SUNY College of Environmental Science and Forestry Digital Commons @ ESF

Cranberry Lake Biological Station

Environmental and Forest Biology

2017

Session D, 2017 First Place: Under the Sphagnum: An Observational Analysis of the Relationship Between Distance and Ectomycorrhizal Morphotype Diversity in Larix Iaricina Within Wetland Ecosystems

Max Hermanson

Silus Weckel

Alex Kozisky

Kyle Kozlowski

Follow this and additional works at: https://digitalcommons.esf.edu/clbs

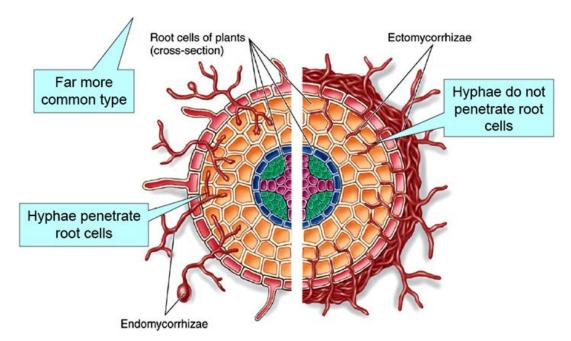
Part of the Aquaculture and Fisheries Commons, Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, Entomology Commons, and the Forest Sciences Commons

Recommended Citation

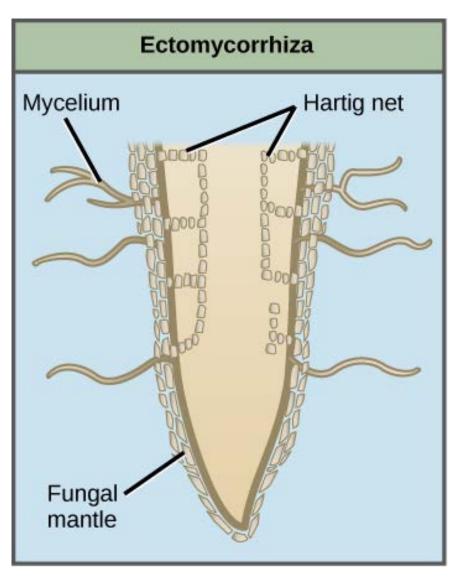
Hermanson, Max; Weckel, Silus; Kozisky, Alex; and Kozlowski, Kyle, "Session D, 2017 First Place: Under the Sphagnum: An Observational Analysis of the Relationship Between Distance and Ectomycorrhizal Morphotype Diversity in Larix laricina Within Wetland Ecosystems" (2017). *Cranberry Lake Biological Station*. 27.

https://digitalcommons.esf.edu/clbs/27

This Presentation is brought to you for free and open access by the Environmental and Forest Biology at Digital Commons @ ESF. It has been accepted for inclusion in Cranberry Lake Biological Station by an authorized administrator of Digital Commons @ ESF. For more information, please contact digitalcommons@esf.edu, cjkoons@esf.edu.


"Under the Sphagnum: An Observational Analysis of the Relationship Between Distance and Ectomycorrhizal Morphotype Diversity in *Larix laricina* Within Wetland Ecosystems

By Max Hermanson, Silus Weckel, Alex Kozisky, and Kyle Kozlowski


Mycorrhizal Fungi

- Form symbiotic relationships with plants
 - Attach to host roots
 - Increase host's water & nutrient uptake
 - Fungi gains access to carbs
- Ecto vs. Endo

Introduction

- What are
 ectomycorrhizal
 fungi?
- Associated with woody plants
 - —Betulaceae, Fagaceae, Pinaceae

Inspiration

- Distance from woodland edge in old fields affects EMF colonization
- Roots of adjacent trees can act as sources for fungal colonization among different tree sp.
- EMF diversity is higher in uplands than wetlands
- Higher root density has been correlated with higher EMF diversity

Hypothesis

- H_o There will be no relationship between EMF morphotype diversity and distance from the edge of the wetland.
- H_a There will be a negative relationship present on the morphotype diversity of EMF as the distance from the edge of the wetland increases.
- Independent Variable: distance from the edge of the wetland
- Dependent variable: morphotype diversity of EMF

