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Abstract 

E. A. Augustyn. Larval Northern Pike (Esox lucius) Ecology in Natural and Restored Coastal 

Wetlands of the Upper St. Lawrence River. 117 pages, 8 tables, 23 figures, 2 appendices, 2017. 

 

We explored several aspects of the northern pike larval period including the abiotic and biotic 

dynamics of spring nursery marshes, prey selection in two common nursery habitats, and 

physical conditions, diet, and survival rates in enhanced wetlands. These findings highlight the 

importance of physical conditions of nursery marshes on the development of eggs and larvae and 

production of abundant zooplankton prey. In laboratory experiments, larvae displayed greater 

prey selection for zooplankton originating in flooded wetlands than nearshore bays. A greater 

proportion of large cladocerans were selected by larvae given a wetland assemblage. In a mark 

and recapture study, larval pike survival rates were higher in enhancement sites when compared 

with those in existing sites, possibly due to more suitable environmental conditions. This 

research on pike ecology in coastal wetlands may help managers and researchers to better 

understand larval requirements and devise effective solutions to environmental problems 

affecting their recruitment. 

 

 

Key Words: Northern pike, St. Lawrence River, nursery marsh, larval ecology, zooplankton 

prey, wetland enhancement 

 

 

E. A. Augustyn 

Candidate for the degree of Master of Science, November 2017 

John M. Farrell, Ph.D. 

Department of Environmental and Forest Biology 

State University of New York College of Environmental Science and Forestry,  

Syracuse, New York   

 



1 

  

Preface 

 The northern pike (Esox lucius) is a large, piscivorous, apex predator in the St. Lawrence 

River and plays a significant role in aquatic food web structure, contributing to overall 

ecosystem function (Skov et al., 2002). Declines in adult northern pike abundance in the St. 

Lawrence River have been observed in recent decades (Smith et al., 2007; McCullough & 

Gordon, 2015), and are hypothesized to be related to reduced reproductive success linked to 

disruptions of the natural hydrologic regime and associated wetland vegetation changes (Farrell, 

2001; Farrell et al., 2006). In the St. Lawrence River, the spawning period is spatially and 

temporally protracted, and begins in flooded wet meadows in early spring, transitions to 

nearshore areas of bays, and is completed in offshore, deep sites in late spring (Farrell, 2001; 

Farrell et al., 1996, 2006). Reductions in water level fluctuation are thought to alter pike 

spawning distributions by eliminating spring flood pulses that allow access to shallow, 

productive floodplains (Farrell, 2001). Diminished seasonal high and low water fluctuations may 

also promote expansion of invasive robust forms of Typha (cattail) in the spawning and nursery 

grounds that tend to be avoided by northern pike (Franklin & Smith, 1963; Farrell, 2001), and 

crowd out beneficial native wet meadow vegetation (Cooper et al. 2008; Wilcox et al. 2008, 

Farrell et al. 2010). Larval pike are believed to remain near the spawning sites (Raat, 1988), 

therefore the nursery habitat is indirectly determined by the egg distribution. Early spawners 

yield higher survival from egg fertilization to hatching (Murry et al., 2008) and experience a 

longer growing season, resulting in a greater potential for growth and production of juveniles 

than nearshore bay and especially offshore spawners (Farrell et al., 2006).  

 Interactions between larvae and their environment may influence the year class strength 

of fish populations (Cushing, 1990; Mertz & Myers, 1994). Northern pike are gape-limited and 
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depend on zooplankton prey during the first few weeks of exogenous feeding (Devries et al., 

1998; Nilsson & Bronmark, 2000), until they reach approximately 28 mm and begin feeding on 

fish larvae (Cooper, 2000). Available prey and the ability to capture and ingest prey are critical 

for survival of many larval fishes (Cushing, 1990; Mayer & Wahl, 1997), including the northern 

pike (Skov et al., 2003; Ljunggren et al., 2010). Zooplankton assemblage composition and 

overall abundance are influenced by several environmental factors, including water level, 

temperature, and primary productivity, that are dynamic in large river systems (Pace et al., 1992; 

Thorp et al., 1994; Basu & Pick, 1996; Goździejewska et al., 2016), a characteristic that may 

have implications on the ability of larval pike to procure abundant, suitable prey during the 

critical larval stage. 

The overall goal of this thesis was to study the physical habitats, diets, and survival 

responses of northern pike larvae in upper St. Lawrence River nursery sites related to two 

spawning strategies (bay and wetland tributary spawning) and in sites where habitat restoration 

occurred. Chapter 1 examined the temporal patterns of zooplankton and phytoplankton 

productivity, water temperature, and dissolved oxygen in relation to spring flooding and larval 

development during the nursery period. Chapter 2 examined prey selection of larvae exposed to 

seasonally-flooded wetland and nearshore bay zooplankton assemblages during an early (first 

feeding) and more advanced larval stage, to look at the effects of nursery habitat changes on 

diets of larval pike. Chapter 3 investigated the effects of wetland enhancement techniques on 

larval pike survival, and described differences in the overall physical environments, zooplankton 

prey abundance, and prey selection by larvae, occurring at spawning pool enhancement, channel 

connectivity enhancement, and reference nursery marshes. This study aimed to discern the 

impacts of wetland habitat changes and enhancements on larval northern pike in the St. 
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Lawrence River by investigating several aspects of the larval nursery conditions. We hope that 

this work will add to the knowledge base surrounding larval pike ecology and promote future 

wetland enhancements to increase their productivity. 

Format of the chapters 

 Each chapter was prepared as a separate manuscript for publication. Chapters 1 and 2 

were prepared for submission to Freshwater Biology (Wiley) and Chapter 3 was prepared for 

submission to Hydrobiologia (Springer). 
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Chapter 1: Flood pulse timing and physical and biotic conditions for larval northern pike (Esox 

lucius) in a large river-floodplain system 

 

Abstract 

Physical and biological variables including water temperature, water level, dissolved oxygen, 

chlorophyll a, and zooplankton, were monitored in floodplain wetlands of a large river system, 

during the northern pike spawning and nursery periods. Catch per unit effort (CPUE) from spring 

adult spawning runs was used to estimate temporal patterns in egg deposition, and equations to 

predict demersal egg and yolk-sac-larvae developmental rates from ambient water temperatures, 

were used to project dates of larval swim-up and likely onset of exogenous feeding. Daily CPUE 

of 2016 northern pike spawners identified two separate peaks on March 29-30 and April 12. Site 

level temporal projections of larval development indicated the time differential to swim-up was 

reduced by an average of four days between early spawners and later spawners, due to warming 

following a prolonged early cool period. Minimum temperature, chlorophyll a concentration, and 

zooplankton abundance coincided with peak spring water level, suggesting flushing and dilution 

effects by oligotrophic, flood waters derived from the main river. Zooplankton abundance 

peaked two weeks following highest spring water levels (April 22) and prior to projected 

exogenous feeding by larval pike, suggesting a match in timing with abundant prey availability. 

All physical and biological variables examined in this study appeared to respond to peak spring 

water levels and subsequent warming. These data suggest that spring water level and water 

temperature play a major role in shaping the nursery marsh conditions available for northern pike 

larvae. 
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Introduction 

Physical and biological interactions of large river-floodplain systems are strongly 

influenced by flow regime (Junk et al., 1989; Poff et al., 1997; Tockner et al., 1999; Bunn & 

Arthington, 2002). Temperate rivers typically reach flood stage in spring, following periods of 

snow melt and heavy rainfall, and channel-floodplain connectivity is typically established during 

this time. Seasonally-flooded wetlands and floodplains serve as spawning and nursery sites for 

many species of resident and migratory fishes (Baber et al., 2002), and spawners gain access to 

floodplains during high water events (King et al., 2009; van de Wolfshaar et al., 2011). The flow 

regime may also alter the environmental conditions for other aquatic biota (Tockner et al., 1999; 

Thomaz et al., 2007), and is a primary determinant of zooplankton dynamics in river-floodplain 

systems (Basu & Pick, 1996; Gozdziejewska et al., 2016). Flood waters may flush out 

zooplankton, returning the assemblage to an earlier successional phase (Baranyi et al., 2002). As 

flood waters recede, organic matter accumulates (Jones et al., 2014), and zooplankton biomass 

and crustacean species richness increases (Baranyi et al., 2002; Scholl et al., 2012; Gorski et al., 

2013, 2016). The timing and duration of flooding also affects recruitment of juvenile fish 

(Gutreuter et al., 1999; King et al., 2003). Seasonally-flooded wetlands are ideal larval rearing 

habitats (Gorski et al., 2016) because they are shallow and warm quickly, fostering high 

productivity of zooplankton prey (Bass et al., 1997). 

The northern pike (Esox lucius) is an important top predator in the St. Lawrence River 

that briefly occupies seasonally-flooded wetlands as spawning and nursery grounds. Northern 

pike spawn in early spring following ice-melt between 4.4°C and 11.1°C (Scott & Crossman, 

1973), and temperature influences the development, growth, and survival of eggs and larvae 

(Kipling 1983; Doyon et al., 1988; Farrell et al., 2006; Mingelbier et al., 2008). Eggs hatch in 6-
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14 days in water temperatures of 10.9-15°C, and yolk absorption occurs in 14-17 days at water 

temperatures greater than 11°C (Cooper et al., 2008). Hatched larvae remain in the shallow 

spawning marshes (Franklin & Smith, 1963; Holland & Huston, 1985; Massé et al., 1991) and 

exhibit a brief planktivorous stage at the onset of exogenous feeding (Bry et al., 1995). Hjort 

(1914) postulated that larvae need to procure suitable prey shortly after yolk absorption to 

survive. Cushing (1974, 1990) expanded upon Hjort’s hypothesis by positing that spawning and 

larval periods must coincide with peaks in suitable prey, such as zooplankton. Variability in the 

timing of zooplankton hatches lead to variability in larval mortality (Cushing 1974, 1990), which 

may determine year class strength (Mertz & Myers, 1994). 

Ecological dynamics in river-floodplain systems are structured by natural flow regime 

(Heiler et al., 1995; Poff et al., 1997), and water level management may disrupt underlying 

hydrodynamic patterns. Reduction of natural flood periodicity reduces connectivity between 

rivers and their floodplains, and may alter timing of flooding events. Habitat connectivity is vital 

for exchange of water, nutrients, and biota (Junk et al., 1989; Heiler et al., 1995; Tockner et al., 

1999), and positively influences both fish species richness and piscivore richness (Bouvier et al., 

2009). Water level regulation in the St. Lawrence River for example, is thought to decrease 

available spawning habitat for northern pike, forcing adults to spawn in deeper, offshore sites 

and later in the season to allow water temperatures to warm (Farrell, 2001; Farrell et al., 2006; 

Smith et al., 2007). This spawning protraction leads to lower production of juvenile pike (Farrell 

et al., 2006), and may contribute to overall population declines through lost recruitment potential 

(McCullough & Gordon, 2015). Additionally changes in spatial and temporal patterns due to 

protracted spawning may lead to a loss of access to productive foraging areas and mismatches of 

prey for larvae (Cushing 1974, 1990). Floodplain wetlands typically have greater zooplankton 
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densities than their associated main channels (Bass et al., 1997; Spaink et al., 1998; Nunn et al., 

2007; Gorski et al., 2013), creating an ideal environment for larval fish growth. Flood pulse 

linkages to zooplankton and larval fish ecology have been studied in several large, regulated 

river systems (Baranyi et al., 2002; Schramm & Eggleton, 2006; Gutreuter et al., 1999; van de 

Wolfshaar et al., 2011; Scholl et al., 2012; Gorski et al., 2013), but many regulated rivers lack 

even basic descriptive relationships. 

The St. Lawrence River is the only natural outlet of the Great Lakes and runs 1197 

kilometers from Lake Ontario to the Gulf of St. Lawrence. Water levels in the St. Lawrence 

River are managed at the Moses-Saunders Power dam in Massena, NY, and regulation has 

diminished cyclical patterns of flooding and reduced seasonal water level fluctuations throughout 

the St. Lawrence River (Farrell et al., 2010b). The St. Lawrence River has the lowest suspended 

sediment load of the world’s large rivers (Gleick, 1993), which affects the distribution of primary 

producers and consumers. The St. Lawrence River also supports a diverse and abundant fishery 

(McCullough & Gordon, 2015). Our aim was to assess the effects of spring flood pulses on 

seasonally-flooded wetlands with regard to physical factors, and phytoplankton and zooplankton 

abundance. Interactions between the timing of pike spawning and subsequent larval pike 

ontogeny were examined in relation to the spring flood pulse and resulting environmental 

changes by posing these specific questions: (1) how do physical and biological environmental 

conditions change during the spring flood pulse in relation to northern pike spawning and larval 

development, and (2) do peaks in temperature and phytoplankton and zooplankton abundance 

coincide with the onset of exogenous feeding for larvae? 

  



10 

  

Methods 

Study area 

The Thousand Islands region begins at the confluence between Lake Ontario and the St. 

Lawrence River, and runs for approximately 80 river kilometers. The region consists of over 

1800 islands and hundreds of coastal wetlands, which serve as habitats for aquatic biota. French 

Creek is located within the Thousand Islands region, near Clayton, NY, and is a low gradient, 

drowned river mouth tributary to the St. Lawrence River, with a vast floodplain made up of 

primarily emergent wetland vegetation. Water levels in French Creek mimic those of the St. 

Lawrence River (Farrell et al., 2014). French Creek represents one of the upper St. Lawrence 

River’s larger undeveloped drowned river mouth wetland systems and sustains a population of 

northern pike and other important sport fishes (NYSDEC, 1993). 

Physical conditions 

 Four sampling sites within the French Creek watershed were visited on April 1, 8, 15, 22, 

and 29, 2016 (Figure 1). Sites were selected based on their historical importance as northern pike 

spawning and nursery sites (Marean, 1976), and to sample throughout the entire watershed. 

Three sites were chosen in the headwaters of three branches of French Creek: Bevins, Deferno, 

and Carpenters. The fourth site, lower French Creek, is located downstream of the other three 

sites. Bevins and Deferno represent unregulated branches of the watershed, and lower French 

Creek is an unregulated wide section near its confluence with the St. Lawrence River. Carpenters 

branch possesses a water control structure for the purposes of creating an inundated marsh for a 

longer period of time (Farrell et al., 2014). All sampling sites had a water depth of 0.2-1.0 m. 

Water level data from Alexandria Bay, NY (NOAA buoy station ID: 8311062, 
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http://tidesandcurrents.noaa.gov) was used to identify peak water level in the river during April, 

2016. Water level trends were plotted using a locally-weighted scatterplot smoothing (loess) 

curve which uses “nearest neighbor” algorithms to smooth data points into an overall model.  

A HOBO Pro v2 temperature logger model U22-001 (Onset Computer Corporation, 

Bourne, Massachusetts, U.S.A.) was deployed during the first sampling event at each site and 

recorded temperature (°C) at 1-hour intervals. Differences in temperature among sites were 

tested with a one-way ANOVA (α=0.05). Dissolved oxygen (mg/L) and conductivity (μS/cm) 

were measured using a YSI ProDSS multiprobe (YSI Incorporated, Yellow Springs, Ohio, 

U.S.A.) at the surface, mid-column, and near bottom substrate of the flooded marshes. 

