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SCHUBERT POLYNOMIAL MULTIPLICATION

SARA AMATO
A THESIS UNDER THE MENTORSHIP OF JOSEPH ALFANO

Abstract. Schur polynomials are a fundamental object in the field of algebraic combina-
torics. The product of two Schur polynomials can be written as a sum of Schur polynomials
using non-negative integer coefficients. A simple combinatorial algorithm for generating
these coefficients is called the Littlewood-Richardson Rule. Schubert polynomials are gen-
eralizations of the Schur polynomials. Schubert polynomials also appear in many contexts,
such as in algebraic combinatorics and algebraic geometry. It is known from algebraic
geometry that the product of two Schubert polynomials can be written as a sum of Schubert
polynomials using non-negative integer coefficients. However, a simple combinatorial
algorithm for generating these coefficients is not known in general. Monk’s Rule is a
known algorithm that can be used in specific cases. This research seeks to identify more
algorithms for the multiplication of Schubert polynomials. In this thesis, I will provide
a brief overview of Schur polynomials and Schubert polynomials. Also, I will present
diagrams called ’pipe-dreams’ to illustrate Schubert polynomials and establish a connection
to Schur polynomials. Our main result is in Schubert polynomial multiplication. I will
present two algorithms for Schubert polynomial multiplication, which generalize Monk’s
rule in specific cases.
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1. Symmetric Polynomials and Schur Polynomials

1.1. Symmetric Polynomials. We will define symmetric polynomials, initially, with posi-
tive integer indices. More generally, later in the paper, we will construct them to be indexed
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by partitions of integers. A symmetric polynomial, denoted by sk, is a polynomial in n vari-
ables, {x1, x2, . . . , xn}, such that if any of the variables are transposed, the same polynomial
is obtained. For example, for {x1, x2, x3}, there are 3! = 6 permutations of subscripts; sk

would have to be unchanged if we apply any of the permutations to the subscripts. In this
example, the symmetric group, S 3 is the set {123, 132, 213, 231, 312, 321}. In this notation,
we write the set of outputs when we permute the sequence 1, 2, 3.

Elementary symmetric polynomials, denoted by ek are the sum of all k-letter monomials,
each using distinct variables. For example, the elementary symmetric polynomials for
{x1, x2, x3} are:

e1 = x1 + x2 + x3

e2 = x1x2 + x1x3 + x2x3

e3 = x1x2x3

The complete homogeneous polynomials, denoted by hk are the sum of all k-letter
monomials, with repeated variables permitted. For example, the complete
homogeneous polynomials for {x1, x2, x3} are:

h1 = x1 + x2 + x3

h2 = x1x2 + x1x3 + x2x3 + x1x1 + x2x2 + x3x3

h3 = x1x2x3 + x1x1x1 + x1x1x2 + x1x1x3 + x1x2x2 + x1x3x3 + x2x2x2 + x2x2x3 + x2x3x3 + x3x3x3.

1.2. Schur Polynomials. Here is some terminology that will be helpful for the definition
of a Schur polynomial:

• A partition is denoted by λ, which we write as λ = (λ1, λ2, . . . , λn), such that
λ1 ≥ λ2 ≥ . . . λn ≥ 0. In other words λ is a weakly decreasing sequence of non-
negative integers. A partition of n is a partition whose parts sum up to equal n. We
omit 0’s for convenience. For example, the partitions for n = 6 are the following:

λ = 6
λ = 5, 1
λ = 4, 2 λ = 4, 1, 1
λ = 3, 3 λ = 3, 2, 1 λ = 3, 1, 1, 1
λ = 2, 2, 2 λ = 2, 2, 1, 1 λ = 2, 1, 1, 1, 1
λ = 1, 1, 1, 1, 1, 1

• We define the elementary symmetric function eλ :=
n∑

i=1
eλi, where e0 = 1.

• We define hλ :=
n∑

i=1
hλi, where h0 = 1.

• A Ferrers diagram is a diagram representing partitions as patterns of dots or boxes.
If a partition is λ = (a, b, c), the first row will have a dots/boxes, the second row
will have b dots/boxes, and the third row will have c dots/boxes. For example, the
Ferrers diagram for λ = (3, 2, 1) would look like:
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Here is another example. This is the Ferrers diagram for λ = (4, 1, 1):

• A semi-standard Young tableau is obtained by filling in the boxes of a Ferrers
diagram with symbols from some alphabet. We require that each row has a weakly
increasing sequence from left to right and each column has a strictly increasing
sequence from top to bottom. The weight of the tableau is found by counting the
number of times that each distinct number is repeated. For example, using the
alphabet {1, 2, 3}, the semi-standard Young tableaux with shape (2, 1, 1) are the
following:

1 1
2
3

1 2
2
3

1 3
2
3

Schur polynomials generalize elementary symmetric polynomials and complete homoge-
neous polynomials. Here is a combinatorial definition:

(1) Each semi-standard Young tableau, T, determines a monomial, xT defined by the
rule that constructs xT by the following product:∏

i∈T

xi

(2) The Schur polynomial for partition λ = (λ1, λ2, . . . , λn), is the sum of mono-
mials, such that, sλ(x1, x2, . . . , xn) =

∑
T xT , where the summation is over all

semi-standard Young tableaux, T , of shape, λ.

