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The question of how complex systems become more organized and efficient with time is open. Examples are the formation of
elementary particles from pure energy, the formation of atoms from particles, the formation of stars and galaxies, and the formation
of molecules from atoms, of organisms, and of the society. In this sequence, order appears inside complex systems and randomness
(entropy) is expelled to their surroundings. Key features of self-organizing systems are that they are open and they are far away from
equilibrium, with increasing energy flows through them. This work searches for global measures of such self-organizing systems,
which are predictable and do not depend on the substrate of the system studied. Our results will help to understand the existence of
complex systems and mechanisms of self-organization. In part we also provide insights, in this work, about the underlying physical

essence of Moore’s law and the multiple logistic growth observed in technological progress.

1. Introduction

Important questions in contemporary physics remain unan-
swered: Why and how complex systems self-organize? How
does this process occur in accordance with the Second
Law of Thermodynamics? What are the relationships and
interactions between the different characteristics of complex
systems that make them function and lead to the decrease
of their internal entropy? The answers to these and other
related questions are urgent and crucial, since numerous
phenomena in various fields of science are dependent on
them. Chemistry needs to explain how autocatalytic cycles
form and change with time to improve their efficiency.
Biology needs to understand how an organism’s metabolism
becomes more efficient in using energy and time for their
functioning. Economics needs to explain the increase of
efficiency of different technologies and networks in society.
The complexification of systems over time has been a subject
of considerable scientific interest for years. It has been noted
that as systems grow they become more intricate and complex

as can be seen in everything around us, from stars and
galaxies to forests and cities [1-5].

Why do we need to know the mechanism of self-
organization? How will this help us? First of all, science
has always been driven by the quest to understand unex-
plained phenomena. As soon as we understand them, we
can use them for our benefit. We live in one such self-
organizing system, our society, and we ourselves, as biological
organisms, are self-organized entities as well. Therefore to
explain how complex systems function and self-organize
further is of utmost importance. Without explanatory power,
we do not have the ability to understand and improve the
systems that we live in. In the field of complex systems
the process of progressive development is understood as
a continuous improvement through self-organization. New
structures, rules, and laws in systems emerge at the new
levels of organization. But, how is organization defined and
how it and the rate of self-organization are to be measured
and quantified? What quantitative measures can be used
to describe them? What are the mechanisms, the potential
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for further self-improvement in complex systems, and their
limits? The answers to those questions are vital and will help
us understand more deeply physical, chemical, biological,
and economic complex systems.

To answer the above questions, we apply a new measure
to quantify organization complexity and the rate of self-
organization based on the Principle of Least Action [6-
9]. The fundamental nature of this principle allows all the
conservation laws and equations of motion, in all branches
of physics, from Classical Physics to General Relativity and
Quantum Mechanics, to be derived from it.

The quantity action (A) is given as the integral of a
systemr’s Lagrangian over time where the Lagrangian is the
difference between the kinetic and potential energies at each
instant along a path or a trajectory, written as

t t
A= | @-vidt= |z (pug)ar )
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Here T denotes the kinetic energy, V denotes the potential
energy, the pair (g;, p;) is the position and momentum vector
in the generalized coordinates, and Z(:) is the Lagrangian
functional. The Hamiltonian formalism of the Action Prin-
ciple imposes constraints on the end points (say, A and B)
of the trajectory, such that both end points and end times,
(A,t,) and (B, tg), are known, and A(t,, A) = A(tg, B) = 0.
This makes the problem completely deterministic, whereas,
in nature most often, the fate of a particle (or a system
of particles) is completely unknown. Although Maupertuis’
formulation of the Action Principle removes the time con-
straints, yet it still requires the end points of a path to be
defined. According to Maupertuis’ formulation, the action
can be given by