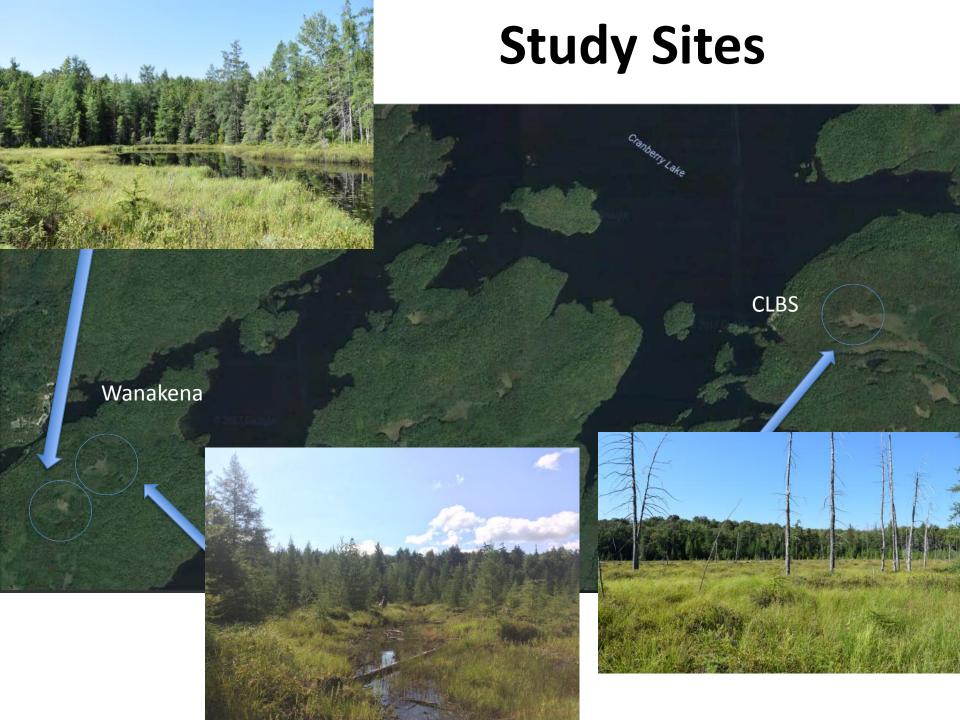
Wetland Interior

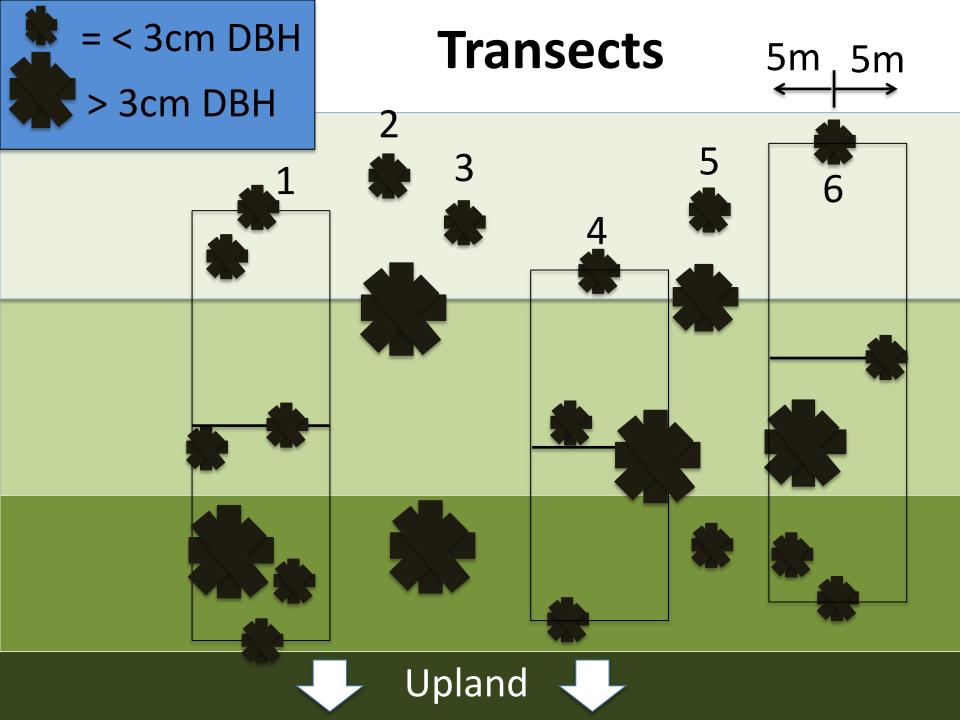
Presence of Larch

Upland -

Importance of Study

- Examines relationship between distance and EMF diversity in wetlands
- First CLBS project to study EMFs
- Not much EMF research with Larix laricina


