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Abstract 

 

Incandescent light sources are increasing replaced by other forms of light, such as 

fluorescent and light-emitting diode (LED) lights, which have greater longevity and offer greater 

energy efficient. These sources of light differ in more than their cost and efficiency, and have 

many different physical properties, for instance, their degree of flickering. Low-frequency 

fluorescent lighting flickers below the critical flickering fusion frequency (CFF) of some birds 

and may be a source of stress, unlike a non-flickering light source, such as LED. Our study 

measured levels of glucocorticoid metabolites (GCM’s) in fecal samples of captive European 

starlings (Sturnus vulgaris ) both across treatments and over a period of days to demonstrate the 

effects of different forms of light on the stress levels of birds in a laboratory setting. 

Concentration of GCM’s were not significantly different either across light treatments (P =0.441) 

or over time (P= 0.209), suggesting flickering properties of low-frequency fluorescent light is not 

a major source of stress for captive birds over an alternative light source.  
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Introduction 

 Stress response in birds is primarily measured through levels of corticosterone, a 

glucocorticoid mediated through the HPA axis (Axelrod and Reisine, 1984; Wingfield 1994). In 

an acute sense, corticosterone aids avian metabolism and behavior in the presence of a stressor. 

Corticosterone, however, can have adverse impacts on avian health if the stressor persists 

chronically (Wingfield et al., 1992; Sapolsky, 1992). To date, studies have demonstrated the 

impact upon avian stress and corticosterone expression due to logging, tourism, and climate 

change, to name a few (Wasser et al., 1997; Mullner et al., 2004; Cockrem, 2013).  

 Another well-studied potential stressor to birds is light, in particular, fluorescent light. 

Fluorescent light offers advantages in efficiency and duration over the more traditional 

incandescent light. Fluorescent light also exhibits a flicker effect, not perceived by humans but 

visible to certain species of birds. At a species-specific threshold, this flickering appears 

continuous, known as the critical flicker fusion frequency (CFF) (D’Eath, 1998). The standard 

frequency for US fluorescent lights is typically 120Hz, well above human CFF, but not always 

above the CFF of wild or domestic animals (Jarvis et al., 2002). In captive birds, European 

starlings (Sturnus vulgaris) have been used to demonstrate the impacts of light treatment on 

stress. Maddocks et al. (2001), found no discernable differences in plasma corticosterone after 1 

or 24 hours. Greenwood et al. (2004), similarly found no difference in plasma corticosterone 

levels over 6- or 14-day trials, but, did find that, given a choice, starlings demonstrated a 

preference for higher frequency fluorescent light over a lower frequency below the CFF. Smith 

et al. (2005a, b), however, found muscle spasms, malaise, and elevated corticosterone as a result 

of fluorescent flicker. Beyond stress, fluorescence seems to have other potential adverse effects 

on starlings, including mate choice (Evans et al. 2006), and is of particular interest for fast, 
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gregarious species, which need to make split-second directional changes on the wing 

(Greenwood et al. 2004).  

 A common denominator in each of these previous starling stress studies is the use of 

corticosterone sampling via plasma. Venipuncture and handling, two necessary steps in the 

acquisition of blood samples, both may impart a large degree of stress onto the subject (Miller et 

al. 1991). To the contrary, our work involved the extraction of hormones from fecal samples, 

which serve as a valuable means to collect hormones in a non-invasive manner. While it is noted 

these previous studies standardized their venipuncture and handling across treatments, a less 

invasive means of hormone sampling may elucidate small differences in corticosterone across 

light treatment, given the already high baseline for stress in a captive setting (Romero and 

Wingfield, 1999). Fecal samples typically contain very little intact corticosterone, as it is 

metabolized in the liver, but modern ELIZA kits are capable of detecting extracted 

glucocorticoid metabolites (GCMs).    

 Our main aim of the study was to extract and analyze glucocorticoid metabolites from a 

collection of fecal samples of European starlings subjected to differential light treatments and 

how these metabolites changed over the course of 9 days. The fecal samples were to serve as 

supplementary data to a previous work in the Van Roo lab, examining behavioral cues of stress 

in captive starlings across these treatments and over time (Flood and Van Roo, unpublished). 

Both works follow a previous study as a model, Greenwood et al. (2004), with minor differences 

in sampling, analysis, and light treatment. Rather than high-frequency fluorescent light, LED 

light was compared against low-frequency fluorescent light. LED light does not exhibit a flicker 

effect and shares fluorescent light’s economic advantages over incandescent light.  
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 It was hypothesized that fecal samples of birds directly exposed to LED light would 

exhibit lower concentrations of GCMs than fecal samples of birds exposed to low-frequency 

fluorescent light. Habituation to the light treatment, as reflected in a significant relative decline 

in GCMs over time, was hypothesized to be more pronounced in low-frequency fluorescent light 

than LED. 