Differences in mean dissolved oxygen throughout the water column were tested with a one-way 

ANOVA (α=0.05) and differences throughout the sampling period were tested with a repeated 

measures ANOVA (α=0.05). Relationships between temperature and dissolved oxygen were 

examined using a linear regression model.  
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Figure 1: French Creek flood pulse monitoring sites and their associated wetland types. Mapping 

sources include U.S. Fish and Wildlife Service National Wetlands Inventory and ESRI. 
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Biological variables 

Water samples were taken each visit to examine patterns in phytoplankton and 

zooplankton biomass throughout the sampling period. Duplicate 1-liter grab samples were taken 

for chlorophyll a analysis and duplicate 3-liter zooplankton grab samples were taken, sieved 

through 53-μm mesh, and preserved in 95% ethanol (Black & Dodson, 2003). During 

processing, water samples for chlorophyll a analysis were homogenized, subsampled (75-400-

mL), and filtered through a 0.7-μm, Whatman GF/F glass fiber filter (GE Healthcare Bio-

Sciences, Pittsburgh, Pennsylvania, U.S.A.). Chlorophyll a concentrations were analyzed using 

the acetone extraction method with a Turner Designs 10 AU fluorometer (Turner Designs, San 

Jose, California, U.S.A.). Concentrations from duplicate samples were averaged, and differences 

among sampling dates were tested for using a repeated measures ANOVA (α=0.05) with site 

included as a random effect. Zooplankton samples were sieved using 53-μm mesh and rinsed 

with filtered water. All individuals were counted and identified under a Leica MZ dissecting 

microscope (Leica Microsystems, Wetzlar, Germany) at 10x magnification. Cladocerans were 

identified to lowest taxonomic group and copepods were identified to order using Ward & 

Whipple (1959) and Thorp & Covich (2001). Zooplankton densities from duplicate samples were 

calculated and averaged. Differences in zooplankton densities among sampling dates were tested 

for using a repeated measures ANOVA (α=0.05) with site included as a random effect. 
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Egg and larval development 

Timing of northern pike egg and larval development was estimated with water 

temperature data using relationships defined by Farrell et al. (2006): 

Egg to hatch (days): y=1489.5𝑥−2.0275 

Hatch to swim-up (days): y=7494.6𝑥−2.3838 

where x was the mean observed water temperature (°C). The start date of egg and larval 

development was estimated using data from adult northern pike spawner surveys at Bevins and 

Carpenters in French Creek. Catch per unit effort (CPUE) was calculated using catch data and 

number of net nights fished, and dates with the greatest CPUE were selected for egg and larval 

development projections. The majority of adults (males and females) observed during 2016 

spring spawning surveys were of ripe condition (89%), determined through manual extrusion of 

gametes, with the exception of  two post-spawn females caught on April 15 and two pre-spawn 

females caught on March 30 and March 31. We assumed the date that spawners were caught 

represented the onset of egg development, because the majority of adults were capable of 

spawning on that date. Egg and larval development projections were calculated for each site 

using mean water temperatures collected using temperature loggers. The date of egg hatch was 

determined, and days required to swim-up were calculated using only water temperatures 

following that date. Temporal patterns of zooplankton abundance sampled during April 2016 

were compared to the estimated period for northern pike egg and larval development, to examine 

prey availability for larvae at swim-up. 
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Results 

Physical conditions 

 Water level height during the sampling period displayed two flood peaks. Water level 

was relatively low prior to flooding, experiencing a minimum on April 4 (74.84 m; Figure 2). 

Water level increased to a peak on April 8 (75.0 m) and a second peak on April 12 (75.0 m; 

Figure 2). After these flood pulses, water level generally declined for the remainder of the 

month. Water temperatures declined substantially during flooding and began to rise following 

peak water level (Figure 3). Lowest mean water temperature occurred at Bevins on April 6 

(1.9°C) and highest water temperature occurred at lower French Creek on April 22 (15.3°C). 

Patterns in mean water temperatures were not significantly different among sampling sites 

(𝐹3,112=0.88, p=0.46) and dropped from ~9°C on April 1 to ~3°C around April 6 before 

increasing to the monthly maximum of ~14°C on April 22. After the maximum, water 

temperatures generally declined for the remainder of the month.  

Mean dissolved oxygen was lowest on April 22 and highest on April 8 (Figure 4). There 

were no significant differences in oxygen at surface, middle, or bottom depth in the water 

column (𝐹2,57=0.26, p=0.77), suggesting mixing. Oxygen readings throughout the water column 

were then treated as replicates for the analysis of dissolved oxygen and sampling date. Repeated 

measures ANOVA indicated significant differences in dissolved oxygen among sampling dates 

(𝐹4,52=27.78, p<0.001), and post hoc Tukey HSD comparisons specified April 22 (mean=5.44 

mg/L), as having lower dissolved oxygen than any other date (Figure 4). Dissolved oxygen was 

significantly greater on April 8 (mean=9.86 mg/L) than April 1 (mean=8.03 mg/L), suggesting a 

response to flooding. Regression analyses indicate that dissolved oxygen was inversely related to 
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water temperature (y=12-0.36*x, R²=0.19, p<0.001, n=60). Conductivity ranged from 59.2 to 

529 μS/cm and there were no apparent trends in values observed throughout the survey or among 

sampling sites.  

 
Figure 2. Observed daily water-levels (m) during April 2016 at Alexandria Bay, NY (NOAA 

buoy station ID: 8311062, http://tidesandcurrents.noaa.gov). Points represent recordings taken 

every 6 minutes for the 24 hour period. The locally-weighted scatterplot smoothed trendline 

describes the overall water level patterns. Peak water levels occurred on April 8 and April 12 

with recorded heights of ~75 m.  
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Figure 3. Daily temperature data (°C) recorded using HOBO temperature loggers at mid-water 

column of Bevins (A), Deferno (B), Carpenters (C), and lower French Creek (D) during April 

2016. Points represent temperature recorded at hourly intervals. The locally weighted scatterplot 

smoothing trendline describes overall temperature patterns during the monitoring period. 
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Figure 4. Mean daily dissolved oxygen (mg/L; SE) recorded during April 1, 8, 15, 22, and 29 

sampling events using an YSI multiprobe at sampling sites. Sampling occurred between 09:00 

and 17:00. Dates are labelled with distinct letters assigned by post hoc comparisons using 

Tukey’s HSD test. 

Biological variables 

Chlorophyll a concentrations were higher at the beginning of the sampling period, 

declined during flooding, and began to rise following flooding (Figure 5). Concentrations ranged 

from 0.42 to 10.95 μg/L throughout the sampling period. Repeated measures ANOVA revealed 

there was a significant difference in chlorophyll a among sampling dates (𝐹4,32=3.69, p=0.01) 

and post hoc Tukey HSD comparisons indicated concentrations were significantly higher on 

April 1 than on April 8 and 15 (Figure 5).  
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Figure 5. Mean chlorophyll a concentrations (μg/L; SE) from 3-L grab samples at Bevins, 

Carpenters, Deferno, and lower French Creek on April 1, 8, 15, 22, 29. Dates are labelled with a 

distinct letter assigned by post hoc comparisons using Tukey’s HSD test. 

 

Zooplankton abundances displayed distinct changes during the sampling period, with 

lowest densities occurring during flooding, and greatest densities occurring two weeks following 

flooding. Mean total zooplankton densities ranged from 0.33 to 55.67 per liter. Repeated 

measures ANOVA indicated significant differences occurred between sampling dates 

(𝐹4,32=4.41, p=0.01) and post hoc Tukey HSD comparisons indicated densities were significantly 

higher on April 22 and significantly lower on April 8, than on other sampling dates (Figure 6). 

Sixteen zooplankton taxonomic groups (order to species) were observed (Appendix 1). The 

major zooplankton groups were pooled, and densities estimated for major groups indicated 

copepods dominated the assemblage at all sites from April 1 to April 22 with the exception of the 

Deferno site on April 15 and 22, where rotifers dominated (Table 1). Peaks in cyclopoids 
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occurred 1-2 weeks following flooding and declined for the remainder of the survey (Appendix 

1). Cladocerans began to dominate the assemblage on April 29 at Bevins, Carpenters, and 

Deferno, following the retreat of flood waters and periods of warm water temperatures, while 

ostracods dominated at lower French Creek. Densities of the large cladocerans, Daphnia spp., 

Ceriodaphnia spp., and Simocephalus spp., were low in the beginning of the monitoring period 

but increased throughout, with highest abundances occurring 3-4 weeks following flooding 

(Appendix 1). 

 

Figure 6. Mean zooplankton density (no/L; SE) of grab samples taken at Bevins, Deferno, 

Carpenters, and lower French Creek on April 1, 8, 15, 22, 29. Dates are labelled with distinct 

letter codes assigned using a post hoc Tukey HSD test. 
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Table 1: Mean densities (no/L; SE) of major zooplankton groups identified from grab samples 

taken on April 1, 8, 15, 22, and 29, 2016 at Bevins, Carpenters, Deferno, and lower French 

Creek. Means were calculated by averaging duplicate samples. Means that are not followed by a 

standard error indicate the density of the taxa was identical in both samples. 

 Density (no L¯¹; SE) 

Date Site Copepoda Cladocera Rotifera Ostracoda 

4/1 Bevins 3(2) 0.33 0.67 - 

Carpenters 44.3 (3.33) 2.17 (1.5) 0.33 - 

Deferno 0.67 (0.33) 0.33 0.67(0.33) - 

Lower French Creek 2.5 (0.5) 0.33 1 0.33 

4/8 Bevins 0.67 - 0.33 0.33 

Carpenters 23 (2) 1 - - 

Deferno 0.67 - - 0.33 

Lower French Creek 0.33 - - - 

4/15 Bevins 0.5 (0.17) 0.33 - - 

Carpenters 40 (2.67) 3 (0.67) - 1 

Deferno 0.33 0.33 0.83 (0.17) 0.33 

Lower French Creek 8.67 (0.67) 0.83 (0.5) 6.67 0.67 

4/22 Bevins 17.2 (11.5) 2.83 (0.17) 1.83 (0.17) - 

Carpenters 27 (1.33) 15.5 (3.83) - - 

Deferno 1 - 2.67 (0.33) 1 

Lower French Creek 52.8 (19.8) 1.33 (0.33) 1.17 (0.5) - 

4/29 Bevins 2 (1) 10.8 (6.8) 0.33 0.83 (0.5) 

Carpenters 6 (0.67) 44.5 (11.8) - - 

Deferno 1.5 (0.5) 1.83 (1.17) 0.67 - 

Lower French Creek 2.5 (0.83) 1.17 (0.83) 0.5 (0.17) 4 

 

 

Spawning and egg and larval development 

A total of 39 adult spawners were caught in French Creek from March 29 to April 15. 

Sixteen adults were caught at Bevins: 9 females, 6 males, and 1 unknown, and 23 adults were 

caught at Carpenters: 10 females, 12 males, and 1 unknown. Spawning adult northern pike 

CPUE for 2016 was greatest on March 29-30 and April 12, reaching 2.5 spawners · net night ¯¹ 

on both dates (Figure 7). Bimodal peaks observed in catch combined for Bevins and Carpenters, 

suggested two distinct runs within French Creek, nearly two weeks apart and separated by a 

mean water temperature drop of 7.5°C at Bevins and 5.6°C at Carpenters (Figure 7). The first 
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spawning run peak began at a water temperature of 6.4-8.2°C, and spawning resumed when 

temperature rebounded to 7.2°C degrees.  

Egg and larval development projections were calculated for spawning start dates of 

March 29 and April 12. Fewer total development days for eggs and larvae were estimated for 

April 12 spawners (31-45 days) versus March 29 spawners (36-50 days) due to greater exposure 

to warmer temperatures and therefore more rapid development experienced by the second cohort 

of spawners (Table 2). Predictions for date of swim-up ranged from May 4 to May 18 for the 

March 29 cohort and from May 13 to May 27 for April 12 cohort (Table 2). Peak zooplankton 

abundances occurred on April 22 at Bevins, Deferno, and lower French Creek and on April 29 at 

Carpenters, suggesting that zooplankton numbers displayed a relative peak prior to the projected 

swim-up of pike larvae.  

 
Figure 7. Mean CPUE of adult northern pike spawners (spawners · net night ¯¹; bar plot) and 

mean water temperature (°C; line graph) observed during the month of April, 2016. 
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Table 2: Days of development for northern pike larvae estimated from temperature-based 

equations in Farrell et al., (2006). Development of eggs and larvae resulting from March 29 and 

April 12 spawners were estimated due to greatest adult CPUE observed on those dates. 

Site Mean 

temperature 

(°C) 

Egg to 

hatch 

(days) 

Hatch to 

swim-up 

(days) 

Total 

development 

days 

Date of 

swim-up 

March 29 spawning projection 

Carpenters 9.1 17 21 38 May 6 

Bevins 7.8 23 27 50 May 18 

Deferno 8.2 21 24 45 May 13 

Lower French Creek 8.9 18 18 36 May 4 

April 12 spawning projection 

Carpenters 10.9 12 24 36 May 18 

Bevins 10.0 14 31 45 May 27 

Deferno 10.4 13 28 41 May 23 

Lower French Creek 11.6 10 21 31 May 13 

 

Discussion 

Synchrony of spring flooding and water temperatures play a major role in shaping the 

physical and biological nursery marsh conditions linked to timing of critical needs and ontogeny 

of northern pike larvae. These results corroborate modelling efforts by Farrell et al. (2006) and 

Smith et al. (2007), which highlight the linkages between environmental processes occurring in 

spawning and nursery habitats and northern pike reproductive success. The influence of 

hydrologic connectivity is known to be of critical importance to plankton dynamics occurring in 

seasonally-flooded wetlands (Tockner et al., 1999; Baranyi et al., 2002; Górski et al., 2013). Our 

results also suggest warming temperatures were crucial to support increasing zooplankton 

abundances, especially cladocerans, and hastened the development of northern pike eggs and 

larvae. Slow egg and larval development due to cold temperatures may lead to larvae hatching 

“mis-matched” to the optimal environment and abundant prey. The interaction between water 

temperature and water level, and timing relative to larval development and food availability (e.g., 

Cushing’s hypothesis), was of particular importance to the spring-spawning northern pike. Both 
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spring water levels and spring water temperatures are considered master variables that positively 

influence year class strength of St. Lawrence River pike, and fluctuations of both factors were 

likely the origin of historical cyclic patterns in strong year classes (Smith et al., 2007). Water 

level regulation of the St. Lawrence River has disrupted these natural processes, reducing the 

northern pike population and steadily lowering year class strength of juveniles (Smith et al., 

2007).  

Temperature may be the most influential factor affecting northern pike during their 

spawning and larval stages (Fortin et al., 1982; Casselman, 2002; Farrell et al., 2006; Mingelbier 

et al., 2008). Adults actively select the warmest areas of the spawning marshes to deposit eggs 

(Mingelbier et al., 2008), and evidence exists that temperature thresholds trigger adults to begin 

spawning (Pauwels et al., 2014). In the present study, temperatures prior to flooding were near 

the optimal range of 6-12°C for egg incubation and high quality larvae (Cooper, 2000; 

Bondarenko et al., 2015), but declined to as low as 1°C when peak water level was observed. 

Cold air temperatures (-11 to -1 °C) were also observed immediately prior to flooding on April 

4-6, therefore, projections of days required for egg incubation and swim-up were much longer 

than those observed in other studies on pike egg and larval development (Cooper, 2000; Farrell 

et al., 2006; Cooper et al., 2008). The cold temperatures observed prior to and during flooding 

increased the length of development, and may have resulted in high mortalities of eggs and 

larvae in the field. Temperatures lower than 3°C result in low fertilization and hatching rates 

because egg development ceases (Bondarenko et al., 2015) and in one study, pike larvae 

maintained at a constant temperature of 4.7°C did not develop to the swim-up stage (Cooper et 

al., 2008). The optimum temperature for juvenile pike growth ranges from 19 to 21°C 
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(Casselman, 1978). Temperatures rarely exceeded 15°C during this study, but increased to 

greater than 20°C during the juvenile emigration period (Augustyn, 2017, Chapter 3). 

Daily dissolved oxygen concentrations were consistently above the incipient lethal 

oxygen concentration of 0.5-1.5 mg/L (Casselman, 1978) during the sampling period. Dissolved 

oxygen was negatively influenced by temperature and experienced a minimum on April 22 

(mean=5.4 mg/L), when the highest temperatures were observed. Dissolved oxygen was highest 

during flooding, suggesting that flood waters brought oxygen-rich waters from the main river to 

the nursery marshes. Dissolved oxygen did not appear to be of concern in French Creek during 

the larval period, although concentrations are known to decline to below the incipient lethal 

concentration during the juvenile emigration period in early summer (Augustyn, 2017, Chapter 

3).  

Chlorophyll a concentrations were highest prior to flooding, and decreased with increased 

connectivity between to the main channel of French Creek, similar to observations by Knowlton 

& Jones (1997) in Missouri River floodplains and Ahearn et al., (2006), in a restored floodplain 

of the Cosumnes River, California. Chlorophyll a minima have been observed to occur during 

periods of high discharge (Tockner et al., 1999), and phytoplankton were likely flushed from the 

marsh and diluted during flooding. Concentrations began to increase following flooding at all 

sites coinciding with increases in temperature. Chlorophyll a concentrations in the main St. 

Lawrence River typically do not exceed 5 μg/liter (Farrell et al., 2010a), and concentrations 

observed in this study were comparable to those in the main river, but did increase above 10 

μg/liter at Carpenters prior to flooding, and above 8 μg/liter at lower French Creek following 

flooding. Mean chlorophyll a can increase to 20 μg/liter in wetlands of the upper St. Lawrence 
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River throughout the growing season (Farrell et al., 2014), but sampling for this study was 

limited to early spring.  

Nutrient and algal productivity originating in floodplain and slackwater habitats are 

thought to be extremely important to large, oligotrophic rivers, such as the St. Lawrence River 

(Thorp et al., 1998; Thorp & Delong, 2002). The seasonal fluctuation of floodplain/main channel 

connectivity allows for the concentration of high phytoplankton biomass during periods of 

disconnection, which is then transferred to the main channel during flooding (Tockner et al., 

1999; Ahearn et al., 2006). Nutrients and phytoplankton derived from the floodplain are thought 

to be essential to biota in the main channels (Junk et al., 1989) and reductions in flooding not 

only prevent biota from entering the productive floodplain, but also prevent the exchange of vital 

nutrients, algae, and zooplankton to the main river (Ahearn et al., 2006; Gorski et al., 2013). 