For example, let {x1, x2, x3} be our alphabet. Here are the semi-standard young tableaux of
shape (3, 0, 0):

1 1 1 2 2 2 3 3 3 1 1 2 1 1 3

1 2 2 1 3 3 1 2 3 2 2 3 2 3 3

Hence, the following Schur polynomial can be obtained by summing the tableaux monomi-
als:

s(3,0,0) = x3
1 + x3

2 + x3
3 + x2

1x2 + x2
1x3 + x1x2

2 + x1x2
3 + x1x2x3 + x2

2x3 + x2x2
3

1.3. Littlewood-Richardson Rule. This rule gives a combinatorial description of the
coefficients that arise when decomposing a product of Schur functions. The product of
two Schur functions can be written as a linear combination of Schur polynomials with
non-negative integral coefficients. These coefficients are given by the Littlewood-Richardson
Rule, which is:

sλsµ =
∑
ν

cνλ,µsν

where λ and µ identify the Schur functions being multiplied and ν identifies the Schur
function for which the coefficient is being found for. Further, the L-R rule states that cνλ,µ is
the number of L-R tableaux of skew shape ν/λ and weight µ.
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The skew shape, ν/λ is the shape obtained by drawing ν and then deleting λ. For example
let ν = (4, 3, 2) and λ = (3, 1). We obtain the following skew shape:

The L-R tableau is a filling of the skew shape of the Ferrers diagram with numbers whose
multiplicity is given by weight µ, such that the entries are strictly increasing in each column
and the entries are weakly increasing in each row. There is one final requirement. When
reading the entries from right to left and then top to bottom we need to obtain an L-R word,
which means that in every initial part of the sequence any number i occurs at least as often
as the number i + 1. Here is the L-R tableau for our previous example.

1

1 2

2 3

Here is a diagram of the Littlewood-Richardson Rule with Schur functions. This illus-
trates that our skew shape will have weight, µ, and will start with λ and add onto it 1’s and
2’s from µ. We are multiplying:

s × s

(1) Call the first Schur function sλ and the second, sµ. Fill sµ with its most elementary
filling:

1 1
2

Start with shape, λ = .
(2) Append to λ, the broken rows, which is a collection of entries, no two of which are

in the same column. First, do this with 1’s and then with 2’s, such that we obtain
an L-R word, which means that in every initial part of the sequence any number i
occurs at least as often as the number i + 1.

1
1

1

1

1
1

1 1

1
1
2

1
1 2

1

1
2

1
2

1

1
1

2

1
1 2

1 1

2

1 1
2

The resulting Schur polynomials are s4,2 + s4,1,1 + s3,3 + 2s3,2,1 + s3,1,1,1 + s2,2,2 +

s2,2,1,1.
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1.4. Pieri’s Rule. Pieri’s formula is a specialized version of the L-R rule to the case where
sµ is the Schur function where µ contains just one row, call its length k. Pieri’s formula
describes the product of a Schur polynomial by a complete homogeneous symmetric
function. In terms of Schur functions, sλ, indexed by partition λ states that:

sλhk =
∑
ν

sν

where shape ν/λ has no two cells in the same column. Pieri’s rule for multiplying an
elementary symmetric polynomial with a Schur polynomial is:

sλek =
∑
ν

sν

where ν is summed over all shapes such that ν/λ has no two cells in the same row.

2. Schubert Polynomials

A Schubert polynomial, written as Sw, is a mathematical object in the field of combi-
natorics. Schubert polynomials have their basis in permutations because every Schubert
polynomial is indexed by a specific ordering of numbers. For example, to find all Schubert
polynomials for n = 3, we take the numbers 1, 2, 3 and find every possible ordering of these
numbers. Hence, there are 3 × 2 × 1 or 6 Schubert polynomials in n = 3. They are S123,
S132, S213, S231, S312, and S321.

Further, a Schubert polynomial can be constructed using a combinatorial object called a
pipe-dream. A pipe-dream is a n × n square in which the numbers {1, 2, 3, . . . , n}, go along
the top of the square reading left to right. The Schubert polynomial’s permutation w goes
down the left side reading from top to bottom. The square’s entries get filled with crosses

or elbows , matching equal numbers on the top of the diagram to their matches on
the side of the diagram. The only condition is that no two pipes cross twice. We make
graphs for all admissible pipe-dreams for w and add the monomials constructed from each
one together. The monomial constructed from a given pipe-dream is xa0

0 xa1
1 . . . xan−1

n−1 where
ai is the number of crosses in the ith row.

Here is a pipe-dream for w = 132.

1 2 3

1

3

2

This pipe-dream represents the monomial x1
0x0

1x0
2, which we simplify to x0, since there is

one cross in the first row.
Here is another pipe-dream for w = 132.
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1 2 3

1

3

2

This pipe-dream represents the monomial x0
0x1

1x0
2, which we simplify to x1, since there is one

cross in the second row. These are the only two pipe-dreams that satisfy the requirements;
therefore, the Schubert polynomial, S132 is x0 + x1.