Methods 

Outline of direct exposure to light treatments 

The following is adapted from Kalina and Van Roo, 2013 (unpublished): 

Ten (n=10) wild-caught European starlings from a variety of sites in the Framingham, 

Massachusetts area will be exposed to the following lighting treatments: sun light, low frequency 

fluorescent light (100 Hz), and LED light. Under chronic exposure to each treatment, fecal and 

plasma corticosterone samples, changes in body weight, behavioral reactions and corticosterone 

assays will determine the level of stress to the light treatments. Once captured, two weeks of 

acclimation will allow birds to adjust to captivity (Rich & Romero 2005; Millspaugh & 

Washburn 2004). One cage positioned in front of the window will receive sunlight for the 

duration of the experiment, serving as the negative control. A curtain of black cloth placed in 

between the holding cages and the control will prevent the control bird from visually seeing the 

other birds, yet allow it to receive the natural light for the entirety of the experiment.  

Two separate rooms had one of two light treatments: low-frequency fluorescent light (20 

watts, 0.60 meter, Phillips F20T12 ran with GE LFL Magnetic Rapid Start Ballast) or LED light 

(12.5 watts, Phillips EnduraLED 800 series A19). A single bird will be transferred to an 

experimental room. Each bird will spend 14 days under the designated light treatment. Light 
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treatments will rotate between the two rooms after every experimental treatment, rather than each 

light treatment remaining fixed to one room location. Fecal samples will be collected on day 1, 

day 5, and day 9. The samples were frozen in plastic tubes upon collection for later analysis. The 

bottom of the cages were lined with cling wrap to ensure full fecal collection and cleaned daily 

to prevent cross-contamination.   

Hormone extraction and analysis 

 Methods for extraction of GCM’s from fecal samples adapted from combination of 

protocols from Wasser et al. (2010) and Dantzer et al. (2010). Fecal samples were thawed at 

room temperature for 3 hours. Samples were stirred with wooden spatulas to promote 

homogeneity before portions of each were used for analysis. ~0.5g of each sample was removed 

from each test tube and placed in separate petri dishes. The samples were smeared to allow for 

greater drying surface area and the mass of the smeared samples was recorded. 24 hours was 

afforded to allow for the drying of each sample and a fan was blown over the samples to prevent 

overheating which may decompose the sterols. After 24 hours, the samples were re-weighed to 

obtain a dry mass. 0.1g of dry fecal sample was isolated and placed in separate 15mL Eppendorf 

tubes along with 2mL of 70% methanol. The tubes were vortexed for 60s and rotated at 135rpm 

for 10 minutes on a plate shaker. After 10 minutes, the samples were centrifuged on an IEC 

Clinical Centrifuge (setting 3) for 15 minutes. The resulting supernatant was drained into a clean 

Eppendorf tube and frozen for later analysis.  

 Thawed samples were analyzed via the instructions of Enzo Life Sciences Corticosterone 

Kit. The instructions are briefly outlined below: 

 A serial dilution of corticosterone standard was prepared in Assay Buffer (diluted 1:10), 

yielding standards of 200,000, 4,000, 800, 160, and 32ug/mL. The supernatants (samples) were 
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mixed with steroid displacement reagent (40:1). Wells were filled in duplicate, according to 

protocol. Assay buffer was added to NSB and Bo wells (0pg/mL). Three corticosterone standards 

of 66.6uL were added to wells in duplicate. These sample duplicates were dispersed at random 

locations throughout the well, to determine uniform plate reading. Standards and samples were 

pipetted into appropriate wells. Starling plasma samples were combined and a serial dilution was 

prepared and administered directly to wells (to later demonstrate parallelism, see below).  Blue 

conjugate was added to all except TA & Blank wells. Yellow antibody was added to all except 

Blank, TA, and NSB wells. Wells were incubated for 2 hours at room temperature and 200rpm. 

Wells were then washed with 400uL of wash buffer in triplicate and padded dry, vigorously, 

while inverted, with paper towels. Conjugate was added to TA wells and pNpp substrate was 

added to all wells and incubated for 1 hour at room temperature. After the hour, 50uL of Stop 

Solution was added to each well and the plate was immediately read with BIO-RAD Benchmark 

Plus microplate spectrophotometer. 

Calculations 

 The spectrophotometer gave values in terms of optical density (OD). Optical density 

values were averages among duplicates and NSB OD values were subtracted from standards and 

samples. Percent Bound was calculated according to formula: 

 %Bound = Net OD/Net Bo OD *100 

 The standard curve of %Bound of standards vs. their concentrations was used to arrive at 

a line of best fit (R2 = 0.989), from which the concentrations of the samples could be determined 

from their OD. Listed below are the reported precision, accuracy, cross-reactants with 

percentages, and sensitivity of the kit (Table 3).  
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Results 

 Average concentrations of corticosterone and their respective standard deviations can be 

found in Table 1 and Figure 1. These were analyzed with a two-way ANOVA, across treatments 

and over time (Table 2). There was no significant differences across light treatment (P= 0.441, 

df=2), over time (P=0.209, df=2) or considering both simultaneously (P=0.839, df=4). 