Lower French Creek, the furthest downstream site in this study, was the only site where the 

highest chlorophyll a concentrations were observed following flooding, suggesting algae and/or 

nutrients were transferred downstream as flood waters receded. Both watershed and main river 

derived waters may have been sources of observed flooding, although depressions in 

phytoplankton and zooplankton biomass observed during flooding suggest the bulk of the water 

was derived from overflow of the main river. Flow reversal was also observed on April 15 and 

April 29, which further suggests water moved into French Creek from the main river. Watershed 

derived flooding typically results in a release of nutrients (Tockner et al., 1999) although no 

significant release of spring nutrients has been detected in wetlands of the upper St. Lawrence 

River (Farrell et al., 2014). Water level regulation occurring in the system may inhibit the 

complete understanding of the natural patterns.  
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Highest zooplankton densities occurred two weeks following flooding on April 22, which 

has been observed in other temperate river-floodplain systems (Gorski et al., 2013). Despite the 

detection of statistical differences, changes in density were modest, ranging from a minimum 

abundance of 6.29/liter to a maximum abundance of 31.13/liter. Cold temperatures observed 

during the sampling period may have inhibited cues that many cladoceran species require for 

hatching (Vandekerkhove et al., 2005), suggesting warm temperatures should coincide with 

spring flooding for extensive zooplankton productivity to occur. Copepods were the dominant 

group at the beginning of the sampling period but cladocerans began to dominate the assemblage 

at the end of the sampling period. Zooplankton biomass is positively related to the residence time 

of water, and large-bodied zooplankton typically dominate following a spring flooding event 

(Baranyi et al., 2002; Casper & Thorp, 2007). Carpenters had higher zooplankton densities than 

the other sites examined in this study and also displayed the least water temperature fluctuation. 

The water control structure maintains high water levels throughout the spring (Farrell et al., 

2014), and fosters a shallow, warm, flooded habitat where zooplankton thrived. The assemblage 

of the main St. Lawrence River consists of primarily cyclopoid copepods, nauplii, and Bosmina 

longirostris (Casper & Thorp, 2007; Farrell et al., 2010a). Copepods display relatively fast 

swimming speeds when compared with cladocerans (Kerfoot, 1978) and Bosmina longirostris 

are small in size, which might make them unfavorable for larval fish that are trying to grow as 

quickly as possible. Seasonally-flooded wetlands provide a plethora of large, nutritious 

zooplankton prey, which promotes fast growth rates of juvenile fish (Gutreuter et al., 1999; 

Phelps et al., 2015) and access to abundant, large zooplankton prey is an advantage of larval fish 

inhabitation of floodplains. Lateral connectivity may transfer zooplankton from the floodplain to 
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the main channel, enhancing overall biological productivity of large river systems (Gorski et al., 

2013).  

Spring flooding triggers short potadromous fish migrations, including those of pike, into 

the tributary wetlands. Water level regulation diminishes natural fluctuations and reduces 

flooding, potentially disrupting environmental cues required by floodplain spawners. Protracted 

spawning of northern pike in the St. Lawrence River is thought to be directly related to water 

level regulation (Farrell, 2001), because muted flood pulses reduce the availability of tributary 

floodplain wetlands, forcing pike to spawn in deeper, less suitable habitats, and later in time due 

to temperature thresholds (Farrell et al., 2006). Late spawning results in lower egg survival 

(Farrell 2001, Murry et al., 2008) and YOY production (Farrell et al., 2006) when compared 

with early, tributary spawning. Late-spawned larvae experience a shorter growing season and 

may be exposed to lower prey abundances in offshore habitats then early-spawned larvae (Farrell 

et al., 2006). The 2016 YOY production in French Creek was extremely low (Augustyn, 2017, 

Chapter 3) when compared with that in prior years (Farrell et al., 2017). Precipitation in the 

upper St. Lawrence River between April and June was below average during 2016, ranking as 

the 7th driest year in recorded history (NOAA NCEI). Low rainfall coupled with water level 

regulation and cold spring temperatures could have contributed to overall low production. 

Northern pike abundances indexed by the New York State Department of Environmental 

Conservation have been in decline since the 1980s (McCullough & Gordon, 2015), and 

reductions in natural water level fluctuations and resulting loss of spawning habitats are thought 

to be the main drivers of these declines (Farrell, 2001; Farrell et al., 1996, 2006; Smith et al., 

2007).  
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This study provides evidence that seasonal flooding helps govern the environmental 

conditions and biotic dynamics in floodplain habitats of the St. Lawrence River. The life cycles 

of many fish species have evolved in regard to these patterns (Junk et al., 1989), and the northern 

pike is one such species in which reproduction is linked to spring flooding (Smith et al., 2007; 

Lee et al., 2015). Seasonal flooding maintains connectivity between the main channel and 

floodplain, and reinforces advantageous life history strategies. We suggest that maintaining 

naturally fluctuating water levels and a diversity of wetland habitats will likely promote northern 

pike juvenile production, and buffer the population against deleterious environmental events, 

such as the cold water temperatures and drought observed in this study. 
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Chapter 2: Prey selection by larval northern pike (Esox lucius) exposed to different zooplankton 

assemblages representing seasonally-flooded wetland and nearshore bay habitats 

Abstract 

We designed a prey selection study to investigate whether northern pike larvae select similar 

prey taxa in seasonally-flooded wetlands and nearshore bays that represent primary northern pike 

spawning habitats, and are affected by habitat changes. At first exogenous feeding, swim-up 

larvae exposed to bay and wetland assemblages were generalist consumers, feeding primarily on 

cyclopoid copepods and small cladocerans. Consistent with random feeding, no positive 

selection was observed for any prey taxa. Advanced larvae selected the large cladoceran 

Simocephalus spp., neutrally in both bays and wetlands, while Ceriodaphnia spp., the other large 

cladoceran, was selected positively by larvae offered a wetland assemblage and neutrally by 

larvae in a bay assemblage. Larger-sized prey were consumed by wetland larvae than by bay 

larvae at the advanced stage. Large cladocerans made up a greater proportion of the zooplankton 

assemblage in seasonally-flooded wetlands versus nearshore bay habitats, and may explain the 

difference in size selectivity. This laboratory study suggests larvae hatched in wetland 

environments have greater access to large cladoceran prey during this critical period, and 

differences in spatial and temporal spawning distributions may have important implications on 

zooplankton consumption during the larval period. 
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Introduction 

Prey availability and the ability to capture and ingest prey are critical for survival of 

larval fish during the first stages (Cushing 1990; Mayer & Wahl, 1997). Often larval fishes, 

including piscivores, are gape-limited, and dependent on zooplankton prey during the first few 

weeks of exogenous feeding (Devries et al., 1998; Nilsson & Bronmark, 2000). The northern 

pike (Esox lucius) is a voracious, apex predator in the St. Lawrence River that consumes 

zooplankton during its first life stages (Raat, 1988), and abundant prey is critical for larval 

survival (Skov et al., 2003; Ljunggren et al., 2010). Reported larval pike diets are comprised 

primarily of cyclopoid copepods and cladocerans (Desvilettes et al., 1994; Lehtiniemi et al., 

2007; Salonen et al., 2009), which typify the assemblage of the upper St. Lawrence River 

(Farrell et al., 2010). Zooplankton assemblage composition is influenced by several 

environmental factors including flow, temperature, and turbidity (Rossaro, 1988; Pace et al., 

1992; Thorp et al., 1994), and changes in the species composition can affect the growth and 

recruitment of juvenile fish (Miller et al., 1990).  

The spawning period for northern pike in the St. Lawrence River is protracted, occurring 

over many weeks (Farrell, 2001; Chizinski et al., 2016), and along a spatial gradient from 

shallow (<30 cm) seasonally-flooded wetlands of tributaries to deep (>6 m) offshore areas 

(Farrell et al., 1996, 2006; Farrell 2001), and because of this behavior, larvae may have access to 

different zooplankton forage depending on their nursery habitat type. The protracted spawning 

behavior is thought to occur in response to water level regulation and associated wetland 

vegetation changes that occur in the St. Lawrence River (Farrell, 2001; Farrell et al., 2006). 

Offshore spawning occurs later in the spring, after cooler spring water temperatures reach 

suitable levels (Farrell et al., 2006). Spatial and temporal variation in spawning has direct effects 
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on young-of-year (YOY) production (Farrell et al., 2006) and year class strength (Smith et al., 

2007). Laboratory and modelling work indicates early tributary spawners yield higher egg 

survival (Murry et al., 2008), and a greater potential for growth and YOY production (Farrell et 

al., 2006) than nearshore bay or offshore spawners, due to a longer growing season.  

Hatched larvae remain in the spawning grounds and are nourished by their yolk-sac until 

exogenous feeding begins (Raat, 1988). Swim-up larvae begin feeding on zooplankton, and must 

encounter appropriate and abundant prey soon after yolk-sac absorption to survive (Hjort, 1914; 

Cushing, 1974, 1990). Northern pike larvae prefer large prey types (Lehtiniemi et al., 2007; 

Salonen et al., 2009), and exhibit a progression in the zooplankton taxa they consume, beginning 

with copepods and later switching to large cladocerans and insect larvae (Raat 1988; Desvilettes 

et al., 1994, 1997; Bry et al., 1995). Copepods display much faster swimming speeds than 

cladocerans (Kerfoot, 1978) and this dietary switch may be due to difficulties in capturing large 

copepods.  

Gape limitations (Nilsson & Brönmark, 2000) and low abundances of suitably-sized fish 

larvae may explain the dominance of zooplankton in diets of larval piscivores (Persson & 

Brönmark, 2002). Specifically, northern pike larvae may rely on zooplankton until they are 

approximately 28 mm (Cooper, 2000), and able to consume fish. Suitable and abundant 

zooplankton prey presence after swim-up is critical for larval pike survival, and despite this, few 

studies have focused on zooplankton assemblage differences and their suitability as prey in 

relation to nursery habitats. 

This study was designed to examine the prey selection of northern pike larvae at two 

developmental stages exposed to zooplankton assemblages, originating from two distinct habitats 

that represent different spawning strategies. We used laboratory experiments to address two 
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questions involving larval northern pike prey selection: (1) do seasonally-flooded wetlands or 

nearshore bays support a greater proportion of zooplankton taxa preferred by larvae, and (2) do 

changes in larval preference of specific zooplankton types occur from swim-up to advanced 

stages? 

Methods 

Prey selection experiments- swim-up larvae 

 Salisbury and Flynn Bays, known northern pike spawning habitats both located on 

Grindstone Island in the upper St. Lawrence River (Figure 1), were selected as zooplankton 

collection sites and were treated as replicates. Both locations include backwater spawning 

habitats consisting of a seasonally-flooded emergent wetland with connecting channels and 

nearshore littoral habitat associated with the bays. Zooplankton were collected in areas that best 

represented habitat categories on May 18, 2016, with funnel traps designed by Bruce Smith of 

Ithaca College, NY and described in Brown et al. (2017). Funnel traps were assembled from 

PVC cylinders, 20 cm long and 10 cm in diameter. The exterior of the cylinder was painted black 

and a clear, inverted funnel with a 2 cm opening was attached to one end of the cylinder so 

aquatic organisms can enter the trap, but cannot easily exit. The opposite end of the cylinder was 

capped and a hole was drilled into the cap to fit a waterproof LED flashlight. The flashlight 

directs light out of the funnel, attracting phototactic organisms. Funnel traps were set after dark 

at bay and wetland locations and illuminated with a battery-powered bulb. Zooplankton were 

collected after 1 hour and stored in coolers overnight. All large insects, tadpoles, and fish that 

might prey on smaller zooplankton were removed immediately after collection.  
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Figure 1. Locations of light trap deployment in Flynn and Salisbury bays, Grindstone Island, NY. 

Mapping sources include ESRI. 

 Light traps were used to sample common taxa occurring in the sites. Light traps typically 

collect fewer zooplankton types than plankton nets but survival of the organisms is improved. 

Live zooplankton were imperative for the experiment, and for this reason light traps were 

selected as a zooplankton capture method. Mean densities from each assemblage were estimated 

by counting number of zooplankton in three 10-mL aliquots taken from the sample. Room 

temperature river water was added volumetrically so resulting densities were similar from each 

site and water temperature was not affected. The entire sample of each treatment was 

homogenized in storage coolers, and 1500-mL of sample was extracted and distributed into 44 

randomly selected 1.89-L glass containers. Water temperature was 12.5°C. Each zooplankton 
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assemblage (bay vs. wetland) was replicated twenty times. Containers were placed in random 

order in 37.5-L rectangular glass aquaria and were isolated from one another with white dividers.  

Larvae used in the experiment were cultured in the laboratory as progeny from a one 

male to one female pairing to reduce genetic diversity as a potential driver of prey selection. 

Adult spawning northern pike were captured in French Bay on April 17, 2016 in Oneida trapnets. 

Eggs were stripped from the female and fertilized with milt from the male using the dry method 

(Sorenson et al., 1966; Klingbiel, 1986). Fertilized eggs were incubated in hatching jars for two 

weeks and received a continuous flow of well water. After hatch, yolk-sac fry were transferred to 

75-L glass aquaria housed on a three rack shelf where yolk-absorption occurred in approximately 

one week. Northern pike egg and larval development are influenced by water temperature 

(Farrell et al., 2006), and previous work conducted in Flynn Bay indicated larvae begin feeding 

three weeks following egg deposition at naturally occurring water temperatures (Cooper, 2000). 

The first trial of experiments for this study was carried out exactly three weeks following egg 

fertilization. 

The first experimental trial was conducted at first exogenous feeding (mean length = 13.2 

mm, SE = 0.04), meaning larvae had not encountered or consumed any prey prior to the trial. 

Five northern pike larvae were randomly selected and distributed into each container. Wetland 

and bay treatments were replicated (n=2) using zooplankton assemblages from Flynn and 

Salisbury Bays. Time until first prey strike was measured (seconds) and averaged for the first ten 

containers to calculate a mean orientation time (four minute). Larvae were allowed to feed for an 

additional hour, similar to other larval prey selection experiments, because digestion is minimal 

and prey items in the gut are easily identified (Graham & Sprules, 1992; Mayer & Wahl, 1997). 

Following the trial, zooplankton were sieved through 53-μm mesh. Larvae were removed with 
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forceps and preserved in 95% ethanol. The remaining zooplankton were also preserved in 95% 

ethanol. During processing, larvae were measured (mm) and rinsed with well water prior to 

processing. The entire gut was dissected and all prey items were counted, identified, and 

measured using a Leica MZ dissecting microscope (Leica Microsystems, Wetzlar, Germany) at 

10x magnification. Only larvae that consumed zooplankton were included in the selection 

analysis which included 123 of 200 (61.5%) during this trial. Of the 77 larvae that did not 

consume zooplankton, 27 were given the bay assemblage and 50 were given the wetland 

assemblage. Cladocerans were identified to lowest taxonomic group and copepods were 

identified to order using Ward & Whipple (1959) and Thorp & Covich (2001), and the 

proportion of each prey taxon in the diet was calculated. Differences in the lengths of prey 

consumed were tested using a 2-sample t-test (α=0.05). The remaining zooplankton assemblage 

that was not consumed was filtered, rinsed, and all prey items were counted and identified.  

Prey selection experiments- advanced larvae 

The selection experiment was repeated with larger larvae (mean length = 17.7 mm, SE = 

0.08) of the same genetic strain as the first trial. The advanced trial was repeated with methods 

described for the swim-up trial, but following swim-up, larvae were fed Artemia spp. for three 

weeks. Prior to the experiment, larvae were starved for six hours to allow for gut passage of 

Artemia spp. through the intestinal tract. Water temperature was 19.1°C. Zooplankton 

abundances were substantially greater during the advanced larvae trial, so the remaining 

assemblage was subsampled during processing. The entire sample was suspended in 30-mL of 

water and homogenized. Aliquots of 1-mL were taken using a pipette and counted until at least 

300 individuals (Górski et al., 2013) were identified or the entire remaining assemblage was 

sorted.  
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Larval feeding strategy 

A modified Costello diagram (Figure 2) was used to evaluate feeding patterns of larvae 

for each treatment (Costello, 1990; Amundsen et al., 1996). This technique uses the prey-specific 

abundance as the percentage of a prey taxon’s occurrence relative to all prey consumed by an 

individual predator where the prey taxon occurs: 

Pi = (∑ Si/ ∑ Sti
) × 100 

where Pi = the prey-specific abundance of prey type i, Si = number of prey type i in all stomachs, 

and Sti
 = the total number of prey items in the stomachs of predators with prey i in their stomach. 