Methods


Experimental Design:

- Experimental unit: the three wetlands
- Sample Unit: trees within wetlands

-Subsample unit: root tips

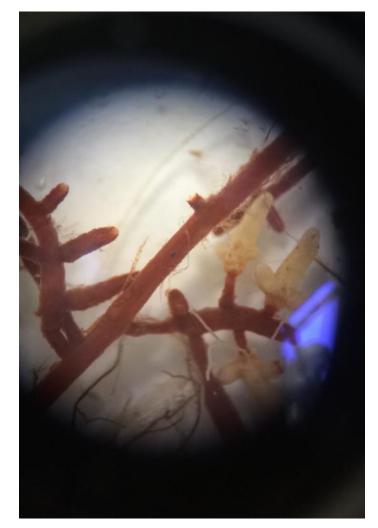
• The study was replicated in 3 wetlands, with 9 trees sampled from each wetland

Sampling

- Random Tree Selection
- Tree size: DBH less than 3cm
- 10 root tips per tree
- Roots taken from depth of 0-0.25m

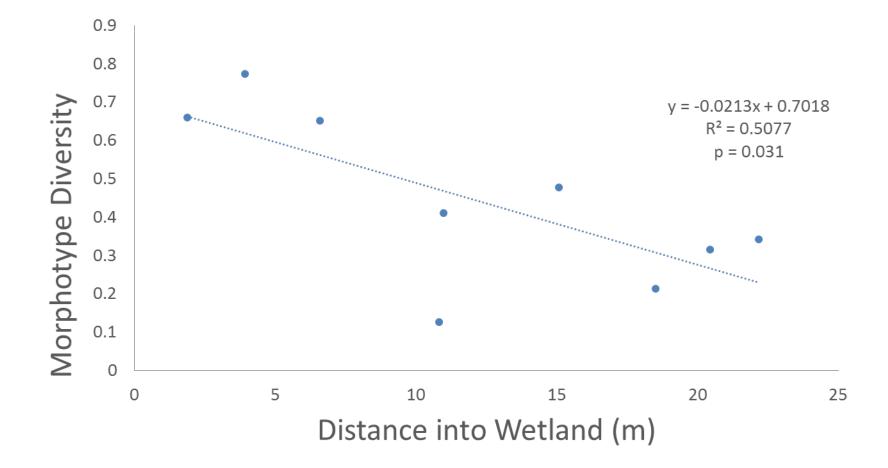
(0.1 – 0.25 m) 0.1m

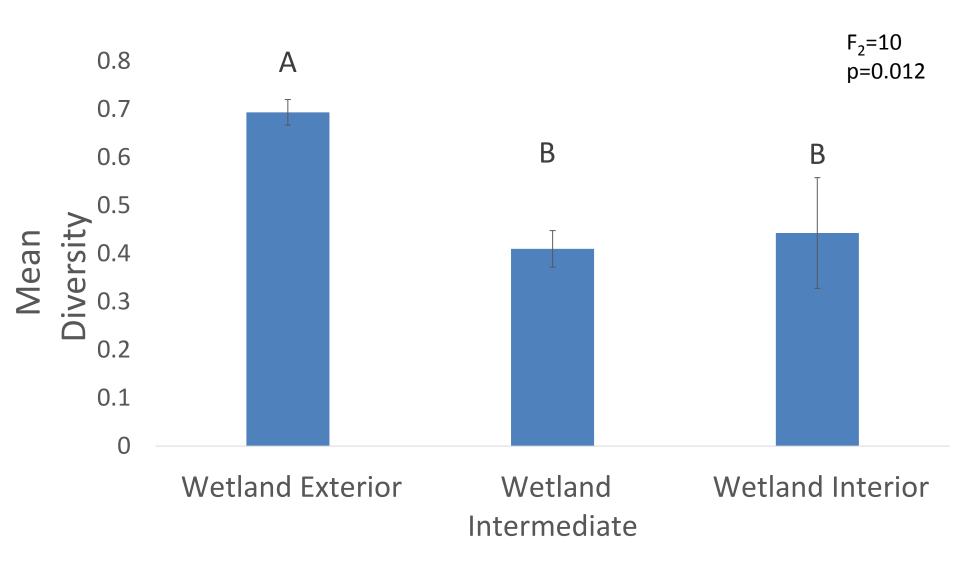
Digging for Roots



Root Processing & Morphology

- Dissecting microscopes
- EMF's were classified based on morphological differences
 - Shape
 - Color
 - *Staining*
- Morphotypes compared to photographs of known EMF associates of *Larix laricina*


