisher, Abrahart, & Herbinger, 1997). An 

alternative to the higher order, extensively parameterized models (e.g. SWAT, HSPF, 

AgNPS) is the first order, empirical Export Coefficient model which estimates the 

watershed annual nonpoint source (NPS) load of N or P, and can use GIS to map and 

sum the product of land cover type area and the Export Coefficient (EC) value (kg/ha/yr) 

specified for each land cover type (EPA, 1980; Reckhow & Simpson, 1980).The Export 

Coefficient model was combined with theory of variable source area hydrology and 

vegetative filtering of nutrients in the contributing area and dispersal area (CADA) model 

(Endreny & Wood, 2003). The CADA model used biophysical algorithms to auto-

calculate flow paths surrounding each pixel EC value; runoff from the pixel was given a 

likelihood based on the topographic index, which is the quotient of the contributing area 

and pixel slope while filtering below the pixel was given a likelihood based on a 
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buffering index, which is the quotient of dispersal area and flow path slope through land 

cover types known to buffer NPS pollution.  

The CADA EC model predicted which watershed pixels were P loading hotspots 

using existing terrain and land cover maps and a regional EC dataset. For each land 

cover pixel, the product of runoff likelihood, buffer likelihood, and EC value provided a 

weighted EC value, which was mapped across the watershed and summed to provide 

the total watershed P load (Endreny & Wood, 2003). While the CADA EC model could 

rapidly identify potential hotspots of P loading, it was not extended to simulate N 

loading, EMC loads from urban areas, the difference between impervious and pervious 

runoff likelihood, or the difference in buffer likelihood along subsurface vs surface flow 

paths, which are important characteristics of mixed-use watersheds.  

This paper presents an enhanced CADA NPS model that includes: a) flexibility to 

use EC, EMC or other NPS loading data for N or P loads; b) representation impervious 

and pervious runoff paths in the contributing area; and c) representation of surface and 

subsurface buffer paths in the dispersal. In the methods section the model algorithms 

and data sources are introduced, and in the results section a sensitivity test is examined 

that explains model response to differences in the horizontal resolution of the terrain 

and land cover inputs that are critical in contributing and dispersal area calculations. 

MATERIALS & METHODS 

Site Description 

The watershed used for this study is delineated from Onondaga Creek at 

Spencer Street (USGS gage 02420010, located at 43°03’27”, -76°09’45”) and it drains 

south to north, with headwaters in the Appalachian Plateau reaching an elevation of 587 
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m, its outlet in the City of Syracuse at an elevation of 110 m (Figure 1). The watershed 

has an area of 298 km2, of which 53 km2 is classified as developed, and an area of 24.1 

km2 held as sovereign land by the people of the Onondaga Nation. Based on the 2006 

NLCD impervious surface maps, only 6% of the study area is designated as impervious 

cover, and this is concentrated near the northern watershed outlet (see NLCD classes 

21, 22, 23, and 24 in Figure 1). The annual average precipitation for Syracuse, NY is 

96.5 cm depth, with an average annual liquid equivalent snowfall of 32 cm, and average 

monthly total precipitation ranging between 8.1 and 10.4 cm. The average annual air 

temperature is 9.1°C with a February average low of -8.3°C and July average high of 

27.8°C. Flow in Onondaga Creek is regulated by an earthen dam near the northern 

edge of Onondaga Nation land, designed to allow non-flood flows to pass at grade with 

the channel bed through a 2 m diameter concrete culvert; when floods fill the reservoir 

behind the dam the culvert constrains maximum discharge to 36 m3/s.  

Model Structure 

The enhanced CADA NPS model is built upon the framework of Endreny and 

Wood (2003) to create a map of watershed runoff likelihood and buffer likelihood values 

using publicly available GIS inputs, which include digital elevation model (DEM) data, 

National Land Cover Data (NLCD), Soil Survey Geographic (SSURGO) data, as well as 

annual rainfall data and look-up tables of EC and EMC NPS values. The enhanced 

CADA model: 1) calculates separate urban and rural NPS pollutant loads for each pixel, 

using ECs on rural pixels and EMCs on urban pixels; 2) calculates a separate surface 

and subsurface runoff index (RI) for each pixel based on the fraction of imperviousness 

and perviousness in each upslope pixel, which is related to an estimate of surface and 
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subsurface wetness; and 3) calculates a separate surface and subsurface buffer index 

(BI) for each pixel based on flow resistance and potential energy, which is related to 

runoff velocity and an estimate of NPS buffering. The entire set of pixel specific RI and 

BI values are normalized to the watershed mean RI and BI values (or median values, 

depending on user preference), and multiplied by the land cover NPS load to quantify 

pollutant loading likelihood, which will range from relatively high to low across the 

watershed. The updated CADA NPS equations calculate weighted surface and 

subsurface NPS loads for each pixel i, NPSsurf,i,weighted and NPSsub,i,weighted as:  

A)9BCDE,%,GH%@IJHK = A)9BCDE,%×
MNOPQR,S

MNOPQR,;<=
×
TNOPQR,;<=

TNOPQR,S
  1 

A)9BCU,%,GH%@IJHK = A)9BCU,%×
MNOPV,S

MNOPV,;<=
×
TNOPV,;<=

TNOPV,S
  2 

where NPSi represents the unweighted NPS load (kg/ha/yr) for land cover type i, RIi is 

the pixel’s surface or subsurface runoff index value, the RIavg is the corresponding 

average surface or subsurface runoff index in the watershed, the BIi is the pixel’s 

surface or subsurface buffer index value, and BIavg is the corresponding average 

surface or subsurface buffer index in the watershed. The RI and BI terms in Equation 1 

use algorithms specific to subsurface and surface runoff and buffer processes. 

Urban and rural, surface and subsurface pollutant loads 

Land cover EC values (kg/ha/yr) were obtained from a local Onondaga Creek 

study (Coon & Reddy, 2008) as well as from a range of nationally reported values (see 

Table 1), while EMC values (mg/L) were obtained from the i-Tree Hydro model, which 

compiled data from the USEPA and others (USEPA, 1983; Reckhow, Beaulac, & 

Simpson, 1980) (Table 1). The NPS pollutant of P was simulated as total phosphorus 
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entrained in surface runoff processes, denoted as NPSsurf,i in equation 1. The NPS 

pollutant of N was simulated as dissolved nitrate in subsurface runoff processes, 

denoted as NPSsub,i in equation 2.  

EMC values (mg/L) were converted to mass per hectare per year loads NPSi 

(kg/ha/yr) by taking the product of the EMC value and estimated annual runoff depth 

(m), and accounting for unit conversions. The annual runoff depth was determined using 

a modified version of the EPA Simple Method: 

A)9% = 10,000×)×)Y×Z?×$[\%  3 

where NPSi represents the pixel i pollutant load (kg/ha/yr), 10,000 is a unit conversion 

factor, P is annual rainfall (m), Pj is fraction of annual rainfall events that cause runoff 

(default is 0.9), Rv is the runoff coefficient, and EMCi is the pixel i pollutant concentration 

(mg/L). Uniform EMC values of 0.266 mg/L for TP and 0.666 mg/L for nitrate were used 

on each developed NLCD class 21-24, which range from low to high intensity developed 

and are concentrated in the city limits (Figure 1); the choice of uniform values is in 

keeping with EPA Nationwide Urban Runoff Program (NURP) findings (U.S. 

Environmental Protection Agency, 1983). EMC values for a range of land uses can be 

found in Table 2; we have chosen to use uniform EMC values reported above due to the 

lack of statistical difference between land use types. The CADA model predicts variation 

in EMC derived loads (e.g., NPSi) due to variation in the Rv, which were set based on 

the fraction of pixel imperviousness (Ia), where Rv = 0.05 + 0.9(Ia) (Schueler, 1987). 

 The EMC values reported by NURP are lognormally distributed, so we can 

determine the 10th (Equation 4) and 90th (Equation 5) percentile values to get a range of 

low to high EMC estimates: 
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10] = exp	(ln 50] + b,c ∗ d )         4 

90] = exp	(ln 50] + bfc ∗ d )         5 

where 50x is the median EMC value, z is the z-score corresponding to the desired 

percentile, and σ is the standard deviation for the distribution (in this case, both nitrate 

and phosphorus had σ ranging from 0.5 to 1, so 0.75 was used). 

Runoff indices – surface and subsurface 

Surface	runoff	index	
The surface runoff index, RIsurf,i, is based on the topographic index equation for 

saturation likelihood (Beven and Kirby, 1979), which was modified to only accumulate 

for each pixel i its upslope area in impervious cover:  

Z.BCDE,% = ln
ghSij,S

kOPQR,S
  6 

where FAimp,i is the flow accumulation of impervious area per pixel width, Ssurf,i is the 

local pixel surface terrain slope (tan ß, where ß is in degrees). FAimp,i was computed 

with the ArcGIS flow accumulation function, which uses a flow direction grid, derived 

from the DEM, to determine the upslope pixels that drain to the local pixel i, and a 

weighting grid of a scalar values that will be accumulated, or summed, within the 

upslope area. For FAimp,i the weighting grid was set to total impervious area per pixel 

width; e.g., an upslope pixel with 10 m x 10 m sides has a contour width of 10 m, and if 

it had 85% impervious cover, it would contribute 8.5 m = [10 m x 10 m x 0.85]/10 m. 

Subsurface runoff index 

The subsurface runoff index, RIsub,i is based on the soil topographic index 

equation for saturation likelihood (Sivapalan, Beven, & Wood, 1987), which was 

modified to only accumulate for each pixel i its upslope area in pervious cover: 
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Z.BCU,% = ln
:;<=ghSij,S

:SkOPQ,S
  7 

where -3?@ is the mean transmissivity (m2/day) of the watershed and Ti is the 

transmissivity of the specific cell, where transmissivity is defined as the product of 

watertable depth and hydraulic conductivity, FAper,i is the flow accumulation of pervious 

area per pixel width, and Ssub,i is the local subsurface watertable slope (tan ß, where ß 

is in degrees). The pixel impervious cover fraction, and its compliment of pervious cover 

fraction, was provided by NLCD 2006 data. The pixel transmissivity was provided by 

SSURGO data; pixels without SSURGO data, such as the Onondaga Nation in our 

study area, set Ti = Tavg.  

Buffering indices – surface and subsurface 

Surface buffering index 

The surface buffering index is derived as the inverse of travel time from the 

source pixel to the receiving water, along a lateral surface flow path that follows the 

terrain slopes. Travel time is derived as the quotient of travel length and velocity: 

lBCDE,% =
m%

nBCDE,%
 

8 

where l (m) is travel path distance across pixel i, and Vsurf  (m/s) is the surface runoff 

velocity for pixel i, computed with the Manning equation: 

nBCDE =
op

q
Z
r
s9

,
r   9 

where Cm is the Manning coefficient of 1 for SI units (1.486 for BG units), R is the 

hydraulic radius (m) of flow depth, which varies by land cover (Wurbs & James, 2002, 

Table 8.1), S is the slope (tan ß, where ß is slope angle) of the surface pixel, and n is 

the Manning roughness coefficient (unitless; Table 1, Engman, 1986; Wurbs & James, 
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2002). The lBCDE,% is set to 0 for all surface water pixels, which are considered receiving 

waters that have no buffering. The surface buffering index is then calculated as the flow 

accumulation of travel times for all pixels in the dispersal area:  

t.BCDE = u'vOPQR,S   10 

where u'vOPQR,S uses a flow direction grid derived from a negated DEM (i.e., relatively 

large positive elevations along ridges become large negative elevations, lower than 

those of relatively small negative elevations within valleys), and a weighting grid of 

lBCDE,%. The t.BCDE calculation is based on longer travel times equating to greater 

chances for pollutant removal through a range of biophysical processes, such as 

particle settling, filtration, decay, uptake and other mechanisms.  

Subsurface buffering index 

The subsurface buffering index is derived as a function of travel time from the 

source pixel to the receiving water, along a lateral groundwater flow path that follows 

the watertable slopes. Travel time is derived as the quotient of travel length and 

velocity: 

lBCU,% =
m%

nBCU,%
 

11 

where l (m) is travel path distance for pixel i, and Vsub  (m/s) is the subsurface runoff 

velocity for pixel i, computed with the Darcy equation: 

nBCU,% = −w%
xb%

xm ∗ 1/z%  12 

where Ki  represents the pixel hydraulic conductivity (m/s), xb% xm represents the 

watertable gradient across the pixel, where zi is pixel depth to watertable (m), and p is 
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the pixel soil porosity. The lBCU,% is set to 0 for all surface water pixels, which are 

considered receiving waters that have no buffering. The b% term was determined as a 

function of runoff index, similar to the approach used by Endreny & Wood (1999): 

b% = b −
,

E
(Z.BCU,% − Z.BCU,3?@)   13 

where f  parameterizes the decay of soil transmissivity with depth, and b represents the 

watershed average depth to watertable, which can be set using expert knowledge, 

calibration, or using the SSURGO dataset to determine the depth to the restrictive layer, 

as was done in this study. For the Onondaga Creek watershed, SSURGO reported 

watertable depths ranged from 36 to 201 cm, and saturated hydraulic conductivity 

ranged from 1 to 25 cm/hr. The subsurface buffering index is then calculated as the flow 

accumulation of travel times for all pixels in the subsurface dispersal area:  

t.BCU = u'vOPV,S   14 

where the u'vOPV,S algorithm uses flow directions derived from a negated watertable 

elevation map and a weighting grid of lBCU,%. The t.BCU calculation is based on longer 

travel times equating to greater chances for pollutant removal through a range of 

biophysical processes, such as particle filtration, decay, uptake and other mechanisms. 

CADA model sensitivity tests 

The CADA model predictions of N and P loading were tested for sensitivity to the 

spatial resolution of elevation and land cover inputs and the selection of EC and EMC 

values. Elevation and land cover are the data principal inputs for computation of the RI 

and BI terms in Equations 6, 7, 10 and 14. The spatial resolution of elevation and land 

cover was varied within a 4.2 ha sewershed in the City of Syracuse that had been 
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surveyed using high resolution airborne remote sensing to acquire elevation maps with 

0.3 m horizontal resolution and 0.01 m vertical accuracy, and land cover maps at 0.3 m 

horizontal resolution classified into tree cover, pervious grass cover, and impervious 

cover. The 0.3 m resolution elevation and land cover inputs were resampled into 

coarser 1 and 10 m resolution products, representing resolutions that contain sub-grid 

heterogeneity within an urban landscape of crowned roads, curbs, herbaceous lawns, 

trees, sidewalks, and buildings. While the CADA runs required that SSURGO data be 

resampled into corresponding grids of 0.3, 1, and 10 m resolution, the initial SSURGO 

polygon areas were all larger than 100 m2, and there was no loss of soil information 

moving between 0.3 and 10 m grid sizes. Using a fixed 10 m resolution for all inputs, the 

CADA model was also run with 3 different combinations of pixel NPS inputs, using EC 

values for all urban and rural pixels, EMC values for all urban and rural pixels, and EC 

values for rural pixels and EMC values for urban pixels. 

RESULTS & DISCUSSION 

Urban and rural, surface and subsurface pollutant loads 

The spatial distribution and total watershed load of CADA predicted P and N 

values are highly sensitive to the selection of pixel NPS inputs. The spatial distribution 

of weighted P and N loads for each pixel have heterogeneity in rural areas and more 

uniformity in urban areas when CADA was run with a combination of EC and EMC 

values (Figure 2 A and D), while P and N loads were more uniform throughout the 

watershed when CADA was run with EC values (Figure 2 B and E), and P and N loads 

were more heterogeneous when CADA was run with EMC values (Figure 2 C and F). 

The CADA predicted watershed P load was 14.9 tonne/yr when estimated by the 



 35 

combination of EC and EMC values, slightly climbed to 15.6 tonne/yr when estimated 

with only EC values, and significantly dropped to 6.7 tonne/yr when estimated by only 

EMC values; the high and low P load range spanned 60% of the P load estimated by 

the load estimated by the combination of EC and EMC values. The CADA predicted 

watershed N load was 152.4 tonnes/yr when estimated by the combination of EC and 

EMC values, dropped to 138.9 tonnes/yr when estimated by only EC values, and 

climbed to 178.2 tonnes/yr when estimated by only EMC values; the high and low N 

load range spanned 25% of the N load estimated by the combination of EC and EMC 

values. For the CADA simulation using EC and EMC data, the 17.6% of the watershed 

area classified as developed land received EMC inputs, and EC inputs were applied to 

the remaining watershed area, and account for the majority of the P and N watershed 

loads. The 60% variation in CADA estimated P loads vs a 25% variation in N loads is 

explained by the large variation in P EMC and EC inputs vs N EMC and EC inputs 

(Table 1).  