Prey-specific abundance is plotted against the frequency of occurrence: 

Oi =
Ji

P
 

where Oi = the frequency of occurrence of prey type i, Ji = the number of fish containing prey 

type i, and P = the number of fish with food in their stomachs (Bowen 1996).  

Amundsen et al. (1996) modified the original diagram by including three axes for 

interpreting feeding patterns (Figure 2). The axis increasing from the lower left to the upper right 

indicates prey importance. The axis increasing from the lower right to the upper left indicates 

niche width contribution. High between-phenotype component (BPC) occurs when individuals 

within a population specialize on different prey items, whereas high within-phenotype 

component (WPC) occurs when most individuals within a population use many prey items 

concurrently. The vertical axis represents feeding strategy. 
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Figure 2. Modified Costello feeding diagram (Amundsen et al., 1996) with 3 axes: feeding 

strategy, prey importance, and niche width contribution. 
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Important assemblages 

 A hierarchical agglomerative cluster analysis was performed using the BOOTCLUS 

program (McKenna, 2003) to identify significant assemblages present in the larval pike diets and 

environment (α=0.05). Raw abundance data were analyzed using the Bray-Curtis coefficient and 

the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) linkage with 1000 

bootstrap samples to test each linkage. The analysis was used to generate a dendrogram 

classifying zooplankton assemblage relationships within the experimental treatments and each 

cluster classified by the analysis represents a significantly distinct assemblage. This analysis 

allowed for the examination of the proximity of the diets and environmental assemblages.  

Prey selection 

Vanderploeg & Scavia’s (1979) relativized electivity index was used to evaluate prey 

selection by larvae given wetland and bay zooplankton assemblages. An index value was 

calculated for each prey item: 

𝐸𝑖
∗ =

[𝑊𝑖 − (1/𝑛)]

[𝑊𝑖 + (1/𝑛)]
, where 𝑊𝑖 =

𝑟𝑖/𝑝𝑖

∑ 𝑟𝑖/𝑝𝑖
 

where ri is the relative abundance of prey type i in the stomach, pi is the relative abundance of 

this prey in the environment, and 𝑛 is the number of prey types. Values range from -1 to +1. 

Negative values indicate rejection of the prey type, values near zero indicate random or neutral 

feeding, and positive values indicate selection of the prey type. Larvae from each jar were pooled 

and proportions of prey items consumed were averaged for each treatment. This index was 

selected because prey were not replaced during the experiment and individuals from some prey 

types were consumed entirely, eliminating the use of other indices (Manly, 1974; Chesson, 
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1978). The relativized electivity index (E*) is the best electivity index when compared with 

similar indices because it corrects for the number of prey types among samples, making 

treatments comparable (Lechowicz, 1982; Confer & Moore, 1987). The E* index values were 

arcsine transformed (arcsine √[(𝐸𝑖
∗ + 1)/2] to improve normality and homogenize variances 

(Alcaraz & Garcia-Berthou, 2007; Almeida et al., 2012). A Student’s t-test was used to test if E* 

values significantly differed from 0. 

 A series of Kruskal-Wallis non-parametric tests were performed to test for significant 

differences in prey selectivity among habitat type and time frame. All tests were done using raw 

E* values for each prey taxa. The first set of comparisons identified the effect of habitat on prey 

selectivity for each developmental stage (swim-up or advanced larvae). Selectivity of wetland 

prey taxa by swim-up larvae were compared to selectivity of the same taxa originating from a 

bay. This test was repeated for prey taxa consumed by advanced larvae. The second set of 

comparisons identified changes in selectivity over time, but within the same habitat. Selectivity 

of individual wetland prey taxa by swim-up larvae were compared to the wetland taxa’s 

selectivity by advanced larvae. This test was repeated for prey taxa originating from bays. All 

statistical testing were performed using R version 3.3.1 (R Core Team, 2016) and Minitab 17 

statistical software (Minitab, 2010) unless otherwise noted.  
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Results 

Larval feeding strategy 

 Swim-up wetland larvae primarily consumed cyclopoids (Frequency of Occurrence (O) 

=100%; Table 1). Cladocerans (<0.7 mm), such as small Ceriodaphnia spp. (O=13.3%), C. 

sphaericus (O=20%), Scapholeberis spp. (O=26.7%), and small Simocephalus spp. (O=13.3%), 

and ostracods (O=46.7%) were also commonly found in the diet. Swim-up bay larvae also 

consumed cyclopoids (O=90%), but C. sphaericus was the most frequently consumed taxon 

(O=95%). There were no significant differences in the lengths of prey consumed by swim-up 

larvae (𝑡248=1.21, p=0.23) in wetlands (mean=0.68 mm, SE=0.03) versus bays (mean=0.64 mm, 

SE=0.02). 

Advanced wetland larvae continued to feed on cyclopoids (O=100%), but large 

cladocerans (>0.8 mm) became increasingly more represented in the diet. Large Simocephalus 

spp. occurred in 100% of the diets and Ceriodaphnia spp. occurred in 95%. Advanced bay larvae 

continued to consume both cyclopoids (O=100%) and small C. sphaericus (<0.4 mm; O=94.7%) 

in similar proportions to bay larvae at swim-up. Ostracods (O=94.7%) and small Scapholeberis 

spp. (<0.6 mm; O=94.7%) occurred more frequently in advanced larval diets. Significant 

differences in the length of prey consumed by advanced larvae due to habitat type were detected 

(𝑡2218=6.88, p<0.001), with wetland larvae consuming larger prey (mean=0.83 mm, SE=0.01) 

than bay larvae (mean=0.74 mm, SE=0.01). 
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Table 1: Frequency of occurrence (%) of the prey taxa represented in the diets of experimental 

larvae. Prey taxa not found in either trial for a specific treatment are indicated with a dash (-). 

 Wetland Bay 

Prey Swim-up Advanced Swim-up Advanced 

Amphipoda 0 5 - - 

Acroperus spp. 0 5 0 63.2 

B. longirostris 0 10 0 42.1 

Calanoida - - 0 31.6 

Ceriodaphnia spp. 13.3 95 5 26.3 

Chironomidae 0 15 0 47.4 

Chydoridae 6.7 35 5 47.4 

C. sphaericus 20 85 95 94.7 

Cyclopoida 100 100 90 100 

Diaphanosoma spp. 0 10 0 10.5 

Harpacticoida - - 0 5.3 

Macrothricidae - - 0 10.5 

Ostracoda 46.7 50 60 94.7 

P. pediculus - - 0 26.3 

Scapholeberis spp. 26.7 15 25 94.7 

Sida crystallina - - 0 5.3 

Simocephalus spp. 13.3 100 0 47.4 

 

Examination of the Costello-Amundsen plots revealed few differences in the feeding 

strategies of northern pike larvae exposed to the four treatments (Figure 3). Swim-up wetland 

larvae were generalists, although there was a slight specialization on cyclopoid copepods (Figure 

3). Swim-up bay larvae, advanced wetland larvae, and advanced bay larvae also exhibited 

generalized feeding strategies. Advanced larvae began to incorporate more taxa into the diet and 

advanced bay larvae consumed the most prey types, totaling seventeen. 
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Figure 3. Amundsen-Costello diagrams showing feeding strategy of swim-up larvae given a 

wetland (A) or bay assemblage (B) and advanced larvae given a wetland (C) or bay (D) 

assemblage. Zooplankton taxa codes are as follows: AC, Acroperus spp.; AM, Amphipoda; BO, 

B. longirostris; CA, Calanoida; CE, Ceriodaphnia spp.; CR, Chironomidae; CH, Chydoridae; 

CS, C. sphaericus; CY, Cyclopoida; DI, Diaphanosoma spp.; HA, Harpacticoida; MA, 

Macrothricidae; OS, Ostracoda; PO, P. pediculus; SC, Scapholeberis spp.; SD, S. crystallina; SI, 

Simocephalus spp. 
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Important assemblages  

Analysis of raw abundance data identified eight distinct clusters (Appendix 2), meaning 

each environmental and diet assemblage had unique characteristics (Figure 4). Assemblage A 

was dominated by cyclopoids and ostracods from the diets of swim-up wetland larvae (Figure 5). 

Assemblage B was dominated by cyclopoids and C. sphaericus from the diets of swim-up bay 

larvae. Assemblage C included wetland zooplankton from the first trial and was also dominated 

by cyclopoids and ostracods. Assemblage C was significantly different than Assemblage A 

despite similar dominant taxa, suggesting larvae did not select prey in proportion to their 

quantities in the environment and positive or negative selection occurred. Assemblage D was 

dominated by cyclopoids and C. sphaericus from the diets of advanced bay larvae. Chironomids 

and Scapholeberis spp. also represented a large part of the Assemblage D, which was not 

observed in other assemblages. Cyclopoids were the dominant taxa of Assemblage E, the diets of 

advanced wetland larvae, but Simocephalus spp. was the second most dominant, making up 

~25% of the assemblage and Ceriodaphnia spp. made up ~10% of the assemblage. Assemblage 

F included bay zooplankton from the first trial and was significantly different than Assemblage 

B, suggesting prey selection. Assemblage G was dominated by Simocephalus spp. and C. 

sphaericus from the wetland environment during the advanced trial. Simocephalus spp. 

represented ~25% of the assemblage, which is the similar to the proportion in the advanced 

wetland larval diets (Assemblage E). Assemblage H was dominated by C. sphaericus and 

cyclopoids from the bay environment during the advanced trial, with amphipods making up 

~10% of the assemblage.  
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Figure 4. Zooplankton assemblages identified by the analysis of raw abundance data using the 

Bray-Curtis similarity index and the UPGMA linkage method, and 1000 bootstrap samples with 

the BOOTCLUS package. The dendrogram displays the structure of the diet and environment 

assemblages sampled in wetland and bay habitats for swim-up and advanced larval selection 

experiments. Significantly different assemblages are represented with a distinct letter and an 

asterisk (*).  
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Figure 5. Stacked bar chart displaying the percent composition of each significant zooplankton 

assemblage resulting from the cluster analysis. Each significant assemblage is labelled with the 

letter assigned during the cluster analysis on the x-axis. Prey taxa codes are as follows: AC, 

Acroperus spp.; AM, Amphipoda; BO, B. longirostris; CA, Calanoida; CE, Ceriodaphnia spp.; 

CR, Chironomidae; CH, Chydoridae; CS, C. sphaericus; CY, Cyclopoida; DI, Diaphanosoma 

spp.; EU, Eubosmina coregoni; FE, fish egg; GA, Gastropoda; HA, Harpacticoida; HY, 

Hydrachnida; MA, Macrothricidae; NU, nauplii; OS, Ostracoda; PO, P. pediculus; SC, 

Scapholeberis spp.; SD, S. crystallina; SI, Simocephalus spp.. 
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Prey selection 

Swim-up larvae displayed significant negative selection (t-tests, p<0.05) of C. 

sphaericus, nauplii, ostracods, and Simocephalus spp. when given a wetland assemblage, and of 

chydorids when given a bay assemblage (Figure 6). Selection of the other taxa (e.g., 

Ceriodaphnia spp., chydorids, cyclopoids, and Scapholeberis spp. for wetland larvae, and 

Ceriodaphnia spp., C. sphaericus, cyclopoids, ostracods, and Scapholeberis spp. for bay larvae) 

was not significantly different than 0 (t-tests, p>0.05), indicating these prey were eaten in 

proportion to their quantities in the environment and neutral selection occurred. 

 Advanced larvae displayed significant negative selection (t-tests, p<0.05) of Acroperus 

spp., amphipods, B. longirostris, chydorids, C. sphaericus, ostracods, and Scapholeberis spp. 

given a wetland assemblage, and for Acroperus spp., B. longirostris, calanoid copepods, 

chydorids, C. sphaericus, Diaphanosoma spp., ostracods, Scapholeberis spp., and S. crystallina 

given a bay assemblage (Figure 6). Significant positive selection (t=4.83, df=19, p<0.001) 

occurred for Ceriodaphnia spp. by wetland larvae, but Ceriodaphnia spp. were neutrally selected 

by bay larvae (t=0.88, df=5, p=0.42). Selection of cyclopoids, Simocephalus spp., and 

chironomids was neutral for both wetland and bay larvae (t-tests, p>0.05). Additionally, 

Diaphanosoma spp. were neutrally selected by wetland larvae, whereas macrothricids and P. 

pediculus were neutrally selected by bay larvae (t-tests, p>0.05).  
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Figure 6. Mean relativized electivity (SE) for (A) swim-up and (B) advanced larvae selection 

experiments given a bay (black) or wetland (gray) zooplankton assemblage. Index values 

significantly different from 0 are denoted with an asterisk (*). Prey taxa codes are as follows: 

AC, Acroperus spp.; AM, Amphipoda; BO, B. longirostris; CA, Calanoida; CE, Ceriodaphnia 

spp.; CR, Chironomidae; CH, Chydoridae; CS, C. sphaericus; CY, Cyclopoida; DI, 

Diaphanosoma spp.; EU, Eubosmina coregoni; FE, fish egg; GA, Gastropoda; HA, 

Harpacticoida; HY, Hydrachnida; MA, Macrothricidae; NU, nauplii; OS, Ostracoda; PO, P. 

pediculus; SC, Scapholeberis spp.; SD, S. crystallina; SI, Simocephalus spp. 
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 Swim-up larvae neutrally selected Ceriodaphnia spp., cyclopoids, ostracods, and 

Scapholeberis spp., and avoided chydorids and Simocephalus species. Selection of all of the 

above prey did not significantly differ between habitats (Kruskal Wallis tests, p>0.05; Table 2). 

Selection of C. sphaericus by swim-up larvae was significantly different between habitat types 

(H=11.42, df=1, p=0.001). C. sphaericus was neutrally selected by swim-up larvae given a bay 

assemblage (𝐸∗̅̅ ̅= 0.22) and avoided by swim-up larvae given a wetland assemblage (𝐸∗̅̅ ̅= -0.68).  

Advanced larvae neutrally selected cyclopoids, chironomids, and Simocephalus spp., and 

avoided calanoids, chydorids, C. sphaericus, Diaphanosoma spp., and ostracods. Selection for 

the above prey did not differ between habitats (Kruskal Wallis tests, p>0.05; Table 2). Advanced 

larvae showed greater selection for Acroperus spp. (H=9.2, df=1, p=0.002), ostracods (H=9.95, 

df=1, p=0.002), and Scapholeberis spp. (H=10.02, df=1, p=0.002) when offered a bay 

assemblage versus a wetland assemblage, and for B. longirostris (H=6.35, df=1, p=0.01) when 

offered a wetland assemblage versus a bay assemblage, although all of the above prey types were 

avoided.  
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Table 2: Differences in mean prey electivity (SE) due to habitat assemblage (wetland or bay) for 

swim-up and advanced larvae. Significant differences (α=0.05) detected using Kruskal Wallis 

tests are bolded. 

 Prey taxa Bay E* Wetland E* 

Swim-up Ceriodaphnia spp. -0.16 (0.84) -0.47 (0.34) 

 Chydoridae -0.92 (0.08) -0.61 (0.39) 
 C. sphaericus  0.22 (0.11) -0.68 (0.17) 
 Cyclopoida -0.03 (0.12)  0.05 (0.13) 
 nauplii -1 -0.82 (0.18) 
 Ostracoda -0.18 (0.16) -0.38 (0.19) 
 Scapholeberis spp. -0.03 (0.31) -0.30 (0.28) 
 Simocephalus spp. -1 -0.77 (0.15) 

Advanced Acroperus spp. -0.48 (0.10) -0.92 (0.08) 

 B. longirostris -0.93 (0.03) -0.85 (0.11) 
 Calanoida -0.70 (0.14) -1 
 Ceriodaphnia spp.  0.37 (0.30)  0.57 (0.10) 

 Chironomidae -0.30 (0.19) -0.21 (0.36) 
 Chydoridae -0.77 (0.09) -0.75 (0.11) 
 C. sphaericus -0.80 (0.05) -0.63 (0.08) 
 Cyclopoida -0.03 (0.09) -0.13 (0.07) 
 Diaphanosoma spp. -0.68 (0.22) -0.11 (0.52) 
 Ostracoda -0.29 (0.11) -0.71 (0.10) 
 Scapholeberis spp. -0.34 (0.07) -0.77 (0.13) 
 Simocephalus spp. -0.12 (0.21) -0.14 (0.10) 

  

Selection of Ceriodaphnia spp., cyclopoids, macrothricids, ostracods, and Scapholeberis 

spp. by bay larvae did not differ significantly between trials (Kruskal Wallis tests, p>0.05; Table 

3). Bay larvae showed greater selection for B. longirostris (H=4.99, df=1, p=0.03), calanoids 

(H=5, df=1, p=0.03), and chydorids (H=7.15, df=1, p=0.007) as advanced larvae than as swim-

up larvae, although all electivity values were negative. Bay larvae also displayed greater 

selection for Simocephalus spp. (H=8.35, df=1, p=0.004) as advanced larvae (𝐸∗̅̅ ̅= -0.12) than as 

swim-up larvae (𝐸∗̅̅ ̅= -1), shifting from negative selection to neutral. Selection of C. sphaericus 

by bay larvae significantly declined from the first trial to the second trial (H=22.56, df=1, 

p<0.001), switching from neutral selection (𝐸∗̅̅ ̅= 0.22) to avoidance (𝐸∗̅̅ ̅= -0.8).  
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Selection of B. longirostris, chydorids, C. sphaericus, cyclopoids, nauplii, ostracods, and 

Scapholeberis spp. by wetland larvae did not differ significantly between trials (Kruskal Wallis 

tests, p>0.05; Table 3). Wetland larvae displayed greater selection for Ceriodaphnia spp. 