/5 [/} t
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where p; = 0£/0g;. Processes in nature occur only when the
action is minimized (Hamilton’s formulation) or along those
trajectories that minimize action (Maupertuis’ formulation);
that is, JA = 0. It is important to understand that the
minimization of action, the product of energy and time or
position and momentum, is central and not the minimization
of energy and time separately. A simple thought experi-
ment (gedankenexperiment) will reveal that minimization of
energy and time separately either does not yield any self-
organization or they are forbidden by the existing laws of
physics. Minimizing energy (OE ~ 0) yields an equilibrium
state for a system, such as a crystal without any flows of energy
or changes in entropy and consequently no change in the
current state of the self-organization. Similarly, minimizing
time (8t ~ 0) results in violating the relativistic limit of the
speed of light. Even if we imposed such a limit, the amount
of energy necessary for the motion increases to infinity,
therefore maximizing the action. Therefore, a balance must
exist between energy and time for natural processes and the
minimization is not of the two individual entities separately
but of their product, the action.

Since complex systems undergoing self-organization are
open systems, far away from equilibrium; energy and matter

Complexity

pass through them along the paths of least obstructive
constraint; they can be represented as flow networks formed
by those paths. The nodes in these systems act as sources
and sinks and edges as trajectories, along which the system
elements flow. These elements are prevented from moving
along their least action paths by the presence of obstructive
constraints within the system. The total action of the system
is the sum of all individual actions for all agents and all edge
crossings per unit time, ¥; ;A ;, where the indices “i” and “;”
represent the ith agent’s jth edge crossing. The smallest unit of
action is one quantum of action, which is a universal constant
denoted by “h” (PlancK’s constant) where # is an integer:
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The sequential motion of elements in a complex system
from a source to a sink is one edge crossing. We define
this as an event in space-time. Therefore, organization «, as
the action efficiency, is the ratio of the number of events
occurring in a system to the total amount of action in a
given interval of time. Multiplication by PlancK’s constant
makes the measure dimensionless and defines it as reciprocal
to the total number of quanta of action per event. The less
the average action per event, the closer the system to the
attractor state, that is, the least action state. Action efﬁciency
as a measure for the amount of organization in a system
is inversely proportional to the average action per event.
It is time dependent as it changes in self-organization and
evolutionary processes:

nmh
SOA (4)

where the indices “i” and “j” sum up to the integers “n” and
“m,” respectively, where n is the number of elements and m
is the number of edge crossings per element per unit time.
Just as water is diverted by rocks as it flows down the stream,
the system’s elements are sometimes blocked from traversing
along the path of least time and energy by the presence
of obstacles. With self-organization, the system elements
perform work on the obstructive constraints and minimize
them. We model the time dependence of organization in
these systems as increase in efliciency of physical action,
where the action efficiency is defined as the decrease of action
for an element of a system to traverse a pair of nodes along its
flow networks. Therefore, the state of organization of a system
can simply be described by the position of the constraints,
and the minimization of the constraints in respect to the flows
leads to an increased action efficiency per unit motion. This is
analogous to the stream of water doing work on the rocks that
block its most efficient path until the rocks are moved. This
is expressed quantitatively in terms of energy and temporal
efficiency of processes as observed in nature [10].

In previous papers, we defined least unit action to
be the product of the least amount of time and energy
needed to make a single edge crossing in a flow network
[10-12]. The flow (¢) in a system is defined as the total
number of edge crossings by the elements (agents) per
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unit of time in the system. Representing organized systems
as flow networks implies a constant flow of energy and
matter which by definition means the system must be far
from equilibrium. These systems are open, with branching
hierarchical networks and fractal-like self-similar structures
[13]. The characteristics of these natural systems include
fractal-like properties that change and grow in a manner
which have a universal predictability. We see evidence of this
in natural systems everywhere, from cardiovascular networks
to cities [5, 14]. In many such systems the scaling laws,
which are generally power-law relations, f(y) ~ 3°, define
the scale-free properties of change, with § being the scaling
exponent [15-18]. Due to the presence of scaling relation-
ships and power-law decays in the statistical properties of
the networks, the importance of the respective nodes is
nonuniform. Certain nodes have been found to be relatively
more important, “central,” as compared to the others. In
order to capture the relative importance of the various nodes
in the networks various centrality measures are calculated,
such as degree, betweenness, and closeness [19, 20]. In many
real world networks the property of self-similarity has been
found to be of significant interest as, in many systems, the
system elements overcome jamming, which is an obstructive
constraint to their motion (which decrease flow, lowering
action efficiency and ultimately organization), by branching
out and forming self-similar patterns [21-24].