Use of EC input values for CADA estimates of NPS loads is recommended for 

rural land cover pixels, while EMC input values are recommended for NPS loads in 

urban land cover pixels. When EC inputs where used to estimate NPS loads on urban 

pixels (NLCD 21-24, Figure 1), the CADA model predicted fewer P loading hotspots in 

those urban areas than when hotspots were predicted using EMC inputs, where 

hotspots are defined as red colored pixels with a NPS P load >3.3 kg/ha/yr; this contrast 

in hotspots is illustrated in Figure 2 B and C within the City of Syracuse polygon at the 

north end of the watershed. By contrast, the EC input values led to higher P estimates 

for rural agricultural pixels (NLCD 81 and 82, Figure 1) than estimated with EMC input 
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values, which is noted by more yellow and orange colored pixels with a NPS P load 

>1.3 kg/ha/yr (see Figure 2 B and C, to the south of the City of Syracuse, along 

Onondaga Creek tributaries). For CADA estimates of NPS N loads, the EC input values 

led to lower N loads on urban pixels than N loads estimated by the EMC input values, 

which is noted by fewer yellow colored pixels (>5.4 kg/ha/yr) in the City of Syracuse 

(Figure 2 E and F). The EC input values led to higher estimates of NPS N loads for rural 

agricultural pixels than N loads estimated with EMC input values, noted by more orange 

and red pixels (>9.1 kg/ha/yr) along the headwater tributaries. Due to the small variation 

in impervious cover and the associated runoff coefficient, Rv, there was little spatial 

variation in CADA estimated P and N loads for rural areas when EMC input values were 

used (see large area in blue color with 0-0.5 kg/ha/yr of P in Figure 2E, and large area 

in yellow color with 5.4-9.1 kg/ha/yr of N in Figure 2F). By contrast, when EC input 

values were used, loading was not sensitive to the Rv, but instead correlated strongly 

with land cover classes; note the greater heterogeneity with EC-based loads than EMC-

based loads in the southern watershed (Figure 2 E vs F). The CADA model estimates of 

NPS N and P loads in this case were more sensitive to EMC and EC inputs than to 

buffering processes in the runoff distribution area. 

The accuracy of CADA predicted NPS loads was constrained by the first-order 

and parsimonious nature of the model equations and by our choice to not calibrate the 

model inputs of EC or EMC or vary inputs across years. In a test of accuracy, the CADA 

predicted P load using a combination of EC and EMC inputs was 25% above the 

observed 11.16 tonne/yr load, while the CADA predicted N load was 6.6% below the 

observed 162.5 tonne/yr load. These observed loads represent a 6 year average, 
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obtained using water quality and discharge data collected by the USGS at the 

Onondaga Creek Spencer Street USGS gage between October 1, 1997 and September 

30, 2003 as part of the Onondaga County Ambient Monitoring Program (Coon & Reddy, 

2008). The USGS used these observed loads to derive EC input values, which were 

within the range provided by the national datasets (Table 1). While most watersheds will 

not have observed loads to calibrate the EC and EMC datasets, the CADA model 

remains a useful tool for estimating a range of possible NPS loads. Ranges of loads 

were also calculated, using the lowest and highest EC values from Table 1 combined 

with the 10th and 90th percentiles of EMC values (Equations 4 and 5), respectively. The 

results showed that for the lowest values scenario, we observed 59.9 tonne/year and 

3.3 tonne/year loads for N and P, respectively. The highest value scenario resulted in 

313.3 tonne/year and 108.1 tonne/year loads for N and P, respectively. These ranges 

provide bounds for minimum and maximum loading expected over different years. 

Based on the Onondaga Lake Ambient Monitoring Program, managed through the 

Onondaga County Department of Water Environment Protection, the range of loading 

values from Onondaga Creek to Onondaga Lake is 140-220 tonnes/year for nitrate and 

11-25 tonnes/year for phosphorus. We recommend using the model with a range of 

feasible input values for each pixel, varying EC and EMC (see Table 1 ranges), as well 

as varying Rv, R, n, T, and other terms in order to capture input uncertainty and provide 

an upper and lower bound for estimated NPS loads. 

Runoff indices – surface and subsurface 

The spatial distribution of the surface runoff index and subsurface runoff index 

reflect the impact of contributing areas to the CADA estimated NPS loads. Both runoff 
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indices use contributing area and as a result they generally reflect an increasing 

likelihood for runoff with proximity to the stream network; however, there are regions 

where RIsurf varies significantly from RIsub. In the urban areas, such as those in the 

northern end of the Onondaga Creek watershed, the RIsurf tended toward higher values 

(blue colored pixels, Figure 3A), while the RIsub had lower values (green and yellow 

colored pixels, Figure 3B), which captures the effect of imperviousness partitioning 

precipitation into overland flow. By contrast, rural land cover will have greater 

perviousness and partition precipitation into subsurface flow, generating relatively low 

RIsurf values (see yellow to orange color pixels in the rural southern watershed region, 

Figure 3A) and relatively high RIsub values (see green colored higher pixels in the rural 

southern watershed region, Figure 3B). The spatial differences between RIsub and RIsurf 

are also due to the RIsub calculation using soil transmissivity and watertable elevation 

data, while the RIsurf used surface elevation data. The mean RIsub value was 8.4, 50% 

higher, in natural log space, than the mean RIsurf value of 5.6. The significantly larger 

RIsub value is attributed to the much larger watershed area in pervious cover, estimated 

at 94%, and as a result the Onondaga Creek watershed RIsub values correspond with 

reported ranges for neighboring, predominantly rural, Finger Lakes region catchments 

(e.g., Anderson, Groffman, & Walter, 2015).  

Buffer indices – surface and subsurface 

The spatial distribution of surface runoff velocities (Figure 4A) and subsurface 

runoff velocities (Figure 4B) largely regulate the corresponding BIsurf and BIsub. Road 

networks have the lowest Manning n roughness values, which create a signature 

pattern of high surface velocities where roads contrast with non-road pixels (see linear 
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bands of red colored pixels in the mid to southern sections of the watershed, and 

swaths in the City of Syracuse in Figure 4A). The predicted surface velocities ranged 

from 0.0002 m/s to 1.7 m/s, with the upper limits agreeing with values expected for 

runoff over roads. The predicted subsurface velocities were two orders of magnitude 

lower than surface velocities, and correspond to residence times of days to years for 

flow through the watershed. Slope had a large influence on velocity, and in a west to 

east transect across the urban area in the north of the watershed, the surface velocities 

are at their lowest in the center of the transect corresponding to the urban floodplain 

despite a dense network of roads (see blue colored pixels bounded by red colored 

pixels in Figure 4A). By contrast, the subsurface velocities are not influenced by roads 

and are relatively low values in the northern urban area; they are highest in the mid to 

southern sections of the watershed along the steep valley walls bounding Onondaga 

Creek (Figure 4B); the valley is glacially carved and has classic U-shaped valley walls.  

The BIsurf  and BIsub values were often highest at the two geographic extremes of 

watershed ridges and valleys or floodplains (see Figures 5A and B). The ridges 

corresponded with the greatest flow path distances to the receiving waters, and hence 

relatively long travel times, while the valleys and floodplains corresponded with 

relatively flat slopes and long travel times. In addition to flow path length and slope, the 

BIsurf is also affected by the vegetative cover in the dispersal area flow path. When 

urban stormwater management involves efforts to slow down surface runoff, the 

dispersal area can be planted in higher roughness land cover types to reduce increase 

the likelihood for pollutant buffering and reduce NPS loading. In efforts to reduce 

subsurface loading, management options may include creation of higher transmissivity 
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preferential flow paths to guide runoff into treatment cells, perhaps with aeration or 

biological treatment, as envisioned by Vaux (1968) for improving aquatic conditions.  

Impacts of elevation and land cover spatial resolution 

The CADA NPS model predictions of P and N loading hotspots were highly 

sensitive to the spatial resolution of elevation and land cover. The outputs of P and N 

hotspots predicted with 0.3 m and 1 m horizontal resolution inputs captured the pattern 

of roads and houses in the 14 ha sewershed (Figure 6A and B), while the 10 m 

resolution did not capture road patterns and only weakly captured houses (Figure 6C). 

The even coarser 30 m spatial resolution inputs from NLCD are likely the most common 

resolution for land cover data, and clearly would not capture spatial patterns of the 

urban landscape missed by the 10 m data. Maps of predicted NPS loading can guide 

managers toward watershed areas in need of runoff control measures, and to capture 

the influence of urban landscape features such as roads and houses, the 1 m or finer 

resolution data are recommended for CADA simulations. The confidence in the CADA 

model predicted hotspots, defined as disproportionately high P or N loads, and their 

opposite, coldspots, can be quantified with the Getis-Ord statistic at values of 95% 

(Table 3). The Getis-Ord statistic, for both hotspots and coldspots, differentiates 

statistically significant clusters of high or low valued pixels from pixel clusters that may 

are randomly organized (Getis-Ord < 95%). The patterns of Getis-Ord hotspots and 

coldspots corresponded with the road network within the 14 ha watershed, noted in the 

simulation using 0.3 m resolution input data (Figure 6D), but less so for the 1 m and 10 

m resolution simulations (Figure 6E and F). At a 0.3 m resolution, a total of 49.7% of the 

sewershed fell within hotspots or coldspots with >95% confidence; the percentage drops 
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down to 28% and 3.8% for resolutions of 1 m and 10 m, respectively. This trend is 

explained by the coarser inputs causing a blending of otherwise distinct boundaries 

between land cover, thereby generating fewer differences in pixel P and N loading 

values. With finer input resolution, there is more opportunity for the CADA NPS model to 

confidently predict the spatial variation of P and N hotspot and coldspot clusters. 

The pixel NPS loads also changed significantly with the resolution of the CADA 

input data of elevation and land cover. The CADA predicted a maximum pixel N load of 

11.7 kg/ha/yr for the 0.3 m resolution simulation, and this maximum pixel N load 

decreased by 35% to 7.6 kg/ha/yr for the 10 m resolution simulation (Figure 7A and C). 

As elevation and land cover input resolution coarsened beyond 1 m, there was a 

reduction in maximum pixel NPS load values and a lowering of the Getis-Ord 

confidence in the hotspots, and coldspots, pixel clusters. The CADA model predictions 

of watershed NPS load, defined as the sum of all pixel NPS loads, had less sensitivity to 

the spatial resolution of elevation and land cover in the sewershed simulations. Despite 

pixel load sensitivity for CADA simulations of P, the watershed P load only varied by 

0.7% between the simulations using 0.3 and 10 m inputs. The 0.3m resolution inputs of 

elevation and land cover generated watershed P loads of 1.51 kg/yr, while the 10m 

resolution inputs generated 0.7% larger watershed P loads. Despite the sensitivity of 

maximum pixel NPS loads to input resolution, the watershed N load from the sewershed 

did not vary significantly with input resolution. The 0.3 m simulation generated a CADA 

predicted watershed N load of 16.93 kg/yr, while the 1 m and 10 m simulations 

generated watershed N loads within 1%, at 16.72 kg/yr and 16.53 kg, respectively.  



 42 

The CADA predicted pixel P and N loads (Figure 2A and D) were based on the 

RIsurf , RIsub , BIsurf, and BIsub values, which are regulated by Manning and Darcy velocity 

equations 9 and 12 and very sensitive to slope values calculated by the ArcGIS method. 

For each pixel, the CADA model calculated the slopes to each of the 8 neighboring 

pixels, and selected the steepest slope for the velocity calculations, but this may not 

necessarily be the actual flow path for runoff in urban areas where sub-grid elevation 

heterogeneity such as curbs and gutters and riffles may regulate flow slopes. In land 

cover classes designated as urban, the CADA slope calculations were constrained to a 

maximum slope of 6%, in order to ensure road slopes are within the recommended 

maximum (American Association of State Highway and Transportation, 2011), and 

runoff velocities along roads were not excessively rapid. In cases where higher slopes 

do exist, flow would likely become unsteady and depart from Manning assumptions, 

which would require alternative, perhaps hydraulic-based, estimates for velocity. 

SUMMARY & CONCLUSIONS 

This research enhanced the CADA NPS model to achieve three goals in 

watershed simulation of nutrient hotspot mapping: a) flexibility to use EC, EMC or other 

NPS loading data for N or P loads; b) representation impervious and pervious runoff 

paths in the contributing area; and c) representation of surface and subsurface buffer 

paths in the dispersal area. These updates are critical for the co-management of P and 

N, which often occur in the surface and subsurface runoff flowpaths at different 

proportions. Historically, freshwater systems have been assumed P limited, due to the 

abundance of N in freshwater via N fixing cyanobacteria (Conley et al., 2009). 

Therefore, many freshwater management efforts have focused more on P than N. 
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However, the urban biogeochemistry of complex social-infrastructure-environmental 

interactions result in elevated nutrient concentrations along accelerated flow paths with 

a high level of apparently random individual decisions affecting receiving water quality 

(Kaye et al., 2006). Nutrient loads to urban receiving waters have been shown to have 

lower N:P ratios, which results in N as the limiting nutrient to eutrophication (Howarth & 

Marino, 2006). Coastal receiving waters are N limited (Nixon, 1995), and urban and 

rural drainage with elevated N loads, from sanitary waste, agricultural runoff, and other 

sources, also accelerates eutrophication in coastal systems. The enhanced CADA NPS 

model allows for simulation of urban and rural pollutant sources from mixed land use 

watersheds, and the surface and subsurface runoff pathways connecting this pollution 

with contributing area and dispersal area processes, providing an important 

management tool for inland and coastal communities. 

The enhanced CADA NPS model provides spatial maps of the weighted EC and 

EMC hotspots and coldspots contributing to watershed nutrient loads, and allows 

managers to differentiate between interventions that reduce surface transported 

pollutants, such as particulate phosphorus, from interventions targeting subsurface 

transported pollutants, such as dissolved nitrate. While the spatial maps and provide a 

first order estimate of loading hotspots, they do not represent the uncertainty in the 

predictions and users should run CADA NPS with low and high values of EC and EMC 

inputs to simulate a range of possible NPS loads, which are more likely to capture the 

observed loading value for the pixel and the watershed (Theodore A. Endreny & Wood, 

2003). One proposed update for the CADA NPS model includes simulation of 

denitrification as a nutrient removal process, to better represent the spatial dependency 
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between organic matter, moisture, and losses of nitrate in the landscape (Sudduth, 

Perakis, & Bernhardt, 2013). Another proposed update for the CADA NPS model is to 

provide storm-based temporal variation in load estimates, allowing for managers to 

examine loading sensitivity to storm intensity, which is sensitive to climate change, and 

where rain drop splash intensity and pollutant displacement might be managed by 

vegetative cover. Each of these proposed updates would strive to keep CADA NPS a 

parsimonious first order model that uses available datasets, and facilitates its use in 

many watershed projects evaluating how changes in land cover might affect the 

distribution of nutrients in the landscape and loads to receiving waters. 

ACKNOWLEDGMENTS 

This research was supported by two agreements with the USDA Forest Service 

including a Research Joint Venture, 11-JV-11242308-112, and a Challenge Cost Share 

agreement 11-DG-11132544-340 recommended by the National Urban and Community 

Forest Advisory Council. The SUNY ESF Department of Environmental Resources 

Engineering provided computing facilities and logistical support. Thank you also to 

JAWRA Editor Susan Scalia for her support and guidance in the completion of this 

paper. 

LITERATURE CITED 

American Association of State Highway and Transportation. (2011). A Policy on 

Geometric Design of Highways and Streets, 2011. AASHTO. 

Anderson, T. R., Groffman, P. M., & Walter, M. T. (2015). Using a soil topographic index 

to distribute denitrification fluxes across a northeastern headwater catchment. 

Journal of Hydrology, 522, 123–134. http://doi.org/10.1016/j.jhydrol.2014.12.043 



 45 

Bettez, N. D., & Groffman, P. M. (2012). Denitrification Potential in Stormwater Control 

Structures and Natural Riparian Zones in an Urban Landscape. Environmental 

Science & Technology, 46(20), 10909–10917. http://doi.org/10.1021/es301409z 

Beven, K. J., & M. J. Kirkby. (1979). A physically based, variable contributing area 

model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. 

http://doi.org/10.1080/02626667909491834 

Borah, D. K., & Bera, M. (2004). Watershed-scale hydrologic and nonpoint-source 

pollution models: review of applications. Trans. ASAE, 47, 789–803. 

Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, 

V. H. (1998). NONPOINT POLLUTION OF SURFACE WATERS WITH 

PHOSPHORUS AND NITROGEN. Ecological Applications, 8(3), 559–568. 

http://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2 

Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. 

E., … Likens, G. E. (2009). Controlling Eutrophication: Nitrogen and Phosphorus. 

Science, 323(5917), 1014–1015. http://doi.org/10.1126/science.1167755 

Coon, W. F., & Reddy, J. E. (2008). Hydrologic and water-quality characterization and 

modeling of the Onondaga Lake Basin, Onondaga County, New York. US 

Geological Survey. 

Donigian, A. S., Jr., Bicknell, B. R., & Imhoff, J. C. (1995). Hydrological Simulation 

Program - Fortran (HSPF)., 395–442. 

Douglas-Mankin, K. R., Srinivasan, R., & Arnold, J. G. (2010). SOIL AND WATER 

ASSESSMENT TOOL (SWAT) MODEL: CURRENT DEVELOPMENTS AND 

APPLICATIONS. Transactions of the ASABE, 53(5), 1423–1431. 



 46 

Endreny, T. A., & Wood, E. F. (1999). Distributed Watershed Modeling of Design 

Storms to Identify Nonpoint Source Loading Areas. Journal of Environment 

Quality, 28(2), 388. http://doi.org/10.2134/jeq1999.00472425002800020004x 

Endreny, T. A., & Wood, E. F. (2003). Watershed Weighting of Export Coefficients to 

Map Critical Phosphorous Loading Areas1. JAWRA Journal of the American 

Water Resources Association, 39(1), 165–181. http://doi.org/10.1111/j.1752-

1688.2003.tb01569.x 

Engman, E. (1986). Roughness Coefficients for Routing Surface Runoff. Journal of 

Irrigation and Drainage Engineering, 112(1), 39–53. 

http://doi.org/10.1061/(ASCE)0733-9437(1986)112:1(39) 

Fisher, P., Abrahart, R. J., & Herbinger, W. (1997). The Sensitivity of Two Distributed 

Non-Point Source Pollution Models to the Spatial Arrangement of the Landscape. 