(H=7.55, df=1, p=0.007) and Simocephalus spp. (H=9.66, df=1, p=0.002) as advanced larvae 

than as swim-up larvae. Selection of Ceriodaphnia spp. shifted from neutral (𝐸∗̅̅ ̅= -0.16) to 

positive (𝐸∗̅̅ ̅= 0.37) whereas selection of Simocephalus spp. shifted from negative (𝐸∗̅̅ ̅= -0.78) to 

neutral (𝐸∗̅̅ ̅= -0.14). 

Table 3: Differences in mean prey electivity (SE) due to timing (swim-up vs advanced) for 

wetland and bay larvae. Significant differences (α=0.05) detected using Kruskal Wallis tests are 

bolded. 

 Prey taxa Swim-up E* Advanced E* 

Bay B. longirostris -1 -0.93 (0.03) 

 Calanoida -1 -0.70 (0.14) 

Ceriodaphnia spp. -0.16 (0.84)  0.37 (0.30) 

Chydoridae -0.92 (0.08) -0.77 (0.09) 

C. sphaericus  0.22 (0.11) -0.80 (0.05) 

Cyclopoida -0.03 (0.12) -0.03 (0.09) 

Macrothricidae -1  0.18 (0.59) 

Ostracoda -0.18 (0.16) -0.29 (0.11) 

Scapholeberis spp. -0.03 (0.31) -0.34 (0.07) 

Simocephalus spp. -1 -0.12 (0.21) 

Wetland B. longirostris -1 -0.85 (0.11) 

 Ceriodaphnia spp. -0.47 (0.34)  0.57 (0.10) 

Chydoridae -0.61 (0.39) -0.75 (0.11) 

C. sphaericus -0.68 (0.17) -0.63 (0.08) 

Cyclopoida  0.05 (0.13) -0.13 (0.07) 

nauplii -0.82 (0.18) -1 

Ostracoda -0.38 (0.19) -0.71 (0.10) 

Scapholeberis spp. -0.30 (0.28) -0.77 (0.13) 

Simocephalus spp. -0.78 (0.15) -0.14 (0.10) 
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Discussion 

Selection experiments revealed larval pike were generalist consumers when exposed to 

both wetland and bay zooplankton assemblages during the swim-up and advanced larvae trials. 

Pike seemed to display plasticity in the size and species of the prey they consume during the 

larval stage, although patterns did emerge. Larvae from both habitats consumed primarily 

cyclopoid copepods and small cladocerans at swim-up larval stages, but began to select for larger 

cladocerans during the advanced larval stage. Copepods dominate spring assemblages in the 

Great Lakes, whereas cladocerans are more abundant later in the summer (Evans et al., 1980), 

due to temperature and photoperiod cues required for hatching and differing life history 

strategies (Vandekerkhove et al., 2005). Analogous patterns in assemblage composition were 

observed during spring zooplankton sampling in a tributary to the St. Lawrence River, with 

copepods representing 90% of the assemblage on April 1 versus 16% on April 29, and 

cladocerans representing 5% of the assemblage on April 1 versus 78% on April 29 (Augustyn, 

2017, Chapter 1).  

The cluster analysis revealed differences in larval diets relative to the assemblage 

available in the environment, suggesting selection and avoidance. The diets of swim-up larvae in 

wetlands and bays were statistically different, but the two clusters were close in proximity, 

suggesting larvae from each habitat consume similar prey at first feeding. Furthermore, the first 

set of prey selection comparisons indicated there were no ecologically important differences in 

selection due to habitat, with the exception of C. sphaericus, which bay larvae neutrally selected 

and wetland larvae avoided during the swim-up stage. This provides evidence that larvae feed 

similarly despite habitat differences. The difference in selection of C. sphaericus, may have 

occurred because of their greater proportions in the bay habitats (~25%) versus the wetland 
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habitats (<5%). In the Baltic Sea, pike larvae in the inner and outer habitats also displayed 

similar prey selection despite differences in the zooplankton assemblages among habitats 

(Salonen et al., 2009). The second major cluster included both wetland and bay advanced larval 

diets and wetland and bay environmental assemblages during the swim-up trial, suggesting that 

although the environmental assemblage may change, the larvae continue to feed on similar prey 

taxa present throughout the entire larval period. The cluster analysis revealed that different 

assemblages existed among habitat types and time periods, providing evidence that spatial and 

temporal distributions of larvae have implications on the zooplankton assemblage available for 

consumption. 

Many of the prey available during selection experiments were avoided by larvae despite 

high abundances in the environment such as the cladocerans, C. sphaericus and Scapholeberis 

spp., and ostracods. These prey types did occur frequently in the diets of bay larvae, but were not 

selected relative to their abundances in the environment. Lengths in this study averaged 0.29 mm 

for C. sphaericus, 0.43 mm for Scapholeberis spp., and 0.46 mm for ostracods, which were 

smaller than Simocephalus spp. (mean=0.99 mm), Ceriodaphnia spp. (mean=0.5 mm), and 

cyclopoids (mean=0.98 mm). Abundant prey types may have been avoided simply due to their 

small sizes. Northern pike are limited by their gape which increases linearly with total length 

(Nilsson & Bronmark, 2000), but prefer large prey to small prey when given the choice 

(Lehtiniemi et al., 2007). Our results were consistent with this established pattern and showed 

advanced larvae selecting for larger prey than swim-up larvae in both habitats. Larger-sized fish 

have better vision than smaller fish, which enables them to better search out prey (Breck & 

Gitter, 1983; Li et al., 1985; Walton et al., 1994), and under-developed visual abilities may 

prevent smaller fish from selecting preferred prey (Li et al., 1985). Additionally, prey encounter 
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rates for piscovores are thought to increase with prey size because larger prey create more 

disturbance, which is easier to detect (Breck, 1993). Of interest, advanced larvae consumed 

larger prey in wetlands relative to bay habitats, and large cladocerans made up a greater 

percentage of the wetland assemblage than the bay assemblage during both the swim-up and 

advanced trials. Optimal foraging theory predicts increases in specialist feeding strategies to 

occur when preferred prey types are abundant in the environment (Pyke et al., 1977). Prey 

abundance was shown to have an effect the selection of plankton by fish larvae in one study, 

with large plankton selected for when their abundances were high, but when large plankton were 

scarce, small plankton were selected (Rajasilta & Vuorinen, 1983).The presence of seventeen 

prey types in the diets of advanced bay larvae may have been due to the low abundances of large 

cladocerans, causing larvae to consume a greater diversity of prey. 

Farrell et al. (2010) documented the nearshore bay zooplankton assemblage of the St. 

Lawrence River as consisting primarily of small cladocerans (B. longirostris and C. sphaericus), 

and copepod nauplii and adults. The nearshore bay assemblage described during this study was 

similar to that of Farrell et al. (2010), with C. sphaericus and cyclopoid copepods comprising the 

greatest proportions of the assemblage. Ceriodaphnia spp. are known to be associated with 

productive, vegetated zones (Amoros, 1984), and made up about 20% of the nearshore bay 

assemblage in the St. Lawrence River during the 1970s (Farrell et al., 2010). Declines in 

Ceriodaphnia observed from the 1970s to the 2000s are believed to be a result of decreases in 

productivity of the main river associated with phosphorus reductions and the invasion of 

dreissenid mussels (Farrell et al., 2010). Dreissenid mussels are effective filter feeders and have 

been the source of widespread declines in chlorophyll a concentrations observed throughout the 

Great Lakes (Howell et al., 1996; Cha et al., 2013). Tributary wetland habitats have remained 
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predominantly resistant to dreissenid mussel invasions observed in the main river, possibly due 

to shallow depths, fluctuating water levels, and open, exposed conditions in winter (Zanatta et 

al., 2002). The absence of dreissenids may explain the presence of Ceriodaphnia spp. in these 

habitats. Seasonal wetlands may act as strongholds of these large cladocerans as primary 

productivity declines to natural, oligotrophic levels in the main St. Lawrence River. Our results 

suggest that pike larvae hatched in seasonally-flooded wetlands will have greater access to 

abundant, large cladoceran prey, specifically Ceriodaphnia spp. and Simocephalus spp., than 

larvae hatched in nearshore areas of bays.  

The observed temporal progression from copepods to large cladocerans is consistent with 

results from other studies on larval pike diets (Raat, 1988; Desvilettes et al., 1994, 1997; Bry et 

al., 1995). Both copepods and cladocerans meet nutritional requirements of larval pike 

(Desvilettes et al., 1997), although there are some differences in the amounts of specific essential 

fatty acids. Cladocerans have lower levels of docosahexaenoic acid (DHA) than copepods but 

higher levels of eicosapentaenoic acid (EPA; Persson & Vrede, 2006; Smyntek et al., 2008). A 

bioconversion of EPA to DHA by pike larvae could be possible (Desvilettes et al., 1994, 1997), 

which has been shown in daphnids (von Elert, 2002). Furthermore, it is thought DHA is retained 

and deposited by the fish (Henderson & Tocher, 1987). Our experimental findings, which 

showed pike larvae consuming primarily copepods at first feed in both wetlands and bay 

assemblage treatments, would be consistent with the general requirement for DHA immediately 

after yolk sac absorption.  

Larvae from all treatments consumed cyclopoids neutrally, suggesting cyclopoids are an 

extremely important prey type. Copepods may be nutritious but they are also difficult to catch. 

Cyclops spp. adults have relatively fast swimming speeds (0.9 mm/s-3.0 mm/s; Li & Li, 1979) 
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when compared with Simocephalus vetulus (0.1 mm/s; Cooper et al., 1985), and adult female 

cyclopoids can display even greater swimming speeds (2-4 mm/s; Gerritsen, 1978). Optimal 

foraging theory postulates larvae will select prey on the basis of maximizing energetic gains and 

minimizing energetic costs of capture, consumption, and digestion (Schoener, 1971; Pyke et al., 

1977). Many species of larval fish consume cladocerans because they are relatively easy to catch 

despite the caloric advantages of copepods (Nunn et al., 2012) and pike larvae may use large 

cladocerans as prey to conserve energy after nutritional requirements have been met. Our results 

suggest reduced nutrition may be less important to larval pike than successful prey capture, and 

larvae may benefit from consuming large cladocerans based on their ease of capture. 

Selection experiment results highlighted the potential importance of habitat type on the 

zooplankton assemblage available to larval fishes but may not be entirely applicable in the 

natural environment. Zooplankton behaviors occurring in a natural setting, such as diel migration 

or occupying highly vegetated areas (Bollens & Frost, 1991; Burks et al., 2002), may affect the 

ability of larval fish to procure prey. Zooplankton used in this study were distributed into glass 

containers, eliminating structure for predator avoidance. Zooplankton could have occupied 

different levels in the water column, although this behavior was not observed during the 

experiment. The use of light traps as a zooplankton capture method was done for the purposes of 

collecting common organisms and was not intended to quantify densities. Light traps may select 

organisms with a positive phototactic response and typically collect fewer taxonomic groups 

when compared to plankton nets and grab samples, missing rare taxa (Choat et al., 1993; 

Hickford & Schiel 1999). Conversely, grab sampling may not effectively sample the assemblage 

due to vertical diel migration of several types of zooplankton (Zaret & Suffern, 1976). We did 

attempt to collect zooplankton using a combination of plankton nets and grab sampling with the 
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aforementioned biases in mind, but were unsuccessful due to shallow depths of the seasonally-

flooded wetlands. 

Spring temperature is one of the primary determining factors of northern pike year class 

strength (Casselman 2002; Smith et al., 2007), and tributary wetlands warm quicker and are 

more productive than bays and deep littoral zones (Farrell et al., 2014). In the Baltic Sea, low 

zooplankton abundance is a major cause of recruitment failure for northern pike. (Ljunggren et 

al., 2010). Inner habitats have greater abundances of cladocerans and copepods (Salonen et al., 

2009), and act as sources of pike larvae, whereas deep, outer habitats act as sinks (Lappalainen et 

al., 2008; Kallasvuo et al., 2010). We argue that similar patterns are applicable in the St. 

Lawrence River. Seasonal wetlands in tributaries provide higher abundances of zooplankton prey 

(Nunn et al., 2012; Spaink et al., 1998), greater cladoceran species richness (Nunn et al., 2007), 

and zooplankton remain viable longer (Bass et al., 1997) when compared with open water areas 

of large river systems. Larvae resulting from spawners utilizing nearshore bay or offshore 

habitats may experience difficulties in procuring suitable zooplankton prey following swim-up, 

further indicating the disadvantages of protracted spawning. Survival and recruitment of juvenile 

fishes is a complex matter that cannot be explained solely by forage. Other factors including 

physical environment (Casselman, 1978), predation (Skov et al., 2003; Grønkjær et al., 2004; 

Nilsson, 2006), and competition (Polis, 1988) are important for juvenile pike survival and must 

be considered in understanding overarching patterns. Nevertheless high mortality does occur at 

the onset of exogenous feeding (Bry et al., 1995), and changes in larval prey should be examined 

in the context of habitat alterations. 

Many life history strategies of fish have evolved in response to seasonal patterns in water 

level and temperature (Junk et al., 1989; Schramm & Eggleton, 2006). Northern pike are 
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broadcast spawners, providing no parental care for eggs and larvae, and most likely exhibit 

potadromy for the advantages of refuge from predators, abundant prey, and warm conditions 

conducive for fast growth of larvae. In the spring, connectivity between rivers and their 

floodplains is established during flooding, allowing for the exchange of nutrients and organisms 

(Thomaz et al., 2007; Gorski et al., 2013). Water level regulation disrupts natural seasonal 

fluctuations and prevents extreme flooding that may be vital to spring floodplain spawners. Eggs 

are demersal and adhesive, remaining close to areas where they were deposited (Casselman & 

Lewis, 1996), and thus, there is little opportunity for larvae to move to a more favorable 

environment. Abundant, high-quality habitats with adequate forage must be available during all 

stages of development for northern pike populations to persist (Lehtiniemi, 2005), and survival 

of northern pike from egg to juvenile is greatest in tributary wetlands when compared to 

nearshore areas of bays and deep littoral habitats (Farrell et al., 2006). 

Changes in spawning and nursery habitats due to water level regulation and Typha 

(cattail) expansion have sparked concerns for larval northern pike survival and recruitment to the 

population (Farrell, 2001; Cooper et al., 2008). In the Thousand Islands region, emergent 

vegetation in many seasonally-flooded wetlands has been converted to cattail or access to these 

areas has been blocked, forcing northern pike adults to spawn in less suitable habitats. In the past 

decade, several enhancement projects were completed in the Thousand Islands region to 

reconnect remnant sedge meadows with their main channels. Enhanced marshes display higher 

larval survival (Augustyn, 2017, Chapter 3) and overall catch of juvenile northern pike (Brown et 

al., in prep) when compared with reference marshes (Augustyn, 2017, Chapter 3). Our 

experimental findings illustrate the importance of shallow, seasonally-flooded wetlands as 

nursery grounds for larval pike and clearly demonstrate that larvae hatching in nearshore bays 
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and offshore will have less access to preferred, large bodied zooplankton prey during the critical 

larval period. We hope that this research on zooplankton selection by larval northern pike will 

contribute to the knowledge base surrounding impacts of Typha expansion on northern pike 

populations and provide scientific support for reconnecting the main St. Lawrence River to its 

floodplain wetlands.  
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Chapter 3: Larval northern pike (Esox lucius) abiotic environmental conditions, zooplanktivory, 

and survival to emigration following connectivity restoration in a Typha dominated wetland 

 

 

Abstract  

Declines in young of year (YOY) northern pike (Esox lucius) abundance in coastal wetlands of 

the St. Lawrence River are thought to be a result of wetland vegetation change, disruption of 

natural water level fluctuations, and habitat degradation. Connectivity enhancements and 

spawning pool excavations are two restoration methods that were recently implemented in a 

tributary to the St. Lawrence River, with the goal of increasing YOY pike production. We 

examined northern pike survival rates (from stocked advanced larvae to summer emigration), 

abiotic environmental factors (e.g., water temperature and dissolved oxygen), and larval diets in 

channel connectivity, spawning pool, and reference nursery habitats, to determine if wetland 

enhancements successfully improve conditions for YOY pike development and survival. Stocked 

pike emigrated at a similar temporal distribution and at similar lengths when compared with wild 

fish. Survival of larvae stocked in channel and spawning pool enhancements was identical 

(1.5%) and significantly greater than survival of larvae stocked in reference marshes (0.08%). 