In our earlier work, we have shown that decreasing the
unit action between two nodes will increase the overall
action efficiency of a sample system, the core processing
unit of computers. The CPU data were collected from Intel
Corporation (http://www.intel.com) in order to solve for the
smallest amount of action per computation, as well as the total
amount of action, within a certain time interval. The results of
the data analysis showed that the organization (quality) and
total action (quantity) both increased exponentially over time
which is in agreement with the quality-quantity relationships
noted in the literature [1, 10, 25]. The data also demonstrated
that this relationship between quantity and quality is a power
law, which matched well with the predictions of our model.
The data showed that the least unit action of the CPUs («)
and the total amount of action (Q) are in a positive feedback
loop, leading to an exponential growth of both and power-
law relationship between the two. As the efficiency of the total
action increases, more time and energy are freed to further
reorganize the system and decrease unit action. A system with
high action efficiency allows the system to grow in quantity
of action. Therefore the total amount of action was found to
be in a positive feedback with the organization of the system,
as more time and energy are necessary to achieve further
constraint minimization and action efliciency.

According to our previous papers, the Principle of Least
Action explains the mechanism of increase of organization
through quantity accumulation and constraint and curvature
minimization with an attractor, the least average sum of
actions of all elements and for all motions. In this study,
we present more measures to quantify self-organization in

complex systems. We also develop a mathematical model
to capture the presence of positive feedback loops between
these measures. This is necessary in order to, first, understand
all the links between all the measures leading to the causal
change in each of them and, second, to increase the amount
of information that we can gather from complex systems, in
order to quantify the process of self-organization in them.
When these measures show increase in time, they do so
according to the power-law proportionality, and because of
the positive feedback connections between them, they are
all interdependent functions of each other. Establishing links
and proportionality relationships, in the form of power laws
between them, will help us to calculate the values for some of
these measures in systems where these measures are hard to
obtain directly once we know the rest of the quantities.

Those characteristics of complex systems are mutually
interdependent, because one of them can increase only if
the rest have increased to a certain level. This interde-
pendence allows us to call those functions participating
in a circular positive feedback mechanism interfunctions.
Those interfunctions increase together and can deviate from
their proportionality values, when the system is in dynamic
equilibrium, which can be called homeostasis. The inter-
functions can deviate from those homeostatic values by a
certain amount, beyond which the mechanism of interaction
between them is disturbed. Therefore negative feedback exists
to restore their homeostatic values, which is proportional to
the difference between their actual values and their homeo-
static values. The homeostatic level increases exponentially
due to the positive feedback between them and the actual
values oscillate around the exponential homeostatic value
due to the restoring force of their deviations. Thus, the
system of interfunctions acts as a system of coupled harmonic
oscillators around their exponentially growing homeostatic
values. In real world systems, those values are perturbed by
random external noise. Thus, the fluctuations of the system
of harmonic oscillators become stochastic. The modeling and
analysis of those oscillations around the exponential trends,
observed in the data in this paper, will be an object of further
work. It can explain the origin of multiple logistic growth
observed in technology substitution curves.