Hydrological Processes, 11(3), 241–252. http://doi.org/10.1002/(SICI)1099-

1085(19970315)11:3<241::AID-HYP438>3.0.CO;2-T 

Howarth, R. W., & Marino, R. (2006). Nitrogen as the limiting nutrient for eutrophication 

in coastal marine ecosystems: Evolving views over three decades. Limnology 

and Oceanography, 51(1_part_2), 364–376. 

http://doi.org/10.4319/lo.2006.51.1_part_2.0364 

Huber, W. C. (1995). EPA Storm Water Management Model - SWMM., 783–808. 

Kaushal, S. S., Groffman, P. M., Band, L. E., Elliott, E. M., Shields, C. A., & Kendall, C. 

(2011). Tracking Nonpoint Source Nitrogen Pollution in Human-Impacted 

Watersheds. Environmental Science & Technology, 45(19), 8225–8232. 

http://doi.org/10.1021/es200779e 



 47 

Kaye, J. P., Groffman, P. M., Grimm, N. B., Baker, L. A., & Pouyat, R. V. (2006). A 

distinct urban biogeochemistry? Trends in Ecology & Evolution, 21(4), 192–199. 

http://doi.org/10.1016/j.tree.2005.12.006 

Lewis, W. M., Wurtsbaugh, W. A., & Paerl, H. W. (2011). Rationale for Control of 

Anthropogenic Nitrogen and Phosphorus to Reduce Eutrophication of Inland 

Waters. Environmental Science & Technology, 45(24), 10300–10305. 

http://doi.org/10.1021/es202401p 

Modeling Phosphorus Loading and Lake Response Under Uncertainty: A Manual and 

Compilation of Export Coefficients | US EPA. (1980). 

Nixon, S. W. (1995). Coastal marine eutrophication: A definition, social causes, and 

future concerns. Ophelia, 41(1), 199–219. 

http://doi.org/10.1080/00785236.1995.10422044 

Reckhow, K. H., & Simpson, J. T. (1980). A Procedure Using Modeling and Error 

Analysis for the Prediction of Lake Phosphorus Concentration from Land Use 

Information. Canadian Journal of Fisheries and Aquatic Sciences, 37(9), 1439–

1448. http://doi.org/10.1139/f80-184 

Schueler, T. R. (1987). Controlling Urban Runoff: A Practical Manual for Planning and 

Designing Urban BMPs. Metropolitan Washington Council of Governments. 

Sivapalan, M., Beven, K., & Wood, E. F. (1987). On hydrologic similarity: 2. A scaled 

model of storm runoff production. Water Resources Research, 23(12), 2266–

2278. http://doi.org/10.1029/WR023i012p02266 



 48 

Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: where do we go from 

here? Trends in Ecology & Evolution, 24(4), 201–207. 

http://doi.org/10.1016/j.tree.2008.11.009 

Sudduth, E. B., Perakis, S. S., & Bernhardt, E. S. (2013). Nitrate in watersheds: Straight 

from soils to streams? Journal of Geophysical Research: Biogeosciences, 

118(1), 291–302. http://doi.org/10.1002/jgrg.20030 

Tague, C. L., & Band, L. E. (2004). RHESSys: Regional Hydro-Ecologic Simulation 

System--An Object-Oriented Approach to Spatially Distributed Modeling of 

Carbon, Water, and Nutrient Cycling. Earth Interactions, 8(1), 1–42. 

U.S. Environmental Protection Agency, W., DC. (1983). Results of the Nationwide 

Urban Runoff Program: Volume 1 - Final Report. Water Planning Division. 

Vaux, W. G. (1968). Intergravel Flow and Interchange of Water in a Streambed. Fishery 

Bulletin, 66(3), 479–489. 

Wang, J., Endreny, T. A., & Nowak, D. J. (2008). Mechanistic Simulation of Tree Effects 

in an Urban Water Balance Model1. JAWRA Journal of the American Water 

Resources Association, 44(1), 75–85. http://doi.org/10.1111/j.1752-

1688.2007.00139.x 

Wurbs, R. A., & James, W. P. (2002). Water Resources Engineering (1st ed.). Prentice 

Hall. 

Young, R. A., Onstad, C. A., Bosch, D. D., & Anderson, W. P. (1989). AGNPS: A 

nonpoint-source pollution model for evaluating agricultural watersheds. Journal of 

Soil and Water Conservation, 44(2), 168–173. 



 49 

Zhang, T., Soranno, P. A., Cheruvelil, K. S., Kramer, D. B., Bremigan, M. T., & 

Ligmann-Zielinska, A. (2012). Evaluating the effects of upstream lakes and 

wetlands on lake phosphorus concentrations using a spatially-explicit model. 

Landscape Ecology, 27(7), 1015–1030. http://doi.org/10.1007/s10980-012-9762-

z 

  

  



 50 

TABLES 

Table 1: Export coefficients for land uses 

NLCD 

Class 

Land Use Description Area 

(ha) 

Locally 

derived EC 

value – TP 

(kg/ha/yr) 

Locally 

derived EC 

value – 

Nitrate 

(kg/ha/yr) 

EC TP 

range 

(kg/ha/yr) 

EC 

Nitrate 

range 

(kg/ha/yr) 

11 Open Water 86 0.00 0.00 ---- ---- 

21 
Developed, Open 
Space 1876 0.86 1.79 

 
---- 

 
---- 

22 
Developed, Low 
Intensity 1626 0.54 2.35 

 
---- 

 
---- 

23 
Developed, Medium 
Intensity 1251 0.54 2.35 

 
---- 

 
---- 

24 
Developed, High 
Intensity 513 1.15 4.93 

 
---- 

 
---- 

31 
Barren 
Land(Rock/Sand/Clay) 66 0.86 1.79 

.19 – 6.23 .49 – 3.0 

41 Deciduous Forest 9132 0.10 3.70 .019 - .830 .59 – 4.6 
42 Evergreen Forest 312 0.10 3.70 .019 - .830 .59 – 4.6 
43 Mixed Forest 728 0.10 3.70 .019 - .830 .59 – 4.6 
52 Shrub/Scrub 2798 0.10 3.70 .019 - .830 .59 – 4.6 
71 Grassland/Herbaceous 183 0.10 3.70 .019 - .830 .59 – 4.6 
81 Pasture/Hay 6163 0.28 6.50 .14 - 4.90 4.6 – 20.4 
82 Cultivated Crops 3185 2.37 12.44 .10 - 18.6 4.6 – 20.4 
90 Woody Wetlands 1835 0.05 0.34 .05 - .21 ---- 

95 
Emergent Herbaceous 
Wetlands 83 0.05 0.34 

 
.05 - .21 

 
---- 
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Table 2: Median event mean concentrations for urban land uses (U.S. 

Environmental Protection Agency, 1983) 

Pollutant Units Residential Mixed Commercial Open/Non-
Urban 

BOD mg/l 10 7.8 9.3 -- 
COD mg/l 73 65 57 40 
TSS mg/l 101 67 69 70 
Total Lead μg/l 144 114 104 30 
Total Copper μg/l 33 27 29 -- 
Total Zinc μg/l 135 154 226 195 
Total Kjeldahl 
Nitrogen 

μg/l 1900 1288 1179 965 

Nitrate + 
Nitrite 

μg/l 736 558 572 543 

Total 
Phosphorus 

μg/l 383 263 201 121 

Soluble 
Phosphorus 

μg/l 143 56 80 26 

 

Table 3: Percentage of sewershed falling in hotspots and coldspots above 95% 

confidence 

  Percent in 95-99% Coldspot Percent in 95-99% Hotspot 

Resolution Nitrate TP Nitrate TP 

0.3m 29.4% 4.4% 20.3% 2.2% 
1m 14.8% 0.2% 13.2% 1.8% 

10m 0.0% 0.0% 3.8% 1.3% 
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FIGURES 

 

Figure 1: Site map for Onondaga Creek watershed at Spencer St. 
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Figure 2: Demonstration of EC&EMC, EC, and EMC for TP (a-c) and nitrate (d-f) 

loads 
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Figure 3: Surface (a) and subsurface (b) runoff indices and percentage of surface 

runoff (c) 

 

Figure 4: Surface(a) and subsurface velocities (b) 
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Figure 5: Surface (a) and subsurface (b) buffering indices 

 

Figure 6: TP Sensitivity and Getis-Ord* Hotspot Analysis 
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Figure 7: Nitrate Sensitivity and Getis-Ord* Hotspot Analysis 
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CHAPTER 3: USING WEATHER DATA TO REPRESENT ANNUAL VARIABILITY IN 

NUTRIENT LOADING USING THE PRECIPITATION-ENHANCED EXPORT 

COEFFICIENT (EC-PRECIP) MODEL 

ABSTRACT: Watershed models often estimate annual nitrogen (N) or phosphorus (P) 

pollutant loads in rural areas with export coefficients (EC) (kg/ha/yr) values based on 

land cover, and is independent of changing weather and runoff conditions. Actual N and 

P nonpoint source (NPS) pollutant loading varies significantly seasonally and annually, 

yet simple models (e.g., EC model) have not been enhanced to reflect temporal loading 

variation. This research develops an EC-PRECIP model to simulate how the addition of 

rainfall intensity to the scoping level EC modeling framework can improve predictive 

capabilities. The model uses widely available daily precipitation data to reflect trends in 

rainfall intensity. Ranges of EC values generated for watershed-scale areas in the 

United States are coupled with rainfall intensities to reflect the higher NPS loading 

potential associated with more extreme precipitation events. The research illustrates 

how the EC modeling framework can be modified to be sensitive to the temporal 

influence of weather, and tests the innovative EC-PRECIP modeling framework against 

observed P loading into Onondaga Lake in Syracuse, New York. The model provides 

managers with a tool to rapidly predict how NPS loading values may change with 

increasingly intense rainfall events resulting from a changing climate. 

KEY TERMS: nonpoint source pollution, watershed management, nutrients, runoff, 

rainfall intensity 
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INTRODUCTION 

Nonpoint source (NPS) pollution is a pervasive problem across the United 

States, delivering excess nitrogen (N), phosphorus (P), and sediment to rivers, lakes, 

and estuaries. The U.S. Environmental Protection Agency lists that nutrients and 

sediment impair 6,908 and 6,165 water bodies, respectively (USEPA, 2012). To 

address this impairment and improve aquatic ecosystem health, watershed 

management programs often seek to model nutrient and sediment loading to receiving 

waters by using models. These models range widely in complexity. Due to the 

widespread nature and vast magnitude of impaired streams and water bodies, simple 

analyses of nutrient and sediment loading are justified to evaluate numerous areas of 

impairment, even where more complex simulation models are available (Lin, 2004). 

First order model approaches allow for rapid evaluation of potential areas of poor water 

quality, to identify locations where more complex models are warranted. 

The EC model is a widely-used comparative tool to evaluate nutrient loading 

patterns in landscapes around the world, and is beneficial due to its simplicity. 

Managers, however, have thus far been limited to export coefficient data that is either 

far too general (e.g. representative of their region), or is too location-specific and, 

therefore, requires expensive and time-intensive sampling efforts. Ideally, this model 

could be used nationally, given the availability of export coefficient data ranges for 

ecoregions across the United States. EC values are reported as a load per area per 

time (e.g., kg/ha/yr), and are specific to certain land uses for a site; a map of standard 

EC values for each site would be homogeneous for each land cover type.  
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Annual variation in water quality and nutrient loading can be attributed to many 

factors. Land use and land cover changes contribute to differences in nutrient loading 

and has been incorporated into many modeling frameworks (Johnes, 1996). Rainfall 

erosivity has also been used as a driver for nutrient loading to receiving waters (Haith & 

Shoenaker, 1987). Phosphorus loading in streams is a function of water quality and 

streamflow; water quality has been shown to correlate strongly with land use, and 

streamflow is strongly related to precipitation (Robertson, Saad, Christiansen, & Lorenz, 

2016). The EC model addresses land use variation by simulating annual loads of N, P, 

and sediment in a watershed given its proportional land cover classification (Reckhow, 

Beaulac, & Simpson, 1980; Reckhow & Simpson, 1980). However, the traditional EC 

model fails to represent changing streamflow conditions. 

 The availability of site-specific EC data is sparse; available nutrient loading 

values have been compiled (Lin, 2004), revealing that comprehensive EC selection 

guidance is lacking. ECs are typically developed from small watershed monitoring data, 

making field-based approaches impractical for wide-scale availability of export 

coefficient data. In order to mitigate this problem, a large dataset of EC values for all 

HUC8 hydrologic units across the United States (White et al., 2015) was developed. 

HUC8s are the geographic areas classified as representing a distinct hydrologic feature, 

of which there are 2264 in the U.S.; these are sometimes called “watersheds” although 

they may actually represent truncated versions of watersheds (Seaber, Kapinos, & 

Knapp, 1987). Simulations were run using the Soil Water Assessment Tool (SWAT) 

model (Douglas-Mankin, Srinivasan, & Arnold, 2010). White et al. (2015) used SWAT 

simulations to develop export coefficients that reflect the climate, topography, soils, 
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weather, land use, management, and conservation implementation conditions, which 

are unique to each HUC8, to provide more accurate EC estimates at the national scale. 

The 45 million simulations run in SWAT as part of the White et al. (2015) study provide 

ranges in values for locations across the United States, and have been validated by 

small-scale edge-of-field estimates generated by previous field studies. The EC 

database of White et al. (2015) contains average annual values simulated for randomly 

generated five-year periods from 1965 to 2004. 

The EC model has been modified to allow for spatial variation in loading across 

homogeneous land uses. The actual export of load for each area, or pixel, is 

hypothesized to vary as a function of the relative contributing area and dispersal area 

(CADA) of the pixel, due to variation in runoff and buffering likelihood (Endreny & Wood, 

2003; Stephan & Endreny, 2016). The CADA weighting of EC values is constrained 

such that variation is distributed about the original unweighted EC values so the sum of 

EC values for the watershed is not changed. The CADA EC model allows for mapping 

the areas of concern, identifying hotspots for potential pollutant loading and thereby 

identifying priorities for best management practices that can reduce pollutant loading.   

The limit of the EC and CADA-weighted approaches proves to be the lack of annually-

varying EC data. 

Temporal variation in nutrient loading in catchments of interests has been 

demonstrated both seasonally and annually through modification of the EC model (e.g., 

Hanrahan, Gledhill, House, & Worsfold, 2001) However, this prior research relies on 

catchment-specific monitoring, such as flow data or historic nutrient loading data, to 

develop temporal nutrient loading models. To evaluate seasonal variation in nutrient 
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loading in the Frome catchment, Hanrahan et al. [2001] weighted each export 

coefficient by the total discharge and baseflow discharge of water from the catchment 

during each month. Although flow data is less costly and more commonly available than 

water quality data, requiring these inputs limits the accessibility of the EC modeling 

framework to watershed managers and planners. Due to the proven relationship 

between streamflow and precipitation (Robertson et al., 2016), precipitation data can be 

utilized as a stand-in for watershed-specific stream discharge data, as precipitation is 

more widely available than consistent runoff data. Although antecedent moisture 

conditions influence whether precipitation is infiltrated or runs off, precipitation is easily 

obtained and measured at high spatial and temporal resolutions across the world. High 

rainfall intensity and the associated hydrologic responses have been shown to 

significantly increase nutrient losses due to larger runoff volumes (Kleinman et al., 

2006). 

 This article presents the EC-PRECIP model, an update to the traditional EC 

model, which incorporates precipitation data to account for the effects of changing 

streamflow. We hypothesize that more extreme daily precipitation events will 

correspond to higher nutrient loading potential, and test our model with observed annual 

loading data. The EC-PRECIP model simulates annual variability in phosphorus loading 

to receiving water bodies, and uses Onondaga Creek watershed in Syracuse, New York 

as a case study. Modeled nutrient loading values are compared to observations in the 

Onondaga Creek watershed in Syracuse, NY, and common watershed model validation 

metrics are used to compare the EC model with the updated EC-PRECIP model 

developed through this research. The model’s response to changing a significant input 



 62 

parameter is also tested. The goal of this research is to 1) develop a method that 

represents the influence of weather on non-point source pollution watershed models 

and 2) to assess the performance of the EC-PRECIP model in a watershed in Syracuse, 

New York. The science question addressed by this research is whether daily 

precipitation frequency analysis can be used to temporally weight annual EC values and 

thereby simulate the observed inter-annual variation in loading. 

METHODS 

Study Site 

The study site is a watershed that drains to Onondaga Lake, a central New York 

lake with long-term water quality records. Onondaga Lake lies within the Seneca HUC8, 

04140201. The watershed draining to Onondaga Lake is delineated from Onondaga 

Creek at Spencer Street (USGS gage 02420010, located at 43°03’27”, -76°09’45”). The 

watershed drains south to north, with headwaters in the Appalachian Plateau reaching 

an elevation of 587 m, with its outlet in the City of Syracuse at an elevation of 110 m. 