Here is some terminology that will be helpful for the algebraic definition of a Schubert
polynomial:

• S n is the notation for the symmetric group, which is the collection of all permuta-
tions of {1, 2, . . . , n}.

• Let [n] = {1, 2, . . . , n} for any positive integer n. We say that σ is a permutation of
[n] if σ is a function from [n] to [n] that is a one-to-one correspondence. In other
words, σ is an ordering of {1, 2, . . . , n}. Here is an example of a permutation σ for
the case n = 5, written in two-line notation, that is each column is an input-output

pair,
[

i
σ(i)

]
.

σ =

[
1 2 3 4 5
4 3 5 1 2

]
Here is another example of a permutation, which we will call τ.

τ =

[
1 2 3 4 5
2 3 1 5 4

]
We define the product of permutations σ and τ by the rule: τσ is the permutation
whose output is given by (τσ)(i) = τ(σ(i)) for every i in {1, 2, . . . , n}. In other
words, we plug-in the output of function σ into function τ.

τσ =

 1 2 3 4 5
4 3 5 1 2
5 1 4 2 3


Written in two-line notation, that is writing each input-output of τσ.

τσ =

[
1 2 3 4 5
5 1 4 2 3

]
and in one-line notation, that is the sequence of outputs if we assume the inputs are
written in numerical order as {1, 2, . . . , n}, τσ = 51423.
• We call the permutation that sends i to j (and vice versa) and sends every other

number to itself the transposition ti, j. We denote the transposition of i and i + 1
by si, which we call an adjacent transposition. The length of permutation σ is
the minimum number of adjacent transpositions, si, needed to multiply together to
equal σ.

For example, let us find the length of τσ from our previous example.
We start by looking at the original ordering 12345. First, we need to move the 5 to
the front. This can be done using a sequence of adjacent swaps. We will call each
of these swaps, si. We are letting our si denote a transposition in the ith position.
To move 5 to the front we can swap 5 with the number adjacent to it, 4. This is

6



denoted by s4. Now, we have 12354. Now, we swap 5 with 3, since these two
are now adjacent. This is denoted by s3. Now, we have 12534. Next, we swap
5 with 2, since they are now in adjacent positions, which is denoted by s2. This
yields 15234. Finally we swap 5 with 1, since they are now in adjacent positions,
which is denoted by s1. This yields 51234. We, now, have to get 4 into the third
spot. To do this, we first have to swap 4 with 3, which is denoted by s4 and yields
51243. Finally, we swap 4 with 2, since they are now in adjacent positions, which
is denoted by s3. Now, we have 51423, which is τσ. The length of τσ is found by
adding up all of the adjacent transpositions we performed. The transpositions we
performed were, s4,s3,s2,s1,s4, and s3. Thus, the length is 6.

• A reduced word is found by putting together all of the adjacent transpositions we
performed to achieve the permutation. So, a reduced word for τσ is s3s4s1s2s3s4.
We use this ordering because τσ and each si are functions.
• We often use w to stand for permutation. It can be proved that the length of our

permutation, w, is well-defined: every reduced word of w has the same length.
However, there may be more than one satisfactory reduced word for a given
permutation. Let w0 be the permutation 321 in S 3. To find the reduced word and
length we have to perform the adjacent transpositions. We start with the initial
ordering 123. We apply s2. The output is 132. Then we apply s1. The output is
312. Then we apply s2. The output is 321. The length of w0 is 3 and the reduced
word is s2s1s2. We can also perform the following adjacent transpositions. We start
with 123. We apply s1. The output is 213. Then we apply s2. The output is 231.
Then we apply s1. The output is 321. Therefore, the length of w0 is still 3, but the
reduced word is s1s2s1.

• The inverse of σ is the inverse function, that is the one-to-one correspondence that
sends the sequence of outputs to the sequence of inputs. The two-line notation of
σ−1 is obtained by swapping the second and first lines.

σ−1 =

[
4 3 5 1 2
1 2 3 4 5

]
which we write in more standard form where the inputs are ordered 1, 2, . . . , n.

σ−1 =

[
1 2 3 4 5
4 5 2 1 3

]
or in one line notation as, 45213.

Here is an algebraic definition for Schubert polynomials:
(1) Let w0, in S n = n, n − 1, . . . , 2, 1. We define the Schubert polynomial, Sw0 =

xn−1
1 xn−2

2 . . . x1
n−1x0

n.
(2) Define the difference quotient, di, which acts on the polynomial P(x1, x2, . . . , xn),

by the following rule. Let

diP(x1, x2, . . . , xn) =
P(x1, . . . , xi, xi+1, . . . , xn) − P(x1, . . . , xi+1, xi, . . . , xn)

xi − xi+1

for any i ∈ {1, 2, . . . , n − 1}.
For any permutation w and for any i in {1, 2, . . . , n − 1}, we define the Schubert polynomial
that is indexed by wsi by the rule:

diSw = Swsi

as long as wsi has smaller length as a permutation than w.
The following diagram provides an example of using the divided difference operator for

each of the permutations of n = 3.
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Figure 1. The Schubert polynomials of n = 3 by Divided Difference