We broaden the system of interfunctions including the
action efficiency and total amount of action in a complex
system, based on a system of ordinary differential equations,
(i) which leads to exponential growth with time and (ii)
establishes a power relation between the two, with measures
such as the total flow of events, which is the number of
computations for the CPUs and the number of transistors.
Our study can also explain the origin of the observed expo-
nential change in technology, noticed empirically by Moore
[26], Kurzweil [27], Nagy et al. [28], and Kelly [29]. This
understanding can help describe, quantify, measure, manage,
design, and predict future behavior of complex systems to
achieve the highest rates of self-organization to improve their
quality. Our long-term goal is to test whether it can be applied
to complex systems across disciplines not only from Physics
but also from Chemistry, Biology, Ecology, and Economics.
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2. Theory: Correlation of Quantities

The variational approach to describe systems in nature is
becoming increasingly important [30-35]. The results pre-
sented in this paper are a continuation of the variational
approach that was previously used to show that minimizing
unit action is correlated to maximizing total action in
increasing the level of organization of complex systems [10].
In this paper we study the correlation between efficiency
of unit action (action efficiency) « and total action Q with
transistor count N and flow of events, which for CPUs
are computations, ¢. The goal is to establish a connection
between flow and physical size as characteristic measures
for self-organization in physical systems and correlate them
with action efliciency. For biological systems and processes
it is challenging to measure the physical quantity of action.
Therefore, to expand the applicability of our theory and to
make it more widely usable for the scientific community,
we hope to find other correlated characteristic measures
that can be used to derive the more fundamental ones.
By exploring these correlated characteristics that are more
accessible, we can calculate the unit action from the already
available quantities that participate in the positive feedback
loop. This will allow us to study larger varieties of systems
and to generalize our present theory to systems of any nature
across all disciplines.

The following system of equations was observed as a
relation between each of the four variables, o, ¢, Q, and N.
The time derivatives of these variables are denoted as &, ¢, Q,
and N. Since there exists a positive feedback loop between
these variables, the governing set of differential equations is
written as

&=aa+a,pd+a;Q+ayN,
¢ = ayoa+ayd+a;Q+ayN,

Q = a0 + az + a;3Q + ay N,

©)

N =aga+a,¢+a;Q+ayN.

The above system of equations can be written in a
compact form for a function, f(¢, &, ¢,Q, N), with a;; being
the coefficients as

fi(tad,QN) =2} a,f; (Lo, $QN).  (6)

Since the only independent variable is the time, ¢, the
above system of equations can be represented in the matrix
form as

F(t) = AF(¢). (7)

The coefficients g;; belong to the matrix A, and the vector,
F(t), takes on the characteristics, «, ¢, Q, and N, for various
values of the indices i and j for all i,j € {1,2,3,4}. The
solution to the above equation is given by

fi(t) =2 cexp (A;t) w,, (8)
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¢ ~ Now

FIGURE 1: The figure shows the positive feedback loop among the
system variables, «, ¢, Q, and N and their corresponding scaling
relationships.

where A; is the eigenvalue, u; is the respective eigenvector,
and ¢ is an arbitrary constant, at time t = 0. Since the
system variables are in a positive feedback loop (see (5) and
Figure 1), the coefficients g;; are positive for all 7, j. The
standard solution to (7) will yield both positive and negative
eigenvalues (in (8)). At steady state, t — 00, exp(-A;t) — 0
and exp(A;t) only persists. Thus, the solution for the system
variables with respect to time can be written as

a ~exp(Ayt),
¢ ~exp(Ayt),
o) )
Q ~ exp ()LQt),
N ~exp (Ayt),

where A, A4, Aq, and A are the exponential scaling expo-
nents for the system variables. Interestingly, upon elimination
of the independent variable, ¢ (or setting a; = a;; = 0),
power-law relationships (or scale-free relationships) can be
established between the system variables with respect to each
other, which for the current theme of our study is very
important. Therefore, (9) can be rewritten as

o ~ e/t Qalra) _ Nl hs)
¢ ~ Q(A¢/AQ) ~ N(A¢//\N), (10)
Q ~ N(AQ/AN).