The watershed has an area of 298 km2; based on the National Land Cover Database 

(NLCD), 53 km2 of which is classified as developed (NLCD 21, 22, 23, or 24), 109 km2 

of which is forested (NLCD 41, 42, or 43), and 100 km2 of which is agricultural (NLCD 

81 and 82). The remaining 33 km2 of watershed area are classified as open water 

(NLCD 11), barren land (NLCD 31), shrub/scrub (NLCD 52), and grassland/herbaceous 

(NLCD 71). The annual average precipitation for Syracuse, NY is 96.5 cm depth, with 

an average annual liquid equivalent snowfall of 32 cm and an average monthly total 

precipitation ranging between 8.1 and 10.4 cm. From 1980 to 2014, the minimum 

annual precipitation was 78.6 cm (1999) and the maximum was 125.9 cm (1990). The 
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average annual air temperature is 9.1°C with a February average low of -8.3°C and July 

average high of 27.8°C. Flow in Onondaga Creek is regulated by an earthen dam near 

the northern edge of Onondaga Nation land, designed to allow non-flood flows to pass 

at grade with the channel bed through a 2 m diameter concrete culvert. Syracuse 

climatic data shows that the highest average monthly rainfall occurs in July, and the 

lowest in February (“NRCC US Comparative Climatic Data,” n.d.). 

In 1998, Onondaga County implemented the Ambient Monitoring Program (AMP) 

to evaluate the quality of waterways and track changes brought about by improvements 

in a) wastewater collection and treatment infrastructure and b) reductions in watershed 

sources of nutrients. Onondaga County has also developed the Save the Rain Program, 

which has been in effect since 2010. This program has developed a comprehensive 

network of grey and green infrastructure solutions to manage stormwater runoff to help 

protect Onondaga Lake and its tributaries. Nutrient data have been collected biweekly 

from 1998 to present, and are published annually in an Onondaga Lake Ambient 

Monitoring Program report. In this study, we use the data collected at the Onondaga 

Creek sampling site closest to Onondaga Lake.  

Model Structure 

EC-PRECIP is structured to consider higher daily precipitation values as being 

more significant, and therefore have a larger impact on total annual nutrient loads. We 

assume that the exceedance probability of daily rainfall events corresponds to the set of 

EC probability distributions developed by White et al. [2015]. The EC-PRECIP model 

uses publicly available weather, pollutant load, and land cover (NLCD) data to 1) 

calculate a daily precipitation cumulative distribution function based on a long-term 
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precipitation record, 2) assign an exceedance probability to each significant precipitation 

event in the desired year, 3) associate an export coefficient value with each exceedance 

probability, and 4) produce the mean export coefficient value to represent the annual 

pollutant load. The model sets a threshold precipitation depth Th to represent the daily 

amount required to catalyze pollutant movement to the outlet. For phosphorus delivery, 

Th is set to 2.54 cm to reflect the 90th percentile storm in accordance with the water 

quality design criteria for New York State (“New York State Stormwater Management 

Design Manual,” 2015). 

A long term daily rainfall record is used to create an exceedance probability 

distribution for all precipitation values greater than Th. In the case of our study, we used 

daily precipitation records from 1980 to 2014 taken at the Syracuse Hancock 

International Airport. PPr[X] represents the probability of exceeding a daily precipitation 

of X. The data developed by White et al. [2015] is used to create another probability 

distribution, PEC, where PEC[y] represents the exceedance probability of the EC value y 

for a given year.  In the simulated year, exceedance probabilities of daily precipitation 

events over Th are calculated using the distribution PPr. For n daily precipitation events 

exceeding Th over the year, the associated export coefficient for PPr[Pi] is calculated 

using the quantile function, returning the ECi value such that: 

u{o $\% ∶= ){o } ≤ $\% = )�D[)%]      1 

Note that each land use type has an EC value for each of the n events within the 

year. For each of the n rainfall events over the study year, a representative “annual EC” 
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value is calculated by taking the FEC value for each land use j and weighting it by the 

proportion of the study area within that land use: 

$\3qq = $\Y×)Y
Ç
Y+,         2 

where Pj is the proportion of the watershed in land use j, and k represents the total 

number of land uses within the study area. This representative ECann value is calculated 

for each of the n events, so that an average EC value, ECavg, over that year can be 

calculated: 

 $\3?@ =
( $\3qq)

q
%

É        3  

where ECavg is the representative EC for the year, based on the n event-based EC 

values. 

 A delivery ratio D is established to distinguish pollutants moving through the 

system from those culminating at the receiving water body, as the HUC8-specific export 

coefficient data represents an “edge-of-field” estimate of pollutant delivery to receiving 

waters. Sediment delivery ratio data (Chinnasamy et al., undated) has been compiled 

for HUC8 watersheds in major United States basins and was used to identify D as 0.36 

for this simulation. Because particulate phosphorus sorbs to sediment, the sediment 

delivery ratio can be used to approximate phosphorus. Equation 4 converts ECavg,i to 

annual load to the outlet. 

 $\3qq = $\3?@×Ñ×' + )9        4  
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where ECann is the annual load to the outlet, A is the area of the watershed, and PS is 

the sum of the point source contribution to pollutant load.  

 Combined sewer overflows (CSOs) contribute a point source load of phosphorus 

to Onondaga Lake, and thus must be accounted for in equation 4. The New York State 

Department of Environmental Conservation (NYSDEC) modeled the Onondaga Lake 

watershed, and determined that the annual average delivered total phosphorus load to 

Onondaga Lake was 2.94 metric tons for land within CSO areas (NYSDEC, 2012). 

Average annual point source loads into Onondaga Creek were estimated to be 73.4% of 

the total average delivered load into Onondaga Lake, which is the percent of Onondaga 

Lake CSO areas within the Onondaga Creek watershed. Through this calculation, we 

can assume an average annual point source phosphorus load of 2.16 metric tons. 

Model performance evaluation metrics 

Standard methods for watershed model validation are used to assess model 

outputs (Moriasi et al., 2007). The Nash-Sutcliffe efficiency (NSE) determines the 

magnitude of residual variance compared to the measured data variance. NSE ranges 

from negative infinity to 1.0, with NSE=1 reflecting a perfectly accurate model. An NSE 

equal to or less than 0 indicates that the mean observed value of the data is a better 

predictor than the modeled value. Percent bias (PBIAS) measures the tendency of 

modeled data to be larger or smaller than observed counterparts. PBIAS can be positive 

or negative, reflecting a model underestimation bias and a model overestimation bias, 

respectively. Lower magnitudes of PBIAS values indicate accurate model simulation. 

The root mean square error (RMSE) is a commonly used error index; however, the 

magnitude of the value is not normalized to the standard deviation of the dataset, which 
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prevents application to various constituents. The RMSE-observation standard deviation 

ratio (RSR) has been proposed to alleviate the shortcoming of the RMSE, and 

normalizes the RMSE by the standard deviation of observed values. RSR ranges from 

the optimal value of 0 to a large positive value. Model sensitivity to changing T was 

explored by increasing T by 10%, 25%, and 50% (2.79 cm, 3.18 cm, and 3.81 cm) and 

decreasing T by 10%, 25%, and 50% (2.29 cm, 1.91 cm, and 1.27 cm). 

RESULTS 

Modeled vs. observed phosphorus loading 

The EC-PRECIP model provides accurate first-order estimates of observed total 

phosphorus loading to Onondaga Lake via the Onondaga Creek watershed. The model 

predicts observed phosphorus loading to Onondaga Lake accurately; the trend lines 

indicates that the modeled values are representing the observed values (Figure 8). 

Figure 9 reflects the EC-PRECIP model prediction of annual phosphorus loading over 

time, demonstrating that the model accurately phosphorus loading and follows the trend 

of the observed data, providing guidance as to which years are likely problematic for 

phosphorus loading likelihood. 

Model performance 

The EC-PRECIP model successfully predicted phosphorus loading to Onondaga 

Lake via the Onondaga Creek watershed. The predictive capacity of the model was 

tested to assess model performance. Using the watershed model performance metrics 

provided by Moriasi et al. (2007), our EC-PRECIP model surpasses the predictive 

power of the traditional EC model. The metrics achieved by each model for the 

Onondaga Creek watershed are found in Table 4. 
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To compare the EC and EC-PRECIP models, the EC value was calculated using 

the median EC for each land use in HUC 04140201. Using the updates provided in the 

EC-PRECIP model, the NSE, PBIAS, and RSR all improved significantly from the EC 

model. 

Model sensitivity 

Adjusting the threshold Th significantly alters the model performance and reveals 

information about the complex nonlinear nature of the model. NSE decreases to below 

an acceptable level when Th is adjusted to 3.18 cm. Because the model disregards 

events below Th, setting Th higher results in fewer events considered for that year. 

Similarly, setting Th too low would result in too many events being considered, and 

perhaps resulting in a lack of differentiation between years. Table 5 shows that setting 

Th at 1.91 cm, 2.29 cm, or 2.79 cm all result in satisfactory NSE values, suggesting that 

the model operates effectively using many Th values to represent phosphorus delivery 

to the Onondaga Creek watershed outlet. However, 2.54 yields the greatest NSE value, 

and thus we proceed with analysis using Th of 2.54 cm. 

DISCUSSION 

Modeled vs. observed phosphorus loading 

The observed phosphorus loading to Onondaga Lake via Onondaga Creek 

ranges from 6.8 metric tons in 2012 to 25 metric tons in 2010. Sampling occurs 

biweekly at many locations along tributaries within the Onondaga Lake watershed. 

Concentrations obtains from water quality sampling are coupled with flow data to 

produce annual loading estimates, to assess the state of water quality over time in 

Onondaga Lake and its tributaries. 
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The number of events each year totaling greater than 2.54 cm of precipitation 

daily ranged from one to ten over the 35-year simulation period. Taking a subset of this 

data between 1998 and 2013 (the years for which phosphorus loading data is available 

at Onondaga Creek), the frequency of phosphorus-triggering events (precipitation 

values above Th) ranges from three to ten events (Figure 10). Of the 172 daily 

precipitation events from 1980 to 2014 in Syracuse that exceeded 2.54 cm, the majority 

occurred in October, and the fewest occurred in February (Figure 11). Because 

February has the lowest average monthly precipitation (“NRCC US Comparative 

Climatic Data,” n.d.), we expect to see the fewest events exceeding 2.54 cm over the 

study period. Although July has the highest daily average rainfall, October showed a 

higher frequency of extreme precipitation events over our course of study. This 

suggests that July storms are flashier and produce higher rainfall amounts, but are also 

less frequent.  

Because the EC-PRECIP model scales rainfall events based on their magnitude, 

the extremeness of those events is weighted based on the number of events occurring 

within that month or year. Therefore, years that experience the same number of events 

will show different modeled phosphorus loads based on differences in event magnitude. 

Figure 10 shows that the years 2012 and 2013 both experienced three events 

exceeding the Th of 2.54 cm. However, the observed loading value for 2013 (15.5 Mt) is 

greater than twice that of 2012 (6.8 Mt). The magnitudes of precipitation events in 2013, 

then, are greater than those of 2012, and therefore are associated with higher export 

coefficient values. The time-series plot in Figure 9 demonstrates that the EC-PRECIP 
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model reflects this difference, and predicts the years’ phosphorus load values differently 

to match well with observations. 

Our point source estimate of CSO discharges presents a limitation to the model, 

in that not all CSO outlets within the Onondaga Lake watershed are monitored. 

Therefore, we used an estimate of total CSO phosphorus delivery and scaled it based 

on the proportion of CSOs in the Onondaga Creek watershed. Other factors may be 

more relevant study areas, including population density, volumes and concentrations of 

wastewater, and the likelihood for CSO discharges based on rainfall intensity. Our PS 

estimate in equation 4 is a lump sum, with the same estimated value for each year. In 

the future, the CSO loading could also be dependent on extreme rainfall events, since 

large precipitation events can trigger CSO overflows. A 2015 EPA rule requires the 

electronic publication of National Pollutant Discharge Elimination System (NPDES) 

permits for regulated facilities, and these reports may also be used to understand the 

magnitudes of allowable pollutant loading into receiving waters from various sources.    

Model performance 

The EC model performance is significantly worse than that of the EC-PRECIP 

model, with the addition of weather data as a driver providing greater accuracy to the 

EC modeling framework. The negative NSE calculated for the EC model indicates that 

using the mean value of the observed data would provide a more accurate result than 

using modeled nutrient loads. An NSE value of 0.636, conversely, represents a 

satisfactory fit for a parsimonious model utilizing national datasets. The PBIAS value is 

decreased by nearly 38% with the addition of temporal variation provided by the EC-

PRECIP model, and the RSR decreases by 1. 
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A compilation of model evaluation of watershed simulations (Moriasi et al., 2007) 

suggests that satisfactory watershed models have NSE values above 0.75, PBIAS 

values below 25%, and RSR values below 0.70. Our PBIAS and RSR values meet 

these criteria, but our NSE value is slightly less than the satisfactory threshold. The 

models compiled for these metrics, however, are complex in nature, with many input 

parameters and oftentimes complex calibrate routines (e.g., SWAT). The EC-PRECIP 

model is meant to occupy the space between the widely-used traditional EC model and 

the calibrated, highly-parameterized watershed simulation models such as SWAT. 

Although the Onondaga Creek watershed application of the EC-PRECIP model does 

not meet the standards of a satisfactory watershed simulation model as set forth by 

Moriasi (2007), the EC-PRECIP model demonstrates a significant improvement in 

predictive capacity over the traditional EC model. The incorporation of precipitation as a 

new input to drive nutrient delivery progresses the first-order EC model framework, 

while allowing for national model utilization with minimal additional inputs. 

Model sensitivity to Th parameter 

Increasing Th also reduces the number of events considered significant in each 

simulated year, creating a wider range of resulting annual load values. This is reflected 

in Table 5; the range of annual load values calculated increases dramatically when Th is 

set to 3.81 cm. As the number of influential events decreases, their relative importance 

increases, and fewer precipitation events are modeled to represent an entire year. In 

the case of setting T as high as 3.81 cm, in 2003 and 2012, the daily precipitation did 

not exceed Th, and therefore no annual load value could be calculated. Conversely, 

setting Th to a low value (1.27 cm) reduces the range of loading values, since the 
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higher number of influential precipitation events in each year mutes the effects of the 

extreme precipitation events within that year. The range in observed phosphorus 

loading values for the Onondaga Creek watershed during the study simulation period is 

18.2, suggesting that setting Th at 2.54 cm is appropriate.  

The PBIAS metric also increases as Th increases, due to the increasing 

importance of single events as the threshold is raised. The lowest Th value, 1.27 cm, 

results in the lowest PBIAS, due to the muted response for each single precipitation 

event during that year. However, the low PBIAS must be taken in context, and the low 

NSE fit reflects the poor capacity of the model given a Th value of 1.27 cm. 

CONCLUSIONS 

The EC-PRECIP model has proven effective as a scoping level tool in the 

Onondaga Creek watershed in Syracuse, New York. Comparing the updated EC-

PRECIP model to the traditional EC model, NSE, PBIAS, and RSR all improved 

significantly. Since the EC model has been endorsed by the USEPA as an accurate 

watershed modeling framework, the EC-PRECIP model is the next step in providing 

better water quality estimates without increasing data or sampling requirements. 

The EC model is widely accepted as a scoping model when monitoring data is 

not feasible or is unavailable. The EC-PRECIP update moves closer to a 

comprehensive method for determining inter-annual nutrient loading variations, and 

brings widely available precipitation data together with typical nutrient loading values to 

produce a range of likely annual loads. The use of national data in this model is novel 

due to the ease of use and high level of accuracy evidenced in its application to 
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Onondaga Creek watershed. The EC-PRECIP model fills a niche for simple models that 

take advantage of the large amount of weather, land use, and soils data being collected 

by governmental organizations such as the United States Geological Survey, the 

National Oceanic and Atmospheric Administration, and the Natural Resources 

Conservation Service. 

The EC-PRECIP model represents a critical step in modifying the commonly-

used EC modeling framework to allow for the influence of weather, specifically rainfall 

intensity, on nutrient loading in watershed across the United States. Since the EC-

PRECIP model uses rainfall events as a proxy for runoff, the model will be most 

effective in environments with relatively high water tables, where runoff is generated 

quickly following a precipitation event. Extreme precipitation events create Hortonian 

flow, or infiltration excess overland flow, where precipitation rate exceeds the infiltration 

capacity of the soil. The study area in Syracuse, NY, represents an area of high 

precipitation magnitudes and rainfall events. In order to truly determine the 

effectiveness of the model in other types of environments, further studies must occur 

which explore the accuracy of modeling efforts using EC-PRECIP. 

Currently, our society has access to more environmental data than ever before. 

Traditionally, watershed models have been limited in their use to those with the 

resources to undertake extensive soil and water quality sampling for accurate 

environmental monitoring data. With the recent availability of new data, researchers are 

developing methods of combining these data in unique ways to predict environmental 

impacts of land use conversion and climate change. A prime example of this type of 
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management tool, i-Tree (itreetools.org), would benefit from incorporation of the EC-

PRECIP model into its collection of first-order tools. 
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TABLES 

Table 4: Comparison of model performance evaluation metrics for the export 

coefficient (EC) and EC-PRECIP models using the Onondaga Lake loading 

dataset from 1998-2013. 

Metric EC-PRECIP model EC model 

NSE 0.636 -1.739 

PBIAS 2.64% 40.6% 

RSR 0.60 1.655 

 

Table 5: Response of EC-PRECIP model to variation in T parameter. The default T 

value of 2.54 cm is adjusted +/-10%, +/-25%, and +/-50%, and resulting model 

performance metrics are shown below. 