321 = s1s2s1 = s2s1s2

S321 = x2
1x1

2x0
3

312 = s1s2

d2(x2
1x1

2x0
3) =

x2
1 x2−x2

1 x3

x2−x3
= x2

1

231 = s2s1

d1(x2
1x1

2x0
3) =

x2
1 x2−x2

2 x1

x1−x2
= x1x2

213 = s1

d2(x1x2) =
x1 x2−x1 x3

x2−x3
= x1

132 = s2

d1(x2
1) =

x2
1−x2

2
x1−x2

= x1 + x2

123 = 1

d1(x1) = x1−x2
x1−x2

= 1 or d2(x1 + x2) =
x1+x2−(x1+x3)

x2−x3
= 1

Please note: To each of these Schubert polynomials, we adapt the answer to our notation,
which starts with x0, instead of x1. Please note: Some of the sources that will be referenced
in this thesis will start their variable sequence with x1, as in the above definition. Our
computing software, SageMath, starts its variable sequence with x0. In this paper, we adopt
the latter convention.

2.1. Monk’s rule. Suppose we want to multiply an arbitrary Schubert polynomial, Sw by
the Schubert polynomial Ssr . w is an arbitrary permutation in S n whose output sequences
are w1,w2, . . . ,wn. sr is the permutation that exchanges a number, r, and the subsequent
number, r + 1. An example of sr would be 132 because this permutation exchanges the
number 2 with 3.

Given a specific w and a specific r, we consider all ordered pairs, (i, j), such that i ≤ r < j,
with the restriction that j ≤ n + 1 with n being the number of elements in the permutation.
In our example of 132, n = 3. For each (i, j) pair, we determine if it is admissible. It
is admissible if wi < w j. Also, for each value k that lies in the interval i < k < j, the
value of wk must be either greater than w j or less than wi. The inequality would have to be
wk < wi < w j or wi < w j < wk. For each admissible (i, j) pair we construct an output, which
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we will call w′, which is obtained from w by swapping wi and w j. Monk’s rule asserts that
the product Sw Ssr is the sum of all w′ that were constructed in the previous step.

Let’s try an example. We take sr to be 132. Observe r = 2. Let the Schubert polynomial
that it is multiplying be S213. To find w′, we first have to list every (i, j) pair that satisfies
the inequality i ≤ 2 < j with j ≤ 4.

• (1, 3). This would swap the numbers 2 and 3 in our original permutation. Since
there is no entry located between entries 1 and 3 that has a value between 2 and 3,
we can swap the i and j values to obtain w′ = 312.
• (1, 4). The permutation 213 in n = 3 is the same as the permutation 2134 in n = 4.

We can consider an entry one past the nth position when we are applying Monk’s
rule. This would swap the numbers 2 and 4 in our original permutation. Since entry
3 is located in between entries 1 and 4 and has a value between 2 and 4, this (i, j)
pair is not admissible.

• (2, 3). This would swap the numbers 1 and 3 in our original permutation. Since
there is no entry located in between entries 2 and 3, this ordered pair is admissible
and we can swap wi and w j to obtain the permutation w′ = 231.

• (2, 4). This would swap the numbers 1 and 4 in our original permutation. Since
entry 3 is located in between entries 2 and 4 and has a value between 1 and 4, this
(i, j) pair is not admissible.

Therefore, S132S213 = S312 + S231. Monk’s rule is an algorithm that has been proven
by multiplying polynomials with algebra and expressing the result as a sum of Schubert
polynomials. This is a nice property of Schubert polynomials with regard to products and
our research seeks to find other nice multiplication algorithms.

3. Connection between Schur polynomials and Schubert polynomials

It is well known that every Schur polynomial is a Schubert polynomial. Here we
present a bijection that accounts for going from a Schubert polynomial, Sw, where w is the
permutation with exactly one descent, to a certain Schur polynomial. More precisely, every
Schur polynomial is equal to a Schubert polynomial, Sw, where w is a permutation with
exactly one descent. A descent is a pair (i, i + 1), such that i < i + 1 and wi > wi+1. Let
w = 14823567

(1) Construct every pipe-dream for w(1) = 1.
(a) There is only one way:

1

1

(b) Then construct a pipe for w(2) = 4. There are three ways. Also, after the pipes
are constructed, pause here to record, for each pipe we have constructed, the
sequence of rows where is has a crossing,

1 2 3 4

1

4

1 2 3 4

1

4

1 2 3 4

1

4

1=(1)w

4=(2)w 1 1
1=(1)w

4=(2)w 2 1
1=(1)w

4=(2)w 2 2

9



Observe that for w(2) the sequence of row entries we have recorded is every
possibly weakly decreasing sequence with values in the interval {1, 2}, whose
sequence-length is 2 (since the pipe that connects number 4 must cross number
3 and number 2, so there are 2 crossings).