Mean water temperatures throughout the sampling period were highest in spawning pools 

followed by channels and reference sites, whereas dissolved oxygen was greatest in pools, 

followed by reference sites, and channels. Diets of larvae stocked in spawning pools and 

reference sites were similar, whereas larvae in channels consumed different taxa. Differences in 

diet among study sites did not reflect differences in survival, suggesting that larvae were not 

limited by zooplankton prey. Highest survival rates observed in spawning pool and channel 

enhancement sites suggest temperature and the presence of preferred vegetation were critical to 
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larval pike. This study showed excavation enhancement to be a feasible method of increasing 

YOY pike survival and production in coastal wetlands of the Great Lakes if springtime water 

levels are sufficient to periodically flood spawning and nursery sites.  
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Introduction 

Coastal wetlands of the Laurentian Great Lakes serve as crucial habitats for many fishes 

during their spawning and nursery periods (Jude & Pappas, 1992). Wetlands are typically 

warmer and more productive than their associated main channels, and provide young of year 

(YOY) fishes ample forage, protection from predation, and ideal, warm conditions for rapid 

growth (Bass et al., 1997; Spaink et al., 1998; Gutreuter et al., 1999; Nunn et al., 2007). Physical 

and biological dynamics occurring during the larval and juvenile stages may influence the year 

class strength of fish populations (Cushing, 1990; Houde, 1994) and larval survival is influenced 

by several processes (Letcher et al., 1996), including environmental factors (e.g. temperature, 

water level, and dissolved oxygen; Clady, 1976; Uphoff Jr., 1989), abundant and suitable prey 

items (Mayer & Wahl, 1997; Burrow et al., 2011), predation (Houde, 1987; Letcher et al., 1996; 

Skov et al., 2003), and growth (Houde, 1987; Letcher et al., 1996). 

Northern pike (Esox lucius) is an apex predator that uses seasonally-flooded wetlands 

during the spawning and nursery periods (Bry, 1996; Casselman & Lewis, 1996). In the St. 

Lawrence River, the spawning period is protracted, and begins in flooded wet meadows in early 

spring, transitions to nearshore areas of bays, and is completed in offshore deeper sites in late 

spring (Farrell, 2001; Farrell et al., 2006). Water level management is thought to prevent access 

of tributary spawning grounds and has altered wetland plant communities in freshwater coastal 

wetland systems (Farrell et al., 2010b). The invasive Typha x. glauca (a hybrid of T. angustifolia 

and T. latifolia) is a robust cattail form that has expanded in the upper St. Lawrence River 

following the construction of the Moses Saunders Power Dam (Cooper et al., 2008; Wilcox et 

al., 2008; Farrell et al., 2010b; Rippke et al., 2010). Spawning northern pike prefer flooded sedge 

and grass vegetation (Franklin & Smith, 1963; McCarraher & Thomas, 1972; Bry, 1996), and 
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tend to avoid Typha (Franklin & Smith, 1963; Farrell, 2001). The conversion of sedge meadows 

to Typha along with changes in the hydroperiod creating lower spring water levels (Farrell et al. 

2010b), are thought to have altered spawning distributions (Farrell, 2001; Farrell et al., 2006). 

Northern pike eggs are demersal and newly hatched larvae attach to vegetation via 

adhesive papillae. Egg hatch is temperature dependent (Farrell et al., 2006), and occurs as early 

as 7 days in warming springtime water temperatures (Scott & Crossman, 1973; Cooper et al., 

2008). Hatched larvae feed off of their yolk sac until exogenous feeding begins. Larval diets 

consist primarily of copepods and cladocerans (Desvilettes et al., 1994; Lehtiniemi et al. 2007; 

Salonen et al., 2009; Augustyn, 2017, Chapter 2), and the coincidence of exogenous feeding and 

abundant zooplankton prey is crucial during the larval period (Cushing 1974, 1990; Burrow et 

al., 2011). Larvae remain in shallow nurseries for several weeks before emigrating to nearby 

areas (Raat, 1988). Declining water levels throughout the growing season force juveniles to exist 

in higher densities (Massé et al., 1991), and results in increased cannibalism (Skov et al., 2003; 

Nilsson et al. 2014) and lower dissolved oxygen concentrations (Casselman, 1978), which are 

thought to contribute to the emigration behavior. 

Declines in the catches of YOY northern pike have been observed in tributaries of the St. 

Lawrence River over the past decade (Smith et al., 2007; Farrell et al., 2017), and adult stocks 

have experienced a significant decline thought to be associated with poor population recruitment 

(McCullough & Gordon, 2015). Efforts to restore populations have focused on habitat 

improvements to enhance northern pike spawning and nursery grounds in tributaries. Restoring 

connectivity helps increase opportunities for northern pike entry into seasonally-flooded 

wetlands impacted by Typha expansion. Wetlands with greater connection to other surface 
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waters have higher species diversity and more abundant biota contributing to overall greater 

ecosystem function (Jude & Pappas, 1992).  

Excavation within dense stands of cattail is a technique that has been implemented in the 

Great Lakes (Mathers & Hartley, 1995; Vincent, 1995). Excavations are designed to create an 

interspersion of open water and vegetated habitats, and have higher marsh bird and plant species 

richness and greater abundances of aquatic macroinvertebrates than natural ponds or dense cattail 

areas (Schummer et al., 2012). Channel connectivity enhancements reconnect main channels of 

rivers with their floodplain marshes and allow fauna access to these productive habitats 

(McKenna, 2003b; Brown et al., in prep).  

Evaluation and monitoring is a critical step in determining project success, and helps 

develop and advance effective strategies for sustaining fish populations. Mark and recapture 

techniques are fundamental to estimating fish survival rates and population abundances, and 

have been used extensively to evaluate restoration effects (Henning et al., 2006; Ogston et al., 

2014). The purpose of this study was to test whether restored connectivity and excavation 

nursery marshes can mimic existing, functioning sites and are viable as critical habitats for 

northern pike in the context of specific early life requirements. We evaluated these objectives by 

(1) measuring physical conditions, and key larval prey selection and availability in restored 

versus functioning reference sites, (2) comparing relative abundance and size of wild and stocked 

northern pike as an indicator of site suitability, and (3) evaluating survival outcomes of stocked 

larvae to test if differences among sites exist from time of release to emigration of juveniles. 
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Methods 

Study area 

French Creek is a meandering, drowned river mouth tributary of the St. Lawrence River, 

approximately 8 kilometers long and located near Clayton, NY (Figure 1). The watershed is 

largely undeveloped, and French Creek possesses a broad floodplain including over 280 hectares 

of extensive wetland habitat. A 930 hectare section of the watershed is protected and managed as 

a New York State Department of Environmental Conservation (NYSDEC) Wildlife Management 

Area (WMA). Large areas of submerged and emergent aquatic vegetation exist for fish spawning 

and nursery habitats, including seasonally-flooded sedge meadows which are preferred by 

northern pike (Bry, 1996).  
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Figure 1. Wetland types within the French Creek watershed, Clayton, NY. The NYSDEC WMA 

(outlined in green) encompasses the majority of the drainage. Mapping sources include U.S. Fish 

and Wildlife Service National Wetlands Inventory, NYSDEC, and ESRI. 
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Enhancement work 

Beginning in 2008, two types of wetland enhancements were designed and implemented 

in French Creek with the restoration goals of increasing YOY northern pike production. The 

enhancement work was planned in fulfillment of the Fish Habitat Conservation Strategy in 

partnership with the U.S. Fish and Wildlife Service. Channel excavation methods for 

connectivity enhancements are outlined in Brown et al. (in prep). Spawning pool enhancements 

were completed by Ducks Unlimited via the Great Lakes Restoration Initiative. Excavations 

were created using a long-arm excavator during the winters of 2012 and 2013. The excavator 

removed sediment and vegetation, and created complexes of connected channels and pools 

within monotypic Typha stands, constructing new and novel habitat for northern pike to occupy. 

The complexes were designed to create connectivity to remnant sedge meadows and increase 

diversity of emergent and submerged aquatic vegetation, beneficial to an array of wildlife.  

Sampling sites 

Sixteen spawning/nursery sites within French Creek were selected for this study, 

including eight sites where enhancement work was completed and eight reference sites (Figure 

2). Reference sites were defined as existing side channels within Typha stands due to the lack of 

remnant sedge meadow marshes that did not receive restoration. Reference and enhanced 

marshes occurred in close proximity to one another throughout the entire French Creek drainage. 

Five spawning pool and three channel enhancements were represented within the eight enhanced 

sites. 
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Figure 2. Northern pike swim-up larvae stocking and trapping locations in French Creek, 

Clayton, NY in 2016. Existing reference habitats (n=8) were compared to excavated spawning 

pool complexes (n=5) and channel excavations (n=3). Orthoimagery was downloaded from New 

York State GIS Clearinghouse (http://gis.ny.gov/). 

Larvae propagation and marking 

Adult spawning northern pike were caught at the mouth of French Creek between April 

14 and April 17, 2016 in Oneida-type trapnets, and brought to the Thousand Islands Biological 

Station. Eggs were stripped from females and fertilized with milt from males using the dry 

method (Sorenson et al., 1966; Klingbiel, 1986). Fertilized eggs were incubated in hatching jars. 

Freshwater flowed into the jars continuously for two weeks and dead eggs were removed by 

siphoning. After hatch, yolk-sac larvae were transferred to raceways and were fed Artemia spp. 



82 

  

for two weeks. Ten days after hatching, larvae were marked with oxytetracycline (OTC) using 

the methods described by Fielder (2002). The OTC leaves a visible fluorescent ring on the otolith 

when removed, sectioned, and viewed under a transmitted ultraviolet light microscope under 

100-400x magnification (Farrell & Werner, 1999). Twenty control larvae sampled from the OTC 

batch immersion for released pike were sacrificed, and dissected otoliths were viewed prior to 

stocking to validate mark success.  

Larvae stocking 

Larvae were stocked at all sixteen locations on May 17 and 18, 2016 at a mean length of 

13.8 mm (sd=0.65). Marsh areas were estimated using Google Earth Pro by measuring the 

wetted area, and stocking occurred at a rate of 3000 larvae per hectare of marsh (Table 1). 

Larvae were acclimated to marsh water by the slow addition of water from the site to transport 

coolers, while monitoring temperature and oxygen levels with an YSI ProDSS multiprobe. Once 

temperatures in the transport coolers mimicked the temperatures of the marsh, larvae were 

distributed evenly throughout the site. Onset HOBO U26 dissolved oxygen data loggers were 

placed in the middle of the water column at each site, and logged temperature (°C) and dissolved 

oxygen (mg/L) every 15 minutes for the entire sampling period. The logger deployed in channel 

site C1 was determined to have malfunctioned during the survey and did not collect dissolved 

oxygen data. This logger was omitted from the analysis. 

Emigration trapping 

Peak emigration of juvenile northern pike in upper St. Lawrence River tributaries occurs 

from June 1 to July 1 (Farrell, unpublished data), and trapping for this study occurred from June 

13 to July 1, 2016. Two types of traps were used to capture juveniles emigrating downstream; 
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modified minnow traps and mini-mesh hoop nets. The minnow traps had a 2.54-cm throat and 

were wrapped with 0.8-mm nylon mesh. Each trap was centered and sewn to the top of 0.8-mm 

nylon mesh wings, 200-cm in length on each side, and 122-cm in height. These traps are fished 

similar to hoop nets, and are buoyed with floats on top line and weighted with lead core line on 

the bottom, to span the entire water column. The trap is staked with a reinforcing rod attached on 

the downstream end. Mini-mesh hoop nets are made of four connected hoops, 60-cm in diameter, 

with 2.54-cm throats, wrapped with 1.6-mm mesh, and outfitted with the same wing design as 

the modified minnow traps. Larger mesh size encouraged water flow through the trap to help 

maintain higher oxygen levels and protect fish. All possible outlet channels for both reference 

and channel marshes were blocked for this study. The large number of outlet channels (n=21) 

from spawning pool marshes prevented the complete coverage of these sites, so channels set with 

traps were selected using a random number generator. The decision to use two sampling gears 

was based on the goal of sampling all study sites, and each trap type was deployed at random in 

order to minimize any potential gear bias. Both types of traps blocked channels entirely and were 

assumed to catch pike at similar rates (Brown et al., in prep). Traps were checked daily and all 

fish were identified to species and enumerated. All juvenile northern pike were measured for 

total length (mm), and a sample of the catch was retained in 95% ethanol for origin 

determination with otolith examination. Total catch of stocked versus wild was examined, and 

total length and date at emigration were compared using t-tests at α=0.05 to determine if 

differences in behavior existed based on origin. 
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Otolith mark determination 

To determine northern pike origin (wild or stocked), otoliths were dissected from pike 

captured during emigration and examined for presence of OTC marks indicative of stocked 

larvae. Otoliths were removed by splitting the head laterally at the caudad portion of the 

braincase with scissors, to access the semi-circular canals. Otoliths were extracted with a fine 

insect-pin probe and secured to a pre-heated clear glass microscope slide with a thermo-polymer. 

Once dried, otoliths were hand sanded on both sides with 600 or 1000 grit sandpaper until daily 

rings were visible, and viewed with an epi-fluorescent microscope. The sagittal otolith was used 

for the mark inspection. An Amscope B600 compound microscope with 4x-100x objectives 

(40x-1000x total magnification), outfitted with an EPI Fluorescence microscopy kit (510-nm 

dichroic mirror, 350-580-nm exciting filter, and 530-nm barrier filter), and a 100-watt mercury 

UV light source was used for all viewing. All otoliths were viewed by two observers. Marked 

otoliths displayed a gold ring that followed a daily growth ring near the center of the otolith. 

Wild northern pike were assumed to be those observed without an OTC mark. Each observer 

decided whether the otolith was marked or not and revealed the decision after viewing was 

completed. If observers disagreed, a second otolith was prepared and viewed using this same 

protocol. 

Survival estimation  

 Survival estimates were done using similar methods as Farrell & Werner (1999) and 

Farrell (2001). Using the results from OTC mark determination via the otolith viewing, the 

proportion of stocked individuals was calculated for each site by dividing the total number of 

fish determined to be of stocked origin by the total fish retained during sampling. This resulted in 

a proportion of stocked origin fish at each site which was then multiplied by the total released 
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fish to estimate the number of stocked origin fish that were released during the survey. These 

two numbers were added together to estimate the minimum number of survivors:  

(1) Estimate 1 = (# of stocked origin/retained · released) + # of stocked origin 

Juvenile northern pike were assumed to emigrate equally from all outlet channels. Estimate 1 

was then multiplied by the total number of outlet channels and divided by the number of blocked 

outlet channels to estimate the total number of surviving stocked pike emigrating from all outlet 

channels as: 

(2) Estimate 2 = Estimate 1 · total channels/blocked channels 

 This only applied to spawning pool sites where all outlet channels were not blocked. The 

temporal distribution of historic emigration occurring over the entire growing season (May-

August) was examined prior to this study to isolate peak emigration activity (Farrell, unpublished 

data). This examination guided the sampling period selected for this study. Percent emigration 

occurring during the sampling period was calculated to be 38% (φ). Estimate 2 was then 

multiplied by 1-φ, to represent the number of emigrants missed, and added to Estimate 2 for the 

final survivor estimate: 

(3) Estimate 3 = (Estimate 2 · (1- φ)) + Estimate 2 

Estimated survivors were divided by the number of larvae stocked at each site and multiplied by 

100 (Farrell & Werner, 1999; Farrell, 2001). Survival estimates were pooled for each site type 

and a two-sample t-test was done to test for differences in survival between the pool and channel 

sites (α=0.05). Afterwards, survival estimates for pool and channel sites were combined to test 

for differences between enhanced and reference marshes (α=0.05). 
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Physical environmental factors 

During the emigration survey, daily water temperatures and dissolved oxygen 

concentrations were collected using a YSI ProDSS multiprobe at the surface, mid-water column, 

and depth between 08:30 and 18:00. To verify accuracy, field data were used to compare with 

temperature and oxygen data collected with Onset HOBO U26 dissolved oxygen data loggers 

deployed at all study sites. Mean water temperature and mean dissolved oxygen were calculated 

for both logger and multiprobe data for each site, and were compared for differences. Mean 

water temperature and dissolved oxygen from both instruments were pooled for site type 

(reference, pool, and channel), and tested for differences using one-way ANOVA (α=0.05). 