^"White Deer"



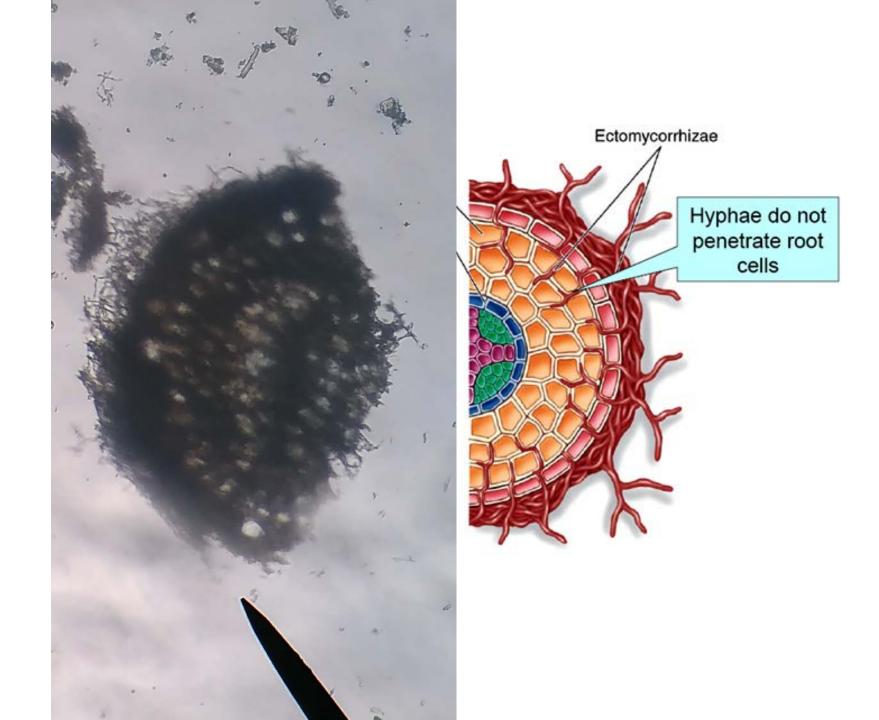
Results

- Distance into wetland vs. morphotype diversity p=0.031, F=7.22, R²= 50.77
- Comparing 3 sections of each transect p=0.012, F=10, DF=2
- Tukey: Exterior A, Intermediate –B, Interior – B

	Shannon-Weiner Diversity Average		
	Wetland Exterior	Wetland Intermediate	Wetland Interior
Fen	0.655	0.410	0.315
Forsaith's	0.650	0.476	0.341
Lost Pond	0.772	0.126	0.212

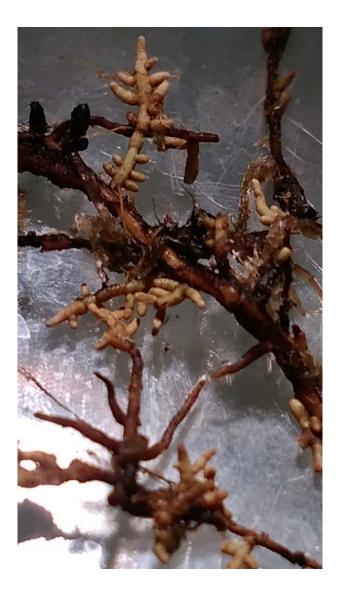
Morphotype Abundance

	Abundance	Percent of colonization
White Deer	97	52.4
Mold Deer	31	16.8
White Pyramid	5	2.7
Cinnamon Bulge	6	3.2
Black Fuzzy	32	17.3
Shroom	1	0.5
Worm	1	0.5
Grey Deer	2	1.1
Wrinkle Pickle	7	3.8
Cob Web	3	1.6
Total	185	