(c) Now, construct a pipe for w(3) = 8. There are many ways:

1 2 3 4 5 6 7 8

1

4

8

1 2 3 4 5 6 7 8

1

4

8

1=(1)w

4=(2)w

8=(3)w
1 1
2 2 1 1 1

1=(1)w

4=(2)w

8=(3)w
1 1
3 2 1 1 1

1 2 3 4 5 6 7 8

1

4

8

1 2 3 4 5 6 7 8

1

4

8

1=(1)w

4=(2)w

8=(3)w
1 1
3 3 1 1 1

1=(1)w

4=(2)w

8=(3)w
1 1
2 2 2 1 1

1 2 3 4 5 6 7 8

1

4

8

1 2 3 4 5 6 7 8

1

4

8

1=(1)w

4=(2)w

8=(3)w
1 1
3 2 2 1 1

1=(1)w

4=(2)w

8=(3)w
1 1
3 3 2 1 1

1 2 3 4 5 6 7 8

1

4

8

1 2 3 4 5 6 7 8

1

4

8

1=(1)w

4=(2)w

8=(3)w
1 1
3 3 3 1 1

1=(1)w

4=(2)w

8=(3)w
1 1
2 2 2 2 1
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1 2 3 4 5 6 7 8

1

4

8

1 2 3 4 5 6 7 8

1

4

8

1=(1)w

4=(2)w

8=(3)w
1 1
3 2 2 2 1

1=(1)w

4=(2)w

8=(3)w
1 1
3 3 3 3 3

1 2 3 4 5 6 7 8

1

4

8

1 2 3 4 5 6 7 8

1

4

8

1=(1)w

4=(2)w

8=(3)w
2 1
3 3 3 3 3

1=(1)w

4=(2)w

8=(3)w
2 2
3 3 3 3 3

Note to reader: This is only a partial listing of all of the pipes that can be
achieved. Observe that for w(3), the sequence of row entries is every possible
weakly decreasing sequence in {1, 2, 3}, whose sequence length is 5. Each
column in this tableau is strictly increasing(since pipe number 2 must first be
crossed by number 4 before it gets crossed by number 8...)

(d) Now, construct a pipe for the remaining numbers 2, 3, 5, 6, 7. These have no
additional crossings.

(2) Now apply the one-to-one operation; negate each entry.
(3) Now apply the one-to-one operation; invert the recording tableau.In our example,

the w(1) row will now be below the w(2) row, which will now be below the w(3)
row.

(4) Now apply the one-to-one operation; add to each entry r + 1. r is the location of
the descent in w. In this case, r = 3, so r + 1 = 4.

2 2 3 3 3
3 3

1 2 3 3 3
3 3

1 1 3 3 3
3 3

2 2 2 3 3
3 3

1 2 2 3 3
3 3

1 1 2 3 3
3 3

1 1 1 3 3
3 3

2 2 2 2 3
3 3

1 2 2 2 3
3 3

1 1 1 1 1
3 3

1 1 1 1 1
2 3

1 1 1 1 1
2 2

. . .
11



This is a partial listing of all tableaux with shape (w(r) − r,w(r − 1) − (r − 1), . . . ,w(2) −
2,w(1)−1). These are weakly increasing in each row, and strictly increasing in each column,
and whose entries in the top row lie in {1, 2, . . . , r}, and in the next row lie in {2, . . . , r}, etc.
To state the correspondence precisely: the Schubert polynomial indexed by w, where w is a
permutation in S n with exactly one descent at location r, is equal to the Schur function, sλ,
where λ is the permutation whose parts are (wr − r,w(r − 1) − (r − 1), . . . ,w2 − 2,w1 − 1)

4. Specific Algorithms for cases n = 3 and n = 4

In this section, we investigate the product of two Schubert polynomials, SwSσ, and write
algorithms to construct the output, in the cases where σ is any permutation in the symmetric
group S 3 or S 4, and Sw is arbitrary. Let us start with the Schubert polynomials of n = 3.

4.1. The Trivial case: σ is the identity permutation. Consider the case where σ is the
identity element of S 3. In two-line notation, we write:

σ =

[
1 2 3
1 2 3

]
.

This Schubert polynomial S123 is equal to 1. So the corresponding multiplication rule is
trivial: SwS123 = Sw .

4.2. Other Easy cases: σ is a transposition of two consecutive numbers. Next consider
the cases where σ is a transposition si that permutes the consecutive numbers i and i + 1.
The multiplication rules are given by Monk’s formula, which we will write explicitly.

4.2.1. the case where σ = s1. In the case where σ permutes 1 and 2, we have

σ =

[
1 2 3
2 1 3

]
.

This Schubert polynomial S213 is equal to x0, in the alphabet {x0, x1, . . .}. The corre-
sponding multiplication rule is given by Monk’s formula:

SwS213 =
∑

i≤1< j
l(wti j)=l(w)+1

Swti j ,

where ti j denotes the transposition that permutes the numbers i and j, and l(w) denotes
the length of w as a product of transpositions of adjacent numbers.

4.2.2. the case where σ = s2. In the case where σ permutes 2 and 3, we have

σ =

[
1 2 3
1 3 2

]
.

This Schubert polynomial S132 is equal to x0 + x1. The corresponding multiplication
rule is given by Monk’s formula:

SwS132 =
∑

i≤2< j
l(wti j)=l(w)+1

Swti j .

4.3. Intermediate cases: σ is a product of two transpositions si. Now consider the cases
where σ is a permutation whose length is 2.