Larval diet analysis 

Duplicate 3-liter zooplankton grab samples were taken at each site during stocking to 

investigate the available prey assemblage during the larval period. Zooplankton were 

anesthetized with effervescent tablets, filtered through a 53-μm sieve, and preserved in 95% 

ethanol (Black & Dodson, 2003). In the laboratory, zooplankton were filtered through a 53-μm 

sieve and rinsed with well water. All individuals were counted using a Leica MZ 10x dissecting 

microscope. Cladocerans were identified to lowest taxonomic group and copepods were 

identified to order. Zooplankton densities from duplicate samples were averaged and differences 

in densities between site type were tested for using a one-way ANOVA at α=0.05. 

Each site was revisited six days following stocking to recapture larvae for diet analysis. 

Netters worked from canoes and focused their efforts on shallow, vegetated areas of the marsh. 

Each site was visited and dip-netting took place until at least ten pike larvae were captured or 

until approximately one hour had passed. Larvae were measured for length and preserved in 95% 
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ethanol. In the laboratory, larvae were dissected for their stomach under a Leica MZ 10x 

dissecting microscope. Stomach contents were rinsed with well water and all prey items were 

counted. Cladocerans were identified to lowest possible taxonomic group and copepods were 

identified to order. Ward & Whipple (1959) and Thorp & Covich (2001) were used as references 

for identification of all zooplankton. A total of 56 northern pike larvae were captured for diet 

analysis, 25 from reference marshes, 11 from channel enhancements, and 20 from spawning 

pools. 

 Prey availability and selection 

A hierarchical agglomerative cluster analysis was performed using the BOOTCLUS 

program (McKenna, 2003a) to assess the presence of significantly distinct assemblages of 

available zooplankton that may contribute to larval diets. Raw abundance data were analyzed 

using the Bray-Curtis similarity index and Unweighted Pair Group Method with Arithmetic 

Mean (UPGMA) linkage method with 1000 bootstrap samples to test each linkage (α=0.05). The 

cluster analysis was used to create a dendrogram that identified and arranged the significant 

assemblages. 

Prey selection was estimated using the Chesson index (Manly, 1974; Chesson, 1978, 

1983). Selectivity coefficients (α) were calculated for prey items from each individual larvae: 


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where r = the proportion of items of food type i in the diet, p = the proportion of items of food 

type i in the environment, and m = the number of prey items in the environment (Manly, 1974; 

Chesson, 1978, 1983). Selectivity coefficients range from 0 to 1 where α ˂ 1/m indicates 
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avoidance and α ˃ 1/m indicates preference. When α = 1/m, prey are consumed in proportion to 

the abundance in the environment. The Chesson index allows for comparisons in selectivity 

across spatial scales when the available prey items vary. Selectivity coefficients were calculated 

for each individual larvae and averaged for site type (reference, pool, and channel). Selectivity 

coefficients were compared with random feeding (1/m) to test for significance using a one 

sample t-test at α=0.05. 

Results 

Emigration trapping 

 A total of 148 juvenile pike were caught over the sampling period. Of the 148 caught, 

121 were retained for origin determination via otolith viewing. Sixty of the 121 (~50%) retained 

were of stocked origin (Table 1). Length at emigration was not significantly different between 

stocked and wild fish (t(107)=0.66, p=0.51), and averaged 84.8-mm (sd=14.6) across all sites 

(Figure 3). Date of emigration was not significantly different between stocked and wild fish 

(t(110)=0.21, p=0.83), and peak emigration occurred on June 20 with 18 individuals caught that 

day (Figure 4). The CPUE was significantly different between site type (F(2,276)=9.13, 

p<0.001; Figure 5). Post hoc Tukey comparisons indicated CPUE at reference sites 

(mean=0.13±0.07) was significantly lower than at pools or channels (Table 1). The CPUE was 

not significantly different at pools (mean=0.43±0.18) and channels (mean=0.51±0.2; Table 1). 
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Figure 3. Length frequency histogram of stocked (black) and wild (gray) northern pike at time of 

capture during the emigration survey. 

 
Figure 4. Frequency of emigration occurring at each date during the emigration survey for 

stocked (black) or wild (gray) northern pike. 
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Figure 5. Mean catch per unit effort (pike/net night; SE) of enhanced (gray) and reference (black) 

sites during the emigration survey. There was no difference in CPUE of pike at channel and 

spawning pool sites so results were pooled for visual interpretation. 
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Table 1: Numbers of northern pike stocked, captured (catch), and marked with set dates and 

CPUE (pike/net night) observed during juvenile emigration survey at reference, spawning pool, 

and channel excavations in French Creek. 

Location 

Set Date 

(m/d/y) 

End Date 

(m/d/y) 

Net 

Nights 

# 

Stocked 

NP 

Catch 

# Marked/ 

# Retained CPUE 

REFERENCE 

R1 6/13/2016 7/1/2016 18 810 3 0/1 0.17 

R2 6/13/2016 7/1/2016 34 3720 3 1/2 0.09 

R3 6/13/2016 6/30/2016 17 1830 1 0/1 0.06 

R4 6/14/2016 6/30/2016 16 1110 1 1/1 0.06 

R5 6/13/2016 6/30/2016 17 1710 0 0/0 0 

R6 6/13/2016 7/1/2016 18 780 4 1/4 0.22 

R7 6/13/2016 7/1/2016 18 690 0 0/0 0 

R8 6/13/2016 6/29/2016 16 4200 10 6/10 0.63 

TOTAL   154 14850 22 9/19 0.13 

SPAWNING POOL 

SP1 6/13/2016 7/1/2016 69 1950 11 3/9 0.16 

SP2 6/13/2016 7/1/2016 18 480 3 2/3 0.17 

SP3 6/13/2016 6/30/2016 50 1650 8 4/7 0.16 

SP4 6/14/2016 6/30/2016 32 2460 47 22/38 1.47 

SP5 6/14/2016 6/30/2016 30 3840 10 5/9 0.33 

TOTAL   199 10380 79 36/66 0.43 

CHANNEL 

C1 6/13/2016 6/29/2016 33 3540 8 3/8 0.24 

C2 6/13/2016 7/1/2016 36 630 32 9/22 0.89 

C3 6/13/2016 6/30/2016 17 660 7 3/6 0.41 

TOTAL   86 4830 47 15/36 0.51 

OVERALL 

TOTALS   439 30060 148 60/121 0.30 

 

Survival estimates 

 No significant difference in the mean percent survival of northern pike larvae was 

observed for larvae stocked in channel (1.49%±1.88) versus spawning pool (1.51%±1.48) sites 

(t(4)=0.02, p=0.986; Figure 6). When survival estimates from channels and spawning pools were 

pooled, significantly higher survival occurred for larvae stocked in enhanced (1.5±1.08) versus 

reference (0.084±0.07) sites (t(7)=2.57, p=0.04; Figure 6). 
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Figure 6. Mean percent survival plotted with 95% confidence intervals for (A) channel versus 

spawning pool marshes and (B) pooled enhanced versus reference marshes.  

 

Physical environmental factors 

 Mean daily water temperature readings collected using the YSI multiprobe displayed the 

same patterns as HOBO U26 loggers (Figure 7). Data recorded using the loggers was further 

analyzed for differences, and significant differences in mean water temperature were detected 

among site types (F(2,941)=139.6, p<0.001). Post-hoc Tukey comparisons revealed that mean 

water temperatures were significantly higher in spawning pools (mean=21.7°C ± 0.29) compared 

to other sites and mean water temperatures were significantly higher in channels (mean=19.9°C 

± 0.37) than in reference sites (mean=17.8°C ± 0.27).  
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Figure 7. Mean water temperature (°C) plotted with 95% confidence intervals at channel, 

spawning pool, and reference marshes recorded using HOBO U26 loggers (black circle) and a 

YSI ProDSS multiprobe (gray triangle). 

 

Mean daily dissolved oxygen readings collected using the YSI multiprobe and loggers 

displayed similar patterns at spawning pools and reference sites, but not at channels (Figure 8). 

Multiprobe readings for channel sites were much higher than those recorded using the loggers. 

Logger readings were significantly different between site types (F(2,258)=147.5, p<0.001), and 

post-hoc Tukey tests revealed that mean dissolved oxygen concentrations were significantly 

higher in spawning pools (mean=6.15 mg/L ± 0.36) than other site types and mean dissolved 

oxygen was significantly higher in reference sites (mean=4.36 mg/L ± 0.35) than in channel sites 

(mean=1.15 mg/L ± 0.33). Multiprobe dissolved oxygen readings were significantly different 

between site types (F(2,266)=42.19, p<0.001). A post-hoc Tukey test reported mean dissolved 

oxygen concentrations were significantly higher in spawning pools (mean=7.47 mg/L ± 0.45) 
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than other sites and there was no significant difference in mean dissolved oxygen between 

reference (mean=4.53 mg/L ± 0.44) and channel sites (mean= 4.67 mg/L ± 0.67). 

 

Figure 8. Mean dissolved oxygen (mg/L) readings plotted with 95% confidence intervals at 

channel, spawning pool, and reference marshes using HOBO U26 loggers (black circle) and a 

YSI ProDSS multiprobe (gray triangle). 

 

Larval diets and prey selection 

Zooplankton densities (#/L) were not significantly different between site types 

(F(2,29)=0.71, p=0.50), but densities were greater in channels (mean=121.6/L ± 39.6) than pools 

(mean=77.6/L ± 30.5) or reference sites (mean=100.0/L ± 43.9). The cluster analysis based on 

available zooplankton and larval diets identified three distinct assemblages (Figure 9). Cluster A 

included the zooplankton resulting from grab sampling at reference, pool, and channel sites. The 

inclusion of all 3 site types suggests there was no significant difference in the assemblage 

available to the larvae at any of the sites. Cluster A was dominated by Bosmina longirostris and 
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nauplii, and also included a smaller percentage of cyclopoids and Chydorus sphaericus (Figure 

9). Cluster B included the diets of larvae recovered in reference and pool sites, and was 

dominated by Simocephalus spp. and cyclopoids, and to a lesser extent Diaphanosoma spp., 

Ceriodaphnia spp., and chydorids (Figure 9). Cluster C included the diets of larvae recovered in 

channel sites. Over 50% of the assemblage was comprised of Ceriodaphnia spp., with 

cyclopoids, chydorids, and Simocephalus spp. making up a smaller percentage (Figure 9). 

Differences in the composition of Cluster A versus Clusters B and C suggest prey 

selection (positive or negative) occurred. Larvae from reference sites selected against B. 

longirostris, C. sphaericus, and cyclopoids (p<0.05) when compared with the neutral selection 

(1/m=0.0667; Table 2). Selection of Diaphanosoma spp., Scapholeberis spp., and Simocephalus 

spp. by reference larvae did not significantly differ from neutral selection (p>0.05). Mean 

selection of Simocephalus spp. by reference larvae was high (0.15; sd=0.05), but a significant 

difference from random feeding was not detected. Negative selection by pool larvae occurred for 

B. longirostris, C. sphaericus, and cyclopoids (p<0.05) when compared with the neutral selection 

(1/m=0.0769), whereas positive selection occurred for Simocephalus spp. (t(9)=3.49, p=0.008; 

Table 2). Larvae from channel sites selected against chydorids, cyclopoids, and Polyphemus 

pediculus (p<0.05) when compared with neutral selection (1/m=0.0667; Table 2). Mean selection 

of Ceriodaphnia spp. was positive (0.076; sd=0.03), but did not differ from neutral selection 

(p>0.05).  
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Figure 9. Significant assemblages from zooplankton sampling and larval diets identified using 

the Bray-Curtis similarity index and UPGMA linkage method with 1000 random bootstrap 

samples. The dendrogram (A) displays the classification of significant assemblages, which are 

indicated with a unique letter and an asterisk (*). The stacked bar chart (B) displays the percent 

contribution of each prey taxa. Prey taxa codes are as follows: AL, Alonella spp.; AM, 

Amphipoda; BO, B. longirostris; CA, Calanoida; CE, Ceriodaphnia spp.; CH, Chydoridae; CS, 

C. sphaericus; CY, Cyclopoida; DI, Diaphanosoma spp.; GA, Gastropoda; HY, Hydrachnida; 

NU, nauplii; OS, Ostracoda; PO, P. pediculus; SC, Scapholeberis spp.; SD, S. crystallina; SI, 

Simocephalus spp. 
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Table 2: Mean prey selectivity (𝛼̅𝑖; SD) for larval northern pike collected from reference, 

spawning pool, and channel nursery marshes in French Creek, NY, May 2016. Index values 

significantly different (p<0.05) from 1/m are labelled with an asterisk and either a “+” indicating 

positive selection or a “-” indicating negative selection. 

Site type 1/m Prey type 𝛼̅𝑖  

Reference 0.0667 B. longirostris -0.0006 (0.0004) * 

C. sphaericus -0.0017 (0.0007) * 

Cyclopoida -0.0094 (0.0088) * 

Diaphanosoma spp. 0.0661 (0.0171)  

P. pediculus 0.0011 (NA)  

Scapholeberis spp. 0.0633 (0.0478)  

Simocephalus spp. 0.1500 (0.0542)  

Pool 0.0769 B. longirostris -0.001 (0.000003) * 

  C. sphaericus -0.0026 (0.002) * 

  Cyclopoida -0.006 (0.0002) * 

  Simocephalus spp. +0.1098 (0.0283) * 

Channel 0.0667 B. longirostris 0.0001 (NA)  

  Ceriodaphnia spp. 0.0764 (0.0291)  

  Chydoridae -0.0169 (0.0058) * 

  Cyclopoida -0.0251 (0.0168) * 

  P. pediculus -0.0027 (0.0012) * 

  Scapholeberis spp. 0.0017 (NA)  

Discussion 

Connectivity enhancements implemented in Great Lakes wetlands are a viable technique 

to enhance ecosystem function (Mathers & Hartley, 1995; Vincent, 1995). A rapid response of 

northern pike use of connectivity enhancements has been observed (Brown et al., in prep), and 

results from our study indicate high suitability exists for larvae to fulfill early life requirements 

in enhanced marshes because pike were able to successfully develop from larvae to juvenile 

emigrants at several sites. Spawning pool and channel excavation enhancements increased YOY 

northern pike survival, and the presence of wild fish at emigration indicated successful natural 

reproduction. Differences in environmental conditions of the nursery marshes may in part 

explain the variation in success (Table 3), and were clearly highlighted in this study. 

Connectivity enhancement promoted a rapid colonization opportunity for spawning pike, and 

natural reproduction observed suggests enhancements may have fulfilled habitat requirements for 
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spawning, although that was not a focus of the study. Zooplankton also displayed rapid responses 

to enhancements as assemblages were similar at existing and enhanced sites. Zooplankton 

assemblages have been documented to exhibit rapid recovery following restoration projects 

(Dodson & Lillie, 2001; Badosa et al., 2010), and their value as indicator groups has been 

recommended (Lougheed &Chow-Fraser, 2002). Increased nutrient availability through sediment 

disturbance and the rapid evolution of the plant community following excavation may have 

created opportunities for specific zooplankton to colonize.  

Enhancements fostered favorable conditions for larval pike survival, but northern pike 

entry onto the spawning and nursery grounds is water level dependent. Reference marshes, 

which have not been completely blocked with Typha and maintained connectivity during the 

study, might be maintained by ground water hydrology. This would explain the significantly 

lower temperatures observed and the lack of Typha encroachment. Spring flooding creates 

connectivity between main channels and floodplain wetlands, allowing access for spawning 

fishes (Baber et al., 2002), and naturally occurring water level fluctuations enhance the 

abundance and quality of pike spawning habitat (Mingelbier et al., 2008). High spring water 

levels are positively associated with pike year class strength (Johnson, 1957; Smith et al., 2007) 

and YOY pike densities in nursery sites, with the greatest abundances occurring in marshes with 

highest water height (Vuorinen et al., 1998; Cucherousset et al., 2009). The 2016 YOY 

production in French Creek was extremely low when compared with prior years (Farrell et al., 

2017). Water levels measured at the Alexandria Bay, NY gauging station (NOAA buoy station 

ID: 8311062, http://tidesandcurrents.noaa.gov) indicated 2016 as an extremely low water level 

year compared to yearly averages, which may have contributed to overall low production (Farrell 

et al., 2017). Northern pike abundances have been in decline since the 1980s (McCullough & 
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Gordon, 2015), and reductions in natural water level fluctuations and resulting loss of spawning 

habitats are thought to be the main drivers of these declines (Farrell, 2001; Farrell et al., 2006; 

Smith et al., 2007). Water level regulation in the St. Lawrence River has altered the hydroperiod, 

reducing seasonal variability and fostering the expansion of Typha (Farrell et al., 2010b; Rippke 

et al., 2010). More natural fluctuations, including high levels in spring for flooding of spawning 

habitats and low levels to reduce Typha, coupled with implementation of wetland excavation 

enhancements would provide the necessary environment for YOY northern pike production to 

increase.   