Table 1. Average Concentrations and Standard Deviations 

1 33.03 +/- 10.28 25.86 +/- 8.46 27.11 +/- 

12.49 

5 41.6 +/- 13.43 38.7 +/- 18.05 42.65 +/- 

30.74 

9 54.16 +/- 12.49 36.24 +/- 6.71 34.1 +/- 18.97 

 

 

Table 2. ANOVA Summary 

Source Degrees of Freedom P-value 

Light Treatment (rows) 2 0.441 

Overt time (columns) 2 0.209 

Rows x Columns 4 0.839 
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Table 3. Values from the Manufacturer  

Precision Corticosterone (pg/mL) Intra-assay %CV Inter-assay %CV 

Low-171 8.0  

Medium-403 8.4  

High-780 6.6  

Low - 174  13.1 

Medium- 415  8.2 

High- 780  7.8 

Sensitivity 26.99pg/mL 

Cross-Reactivity Corticosterone 100% 

Deoxycorticosterone 28.6% 

Progesterone 1.7% 

Testosterone 0.13% 

Tetrahydrocorticosterone 0.28% 

 Aldosterone 0.18% 

 Cortisol 0.046% 

 

 

Discussion 

 Direct exposure of individual starlings to low-frequency fluorescent light, LED light, and 

sunlight showed no appreciable difference in stress, as measured by fecal GCMs. Further, no 

differences arose in how concentrations of fecal GCMs fluctuated over 9 days of exposure to 

these sources of light. These results match those of Greenwood et al. (2004), indicating 

corticosterone levels, serving as a measure of stress, do not differ significantly between light 

sources above and below the starling CFF.  

 Levels of GCMs were highly variable among each treatment. Sunlight, intended to serve 

as a negative control group, appears, anecdotally, to have been most variable. It is difficult to 

determine the source of this variability, be it the setup of the light treatments, the hormone 

extraction and analysis, or some combination of the two.  
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 The light treatments and experimental setup are difficult to fully assess, given the lack of 

communication between lead authors, but certain aspects are worth addressing. Most notably, it 

is possible the stressful nature of captivity itself imparts such a large degree of stress that any 

signals of stress from a light treatment may simply be buried under the noise of an already 

stressful atmosphere. Among other possible audible stressors, construction was taking place 

during these experiments and may have been an irregular source of stress. Cages being cleaned 

out for fecal collection and movement of subjects between holding cages and experimental cages 

exposed the starlings to a consistent, potentially stressful set of encounters. Other studies 

mention other light treatment properties, including intensity, which were not measured across 

treatments and, therefore, cannot be ruled out as a source of variance. Information is also limited 

on bird age and holding cage specifics. Starlings are notably gregarious by nature, and, whereas 

others have paired test birds, this study did not. Isolation from other starlings for ~9 days may 

have imparted stress on the test birds. However, to use the non-invasive means of hormone 

sampling, isolation appears to be a necessary factor of the experimental design.   

  Various reviews have covered the necessary steps in validating hormone assay from 

fecal samples (Buchanan and Goldsmith 2004, Palme 2005). Validation of the Enzo Life 

Sciences Corticosterone ELIZA Kit is of major concern. The demonstration of parallelism was 

performed with serial dilutions of pooled blood plasma samples rather than pooled extracts of 

fecal samples. While this validation is not altogether useless, parallelism with pooled extracts of 

fecal samples was an important step in demonstrating the procedure as a non-major source of 

variance, and, regrettably, we cannot confidently report such a claim without it. Beyond 

parallelism, other steps in sound validation practice include biological relevance via an ACTH 

test and knowledge of delay times between stressor and reflection of that stressor in the fecal 
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samples, i.e., how long it takes for the GCM’s to be excreted. Neither were feasible in our case 

because the starlings were no longer available for further testing once the protocol for hormone 

extraction and analysis was taking place. For all other potential validation concerns, the reported 

precision, accuracy, sensitivity, and cross-reactions are provided by the manufacturer (Table 3). 

 A final note on the study species is worthy of consideration. Urban birds have been 

shown to display a larger degree of environmental tolerance (Bonier et al. 2007), and, perhaps, 

this holds for tolerance toward light source. Replication of these works with a traditionally non-

urban species able to tolerate a captive setting would shine light on this issue.  

Conclusions 

 Stress, as measured by fecal glucocorticoid metabolites of captive European starlings, 

does not appear to be significantly different between LED light or low-frequency fluorescent 

light. Stress also does not seem to appreciably differ among these treatments across a moderate 

time interval of 9 days.  
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