12



4.3.1. the case where σ = 312. We first examine the case is where σ equals 3 1 2, that is

σ =

[
1 2 3
3 1 2

]
.

This Schubert polynomial S312 is equal to x2
0. Multiplying Sw by this polynomial is

equivalent to multiplying by x0 twice, so a simple procedure for evaluating the product
SwS312 is to evaluate S213(S213Sw). In other words, one performs the following algorithm.

(1) Apply Monk’s formula, with r = 1, to evaluate the product S213Sw.
(2) Then apply Monk’s formula, with r = 1, to evaluate the product of S213 with each

of the Schubert polynomials of the output of the previous step.

SwS312 =
∑

a≤1<b
l(wtab)=l(w)+1


∑

c≤1<d
l(wtabtcd)=l(wtab)+1

Swtabtcd

 .
4.3.2. the case where σ = 231. We next examine the case where σ equals 2 3 1, that is

σ =

[
1 2 3
2 3 1

]
.

This Schubert polynomial S231 is equal to x0x1. Multiplying Sw by this polynomial is
equivalent to multiplying by the difference (x0 + x1)x0 − x2

0, so a procedure for evaluating
the product SwS231 is to evaluate S132(S213Sw) −S213(S213Sw).
Proposition. It is sufficient to perform the following algorithm.

(1) Apply Monk’s formula with r = 1 to our given Schubert polynomial Sw.
(2) Then apply Monk’s formula, with r = 2 and restrict to the specific case i = 2, to

each of the Schubert polynomials Sw′ of the output of the previous step.
(3) From this final output, discard each Schubert polynomial Sw′′ for which the se-

quence of steps we have just performed, w 7→ w′ 7→ w′′, permutes exactly three val-
ues according to the form (A,C, . . . , B, . . .) 7→ (C, A, . . . , B, . . .) 7→ (C, B, . . . , A, . . .)
where A < B < C. The first ellipsis represents any sequence of numbers not in the
interval [A, B], the second ellipsis represents any sequence of numbers, and each
ellipsis sequence may be empty.

Proof. We seek to evaluate the multiplication of an arbitrary Schubert polynomial, Sw, by a
product. This product is ((x0 + x1) − (x0))x0. This equals (S132 −S213)S213Sw. This can
be done by the following algebraic procedure.

(1) Evaluate the product S213 Sw by applying Monk’s formula with r = 1, i = 1 to Sw.
The output is a sum of Schubert polynomials; let Sw′ denote any arbitrary one of
these terms.

(2) Evaluate (S132 −S213)(S213Sw) by applying the following.
(a) Evaluate S213(S213Sw) by applying Monk’s formula with r = 1 to each Sw′ .

We obtain, for each inputSw′ , an output that is a sum of Schubert polynomials;
let Sw′′ denote any arbitrary one of these terms.

(b) Evaluate S132(S213Sw) by applying Monk’s formula with r = 2 to each Sw′ .
Again we obtain, for each Sw′ , a sum of Schubert polynomials.

(c) Subtract the output of this Step 2a from the output of this Step 2b.
We have a sequence w 7→ w′ 7→ w′′. Let’s use this sequence for step 2a. We have a

sequence that we will call W 7→ W ′ 7→ W ′′, which we will use for step 2b (the ones that we
will ”subtract”). In this algebraic procedure, let us pause at each step to see more clearly the
terms that we will subtract. There are two cases:

13



(1) Case 1: Suppose that in step 2a we have used an ordered pair, call it (i, j) such
that i = 1 and j ≥ 3. We have a sequence w 7→ w′ 7→ w′′. In step 2b, this
same ordered pair is admissible and, beginning with the same input, we obtain an
identical sequence, W 7→ W ′ 7→ W ′′. These terms cancel in step 2c. Note: This
is why in our algorithm, when we perform Monk’s rule with r = 2, we restrict to
i = 2.

(2) Case 2: Suppose that in step 2a, to exhaust all cases, we use the ordered pair
(i, j), where i = 1 and j = 2. For this to be the admissible (i, j) pair in our first
step, we must have used the ordered pair (i, j) such that i = 1 and j ≥ 3. The se-
quence w 7→ w′ 7→ w′′ must have the form (A,C, . . . B, . . .) 7→ (B,C, . . . , A, . . .) 7→
(C, B, . . . , A, . . .) for A < B < C. In step 2b a sequence arises, which begins
with the same input and we are assuming cancellation, so it has the same output.
The sequence that we obtain, W 7→ W ′ 7→ W ′′, has the form (A,C, . . . , B, . . .) 7→
(C, A, . . . , B, . . .) 7→ (C, B, . . . , A, . . .), where A < B < C. These terms cancel
in step 2c, so in our algorithm, we cancel this sequence (A,C, . . . , B, . . .) 7→
(C, A, . . . , B, . . .) 7→ (C, B, . . . , A, . . .).

4.4. The final case: σ is a product of three transpositions si. Lastly consider the case
where σ equals 3 2 1, that is

σ =

[
1 2 3
3 2 1

]
.