T (cm) 1.27 1.91 2.29 2.54 2.79 3.18 3.81 

NSE 0.035 0.591 0.496 0.636 0.400 -0.210 0.441 

PBIAS -1.22 0.37 0.63 2.64 5.06 5.80 8.96 

RSR 0.98 0.64 0.71 0.60 0.77 1.10 0.75 

Range 9.13 11.32 13.61 14.71 16.18 20.78 24.69 
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FIGURES 

	

Figure 8: Plot of the observed Onondaga Lake P loading data against the P 

loading data modeled using the EC-PRECIP model. Error bars represent +/-10% 

error. 
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Figure 9: Time-series plot of Onondaga Lake observed P loading versus P loading 

modeled with EC-PRECIP. Note that observed P loading values were not obtained 

for 1999, 2000, and 2006. 

	

Figure 10: The frequency of phosphorus-triggering events (those daily 

precipitation values exceeding the threshold T=2.54 cm) between 1998 and 2014. 
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Figure 11: The relative frequency of phosphorus-triggering events (those daily 

precipitation values exceeding the threshold Th=2.54 cm) for each month 

between 1980-2014. Over this 35 year span, the daily precipitation exceeded Th 

172 times.  
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CHAPTER 4: DEVELOPMENT OF A PREDICTIVE TOOL TO ASSESS 

DENITRIFICATION POTENTIAL IN URBAN, SUBURBAN, AND FORESTED 

SAMPLING SITES 

 

ABSTRACT: We examined relationships between denitrification potential and predictor 

variables associated with soil and landscape properties to build a predictive tool for 

denitrification potential at a landscape level. Denitrification potential, ancillary soil 

variables and physical landscape attributes were measured at a range of urban, 

suburban, and forested environments in the Gwynns Falls watershed in Baltimore, 

Maryland in a series of studies between 1998 to 2014. Data from these studies was 

used to develop a statistical model for denitrification potential using a subset of the 

samples (N=205) and another subset (N=133) was used to validate the model. Soil 

moisture and soil respiration were the best predictors of denitrification potential (R2
adj = 

0.314), with the validated model obtaining a Nash-Sutcliffe efficiency of 0.472. Our 

results suggest that soil denitrification potential can be modeled successfully using 

these two parameters, and that this model performs well in a watershed consisting of 

mixed land uses. 

KEY TERMS: denitrification, topographic indices, hotspots, urbanization 
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INTRODUCTION 

Human activity that has accelerated fixation of atmospheric to plant-available, 

reactive nitrogen (N) forms (Vitousek et al., 1997) has motivated studies of regional N 

fate and transport. There is particular interest in denitrification, an anaerobic microbial 

process that converts reactive N into N gases, but this process is difficult to quantify, 

especially at large scales (Seitzinger et al., 2002). In an analysis of 16 large watersheds 

in the northeastern United States, denitrification was estimated as the remaining N loss 

once known input, output and storage terms were considered (Breemen et al., 2002). 

Although these landscape denitrification estimates incorporated accumulated 

uncertainties from other terms, soil denitrification was the dominant sink for N inputs to 

the watersheds, accounting for 34% of total storage and loss on average. While regional 

mass balances are helpful in quantifying the importance of landscape denitrification, 

they provide no predictive power or assessment of spatial variation in the process. 

Regional-scale denitrification models vary in complexity and driving factors, as 

well as in their approach (Boyer et al., 2006). Rather than attempting to model microbial 

processes and dynamics, these regional models typically focus on environmental 

conditions in which denitrification is expected to occur. The DAYCENT model (Parton et 

al., 1996) assumes denitrification is controlled by soil NO3
- concentration, organic 

carbon availability, and oxygen availability. The DNDC model (Li, 1996) is a soil 

biogeochemistry model which utilizes sub-models of soil climate, plant growth, and 

decomposition to predict soil environmental factors, which drive kinetics of relevant 

biochemical or geochemical reactions. Agricultural management models often simulate 

denitrification in soils.  For example, the EPIC (Environmental Policy Integrated Climate) 
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model (J. R. Williams, C. A. Jones, & P. T. Dyke, 1984) simulates all major N cycling 

processes in agricultural soils (i.e., mineralization, nitrification, immobilization) on a daily 

time step and requires specific field validation to obtain necessary parameters. As in 

other models, denitrification in EPIC is governed by NO3
- and carbon availability and soil 

temperature and moisture content (Boyer et al., 2006). SWAT (Soil Water Assessment 

Tool), developed by the United States Department of Agriculture Agricultural Research 

Service, uses climate, soil, topography, vegetation, and land management data to 

predict water movement, sediment transport, crop growth, and nutrient cycling. Inputs 

required for SWAT are extensive and facilitate simulation of processes in watersheds of 

varying characteristics (Gassman, Reyes, Green, & Arnold, 2007). RHESSys (Regional 

Hydro-Ecological Simulation System) (Tague & Band, 2004) couples hydrology with C 

and N cycling, simulating denitrification through computation of a maximum 

denitrification rate (based on available soil nitrate), which is then scaled by soil 

moisture, temperature, and carbon availability (Tague & Band, 2004). While these 

models cover a wide range of perspectives and conceptual frameworks (i.e., 

agricultural, hydrological, ecological), none are explicitly designed for use in urban 

landscapes, where hydrology and biogeochemistry depend on human inputs and 

alterations of the system. The models all require extensive knowledge of the specific 

landscape system being studied, which limits their use to highly specialized purposes.  

Field studies are necessary to validate the above models, as well as to 

understand controls that are driven by spatial variation in land use and management. 

Denitrification is difficult to model at a landscape scale because of the presence of small 

areas (hotspots) and short periods (hot moments) (Groffman et al., 2009;  Groffman, 
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2012; McClain et al., 2003; P. Vidon et al., 2010) of high activity that account for a high 

proportion of activity. Denitrification is also difficult to measure, and there is often 

concern that results obtained depend on the method used (Groffman et al. 2006).  

Denitrification can be measured as an in situ rate in the field, or as a potential rate 

representing the maximum possible denitrification capacity given adequate anoxic 

conditions and carbon source. Measurements of denitrification potential that assay the 

maximum biological capacity of soils for denitrification have been useful in landscape 

scale studies of undisturbed forested areas, as well as agricultural and urban 

landscapes (Bettez & Groffman, 2012; Bruland, Richardson, & Whalen, 2006; P.M. 

Groffman & Crawford, 2003).  

Studies of denitrification potential in urban riparian zones have demonstrated that 

urban conditions do not necessarily lead to low denitrification potentials. These studies 

have focused on surficial soils (0-10cm), since overland flow is an important vector of 

reactive N transport in these urban landscapes. A study conducted in watersheds with 

various levels of disturbance in the Baltimore, MD USA area found no significant 

differences in denitrification potential between urban and rural or forested versus 

herbaceous sites (P.M. Groffman & Crawford, 2003) . As long as these soils were wet 

and had high levels of organic matter, they had high denitrification potential (P.M. 

Groffman & Crawford, 2003). These results were useful for identifying potential 

denitrification hotspots in the landscape. 

In another Baltimore study, denitrification potentials were compared between 

natural riparian areas and stormwater control measures (SCMs), structures designed to 

mitigate the increased volume and intensity of runoff from urban landscapes (Bettez & 
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Groffman, 2012). Because SCMs are extremely common in urban areas (Driscoll et al., 

2015), there is great interest in determining their effectiveness in mitigating nutrient 

loading into receiving waters. Bettez and Groffman (2012) found that denitrification 

potential in SCM was significantly higher than that of the natural riparian areas. Even 

though the drivers of denitrification potential, soil moisture and organic matter, were 

similar between the riparian and SCM areas, SCM denitrification potential values were 

higher, indicating that SCMs may function as hotspots of denitrification (McClain et al., 

2003). In the precipitation-heavy northeastern United States, DEA has been shown to 

be controlled primarily by soil moisture and organic matter (McPhillips & Walter, 2015), 

and the efficiency of N retention in SCMs relies on seasonality, temperature, and 

oxygen availability (Rosenzweig, Smith, Baeck, & Jaffé, 2011). The overall effect of 

these SCMs on water quality at a watershed scale remains uncertain, and variability 

between different SCMs in N removal effectiveness is large (Collins et al., 2010). 

The influence of urbanization and SCMs on N retention and processing has also 

been studied in the southwestern United States, in more arid urban watersheds. 

Extensively modified urban streams in these regions experience lower rates of N 

retention (Grimm et al., 2005), and green retention basins and other examples of SCMs 

have proven effective in creating conditions to facilitate higher denitrification rates 

(Larson & Grimm, 2012; Zhu, Dillard, & Grimm, 2005). Stormwater management in 

these arid regions has been shown to greatly increase the heterogeneity of N, P, and 

dissolved organic carbon (DOC) fluxes, leading to variable denitrification rates (Hale, 

Turnbull, Earl, Childers, & Grimm, 2015). 
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The need for watershed and regional scale assessments of denitrification 

highlights the need for first-order models which reduce the need for costly site-specific 

data sampling. Denitrification correlates with soil moisture and organic matter (P.M. 

Groffman & Crawford, 2003), yet few studies have analyzed the predictive power of 

these variables (or others) to identify key areas of denitrification potential within a 

landscape. First-order models of denitrification (Anderson, Groffman, & Walter, 2015; 

Florinsky, McMahon, & Burton, 2004) have focused primarily on soil moisture as a 

driving factor, assuming that high levels of soil moisture and organic matter co-occur 

within particular landscape zones. Recent studies (Anderson et al., 2015; Florinsky et 

al., 2004) have used topography to represent the spatial distribution of both soil 

moisture and organic matter. Soil organic matter (SOM) is thought to correlate 

significantly with terrain variables as studies have shown that soils with high moisture 

content have high SOM due to the promotion of plant growth and the slowdown of 

organic matter decomposition in wet soils (Pei et al., 2010). However, urban hydrology 

disrupts natural connections between soil moisture and organic matter, with increased 

fragmentation of pervious areas and higher prevalence of channelized or piped flow 

paths (Walsh et al., 2005). The relationship between soil moisture and organic matter in 

urban environments is therefore more complex than in more natural environments, 

necessitating the modeling of these variables separately to obtain better estimates of 

denitrification potential.  

In this study, we compiled data from multiple studies of denitrification potential in 

the Baltimore metropolitan area to assess the role of soil, hydrologic, and other 

landscape properties on denitrification potential with an eye towards developing 
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predictive tools for landscape and watershed-scale modeling of this process. Our 

objectives were to 1) examine controls on denitrification potential across a wide range of 

sites in the urban landscape, with a focus on soil moisture and organic matter content 

and 2) develop a predictive model that could be linked to geographic tools that depict 

the distribution of these variables across the landscape.   

METHODS 

Data sources  

We utilized published (Bettez & Groffman, 2012; Gift, Groffman, Kaushal, & 

Mayer, 2010;  Groffman et al., 2002; P.M. Groffman & Crawford, 2003; Hale & 

Groffman, 2006; Harrison, Groffman, Mayer, & Kaushal, 2012; Waters, Morse, Bettez, & 

Groffman, 2014) and unpublished data (sampled in 2014) from the Baltimore 

Ecosystem (BES) study, a component of the U.S. National Science Foundation funded 

long-term ecological research (LTER) network. Most studies were carried out in the 

Gwynns Falls watershed, a main study site for BES that includes a mix of urban, 

suburban, and forested land and numerous SCM (Doheny, 1999). 

The BES denitrification potential dataset (available at http://beslter.org) contains 

465 observations of denitrification potential and a set of ancillary variables including soil 

nitrate (NO3
-),  ammonium (NH4

+), microbial respiration, potential net N mineralization, 

potential net nitrification, soil organic matter, soil moisture, microbial biomass C, 

microbial biomass N, and root biomass, along with the sampling date, site name, 

researcher, associated publications, habitat, land use context, latitude, longitude, and 

depth of sample. Microbial biomass C, microbial biomass N, and root biomass were 

often missing and were therefor not used as predictor variables for our study. Data 
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came from 66 urban, 112 suburban, and 83 forested sites. There were 387, 58, and 37 

shallow, mid-depth, and deep samples (represented by 0-10 cm, 10-70 cm, and 70+ 

cm, respectively).  

Data analysis and modeling 

 We split the shallow depth data into two groups for model development and 

cross-validation. The 387 points were derived from 35 discrete locations. Since data 

were taken at some locations at several points in time, we used 25 of these locations for 

model development and 10 for cross-validation. 

We compiled soil and environmental variables from the model development 

points (N=205) and excluded observations with missing values for any predictor 

variables (N=187). We used principal components analysis (PCA) and a correlation 

matrix to identify correlations between predictor variables based on this dataset. 

We developed linear regression models using R software (R Core Team, 2017) 

to minimize the Akaike information criterion (AIC). We selected seven models 

representing the most likely influential terms, chosen from the PCA (Figure 14, Table 7). 

Interaction terms were also included in the models based on high correlations between 

variables (Table 6). After building the model for denitrification potential, we tested model 

performance with the cross-validation dataset. Evaluation of model performance was 

based on the Nash-Sutcliffe efficiency (NSE).  

RESULTS 

Denitrification variations with depth and land use 

Denitrification potential decreased sharply with depth (Figure 12).  Because the 

majority of denitrification occurs in the top 10 cm of soil, we focused model development 
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on this subset of data.  There were no significant differences in denitrification potential 

between urban, suburban or forested sites (Figure 13).   

PCA analysis 

Prior to building multiple regression models for prediction of denitrification 

potential, correlations between variables were analyzed (Table 6). Denitrification 

potential was positively correlated with soil moisture, soil organic matter, total N, and 

soil respiration. We also explored correlations of variables through PCA (Table 6 and 

Figure 14, n=312); the analysis yielded nine linear combinations (PC). The first two 

components, PC1 and PC2, together explain 53% of the variation (36% and 17%, 

respectively) in environmental variables across the samples. We found that NH4, total N, 

soil moisture, DEA, and respiration correlated in axis 1, and the orthogonal axis grouped 

net nitrification and net N mineralization.  

Multiple regression models for available shallow denitrification potential data 

For the available shallow (<10 cm) observations designated for model 

development (N=205), models ranked 1 and 2 had equivalent AICc values, using the 

criterion that models within DAICc < 2 are equivalent (Table 8). Models with interaction 

terms were tested, and the interactions retained in the best model were those between 

moisture and respiration, and moisture and total N. The second-ranked model adds the 

respiration and total N interaction to the best model (rank = 1), but this does not 

significantly improve the explanation of the data. The rank 1 model achieved an NSE 

value of 0.511 (Figure 15). 
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DISCUSSION 

Patterns of denitrification potential 

We expected denitrification potential to be highest in the shallow samples, due to 

a higher likelihood of high levels of organic matter near the surface. The observed trend 

in denitrification potential with depth matches our expectations, and agrees with many 

previous studies which demonstrate decreasing denitrification capacity with depth 

(Bettez & Groffman, 2012; Brye, Norman, Bundy, & Gower, 2001; P.M. Groffman & 

Crawford, 2003; Jefferson et al., 2010; Luo, Tillman, White, & Ball, 1998; Parkin & 

Meisinger, 1989; Saggar et al., 2013).  While our modeling thus focuses on surface soil, 

it is important to note that activity at depth can be significant (Morse et al., 2014) and is 

especially important for processing of NO3
- moving in shallow groundwater (Gold et al., 

2001; P. G. F. Vidon & Hill, 2004). Our focus on surface processes is appropriate for 

urban landscapes, where there is great interest in capturing and processing stormwater 

surface runoff. 

Somewhat surprisingly, there were no differences in denitrification potential 

between urban, suburban and forested sites.  Due to altered urban hydrology (Walsh et 

al., 2005), changing nutrient export pathways (Kaushal & Belt, 2012), and a “distinct 

urban biogeochemistry” (Kaye, Groffman, Grimm, Baker, & Pouyat, 2006), we expected 

urban environments to be poorly suited for nutrient uptake and processing. However, 

denitrification potential has been shown to occur at high rates in urban environments 

(Grimm et al., 2005; P.M. Groffman & Crawford, 2003; Inwood, Tank, & Bernot, 2005). 

Groffman and Crawford [2003] reported higher variability in denitrification potential in 

urban areas compared to rural areas, which is logical given the characteristics of urban 
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landscapes.  However, for our dataset, variability was higher in forested and suburban 

land uses as compared to urban (Figure 13).  Changes in variation with land use would 

complicate landscape-scale modeling in urban areas. 

It should be noted that denitrification potential does not necessarily reflect the 

actual denitrification rates occurring in the field. Denitrification potential and rate have 

been shown to correlate well (Groffman & Tiedje, 1989), but a lack of anoxic conditions, 

carbon source, or available nitrate can explain a location with high denitrification 

potential but low rate. 

Predicting denitrification potential 

We identified robust multiple regression models of denitrification potential for 

sampled shallow (0-10 cm) locations. The best predictors for DEA for the Baltimore 

dataset are soil moisture, respiration, and total N. Soil moisture is the primary factor 

used in previous denitrification modeling efforts, and was assumed to be critical in our 

model. Previous analyses of relationships between soil moisture and denitrification 

potential using subsets of our dataset had R2 values of 0.55 (urban and rural riparian 

areas) (P.M. Groffman & Crawford, 2003), 0.66 (in SCMs) (Bettez & Groffman, 2012), 

and 0.35 (forested and herbaceous riparian areas) (Bettez & Groffman, 2012). We also 

included various interaction effects, including those between soil moisture and 

respiration, soil moisture and total N, and respiration and total N. The interactions 

between soil moisture and respiration and soil moisture and total N are included in the 

best model (rank = 1). The interaction between soil moisture and respiration is positive, 

indicating that increased soil moisture boosts the effect of respiration. However, the 

interaction between soil moisture and total N is negative, suggesting that higher soil 
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moisture decreases the effect of total N. Since DEA represents the potential 

denitrification at a site, the presence of high N at a site may create denitrifying 

conditions, which decreases the total N. The relationship between total N and DEA is 

complex, since the process of removal affects the presence of total N at the sampling 

location. This interaction may require further exploration to determine how to best 

account for this behavior. 