We introduce a new scaling parameter, 8, and rewrite the set
of (10) as

o~ ¢61x,¢ ~ Q(SD(,Q ~ N‘Sa,N)
¢~ Q%2 ~ N, (11)
Q ~ NP,

3. Data and Methods

The data was collected from the Intel Corporation Datasheets
for the CPUs from 1971 to 2013. The Instructions Per Second
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FIGURE 2: The figure shows the exponential scaling relationships between the characteristics, «, ¢, Q, and N, with respect to time on a

semilogarithmic scale (see (9)) with the goodness of fit (inset).

(IPS) for each processor was divided by the Thermal Design
Power (TDP) as a measure of the total power consumption by
the CPUs at maximum computational speed, for consistency.
The result was multiplied by the table value of PlancKk’s
constant & = 6.626 x 107>*Js, as the smallest quantum of
action, to solve for «, as the inverse of the number of quanta of
action per one instruction per second. The TDP was divided
by PlancK’s constant, A, to find the total number of quanta of
action per second, Q. Only processors for desktops or laptops
were used, because some of the specialized processors, such
as the ones for phones or tablets, perform slower in order to
consume less energy.

4. Results and Discussion

In Figure 1 we represented graphically the interdependence
between the interfunctions. In Figure 2, we show that the
interfunctions, &, ¢, Q, and N, obey an exponential relation-
ship with respect to time. The exponential scaling exponents,
A, are tabulated in Table 1. We plot the dependence of each
system variable against the other in Figure 3. On eliminating

TaBLE 1: This table outlines the various scaling exponents that were
derived in (9) and (11) and their respective magnitudes as calculated
from the data in Figures 2 and 3.

Scaling exponents

Ao Ay Ag Ay
7.76 x 10~ 1.24x10°° 471x107° 1.05x 107
Power-law scaling exponents
Oug O O 9,0
0.61 1.39 0.72 2.39

SN Son
1.17 0.45

time from the system of exponential scaling equations (see
(9)), we observe that the system variables relate to each other
through power laws. The power-law exponents, §, are also
tabulated (see Table 1). The scale-free exponents in Table 1
arise out from the mutual permutations among the system
parameters, as can be easily observed from (10) and (11).
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FIGURE 3: The figure shows the power-law scaling relationships between the characteristics, o, ¢, Q, and N on a double-logarithmic scale

(see (11)) with the goodness of fit (inset).

We define the proportionality constants for the system of
equations connecting «, ¢, Q, and N with time ¢ as follows:

a=Cyexp(Ayt),

¢ =Cgyexp (A(pt) ,

Q=Cqexp (Aqt),

N =Cyexp(Ayt).
The terms C,, Cy, Cp, and Cy are the proportionality con-
stants for the system of exponential relations as represented
in (9). Similarly, the power-law relationships between «,

¢, Q, and N (see (11)) with the proportionality constants
Cap> Ca» Cans Cg00 Cgn» and C  can be rewritten as

(N
o = C“’¢¢ ’¢,
o = COC’QQ(Sa,Q)

& = Cy N,

TaBLE 2: This table outlines the various proportionality constants for
the system of (9) and (11) as rewritten in (12) and (13).

Proportionality constants

C, Cy Co Cy
4x107% 23920 6x 10% 1878
Cus Cuo Con Cso
9x 1072 2x 1074 2x 107! 2x 107
C¢,N CQ,N
3.84 2x10%
3,
¢ — Cgb,QQ ¢YQ,
4) = C¢,NN6¢,N)
Q = ConN.
(13)

We tabulate the constants from the plots (Figures 2 and
3) in Table 2. The matrix elements can be obtained from
the proportionality constants among the interfunctions. The
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$.QN

FIGURE 4: The figure presents a pictorial representation of the power-law scaling relationships between the system variables, «, ¢, Q, and N,

and the solid diagonal line signifies slope of one.