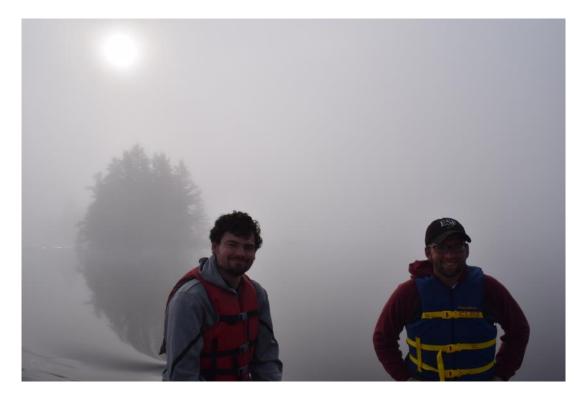


Discussion

- Possible explanations for results
 - Larches on border between wetland and upland had root contact with upland trees
 - Moisture levels
 - Soil moisture levels were higher in the wetland interior
 - Plants farther from edge benefit less from mycorrhizal relationship
 - Tree density, nitrogen
- The use of morphotypes for EMF validation


Ways to Improve

- Use more similar wetlands
- Larger sample sizes
- Genetic Analysis
- N, P, K test
- Account for tree age
- Take surveys of surrounding vegetation
- Upland tree surveys along boundaries


Future Studies

- The effect of wetland size on diversity
- Correlation between moisture levels and diversity
- Compare pure stands of Larix laricina, Picea mariana, and mixed stands

Conclusion

- We rejected the null hypothesis (p=0.031)
- There was a relationship between EMF morphotype diversity and distance from the edge of the fen.

Questions?

Acknowledgments

Keith Bowman Kim Schultz Melissa Fierke Tom Horton Alexander Weir Sarge Connor Darcy Aimee Hudon Danny Newman

References

- Mitsch, William J. "Wetland Ecosystems." N.p., n.d. Web. 8 Aug. 2017.
- Agerer, R. (n.d). Exploration types of ectomycorrhizae A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. *Mycorrhiza*, *11*(2), 107-114.
- Castello, John D. " Chapter Edaphic Factora and Mycorrhizae." " Forest Health": An integrated Perspective. Cambridge U, 2011. 182-186.
- Ian A. Dickie, a., & Peter B. Reich, a. (2005). Ectomycorrhizal Fungal Communities at Forest Edges. *Journal Of Ecology*, (2), 244.
- •

Lilleskov, E., Hobbie, E., & Horton, T. (n.d). Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. *Fungal Ecology*, *4*(2), 174-183.

- Claire Bird, a., & Coleman McCleneghan, a. (2005). Morphological and Functional Diversity of Ectomycorrhizal Fungi on Roan Mountain (NC/TN). *Southeastern Naturalist*, (1), 12
- "Concise Descriptions of North American Ectomycorrhizae Glossary: Chemical Reactions." *Forestry Development.* N.p.,n.d. Web. 28 July 2017.
- BUECHEL, T., & BLOODNICK, E. D. (2016). Mycorrhizae: Description of Types, Benefits and Uses. *GPN: Greenhouse Product News*, *26*(4), 18-20.
- Heijden, M. A., Martin, F. M., Selosse, M., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. *New Phytologist*, (4), 1406. doi:10.1111/nph.13288
- Peay, K. G., Kennedy, P. G., & Bruns, T. D. (2011). Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation?. *Fungal Ecology*, *4*(3), 233. doi:10.1016/j.funeco.2010.09.010
- Robertson, S. J., Tackaberry, L. E., Egger, K. N., & Massicotte, H. B. (2006). Ectomycorrhizal fungal communities of black spruce differ between wetland and upland forests. *Canadian Journal Of Forest Research*, *36*(4), 972-985.