Soil moisture is frequently identified as the key driver of terrestrial denitrification 

as this variable controls soil oxygen levels which are the primary controller of this 

anaerobic process at the cellular level (Tiedje, Sexstone, Parkin, & Revsbech, 1984).  

Many other variables were also highly correlated with soil moisture (NH4
+, total inorganic 

N, respiration, organic matter), demonstrating the strong role soil moisture plays in C 

and N cycling processes. At a larger scale, soil moisture (as represented by the soil 

topographic index) was shown to predict sampled denitrification rates in an agricultural 

catchment with an R2 value of 0.86 (Anderson et al., 2015). Many other studies have 

explored the connection between soil denitrification and topographic controls with less 

explicit goals of modeling denitrification likelihoods (Hayakawa, Nakata, Jiang, 

Kuramochi, & Hatano, 2012; Xiong et al., 2015). Our results show that soil moisture 

remains a strong driver of denitrification in highly altered and variable urban 

watersheds, suggesting that the fundamental controls that operate in more well studied 

agricultural and forested ecosystems are still valid and useful for modeling these 

watersheds.  

We hypothesized that soil organic matter would be a strong predictor of 

denitrification potential. Bettez and Groffman [2012] demonstrated strong correlations 



 94 

between denitrification potential and soil moisture (R2=0.66), soil organic matter 

(R2=0.89), microbial biomass C (R2=0.79), and respiration (R2=0.81) in an analysis of a 

subset of the samples in our data sets.  Many other studies have also found soil organic 

matter to be a strong predictor of denitrification potential (Burford & Bremner, 1975). 

Organic matter is a logically strong predictor of denitrification potential as it provides an 

index of the supply of carbon to support heterotrophic denitrifiers and of the potential for 

oxygen consumption by overall heterotrophic activity.  However, our model development 

concludes that soil respiration was a stronger predictor than organic matter. This is 

perhaps not a surprising result as respiration is driven by levels of labile carbon and is 

therefore a more direct controller of heterotrophic activity than total organic matter 

content.  Respiration may be a particularly useful/important predictor of denitrification in 

urban watersheds, where hydrologic changes have altered relationships between water 

table depth, stream channel depth, soil moisture and organic matter content (Groffman 

et al., 2003). Total N also emerged as a key factor in predicting DEA in our study 

dataset. Denitrifiers require anoxic conditions for denitrification, as well as carbon and 

nitrogen sources. The best model (rank = 1) represents these three facets through soil 

moisture, respiration, and total N. In order to successfully apply this modeling 

framework, proxies must be determined for each of these three variables, to maintain 

the intended parsimonious nature of the model. 

Soil moisture modeling presents a challenge which has been studied for many 

decades, particularly in urban environments. The addition of grey infrastructure in urban 

environments, which routes water independently of topographic influence, requires a 

new understanding of soil moisture processes. The TOPURBAN model was developed 
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for use in urban environments, using a topographic framework but only including the 

pervious areas to upslope contributing areas, allowing impervious area flow to become 

runoff (Valeo & Moin, 2000). This TOPURBAN model does not account for impervious 

areas which may route water to pervious areas to infiltrate. Watershed models have 

used road network maps to enhance NLCD maps to improve runoff quantity estimates 

(Endreny & Thomas, 2009), but have not explicitly explored the resulting soil moisture 

regimes. There is a need for the coupling of natural and human-influenced water routing 

processes to allow for better estimates of soil moisture across landscapes. 

Soil temperature has been shown to drive month-to-month variation in soil 

respiration (Raich, Potter, & Bhagawati, 2002). Raich, Potter, & Bhagawati (2002) 

demonstrated that monthly variation in soil respiration could be predicted using monthly 

precipitation and temperature values (T&P model). However, these predictors cannot be 

measured with high spatial resolution; in order to predict inter-site variability, leaf area 

index (LAI) was successfully incorporated into the model to predict temporally and 

spatially different soil respiration values (Reichstein et al., 2003). The availability of 

satellite images of LAI provides greater access to parameters necessary to model soil 

respiration, in both spatial and temporal dimensions. The development of the “T&P&LAI 

model” suggests that soil respiration may be feasibly modeled without need for costly, 

time-intensive sampling efforts, provided the necessary data is available. Total N may 

also be modeled inexpensively, through modification of simple export coefficient 

models. In addition to modeling the spatial distribution of nonpoint source N through a 

modified export coefficient framework (Stephan & Endreny, 2016), point sources of N 
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can be included to create a more accurate representation of N loading through 

landscapes.  

In order to effectively model DEA in these mixed-use watersheds, our study 

shows that effective means of predicting soil moisture, soil respiration, and total N are 

critical. There is a great deal of current research seeking to represent hydrological 

modeling and routing in urban environments (for a review of the current research, see 

Elga, Jan, & Okke, 2015). Modeling CO2 flux from respiration is also a subset of climate 

change research (e.g., Davidson & Janssens, 2006). Updated export coefficient models 

are also being developed to represent the nutrient export from particular land uses, 

which can be used in this DEA model as well. As topographic methods are modified to 

suit urban environments more appropriately, or other spatially variable soil moisture 

routines for urban areas are developed, DEA can be more easily understood and 

mapped across a landscape. In addition, the successful modeling of soil respiration 

using precipitation, temperature, and LAI factors, as well at total N using land use 

parameters, will enhance our understanding of DEA locations within a mixed-use 

watershed and highlight landscape locations prime for nitrate removal.  

Nitrate yield in suburban and urban watersheds has also been shown to be more 

than 10 times higher than that of completely forested watersheds, and yet retention of N 

in these disturbed watersheds was surprisingly high, approaching that of forested 

catchments (Groffman, Law, Belt, Band, & Fisher, 2004). The sources of N in disturbed 

watersheds, as well as the flowpaths and removal mechanisms in these watersheds, 

must be linked in order to get a full picture of how we can manage N water quality 

concerns. The mechanism of transport of nitrate between soil water and surface 
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streamflow in disturbed and undisturbed streams was examined in a review paper 

(Sudduth, Perakis, & Bernhardt, 2013), and no pattern or relationship was found for the 

disturbed stream nitrate concentrations. Further work is necessary to quantify nitrate 

loading mechanisms in urban watersheds. 

CONCLUSION 

 Denitrification is an important means of removing reactive N from soil, converting 

it to its inert gaseous state and preventing its movement into water bodies. Landscape-

scale modeling of this process is needed to identify key areas (hotspots) that provide 

this important function.  Urban environments have only recently become the focus of 

biogeochemical research, due to their complex hydrologic and nutrient pathways. 

However, our data suggest that there are coherent controls of denitrification potential in 

these environments and data are available to produce robust statistical models of this 

process that can be used in urban watersheds.  A major challenge for future research is 

to develop models and/or geographic data sources that can depict spatial and temporal 

variation in the key drivers of denitrification in these watersheds. These models will 

improve our ability to assess and enhance N removal by designing cities to provide 

areas suitable for denitrification to occur.  
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TABLES 

 

Table 6: Correlation matrix (r values) among denitrification potential and select groundwater and soil 
physiochemical characteristics. 

 Groundwater Soil 

  
DEA 
(ng/g/hr) 

NO2/NO3 
(ug N/g 
dry soil) 

NH4 
(ug N/g 
dry soil) 

Initial 
Total N 
(ug N/g 
dry soil) 

Soil 
Respiration 
(ug C/g/d) 

Potential Net N 
Mineralization 
(ug N/g/d) 

Potential Net 
N Nitrification 
(ug N/g/d) 

Soil 
organic 
matter 
(g/g) 

Soil 
moisture 
(g/g) 

Denitrificatio
n potential 1         
NO2/NO3 0.339 1        
NH4 0.352 -0.072 1       
Total N 0.515 0.648 0.556 1      
Respiration 0.469 0.217 0.459 0.445 1     
Mineralizati
on -0.134 0.190 -0.347 -0.154 -0.111 1    
Nitrification -0.017 0.137 0.008 0.090 -0.102 0.693 1   
Soil organic 
matter 0.189 0.078 0.195 0.205 0.248 -0.049 -0.132 1  
Soil 
moisture 0.460 0.062 0.434 0.318 0.419 -0.238 -0.206 0.467 1 
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Table 7: Loadings and correlation coefficients for the first two principal components (PC1 and PC2) for all 
shallow samples (n = 312) 

  PC1 PC2 

Variable Loading 
Correlation  
coefficient Loading 

Correlation  
coefficient 

DEA 0.41 0.73 -0.21 -0.26 
NO2 / NO 3 0.08 0.15 0.16 0.20 
NH4 0.48 0.86 -0.08 -0.10 
Total N 0.48 0.85 0.02 0.02 
Respiration 0.32 0.58 -0.06 -0.08 
N mineralization -0.27 -0.48 -0.60 -0.74 
N nitrification -0.11 -0.19 -0.68 -0.85 
Organic Matter 0.12 0.21 -0.25 -0.31 
Moisture 0.41 0.73 -0.20 -0.25 
Eigenvalue 3.20 1.55 
% Variance explained 35.59% 17.26% 
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Table 8: Model selection criterial used in ranking linear regression models predicting the denitrification potential 
(DEA) of sampled sites (N=205). The best model (rank = 1) had the lowest AICc value and the highest Akaike 
weight. There were eight candidate models, including a null model with intercept only (model rank = 8).  

	

	

	

	

DEA model rankings Coefficient estimates (with standard error) 

Rank df AICc DAICc 
Akaike 
weight 

Cum. 
weight 

Log-
likelihood Deviance Moisture Resp. Total N Moisture: 

Resp. 
Moisture: 
Total N 

Resp.: 
Total N 

1 5 3167.1 0 0.59 0.59 -1576.23 3152.46 
6628.15± -15.30± 166.17± 62.06± -514.66± 

96.85   
1330.98 3.37 33.9 9.94 

2 6 3167.8 0.7 0.41 1 -1575.49 3150.98 
6522.50± -13.17± 171.22± 60.60± -506.36± 

96.98 
-0.16± 
0.14 1332.4 3.81 34.12 10 

3 4 3192.0 24.9 <0.001 1 -1589.78 3179.56 
208.22± -15.79± 2.65± 65.55± 

    
314.36 3.61 15.24 10.63 

4 4 3201.4 34.3 <0.001 1 -1594.47 3188.94 
11063.25± 4.82± 164.31± 

  -554.71± 
106.24   

1237.66 1.10 37.27 

5 3 3208.0 40.9 <0.001 1 -1598.83 3197.66 
1653.32± -15.53± 

  
64.96± 

    
979.38 3.54 10.49 

6 3 3225.4 58.3 <0.001 1 -1607.52 3215.04 
5943.27± 5.51± -12.82± 

      
807.47 1.17 16.49 

7 2 3241.5 74.4 <0.001 1 -1616.64 3233.28 
5764.12± 5.40± 

        
789.88 1.15 

8 0 3597.0 429.9 <0.001 1 -1796.48 3592.96             
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FIGURES 

	

Figure 12: Variation in denitrification potential with depth 
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Figure 13: Variation in denitrification potential with land use 
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Figure 14: PCA analysis for all denitrification potential samples 
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Figure 15:  Predicted vs. observed DEA for model validation (NSE = 0.511)  
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CHAPTER 5: SYNTHESIS 

In this dissertation, methods of enhancing first-order models to incorporate newly 

available datasets are highlighted. Water quality models were improved through the 

addition of spatial and temporal weighting techniques to the otherwise static export 

coefficient (EC) model framework, to provide better estimates of nutrient loading and, 

ultimately, guide management decisions and strategies. The research answers the 

following questions: 

1)     Can algorithms for runoff and buffering likelihood be used to weight land cover 

specific EC and EMC values to represent the likely spatial variation in nitrogen loading 

to waterbodies across the landscape? 

2)      Can national datasets which represent temporal variation in potential discharge 

rates be incorporated into a modified EC model to represent changing weather and 

discharge conditions to better predict annual nutrient loading variation? 

3)      Which key soil variables have the largest influence on denitrification potential in 

urban and mixed-use landscapes, and how can these variables be combined to develop 

a predictive denitrification model? 

Chapter 2 highlights the enhancement of the EC model via the runoff and 

buffering likelihood indices. The research enhanced the CADA NPS model to achieve 

three goals in watershed simulation of nutrient hotspot mapping: a) flexibility to use EC, 

EMC or other NPS loading data for N or P loads; b) representation impervious and 

pervious runoff paths in the contributing area; and c) representation of surface and 

subsurface buffer paths in the dispersal area. These updates are critical for the co-

management of P and N, which often occur in the surface and subsurface runoff 
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flowpaths at different proportions. The urban biogeochemistry of complex social-

infrastructure-environmental interactions result in elevated nutrient concentrations along 

accelerated flow paths with a high level of apparently random individual decisions 

affecting receiving water quality (Kaye et al., 2006). The enhanced CADA NPS model 

allows for simulation of urban and rural pollutant sources from mixed land use 

watersheds, and the surface and subsurface runoff pathways connecting this pollution 

with contributing area and dispersal area processes, providing an important 

management tool for inland and coastal communities. 

The enhanced CADA NPS model provides spatial maps of the weighted EC and 

EMC hotspots and coldspots contributing to watershed nutrient loads, and allows 

managers to differentiate between interventions that reduce surface transported 

pollutants, such as particulate phosphorus, from interventions targeting subsurface 

transported pollutants, such as dissolved nitrate. While the spatial maps and provide a 

first order estimate of loading hotspots, they do not represent the uncertainty in the 

predictions and users should run CADA NPS with low and high values of EC and EMC 

inputs to simulate a range of possible NPS loads, which are more likely to capture the 

observed loading value for the pixel and the watershed (Theodore A. Endreny & Wood, 

2003).  

Chapter 3 focuses on the development of the EC-PRECIP model to provide 

temporal variation in nutrient loading estimates. The EC-PRECIP model has proven 

effective as a scoping level tool in the Onondaga Creek watershed in Syracuse, New 

York. Comparing the updated EC-PRECIP model to the traditional EC model, NSE, 

PBIAS, and RSR all improved significantly. Since the EC model has been endorsed by 
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the USEPA as an accurate watershed modeling framework, the EC-PRECIP model is 

the next step in providing better water quality estimates without increasing data or 

sampling requirements. 

The EC model is widely accepted as a scoping model when monitoring data is 

not feasible or is unavailable. The EC-PRECIP update moves closer to a 

comprehensive method for determining inter-annual nutrient loading variations, and 

brings widely available precipitation data together with typical nutrient loading values to 

produce a range of likely annual loads. The use of national data in this model is novel 

due to the ease of use and high level of accuracy evidenced in its application to 

Onondaga Creek watershed. The EC-PRECIP model fills a niche for simple models that 

take advantage of the large amount of weather, land use, and soils data being collected 

by governmental organizations such as the United States Geological Survey, the 

National Oceanic and Atmospheric Administration, and the Natural Resources 

Conservation Service. 

The EC-PRECIP model represents a critical step in modifying the commonly-

used EC modeling framework to allow for the influence of weather, specifically rainfall 

intensity, on nutrient loading in watershed across the United States. Since the EC-

PRECIP model uses rainfall events as a proxy for runoff, the model will be most 

effective in environments with relatively high water tables, where runoff is generated 

quickly following a precipitation event. Extreme precipitation events create Hortonian 

flow, or infiltration excess overland flow, where precipitation rate exceeds the infiltration 

capacity of the soil. The study area in Syracuse, NY, represents an area of high 

precipitation magnitudes and rainfall events. In order to truly determine the 
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effectiveness of the model in other types of environments, further studies must occur 

which explore the accuracy of modeling efforts using EC-PRECIP. 

Chapter 4 focuses on the primary predictors of denitrification potential in mixed-

use watershed landscapes. Landscape-scale modeling of this process is needed to 

identify key areas (hotspots) that provide this important function.  Urban environments 

have only recently become the focus of biogeochemical research, due to their complex 

hydrologic and nutrient pathways. However, our data suggest that there are coherent 

controls of denitrification potential in these environments and data are available to 

produce robust statistical models of this process that can be used in urban watersheds.  

A major challenge for future research is to develop models and/or geographic data 

sources that can depict spatial and temporal variation in the key drivers of denitrification 

in these watersheds. These models will improve our ability to assess and enhance N 

removal by designing cities to provide areas suitable for denitrification to occur. 

Overall, this dissertation is comprised of studies which seek to improve the 

capacity for scoping level models to represent variation in nutrient loading both spatially 

and temporally. The improvements presented in the prior chapters serve to enhance 

nutrient loading predictions without requiring more extensive data collection. The 

implications of this research extend to community organizations, planners, and 

managers seeking a better understanding of the effects of different decisions on water 

quality. The creation of spatially and temporally variable scoping model for N and P 

nutrient loading through the landscape will assist managers in identifying areas of high 

loading potential, which generate high concentrations of nutrients and have little 

opportunity for downslope filtration. Similarly, areas of high denitrification potential can 
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be identified and utilized as areas for nitrate uptake. The low level data needs and 

process-based features of the scoping model allow for its implementation into freely 

available tools such as the i-Tree Hydro toolkit, a peer-reviewed software suite that is 

used to assess the effects of management and land use change on water quality and 

quantity.
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APPENDIX A: CADA-NPS PYTHON CODE 

The Python code requires DEM, watertable, saturated hydraulic conductivity, land 
cover, impervious cover, and canopy cover inputs. These inputs should be in a .tif 
format and read into the program. The modules are as follows: 

1) Preliminary calculations – ArcMap functions are used to fill the DEM and identify 
the pixels likely to be rivers. 