Table 3: Summary of northern pike CPUE and percent survival (%) and environmental 

conditions measured in French Creek nursery marshes during this study. Means and 95% 

confidence intervals are reported. Significantly different means identified using t-tests are 

labelled with an asterisk (*). Significantly different means identified using ANOVA are labelled 

with corresponding letters resulting from post-hoc Tukey tests. 

 CPUE  Percent 

survival (%) 

Temperature 

(°C) 

Dissolved 

oxygen 

(mg/L) 

Zooplankton 

density 

(no/L) 

Enhanced - 1.50 ± 1.08* - - - 

Channel 0.51 ± 0.20a 1.49 ± 1.88 19.9 ± 0.37b 1.15 ± 0.33c 121.6 ± 39.6 

Pool 0.43 ± 0.18a 1.51 ± 1.48 21.7 ± 0.29a 6.15 ± 0.36a   77.6 ± 30.5 

Reference 0.13 ± 0.07b 0.08 ± 0.07* 17.8 ± 0.27c 4.36 ± 0.35b 100.0 ± 43.9 

 

Mean water temperature throughout the larval period was highest in spawning pools, 

followed by channels, and lastly reference sites, whereas mean dissolved oxygen was greatest in 

spawning pools, followed by reference, and lastly channels. Interestingly, percent survival was 

identical in channel and pool sites, despite the lower temperatures and dissolved oxygen at 

channel sites. In channel sites, mean daily dissolved oxygen readings recorded using the YSI 

multiprobe were much higher than readings collected using loggers. This may be because 

dissolved oxygen in shallow, flooded meadows is quickly depleted after nightfall, when 

photosynthesis is no longer occurring and respiration continues. Further investigation of daily 
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fluctuations revealed dissolved oxygen levels reaching as low as 0 mg/L in channel sites during 

the night (Figure 10). Dissolved oxygen also steadily lowered throughout the entire deployment 

period but did increase during the daytime (Figure 10). Northern pike are extremely tolerant of 

low oxygen conditions, surviving in concentrations as low as 0.3 mg/L for short periods of time 

(Casselman, 1978), but consumption, conversion efficiency, and growth rates are reduced in low 

oxygen environments (Adelman & Smith, 1970; Casselman, 1978). Some St. Lawrence River 

wetlands are known to be devoid of oxygen by early summer (Farrell et al., 2014), and some 

sites in this study approached anoxia during the sampling season. Five northern pike juveniles 

recovered in traps were dead upon arrival with no signs of predation or disease, suggesting 

mortality occurred due to low oxygen. It is possible that pike in channels located a refugia during 

low dissolved oxygen periods as loggers were only set at single locations. 

 

Figure 10. Dissolved oxygen (mg/L) measured at hourly intervals throughout the deployment 

period (5/19/16-7/1/16) in channel sites C2 and C3. 
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Temperature is one of the most important factors controlling growth of northern pike 

during the early stages (Franklin & Smith, 1963; Bry et al., 1991), and physiological growth 

optima are range between 19 and 21°C (Casselman, 1978). Warm temperatures occurring in 

spawning pools and channels likely promoted faster growth of larvae than in reference sites. 

Predator size and larval growth explained 67% of the variation in larval survival in one study 

(Letcher et al., 1996), and both factors have long been recognized as important determinants of 

survival of young fish (Houde, 1987). One potential rationale for similar survival rates in 

spawning pool and channel sites is the presence of sedge vegetation in channels, although 

vegetation was not a focus of our study. Channel connectivity enhancements were designed to 

reconnect the mainstem of French Creek to remnant sedge meadows. Sedge vegetation was only 

dominant at channel enhancements although small patches were observed at the edges of some 

spawning pools (Farrell et al., 2015).  Vegetation is well known to be critical to northern pike 

especially during the larval and juvenile stages (Bry, 1996; Casselman & Lewis, 1996), and 

larvae have been shown to distribute themselves to sedge vegetation following hatch (Nilsson et 

al., 2014). Zooplankton typically are more abundant in vegetated versus non-vegetated 

environments (Watkins et al., 1983; Nilsson et al., 2014), and their densities in this study were 

greatest in channel sites, although differences in density due to site were not significant. 

Densities of zooplankton collected in the grab samples could have been affected by the 

vegetation present where the sample was collected, although efforts were focused on sampling 

the entire water column in representative habitats of the site. Juvenile pike also use vegetation for 

protection against predation (Werner et al., 1977; Skov & Berg, 1999). Potential tradeoffs 

between channels with greater vegetation and zooplankton abundances versus spawning pools 
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with optimal physical conditions may occur, however in this study, both scenarios resulted in 

similar percent survival of larvae.  

Northern pike larvae displayed positive or negative prey selection in all of the site types. 

Of interest was the discrepancy in the diets of larvae originating from different sites. Reference 

and pool larvae primarily selected Simocephalus spp., whereas channel larvae selected 

Ceriodaphnia spp., although significant positive selection was only detected for pool larvae. Due 

to the nature of the index, selectivity coefficients could not be calculated for prey taxa that were 

not present in the grab samples. Simocephalus spp. was found in the diet of some channel larvae, 

but was not represented in the grab sample. Simocephalus spp. are typically found in or around 

vegetated areas (Thorp & Covich, 2001) which may have provided shelter from the grab sample. 

Positive selection for Simocephalus spp. by channel larvae may have occurred but we were 

unable to detect it. Simocephalus spp. and Ceriodaphnia spp. were the dominant taxa in all of the 

larval diets and possess several similarities. Both belong to Daphnidae family, inhabit littoral 

zones, and display similar feeding and movement behaviors (Amoros, 1984). Simocephalus spp. 

are larger than Ceriodaphnia spp., which would have implications on the number of prey items a 

larvae would need to procure to equate to the same nutrition value. Despite size differences, 

these species are essentially analogous in terms of their functional role as food for larval fish.  

Zooplankton food limitation is thought to contribute to recruitment failure of YOY 

northern pike in the Baltic Sea (Ljunggren et al., 2010). Zooplankton densities, however were not 

significantly different between site types, similar to previous findings in French Creek (Farrell et 

al., 2014). Zooplankton limitation to pike is more likely to occur in deeper offshore sites 

associated with protracted spawning (Farrell 2001).Wetlands in the upper St. Lawrence River do 

not appear to be nutrient limited and are much more productive than the main river (Farrell et al., 
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2010a, 2014). Discrepancies in taxa consumed at channel versus spawning pool and reference 

sites did not mimic differences in survival, suggesting larvae in French Creek were not limited 

by zooplankton prey at any of the sites. 

Farrell (2001) estimated survival of pike to be 0.00008-0.0001% from egg to fall juvenile 

in a St. Lawrence River bay. Survival from spawning to egg hatch was 84.1% (Farrell, 2001), 

which is within the 60-96% range observed in other studies (Pliszka, 1954; Franklin & Smith, 

1963). Estimates completed by Farrell (2001) used eggs collected in nearshore areas of bays 

versus the tributary wetlands examined in this study. Larvae in this study were stocked following 

the transition to exogenous feeding, whereas Farrell (2001) observed naturally spawned eggs and 

larvae over the entire developmental period. Greater survival was detected during this study than 

that of Farrell (2001), suggesting higher mortalities may occur following yolk sac absorption and 

in bay versus tributary wetland sites. Variability in timing and spatial distribution of zooplankton 

hatches could also add to the overall variability of larval survival (Burrow et al., 2011). Bry et al. 

(1995) did not detect a single critical period but mortality occurring throughout the entire larval 

period, although highest mortality did occur at the onset of exogenous feeding. One weakness of 

the survival estimates in the present study is the lack of complete coverage of all of the exit 

channels present at spawning pools. Blockades could have been set at the outlet channels that 

were not trapped, but the complex structure of the spawning pools and long lengths of outlet 

channels may have confused out-migrating juveniles and we did not want to them to become 

stranded.  

Cannibalism is one of the major causes of mortality during the juvenile stages of northern 

pike (Bry & Gillet, 1980; Wright & Giles, 1987; Skov et al., 2003; Grønkjær et al., 2004). While 

our study did not specifically examine cannibalism as a factor in the survival analysis, we did 
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attempt to control for it by stocking at a similar rate and dispersing the fry throughout the entire 

site. These actions should have allowed stocked pike to exist in similar densities to other stocked 

pike at all sites. Several studies have suggested that stocking of northern pike where natural 

reproduction occurs is not successful (Skov & Nilsson, 2007; Hühn et al., 2014), potentially 

because of low genetic fitness of stocked fish and prevailing effects of hatchery rearing (Skov et 

al., 2011). This study used adult spawners recovered from the French Creek drainage, therefore 

progeny would have been spawned somewhere within the watershed where they were stocked. 

The northern pike population in French Creek exhibits some local genetic differences from other 

spawning sites in the St. Lawrence River, possibly due to well-suited habitat and spatial isolation 

from other locations (Bosworth & Farrell, 2006). Pike in this study were stocked early in the 

juvenile stage and at comparable sizes (~13 mm), which would allow for imprinting if natal 

homing occurs, and results in higher overall survival (Grimm & Klinge, 1996; Grønkjær et al., 

2004). Early stocking allows for a longer period of growth and therefore lowers the risk of 

predation from larger, naturally spawned pike (Grønkjær et al., 2004). Stocked pike in this study 

emigrated at the same mean length and with the same temporal distribution as wild pike 

suggesting that residual effects of hatchery life did not affect survival to emigration. Stocking of 

northern pike fry at locations without a sustaining population has shown success (Vuorinen et al., 

1998; Sutela et al., 2004), and our study demonstrated that stocking pike larvae is a feasible 

manipulation tool following restoration efforts that aim to develop a self-sustaining population. 

However, the presence of wild fish in traps during the emigration survey indicated natural 

reproduction occurred in enhancement sites and northern pike spawners can potentially rapidly 

colonize newly-created spawning habitats.  
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This study showed wetland enhancement marshes to increase the survival of northern 

pike during their critical, larval stages. Future work should focus on identifying which 

environmental mechanisms have the greatest effect on larval survival in both types of wetland 

enhancement (e.g., channel connectivity and spawning pool) and investigate whether similar 

mechanisms influence survival in reference marshes.  
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Conclusion 

Understanding the requirements of fish species at each life stage is imperative to 

managing populations. Throughout this thesis, we highlighted several aspects of larval northern 

pike ecology in coastal wetlands of the upper St. Lawrence River. In the context of fisheries 

management, this work added understanding of the fundamental biotic and abiotic interactions 

affecting northern pike during their larval stages. In chapter 1 we estimated egg and larval 

development and showed spring water temperatures and water levels to be critical for temporal 

and spatial patterns in spawning and egg and larval development. We found zooplankton prey to 

be flushed from the spawning and nursery marshes during flooding but abundances quickly 

rebound as flood waters began to recede, peaking prior to projected exogenous feeding of pike 

larvae. In chapter 2 we highlighted the importance of seasonally-flooded wetlands as producers 

of abundant, large cladocerans that pike selected during their advanced larval stages. Selection 

has been shown to increase as the abundance of preferred prey increase, and larvae given a 

wetland assemblage had access to a greater abundance of these prey. Nearshore bay and offshore 

spawning are known to be less advantageous than early, tributary spawning, and lead to lower 

egg survival and young of the year production. This work showed another disadvantage to the 

protracted spawning behavior, as larvae in nearshore bays will have less access to abundant, 

large cladoceran prey during the critical larval stage. In chapter 3 we showed larval survival to 

be significantly greater in spawning pool and channel connectivity enhancement marshes than in 

reference marshes. Enhancements displayed warmer water temperatures than reference sites, 

likely promoting fast growth of larvae. Excavation designs should focus on creating shallow 

marshes, to foster warm temperatures for abundant food production and fast larval growth, with 

increased connectivity to sedge and grass meadows. No one to our knowledge has highlighted 
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the survival differences of northern pike larvae in enhancement and reference marshes, and 

future work should try to isolate the mechanisms that have the greatest influence on larval 

survival. Understanding the requirements of northern pike larvae can help researchers and 

managers devise effective strategies for increasing recruitment and bolstering the population. 

 This thesis also highlighted several important patterns in zooplankton abundances with 

regard to spring wetland conditions. Phytoplankton and zooplankton biomass were greatest prior 

to spring flooding for April of 2016, and both declined at the time of flooding, suggesting 

dilution effects. Phytoplankton biomass and zooplankton abundance began to increase with 

warming temperatures, and cladoceran hatch was likely cued during this time. In chapter 2 we 

showed wetlands to have significantly larger-bodied zooplankton than nearshore areas of bays, 

and future work could attempt to describe differences in abundances and taxa by sampling 

thoroughly and repeatedly throughout the spring and summer. Chapter 3 documented the rapid 

colonization of zooplankton in the enhancement marshes by the inclusion of zooplankton 

assemblages from all three site types in the same cluster. Future work should look at the 

mechanisms allowing for the dispersal of zooplankton into newly created habitats and whether 

water movement, excavation activities, or other methods allow for the colonization of these 

organisms.  
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Appendices 

Appendix 1: Mean density (no/L; SE) of zooplankton taxa (identified to lowest taxonomic 

resolution feasible) collected by grab sampling on April 1, 8, 15, 22, and 29, 2016 at Bevins, 

Carpenters, Deferno, and lower French Creek. Means were calculated by averaging duplicate 

samples. Means that are not followed by a standard error indicate the density of the taxa was 

identical in both samples. 

4/1 

Taxa Bevins Carpenters Deferno Lower French 

Creek 

Cyclopoida 0.33 24.5 (4.83) - 0.67 

nauplii 2.83 (1.83) 19.83 (1.5) 0.67 (0.33) 1.83 (0.5) 

Bosmina longirostris - 1 - - 

Chydorus sphaericus - 0.33 - 0.33 

Chydoridae 0.33 0.33 - - 

Daphnia spp. - 1.5 (0.83) - - 

Macrothricidae - - 0.33 - 

Ostracoda - - - 0.33 

Rotifera 0.67 0.33 1.33 (0.33) 1 

4/8 

Cyclopoida - 4.17 (1.17) 0.33 - 

nauplii 0.67 18.83 (0.83) 0.33 0.33 

Daphnia spp. - 1 - - 

Ostracoda 0.33 - 0.33 - 

Rotifera 0.33 - - - 

4/15 

Cyclopoida - 27 (14.33) 0.33 2.5 (0.83) 

Harpacticoida - 0.5 (0.17) - - 

nauplii 0.5 (0.17) 12.5 (4.83) 0.33 6.17 (0.17) 

B. longirostris - 0.33 - 0.33 

Ceriodaphnia spp. - 0.67 (0.33) - 0.33 

C. sphaericus 0.33 1.33 0.33 0.33 

Chydoridae - 0.33 - - 

Daphnia spp. - 0.33 - 0.33 

Scapholeberis spp. - 0.33 - - 

Ostracoda - 1 0.33 0.67 

Rotifera - - 0.83 (0.17) 6.67 

4/22 

Calanoida - 1.17 (0.17) - - 

Cyclopoida 0.67 14.5 (1.5) 0.67 2.5 (1.5) 

nauplii 16.83 (11.17) 11.33 (0.33) 0.33 50.33 (18.33) 
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B. longirostris - 0.33 - - 

Ceriodaphnia spp. - 4 (1) - 0.67 

C. sphaericus 2.67 1.67 (0.33) - 1 

Chydoridae 0.33 1 (0.67) - - 

Daphnia spp. - 1.67 - - 

Polyphemus pediculus - 6.83 (3.83) - - 

Ostracoda 1.67 - 1 0.67 

Rotifera 1.83 (0.17) - 2.67 (0.33) 1.17 

4/29 

Calanoida - 0.33 - 0.33 

Cyclopoida 0.33 5.5 (0.83) - 1.67 

nauplii 1.83 (1.17) 0.67 1.5 (0.5) 2.5 (1.17) 

B. longirostris - 18.5 (2.17) - - 

Ceriodaphnia spp. - 9 (3.33) - - 

C. sphaericus 10.67 (6.67) 10.83 (7.17) 1.5 (0.83) 1.17 (0.83) 

Chydoridae 0.33 1 0.33 - 

Daphnia spp. - 0.33 - - 

Diaphanosoma spp. - 0.67 - - 

P. pediculus - 5 (1) 0.33 - 

Simocephalus spp. - 0.33 - - 

Ostracoda 0.83 (0.5) - - 0.33 

Rotifera 0.33 - 0.67 0.5 (0.17) 
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Appendix 2: Probability values of each assemblage linkage resulting from cluster analysis 

performed using the BOOTCLUS software package. 

Linkage Probability value, p(0.05) 

1 0.002 S 

2 0.002 S 

3 0 S 

4 * 

5 * 

6 * 

7 * 
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