This Schubert polynomial S321 is equal to x2
0x1. Multiplying Sw by this polynomial

is equivalent to multiplying by ((x0 + x1) − x0)x0 then multiplying by x0. So a procedure
for evaluating the product SwS321 is to evaluate S213(S132 − S213)(S213Sw) = (S132 −

S213)S213Sw.
It is sufficient to perform the following algorithm.

(1) Apply Monk’s formula with r = 1 to our given Schubert polynomial Sw.
(2) Then apply Monk’s formula, with r = 2 and restricting to the specific case i = 2, to

each of the Schubert polynomials Sw′ of the output of the previous step.
(3) From this final output discard each Schubert polynomial Sw′′ for which the se-

quence of steps we have just performed, w 7→ w′ 7→ w′′, permutes exactly three val-
ues according to the form (A,C, . . . , B, . . .) 7→ (C, A, . . . , B, . . .) 7→ (C, B, . . . , A, . . .)
where A < B < C, the first ellipsis represents any sequence of numbers not in the
interval [A, B], the second ellipsis represents any sequence of numbers, and each
ellipsis sequence may be empty.

(4) Apply Monk’s formula, with r = 1, to each of the Schubert polynomials of the
output of the previous step.

4.5. n=4. In the n = 4 case we have three different permutations that we constructed
multiplication algorithms for.

• S1342 = x0x1 + x0x2 + x1x2 This equals (x0 + x1)(x0 + x1 + x2)− (x2
0 + x0x1 + x2

1). This
composition is achieved by computing the product of the Schubert polynomials
S1324 and S1243 and then subtracting S1423.
Proposition. It is sufficient to perform the following algorithm for computing the
product S1342 Sw.
(1) Apply Monk’s formula, with r=2 to Schubert polynomial Sw.
(2) Apply Monk with r=3 to each term Sw′ of the output of the previous step.
(3) Discard each Sw′′ such that one or more of the following conditions are

satisfied.
– An i-value, in Monk’s rule, is used more than once.
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– The sequence of steps we just performed permutes three values accord-
ing to the form (A, ,C, . . . , B, . . .) 7→ (C, , A, . . . , B, . . .) 7→ (C, , B, . . . , A, . . .)
or ( , A,C, . . . , B, . . .) 7→ ( ,C, A, . . . , B, . . .) 7→ ( ,C, B, . . . , A, . . .) where
the values satisfy the inequality A < B < C and each of the ellipses (. . .)
may vary in length.

– The sequence of steps we just performed permutes {a, b, x, y} according
to the form (a, x, . . . , b, . . . y) 7→ (b, x, . . . , a, . . . y) 7→ (b, y, . . . , a, . . . x),
or (a, x, . . . , y, . . . b) 7→ (a, y, . . . , x, . . . b) 7→ (b, y, . . . , x, . . . a),
where the values {a, b, x, y} are arbitrary and each of the ellipses may
vary in length.

Proof. We seek to evaluate the product (S1243 S1324 - S1423)Sw. This can be
conducted by the following algebraic procedure.
(1) Evaluate the product S1243 S1324 Sw by first applying Monk’s formula with

r=2 to Sw. This accounts for multiplying by S1324. The output is a sum of
Schubert polynomials; let Sw′ denote any arbitrary one of these terms. Then
apply Monk with r=3 to Sw′ . This accounts for multiplying by S1243. The
output is a sum of Schubert polynomials; let Sw′′ denote any arbitrary one of
these.

(2) Evaluate the product S1423 Sw. To do this perform the following algorithm
(which will be proven later in the thesis)

– Apply Monk’s formula with r=2, i=1 or i=2 to Schubert polynomial
SW .

– If in step 1 Monk r=2,i=1 was performed, apply Monk with r=2, i=1 to
each term SW′ of the output of the previous step.

– If in step 1 Monk r=2,i=2 was performed, apply Monk with r=2, i=1 or
i=2 to each term SW′ of the output of the previous step.

– Discard from 2b each SW′′ such that the sequence of steps we just per-
formed permutes three values according to the form (A, B, . . . ,C, . . .) 7→
(A,C, . . . , B, . . .) 7→ (B,C, . . . , A, . . .) where the values satisfy the in-
equality A < B < C. It must be noted that capital W is the same as w,
but is used to distinguish between the multiplication and subtraction
steps.

Our final outputs achieved from performing step 1 include the following cases
a. The case where the sequence w 7→ w′ 7→ w

′′

starts with Monk’s formula being
applied to Sw with r=2, i=1 with j > 3. And then to this output Monk’s
formula is applied with r=3, i=1 with j > 4.

b. The case where the sequence w 7→ w′ 7→ w
′′

starts with Monk’s formula being
applied toSw with r=2, i=1. And then to this output Monk’s formula is applied
with r=3, i=2.

c. The case where the sequence w 7→ w′ 7→ w
′′

starts with Monk’s formula being
applied toSw with r=2, i=1. And then to this output Monk’s formula is applied
with r=3, i=3.

d. The case where the sequence w 7→ w′ 7→ w
′′

starts with Monk’s formula being
applied toSw with r=2, i=2. And then to this output Monk’s formula is applied
with r=3, i =1.

e. The case where the sequence w 7→ w′ 7→ w
′′

starts with Monk’s formula being
applied to Sw with r=2, i=2 with j > 3. And then to this output Monk’s
formula is applied with r=3, i=2 with j > 4.

f. The case where the sequence w 7→ w′ 7→ w
′′

starts with Monk’s formula being
applied toSw with r=2, i=2. And then to this output Monk’s formula is applied
with r=3, i =3.