2) Soil Topographic Index (STI) calculations – topographic index calculations obtain 
a runoff index (RI) for both surface and subsurface pollutant species. 

3) Buffer Index (BI) calculations – surface and subsurface buffering indices (RI) are 
obtained through the calculation of the time spent on each cell. 

4) Determine Dynamic Export Coefficient Values – initial export coefficient (EC) 
values are weighted by the RI and BI for the surface and subsurface, 
respectively, to obtain weighted EC values for each pixel. 

The outputs from this model are gridded weighted EC values for surface and subsurface 
nutrient species. 
 
# Title: Contributing Area Dispersal Area Export Coefficient Model (CADA-ECM)  
#        for ArcGIS 
# Description: Performs a series of calculations to determine the accumulation  
#              of N and P within a study site 
# Requirements: ArcGIS 10, Spatial Analyst Extension 
# Author: Emily Stephan, Ted Endreny 
# Last Edited: 8/30/2016 
 
# Import system modules 
import arcpy 
from arcpy import env 
from arcpy.sa import * 
arcpy.env.overwriteOutput = True #Allow Python to overwrite files  
 
#Check out the ArcGIS Spatial Analyst extension license 
arcpy.CheckOutExtension("Spatial") 
 
#Set environment settings (Adjust this for different computers) 
env.workspace = "C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/" 
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# Set local variables 
#This DEM is NED 1/3-arcsecond (~9mx9m pixel size) DEM, clipped around 
# delineated watershed 
inDEM = "demtest.tif" 
inWT = "wt_clip.tif" 
inKsat = "ksat_clip.tif" 
inLC = "lc_clip.tif" 
inImp = "imp_clip.tif" 
inCan = "can_clip.tif" 
 
#File Definitions 
#This file needs to be created outside of a function below so that  
# it can be written to 
tmprise = "C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/tmprise" 
 
 
#=================================================================
============== 
#Preliminary Calculations 
#=================================================================
============== 
#Create Grid Weight File 
#Rivers are cells receiving > 3300 pixels 
#River pixels set to 0 while other pixels are set to DEM res of 10m 
#Process will then: Fill DEM, calculate flow direction, and calculate  
# flow accumulation 
 
filledDEM = Fill(inDEM) 
filledDEM.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/filledDEM"
) 
 
flowDirec = FlowDirection(filledDEM) 
flowDirec.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/FlowDirec"
) 
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print("Direc Complete") 
 
flowacc = FlowAccumulation(flowDirec) 
flowacc.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/flowacc") 
 
print("Accum Complete") 
 
#Execute Conditional to assign cell size weight to non river cells 
river0 = Con(flowacc, 0, 9, "VALUE > 3300") 
 
river0.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/river0") 
 
print("Con Complete") 
 
 
#=================================================================
============== 
#Soil Topographic Index (STI) Calculation 
#=================================================================
============== 
 
#Determine the local pixel slope as a percent rise 
#For pixels with a zero slope, assign the minimum slope of 0.00001497% 
#Divide by 100 to convert to a decimal slope 
 
slp = 
Con(Slope(filledDEM,"PERCENT_RISE"),(0.00001497/100),Divide(Slope(filledDEM,"P
ERCENT_RISE"),100),"VALUE = 0") 
slp.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/slp") 
 
#Determine the Topographic Index for each cell 
#TI = ln(A/Sl) where A is the weighted accumulation area and Sl is  
# the local pixel slope as determined above 
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Impervious = Lookup(inImp, "impfloat") 
Impervious.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/Impervio
us") 
Pervious = 100-Impervious 
Pervious.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/Pervious") 
 
TIp = Ln(Divide((FlowAccumulation(FlowDirection(inDEM),Pervious)+river0),slp)) 
TIimp = Ln(Divide((FlowAccumulation(FlowDirection(inDEM),Impervious)+river0),slp)) 
 
TIp.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/TIp") 
TIimp.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/TIimp") 
 
print("TI Complete") 
 
trans = Times(0.000864,(Times(inWT,inKsat))) 
trans.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/trans") 
 
transMean = float(str(arcpy.GetRasterProperties_management(trans, "MEAN"))) 
 
STIp = TIp-Ln(Divide(trans,transMean)) 
STIimp = TIimp-Ln(Divide(trans,transMean)) 
 
STIp.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/STIp") 
STIimp.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/STIimp") 
print("STI Complete") 
 
#=================================================================
============== 
#Buffer Index (BI) Calculation 
#=================================================================
============== 
 
#Negate the DEM 
negDEM = filledDEM * -1 
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#------------------------------------------------------------------------ 
#Determining the average slope for each of the pixel's dispersal area 
#Based on the basic slope = rise/run principle 
 
 
#******************************************************************************* 
#RISE 
 
#Determine the change in elevation between the pixel and the river pixel 
#Uses the ArcGIS slope command and the length of each cell 
tmprise = Times(Slope(negDEM, "PERCENT_RISE"),0.09) 
tmp2rise = Con(river0, tmprise, 0, "VALUE <> 0")  
 
       
#Create a raster that is the sum of elevation change between the pixel and  
# the nearest river cell 
tmp3rise = FlowAccumulation(FlowDirection(negDEM), tmp2rise)+tmp2rise 
 
#Assign riparian cells (zero slope) to a minimum elevation change and set this  
# as the final RISE using the Con command: 
#Check where the previous grid is zero 
#If true - use the slope command to assign a percent rise value from the negDEM 
#If false - use the value from the previously created raster 
 
rise = Con(tmp3rise, 0.000149*9/100, tmp3rise, "VALUE = 0") 
rise.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/rise") 
 
print("Rise Complete") 
 
#******************************************************************************* 
#RUN 
 
#Determine the sum of the distance from each ridge cell (valleys in the negDem)  
# to river cells (ridges in negDem) 
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tmprun = FlowAccumulation(FlowDirection(negDEM),river0)+river0 
 
#Convert river cells to a value of 1 and tmprun elsewhere 
run = Con(tmprun, 1, tmprun, "VALUE = 0") 
run.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/run") 
 
print("Run Complete") 
 
#Determine the final slope for each pixel area, 0.1 in rivers 
hillslp = Con(river0, 0.000149,Divide(rise,run),"VALUE = 0") 
hillslp.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/hillslp") 
 
 
print("Hillslope Complete") 
 
#=================================================================
============== 
# Determine Time Spent on Each Cell 
#=================================================================
============== 
 
# Surface Routing (Manning equation, phosphorus) 
n = Lookup(inLC,"n") 
n.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/n") 
R = Lookup(inLC, "R") 
R.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/R") 
surf_vel = Times(Divide(1.49,n),Times(R^(2/3),slp^(1/2))) 
surf_vel.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/surf_vel") 
surf_time = Divide(98.4252,surf_vel) 
surf_time.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/surf_time") 
#surf_time is in seconds 
 
arcpy.CalculateStatistics_management(STIp) 
STIpMean = float(str(arcpy.GetRasterProperties_management(STIp, "MEAN"))) 
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print(STIpMean) 
arcpy.CalculateStatistics_management(STIimp) 
STIimpMean = float(str(arcpy.GetRasterProperties_management(STIimp, "MEAN"))) 
print(STIimpMean) 
 
# Subsurface Routing (Darcy, nitrogen) 
arcpy.CalculateStatistics_management(inWT) 
avgWT = float(str(arcpy.GetRasterProperties_management(inWT, "MEAN"))) 
print(avgWT) 
# 50 was chosen based on a f parameter of 0.02. 
# WTdepth is depth to water table in m 
WTdepth = Divide((avgWT - Times(50,(STIp - STIpMean))),100) 
# 
WTdepth.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/WTdepth") 
WTslope = Divide(Slope(WTdepth,"PERCENT_RISE","1"),100) 
# 
WTslope.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/WTslope") 
sub_vel = Times(0.000001,Times(inKsat,WTslope)) 
sub_vel.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/sub_vel") 
sub_time = Divide(30, sub_vel) 
sub_time.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/sub_time") 
# This gives us the subsurface velocity in m/s 
# sub_time is in seconds 
 
#******************************************************************************* 
#Export Coefficient - Surface BI 
 
###Set P retention values to 0 in all cells that are classified as rivers 
tmp2filter = Con(river0, 0, surf_time, "VALUE = 0") 
tmp2filter.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/tmp2filter") 
##         
###Use the flow accumulation routine to determine the nutrient trapping  
### efficiency for the downslope area 
tmp3filter = FlowAccumulation(FlowDirection(negDEM),surf_time)+surf_time 
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tmp3filter.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/tmp3filter") 
## 
###Use the con command to set a minimum trapping value of greater than or equal  
### to 1 for all non river cells (add 1) 
tmp4filter = Con(tmp3filter,Con(river0,(tmp3filter+1),tmp3filter,"VALUE <> 
0"),tmp3filter,"VALUE <= 1") 
tmp4filter.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/tmp4filter") 
## 
## 
###Use the con command to set a trapping value of 1 for all river cells 
###This is done to avoid division by zero 
filter1 = Con(river0, 1, tmp4filter,"VALUE = 0") 
filter1.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/filter1") 
##         
###Calculate the final BI, where BI = ln(filtered/hillslope)             
surfBI = Ln(Divide(filter1,hillslp)) 
surfBI = Con(surfBI, 0, surfBI, "VALUE < 0") 
surfBI.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/surfBI") 
## 
print("Surf BI Complete") 
 
#******************************************************************************** 
 
#Export Coefficient - Subsurface BI 
 
###Set P retention values to 0 in all cells that are classified as rivers 
tmp5filter = Con(river0, 0, sub_time, "VALUE = 0") 
tmp5filter.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/tmp5filter") 
##         
###Use the flow accumulation routine to determine the nutrient trapping  
### efficiency for the downslope area 
tmp6filter = FlowAccumulation(FlowDirection(negDEM),sub_time)+ sub_time 
tmp6filter.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/tmp6filter") 
## 
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###Use the con command to set a minimum trapping value of greater than or equal  
### to 1 for all non river cells (add 1) 
tmp7filter = Con(tmp6filter,Con(river0,(tmp6filter+1),tmp6filter,"VALUE <> 
0"),tmp6filter,"VALUE <= 1") 
tmp7filter.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/tmp7filter") 
## 
## 
###Use the con command to set a trapping value of 1 for all river cells 
###This is done to avoid division by zero 
filter2 = Con(river0, 1, tmp7filter,"VALUE = 0") 
##         
###Calculate the final BI, where BI = ln(filtered/hillslope) 
subBI = Ln(Divide(filter2,hillslp)) 
subBI.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/subBI") 
## 
print("Sub BI Complete") 
 
#=================================================================
============== 
# Determine Dynamic Export Coefficient Values  
#=================================================================
============== 
          
#Calculate average BI and TI to use for normalized indices 
#Calculate statistics for the rasters  
# (This function will exclude NODATA cells within the watershed) 
#Extract the mean from the statistics and convert to a floating point number 
 
arcpy.CalculateStatistics_management(surfBI) 
surfBIMean = float(str(arcpy.GetRasterProperties_management(surfBI, "MEAN"))) 
print(surfBIMean) 
arcpy.CalculateStatistics_management(subBI) 
subBIMean = float(str(arcpy.GetRasterProperties_management(subBI, "MEAN"))) 
print(subBIMean) 
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###Generate image of normalized BI for display 
BImsurf = Divide(surfBIMean,surfBI) 
BImsurf.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/BImsurf") 
BImsub = Divide(subBIMean,subBI) 
BImsub.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/BImsub") 
 
print("Averages Complete") 
 
#=================================================================
============== 
# Determine Hydrologically Sensitive Areas (HSAs) 
#=================================================================
============== 
STIpsd = float(str(arcpy.GetRasterProperties_management(STIp, "STD"))) 
print(STIpsd) 
drysd = STIpsd + STIpMean 
print(drysd) 
wetsd = STIpMean - STIpsd 
print(wetsd) 
 
STIwet = Divide(STIp,wetsd) 
STIwet.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/STIwet") 
STIdry = Divide(STIp,drysd) 
STIdry.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/STIdry") 
STIm = Divide(STIimp,STIimpMean) 
STIm.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/STIm") 
 
## 
##print("Averages Complete") 
## 
####Determine the Dynamic Export Coefficient (ECd), where: 
####ECd = EC*(TI/TIavg)*(BIavg/BI) for each cell 
#### 
###Nutrient Release 
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###Use the table of nutrient release values for N & P from the land use classification  
### to specify the amount contributed from that specific cell 
 
ECTN = Lookup(inLC,"TN") 
ECTN.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/ECTN") 
ECTP = Lookup(inLC,"TP") 
ECTP.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/ECTP") 
 
##     
ECdTNann = Times(Times(BImsub,STIwet),ECTN) 
ECdTNann.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/ECdTNa
nn") 
 
ECdTPann = Times(Times(BImsurf,STIm),ECTP) 
ECdTPann.save("C:/Users/Emily/Documents/ESF/Fall2016/SodusBay_CADA/ECdTPa
nn") 
 
## 
 
print("ECd Complete") 
## 
 
#Clean Up Files: 
arcpy.Delete_management(tmprise) 
arcpy.Delete_management(filledDEM) 
arcpy.Delete_management(flowDirec) 
arcpy.Delete_management(flowacc) 
arcpy.Delete_management(river0) 
arcpy.Delete_management(slp) 
# arcpy.Delete_management(TI) 
arcpy.Delete_management(trans) 
# arcpy.Delete_management(STI) 
arcpy.Delete_management(rise) 
arcpy.Delete_management(run) 
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arcpy.Delete_management(hillslp) 
arcpy.Delete_management(n) 
arcpy.Delete_management(R) 
# arcpy.Delete_management(surf_vel) 
# arcpy.Delete_management(surf_time) 
# arcpy.Delete_management(sub_vel) 
# arcpy.Delete_management(sub_time) 
arcpy.Delete_management(tmp2filter) 
arcpy.Delete_management(tmp3filter) 
arcpy.Delete_management(tmp4filter) 
arcpy.Delete_management(tmp5filter) 
arcpy.Delete_management(tmp6filter) 
arcpy.Delete_management(tmp7filter) 
#arcpy.Delete_management(surfBI) 
#arcpy.Delete_management(subBI) 
arcpy.Delete_management(BImsurf) 
arcpy.Delete_management(BImsub) 
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APPENDIX B: EC-PRECIP R CODE 

The R code develops a continuous exceedance probability curve a daily precipitation 
record in the area of interest. It will serve to assign a precise value for exceedance 
probability for each rainfall event based on the distribution. The exceedance 
probabilities are mapped to the distribution of EC values, assigning a higher export 
likelihood to days with more extreme precipitation events. 
Required inputs to this program include a daily precipitation record (with columns for 
precipitation [PRCP] and year, month, and day of event) and export coefficient 
information for each land use within the watershed of interest (with columns for all 
pollutants of interest [Total_P]). These inputs should be in a .csv format and read into 
the program. The model: 

1) Creates a daily precipitation exceedance probability curve using only daily events 
above a user-defined threshold, 

2) Assigns an exceedance probability value to each daily rainfall event in the years 
of interest, 

3) Creates an exceedance probability for EC values for each land use, 
4) Matches the exceedance probability of daily rainfall events found in step 2 to the 

EC exceedance probability, and 
5) Weights the EC values from step 4 to obtain a representative annual EC value. 

 
The outputs from this model are 1) the average EC value for each year of interest 
[EC_TP.csv] and 2) the percentile values for each land cover type [ECtable.csv]. 
 