-1/8,

element a; = Cj;, a;; = a;; /

where the indices run over the functions &, ¢, Q, and N.
We represent the matrix elements a;; for the interfunc-

tions in a compact manner as follows:

V,and a; = a;; = 0 forall i, j

0 9%x107%  2x107% 2x107*!
7.84 x10°° 0 2x1077 3.84
1.04 x 10> 6.86 x 10*° 0 2x 10 | 1)
433x10% 031  276x1077° 0

In order to understand how the interfunctions vary with
respect to each other we plot the scaling relationships in
Figure 4. It is interesting to observe that action efficiency,
o, and total action, Q, scale much faster than a linear
relationship. This observation illuminates the question of
how physical systems progressively self-organize with time.
It means that action efficiency needs to increase faster than
the quantity of the system, in order to accommodate the
increased amount of action in it. It does that by increasing

the flow through it, for example, by developing flow channels,
tributaries, veins, and vesicles. Hence, the flow, ¢, is always

observed to be superlinear against all of the interfunctions. It
means that the flow of events is always ahead of the increase
of any of the other interfunctions. At the other extreme, the
total action, Q, trails the increase of any other interfunction.
From the data shown, we can see evidence that flow of
events, ¢, which is the number of computations per second,
and total number of transistors N grow exponentially in time
and are in a power-law relation of each other, similar to
organization, «, and total amount of action, Q. In previous
work we showed that when elements organize to achieve least
unit action per unit event in the system, the overall capacity
for flow of the events in the network increases. By looking at
our new results, we observe that ¢ and N can both be used
as quantitative characteristics that are in a positive feedback
relation with & and Q. This means that we can potentially
use N and flow as proxies to measure quality and quantity
increase in self-organization of complex systems when those
are hard to measure directly. The flow in biological and
social self-organizing systems, such as the flow of events
in metabolic cycles, which are chemical reactions, or social
transactions, is often much more accessible than action and
action efficiency, which are the more fundamental quantities.



Analogous to the number of transistors in the CPUs, we can
use as a quantitative characteristic the number of cells in an
organism or the number of people in a city or a society.

Moore’s law and the other observations of exponential
change in technology are a part of this model. Moore’s law
empirically describes the exponential increase of the number
of transistors in time, which agrees with the solutions of
our model of a positive feedback between the number of
transistors and other interfunctions, such as action efficiency;,
flow of events, and the total amount of action. Thus, the
observation by Moore is explained here as a part of this
system of interfunctions driven by the Principle of Least
Action. The visible oscillations of the data around the
exponential and power-law fits (see Figures 2 and 3), which
are their homeostatic values, can help explain the multiple
logistic nature of technology substitution S-curves, by the
negative feedback between the homeostatic values of the
interfunctions, and the actual deviations of the data from
them.

5. Conclusions

The results have shown that flow of events, ¢, and num-
ber of transistors, N, for CPUs are in a positive feedback
with the action efficiency, «, and the total action, Q, and
also with each other. The positive feedback between them
forms a system of coupled differential equations with steady
state solutions indicating exponential growth in time. An
important prediction of the model is that these mutually
dependent characteristics of a self-organizing system, the
interfunctions, are in power-law relationship with each other.
Therefore, all four quantities are proportional to each other
at different stages of organization and we can use any one
of them to solve for the other three. The predictions of our
model fit well with the data, and they also provide an insight
to understand the physical nature of technological progress
as observed by Moore and others using the fundamental
concepts of time and energy. Therefore, this opens before us
an opportunity, to learn about the processes in those self-
organizing dynamic systems, by measuring just one or a
few of those interfunctions and deduce the others. This is a
significant opportunity to study a variety of systems, because
in some self-organizing systems certain interfunctions are
more accessible than others, and the most fundamental, of
action efficiency and total amount of action, are the hardest
to obtain. Hence, it is crucial to find further characteristic
measures in a self-organizing complex system, as it will
allow us to study a wide variety of these systems under
the same framework even with partial information. An
important follow-up work is to compare the coefficients in the
equations for this system with other self-organizing systems
in nature and look for universal constants. The origin of the
oscillations around the homeostatic values in the data may
illuminate multiple logistic curves in technology, such as the
substitution S-curves.
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