# Emily Stephan 
# last modified: 10/10/2016 
 
setwd("/Users/emilystephan/Documents/StephanPapers/Paper2-JAWRAtemporal") 
weather <- read.csv("DailySyracusePrecip1.csv") 
weather$PRCP <- weather$PRCP/254 # Converts to inches (from 1/10th mm) 
 
weather1 <- weather[,c(3,4,5,6)] 
weather1 <- na.omit(weather1) 
weather1 <- weather1[weather1$PRCP > 1,] 
 
# Number of events annually for each simulated year 
weather2 <- weather1 
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uniqueyr <- unique(weather2$Year) 
annevents <- vector() 
for (i in 1:length(uniqueyr)){ 
  annevents[i] <- nrow(weather2[weather2$Year==uniqueyr[i],]) 
} 
 
# Number of precipitation events occuring each month 
monthevents <- vector() 
for (j in 1:12){ 
  monthevents[j] <- nrow(weather2[weather2$Month==j,]) 
} 
 
install.packages("lubridate") 
library(lubridate) 
 
years <- unique(weather$Year) 
 
matrix <- matrix(data=NA, nrow = 366, ncol = length(years)) 
colnames(matrix) <- years 
 
# In tempyr[j] >= XX, set XX to the threshold above which events are significant. 
for (i in 1:length(years)){ 
  tempyr <- weather[weather$Year == years[i],6] 
  tempyr <- tempyr[!is.na(tempyr)] 
  for (j in 1:length(tempyr)){ 
    if (tempyr[j] >= 1){ 
      matrix[j,i] <- ecdf(weather1$PRCP)(tempyr[j]) 
    } else { 
      matrix[j,i] <- NA 
    } 
  } 
} 
 
events <- apply(matrix, 2, sort) 
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ECmatrix <- matrix(data=NA, nrow = 366, ncol = length(years)) 
colnames(ECmatrix) <- years 
 
setwd("/Users/emilystephan/Documents/StephanPapers/Paper2-
JAWRAtemporal/HUC04140201_LULC") 
 
# NLCD11 <- EC_huc[EC_huc$LULC == "Water",] 
NLCD21 <- read.csv("NLCD21-4140201.csv") 
NLCD22 <- read.csv("NLCD22-4140201.csv") 
NLCD23 <- read.csv("NLCD23-4140201.csv") 
NLCD24 <- read.csv("NLCD24-4140201.csv") 
NLCD31 <- read.csv("NLCD31-4140201.csv") 
NLCD41 <- read.csv("NLCD41-4140201.csv") 
NLCD42 <- read.csv("NLCD42-4140201.csv") 
NLCD43 <- read.csv("NLCD43-4140201.csv") 
NLCD52 <- read.csv("NLCD52-4140201.csv") 
NLCD71 <- read.csv("NLCD71-4140201.csv") 
NLCD81 <- read.csv("NLCD81-4140201.csv") 
NLCD82 <- read.csv("NLCD82-4140201.csv") 
# NLCD90 <- EC_huc[EC_huc$LULC == "Woody Wetlands",] 
# NLCD95 <- EC_huc[EC_huc$LULC == "Herbaceous Wetlands",] 
 
LULC <- c(956, 20844, 18062, 13895, 5698, 731, 101471, 3468, 8085, 31085, 2029, 
68480, 35390, 20393, 921) 
LULC_cells <- sum(LULC[2:13]) 
 
avg_EC <- array(data = NA, dim = length(years)) 
 
for (k in 1:length(events)){ 
  prcp_events <- events[k] 
  tempstore <- array(data=NA, dim=length(prcp_events[[1]])) 
  for (m in 1:length(prcp_events[[1]])){ 
    EC21 <- quantile(NLCD21$Total_P, as.numeric(prcp_events[[1]][m]))*LULC[2] 
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    EC22 <- quantile(NLCD22$Total_P, as.numeric(prcp_events[[1]][m]))*LULC[3] 
    EC23 <- quantile(NLCD23$Total_P, as.numeric(prcp_events[[1]][m]))*LULC[4] 
    EC24 <- quantile(NLCD24$Total_P, as.numeric(prcp_events[[1]][m]))*LULC[5] 
    EC31 <- quantile(NLCD31$Total_P, as.numeric(prcp_events[[1]][m]))*LULC[6] 
    EC41 <- quantile(NLCD41$Total_P, as.numeric(prcp_events[[1]][m]))*LULC[7] 
    EC42 <- quantile(NLCD42$Total_P, as.numeric(prcp_events[[1]][m]))*LULC[8] 
    EC43 <- quantile(NLCD43$Total_P, as.numeric(prcp_events[[1]][m]))*LULC[9] 
    EC52 <- quantile(NLCD52$Total_P, as.numeric(prcp_events[[1]][m]))*LULC[10] 
    EC71 <- quantile(NLCD71$Total_P, as.numeric(prcp_events[[1]][m]))*LULC[11] 
    EC81 <- quantile(NLCD81$Total_P, as.numeric(prcp_events[[1]][m]))*LULC[12] 
    EC82 <- quantile(NLCD82$Total_P, as.numeric(prcp_events[[1]][m]))*LULC[13] 
    tempstore[m] <- 
(EC21+EC22+EC23+EC24+EC31+EC52+EC71+EC81+EC82)/LULC_cells 
  } 
  avg_EC[k] <- mean(tempstore)*29.8*.36 
  # kg/ha to metric tonnes -> kg/ha*29800ha*1/1000, conversion is 29.8 to get to metric 
tonnes, 0.36 is SDR 
} 
 
write.table(avg_EC, file="/Users/emilystephan/Documents/StephanPapers/Paper2-
JAWRAtemporal/EC_TP.csv") 
 
Trendmatrix <- matrix(data=NA, nrow = length(avg_EC), ncol = 3) 
colnames(Trendmatrix) <- c("Year","Observed","Modeled") 
Observed <- c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, 11, NA, NA, 14.79482, 15.682, 11, 13, 15, NA, 11.6, 13, 13, 25, 21, 6.8, 15.5, 
NA) 
Trendmatrix[,1] <- years 
Trendmatrix[,2] <- Observed 
Trendmatrix[,3] <- avg_EC 
 
# Trend tests 
cor.test(Trendmatrix[,2], Trendmatrix[,3], method="pearson") 
cor.test(Trendmatrix[,2], Trendmatrix[,3], method="spearman", exact=FALSE) 
cor.test(Trendmatrix[,2], Trendmatrix[,3], method="kendall", exact=FALSE) 
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Model_res <- Trendmatrix[,2]-Trendmatrix[,3] 
plot(Observed, Model_res) 
abline(0,0, lty=2) 
 
res_noNA <- Model_res[!is.na(Model_res)] 
Bias <- sum(abs(res_noNA))/length(res_noNA) 
 
install.packages("hydroGOF") 
library(hydroGOF) 
NSE(Trendmatrix[,3], Trendmatrix[,2]) 
 
# Plotting the cdfs for precip 
plot(ecdf(weather1$PRCP)) 
 
# Table of precipitation quantiles for each land cover type 
prcntles <- c(0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95) 
ECtable <- matrix(data=NA, nrow = 12, ncol = length(prcntles)) 
for (m in 1:length(prcntles)){ 
  ECtable[1,m] <- quantile(NLCD21$Total_P, prcntles[m]) 
  ECtable[2,m] <- quantile(NLCD22$Total_P, prcntles[m]) 
  ECtable[3,m] <- quantile(NLCD23$Total_P, prcntles[m]) 
  ECtable[4,m] <- quantile(NLCD24$Total_P, prcntles[m]) 
  ECtable[5,m] <- quantile(NLCD31$Total_P, prcntles[m]) 
  ECtable[6,m] <- quantile(NLCD41$Total_P, prcntles[m]) 
  ECtable[7,m] <- quantile(NLCD42$Total_P, prcntles[m]) 
  ECtable[8,m] <- quantile(NLCD43$Total_P, prcntles[m]) 
  ECtable[9,m] <- quantile(NLCD52$Total_P, prcntles[m]) 
  ECtable[10,m] <- quantile(NLCD71$Total_P, prcntles[m]) 
  ECtable[11,m] <- quantile(NLCD81$Total_P, prcntles[m]) 
  ECtable[12,m] <- quantile(NLCD82$Total_P, prcntles[m]) 
} 
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write.table(ECtable, file="/Users/emilystephan/Documents/StephanPapers/Paper2-
JAWRAtemporal/ECtable.csv")  
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APPENDIX C: DEA MODEL R CODE 

The R code evaluates modeling frameworks to predict denitrification potential (DEA) 
using a collection of sampled ancillary variables. 
The program requires a csv file input with columns for land use, sampling depth, DEA, 
NO23, NH4, total N, respiration, N mineralization, N nitrification, organic matter, and soil 
moisture. The model: 

1) Develops a correlation matrix for all sampled variables, 
2) Creates a PCA plot to visualize variable relationships, 
3) Splits data 70/30 for model development and validation, 
4) Evaluates AICc for selected models for AICc minimization, and 
5) Plots the observed vs. modeled DEA values for the chosen model and returns 

the NSE statistic.  
The outputs from this model are 1) correlation matrix (exported as “correlationx.csv”), 2) 
PCA plot, and 3) observed vs. modeled DEA plot. 
 
# Emily Stephan 
# Code to process and visualize Baltimore DEA data 
 
setwd("/Users/emilystephan/Documents/MRGP/DenitrificationMapping") 
data <- read.csv("BES DEA compilation.csv", stringsAsFactors = FALSE) 
data$DEA <- as.numeric(as.character(data$DEA)) 
data$NO23 <- as.numeric(as.character(data$NO23)) 
data$NH4 <- as.numeric(as.character(data$NH4)) 
data$TotalN <- as.numeric(as.character(data$TotalN)) 
data$Respiration <- as.numeric(as.character(data$Respiration)) 
data$Nmin <- as.numeric(as.character(data$Nmin)) 
data$Nnit <- as.numeric(as.character(data$Nnit)) 
data$MicrobialC <- as.numeric(as.character(data$MicrobialC)) 
data$MicrobialN <- as.numeric(as.character(data$MicrobialN)) 
data$RootBiomass <- as.numeric(as.character(data$RootBiomass)) 
data <- data[!is.na(data$DEA),] 
data <- data[data$Publication!="Groffman et al. (2005)",] 
data <- data[data$Publication!="Hale and Groffman (2006)",] 
# data$DEA <- log(data$DEA) 
attach(data) 
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library(MASS) 
library(sme) 
library(hydroGOF) 
 
# Looking at depths for all Baltimore data 
 
shallow <- data[data$Depth=="0 - 10",] 
shallow2 <- data[data$Depth=="0-5",] 
mid <- data[data$Depth=="30-Oct",] 
mid2 <- data[data$Depth=="30-May",] 
mid3 <- data[data$Depth=="30-50",] 
mid4 <- data[data$Depth=="50-70",] 
deep <- data[data$Depth=="70 - 100",] 
deep2 <- data[data$Depth=="70-100",] 
 
shallow <- rbind(shallow, shallow2) 
mid <- rbind(mid, mid2, mid3, mid4) 
deep <- rbind(deep, deep2) 
 
mean(shallow$DEA, na.rm = TRUE) 
mean(mid$DEA, na.rm = TRUE) 
mean(deep$DEA, na.rm = TRUE) 
 
# Looking at depths for only urban data 
 
urban <- data[data$Land.use.context=="Urban",] 
suburban <- data[data$Land.use.context=="Suburban",] 
forested <- data[data$Land.use.context=="Forested",] 
 
boxplot(urban$DEA,suburban$DEA,forested$DEA, names=c("Urban 
(N=66)","Suburban (N=112)","Forested (N=83)"), ylab = "DEA (ng/g/hr)", ylim = 
c(0,8000)) 
boxplot(shallow$DEA,mid$DEA,deep$DEA, names=c("0 - 10 cm (N=338)","10 - 70 cm 
(N=58)","70 - 100 cm (N=37)"), ylab = "DEA (ng/g/hr)", ylim = c(0,2200)) 
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## CORRELATION MATRIX 
 
DEAcor <- shallow[,12:20] 
DEAcor[,1] <- as.numeric(DEAcor[,1]) 
DEAcor[,2] <- as.numeric(DEAcor[,2]) 
DEAcor[,3] <- as.numeric(DEAcor[,3]) 
DEAcor[,4] <- as.numeric(DEAcor[,4]) 
DEAcor[,5] <- as.numeric(DEAcor[,5]) 
DEAcor[,6] <- as.numeric(DEAcor[,6]) 
DEAcor[,7] <- as.numeric(DEAcor[,7]) 
CorrTable <- cor(DEAcor, use="complete.obs", method="spearman") 
#  
write.table(CorrTable, file="correlationx.csv", append=TRUE) 
#  
corrtest <- matrix(NA, 9, 9) 
for (n in 1:9){ 
  for (p in 1:9){ 
    corresult<-cor.test(DEAcor[,n],DEAcor[,p]) 
    if (corresult$p.value > 0.05) { 
      corrtest[n,p]<-NA 
    } else { 
      corrtest[n,p]<-corresult$p.value 
    } 
  } 
} 
 
####### CREATING PCA PLOT FOR SHALLOW DATA ######### 
 
shallowPCA <- shallow[,12:20] 
shallowPCA <- shallowPCA[complete.cases(shallowPCA), ] 
stddata2 <- scale(shallowPCA) 
PCA.biplot2 <- princomp(na.omit(stddata2), cor=TRUE) 
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mydata.pca <- prcomp(shallowPCA, retx=TRUE, center=TRUE, scale.=TRUE) 
sd <- mydata.pca$sdev 
loadings <- mydata.pca$rotation 
rownames(loadings) <- colnames(shallowPCA) 
scores <- mydata.pca$x 
 
R <- cor(shallowPCA) 
myEig <- eigen(R) 
sdLONG <- sqrt(myEig$values) 
loadingsLONG <- myEig$vectors 
 
# Plot the frame 
plot(loadings, asp=1, type="n", ylim=c(-0.75,0.75), xlim=c(-0.75,0.75), xlab="PC1 
(36%)", ylab="PC2 (17%)") 
abline(v=0, lty=3) 
abline(h=0, lty=3) 
# Plot arrows: see ?arrows for the syntax 
arrows(0, 0, loadings[,1], loadings[,2], len=0.1, col="red") 
# Label the arrows 
text(1.1*loadings, rownames(loadings), col="red", xpd=T) 
 
 
## MODEL SELECTION AND VALIDATION 
 
AICcs <- matrix(data=NA, ncol = 8, nrow = 1) 
colnames(AICcs) <- c("lm.1", "lm.2", "lm.3", "lm.4", "lm.5", "lm.6", "lm.7", "lm.null") 
 
adjRmatrix <- matrix(data=NA, ncol = 8, nrow = 1) 
colnames(adjRmatrix) <- c("lm.1", "lm.2", "lm.3", "lm.4", "lm.5", "lm.6", "lm.7", "lm.null") 
 
# Splitting data into model selection and validation 
 
longitudes <- unique(shallow$Longitude) 
samp_longs <- vector() 
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for (j in 1:length(longitudes)){ 
  samp_longs[j] <- nrow(shallow[shallow$Longitude==longitudes[j],]) 
} 
sort(samp_longs) 
 
# Using a 60/40 or 70/30 split, choose your model validation and sample data 
# Use a random number generator to choose either 21 or 25 samples to use to validate 
 
select_pts <- matrix(data=NA, nrow = 0, ncol = ncol(shallow)) 
valid_pts <- matrix(data=NA, nrow = 0, ncol = ncol(shallow)) 
n <- 25 
index <- sample(1:35, 35, replace=F) 
for (j in 1:n){ 
  select_pts <- rbind(select_pts, shallow[shallow$Longitude==longitudes[index[j]],]) 
} 
nonindex <- index[(n+1):35] 
for (k in 1:length(nonindex)){ 
  valid_pts <- rbind(valid_pts, shallow[shallow$Longitude==longitudes[nonindex[k]],]) 
} 
 
## MODEL SELECTION 
 
lm.1 = lm(select_pts$DEA ~ select_pts$Moisture + select_pts$Respiration, data = 
select_pts) 
lm.2 = lm(select_pts$DEA ~ select_pts$Moisture + select_pts$Respiration + 
select_pts$Moisture:select_pts$Respiration, data = select_pts) 
lm.3 = lm(select_pts$DEA ~ select_pts$Moisture + select_pts$Respiration + 
select_pts$TotalN, data = select_pts) 
lm.4 = lm(select_pts$DEA ~ select_pts$Moisture + select_pts$Respiration + 
select_pts$TotalN + select_pts$Moisture:select_pts$Respiration, data = select_pts) 
lm.5 = lm(select_pts$DEA ~ select_pts$Moisture + select_pts$Respiration + 
select_pts$TotalN + select_pts$Moisture:select_pts$TotalN, data = select_pts) 
lm.6 = lm(select_pts$DEA ~ select_pts$Moisture + select_pts$Respiration + 
select_pts$TotalN + select_pts$Moisture:select_pts$Respiration + 
select_pts$Moisture:select_pts$TotalN, data = select_pts) 
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lm.7 = lm(select_pts$DEA ~ select_pts$Moisture + select_pts$Respiration + 
select_pts$TotalN + select_pts$Moisture:select_pts$Respiration + 
select_pts$Moisture:select_pts$TotalN + select_pts$Respiration:select_pts$TotalN, 
data = select_pts) 
lm.8 = lm(select_pts$DEA ~ 1, data = select_pts) 
 
AICcs[1, 1] <- AICc(lm.1) 
AICcs[1, 2] <- AICc(lm.2) 
AICcs[1, 3] <- AICc(lm.3) 
AICcs[1, 4] <- AICc(lm.4) 
AICcs[1, 5] <- AICc(lm.5) 
AICcs[1, 6] <- AICc(lm.6) 
AICcs[1, 7] <- AICc(lm.7) 
AICcs[1, 8] <- AICc(lm.8) 
 
adjRmatrix[1, 1] <- summary(lm.1)$adj.r.squared 
adjRmatrix[1, 2] <- summary(lm.2)$adj.r.squared 
adjRmatrix[1, 3] <- summary(lm.3)$adj.r.squared 
adjRmatrix[1, 4] <- summary(lm.4)$adj.r.squared 
adjRmatrix[1, 5] <- summary(lm.5)$adj.r.squared 
adjRmatrix[1, 6] <- summary(lm.6)$adj.r.squared 
adjRmatrix[1, 7] <- summary(lm.7)$adj.r.squared 
adjRmatrix[1, 8] <- summary(lm.8)$adj.r.squared 
 
# MODEL VALIDATION 
 
summary(lm.6) 
test.pred6 <- summary(lm.6)$coefficient[1,1] + 
summary(lm.6)$coefficient[2,1]*valid_pts$Moisture + 
summary(lm.6)$coefficient[3,1]*valid_pts$Respiration + 
summary(lm.6)$coefficient[4,1]*valid_pts$TotalN + 
summary(lm.6)$coefficient[5,1]*valid_pts$Moisture*valid_pts$Respiration + 
summary(lm.6)$coefficient[6,1]*valid_pts$Moisture*valid_pts$TotalN 
 
NSE(valid_pts$DEA, test.pred6) 
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plot(valid_pts$DEA, test.pred6, xlim=c(0,5000), ylim=c(0,5000), xlab=c("Observed"), 
ylab=c("Predicted")) 
abline(0,1) 
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