Our final outputs achieved from performing step 2 include the following cases.
15



i. The case where the sequence W 7→ W ′ 7→ W
′′

starts with Monk’s formula
being applied to SW with r=2, i=1 with j > 3. And then to this output Monk’s
formula is applied with r=2, i=1 with j=3 or j > 4.

ii. The case where the sequence W 7→ W ′ 7→ W
′′

starts with Monk’s formula
being applied to SW with r=2, i=2 with j > 3. And then to this output Monk’s
formula is applied with r=2, i=1 with j > 3.

iii. The case where the sequence W 7→ W ′ 7→ W
′′

starts with Monk’s formula
being applied to SW with r=2, i=2 with j > 3. And then to this output Monk’s
formula is applied with r=2, i=2 with j > 4 or j=3.

The following cases cancel trivially
(1) Step a and the case in step i where the sequence W 7→ W ′ 7→ W

′′

starts with
Monk’s formula being applied to SW with r=2, i=1 with j > 3. And then to
this output Monk’s formula is applied with r=2, i=1 with j > 4.

(2) Step e and the case in step iii where the sequence W 7→ W ′ 7→ W
′′

starts with
Monk’s formula being applied to SW with r=2, i=2 with j > 3. And then to
this output Monk’s formula is applied with r=2, i=2 with j > 4.

This is why in our algorithm, we cancel repeated i values.
Some W ′′ are left over and need to be canceled from w′′ so that there are no negative
Schubert polynomials among our outputs. The following are patterns that cancel in
our algorithm.
(1) In case i where we apply Monk’s formula with r=2, i=1 with j > 3 and then

apply Monk with r=2, i=1 with j=3 the following permutation occurs from do-
ing these steps: (A, ,C, . . . , B, . . .) 7→ (B, ,C, . . . , A, . . .) 7→ (C, , B, . . . , A, . . .)
where the values satisfy the inequality A < B < C. These steps are admissible
because of Monk’s rule. A similar pattern arises in step c. This pattern
is (A, ,C, . . . , B, . . .) 7→ (C, , A, . . . , B, . . .) 7→ (C, , B, . . . , A, . . .) where the
values satisfy the inequality A < B < C. The ending permutation is the same.
Thus, we cancel this sequence in our algorithm.

(2) In case iii where we apply Monk’s formula with r=2, i=2 with j > 3 and then ap-
ply Monk with r=2, i=2 with j=3 the following permutation occurs from doing
these steps: ( , A,C, . . . , B, . . .) 7→ ( , B,C, . . . , A, . . .) 7→ ( ,C, B, . . . , A, . . .)
where the values satisfy the inequality A < B < C. These steps are admissi-
ble because of Monk’s rule. A similar pattern arises in step f. This pattern
is ( , A,C, . . . , B, . . .) 7→ ( ,C, A, . . . , B, . . .) 7→ ( ,C, B, . . . , A, . . .)where the
values satisfy the inequality A < B < C. The ending permutation is the same.
Thus, we cancel this sequence in our algorithm.

(3) In case ii where we apply Monk r=2, i=2 with j > 3 and then Monk r=2, i=1
with
j > 3 we achieve the following permutations:

– (A,C, . . . B, . . . , F, . . .) 7→ (A, F, . . . , B, . . . ,C, . . .) 7→ (B, F, . . . , A, . . . ,C, . . .)
– (G,C, . . . ,H, . . . , F, . . .) 7→ (G, F, . . . ,H, . . . ,C, . . .) 7→ (H, F, . . . ,G, . . . ,C, . . .)
– (A,C, . . . , F, . . . , B, . . .) 7→ (A, F, . . . ,C, . . . , B, . . .) 7→ (B, F, . . . ,C, . . . , A, . . .)
– (D,C, . . . , F, . . . , E, . . .) 7→ (D, F, . . . ,C, . . . , E, . . .) 7→ (E, F, . . . ,C, . . . ,D, . . .)
– (G,C, . . . , F, . . . ,H, . . .) 7→ (G, F, . . . ,C, . . .H, . . .) 7→ (H, F, . . . ,C, . . . ,G, . . .)

Each of these permutations correspond to a permutation in either b or d. So
we discard these cases:

– (A,C, . . . , B, . . . , F, . . .) 7→ (B,C, . . . , A, . . . , F, . . .) 7→ (B, F, . . . , A, . . . ,C, . . .)
– (G,C, . . . ,H, . . . , F, . . .) 7→ (H,C, . . . ,G, . . . , F, . . .) 7→ (H, F, . . . ,G, . . . ,C, . . .)
– (A,C, . . . , F, . . . , B, . . .) 7→ (A, F, . . . ,C, . . . , B, . . .) 7→ (B, F, . . . ,C, . . . , A, . . .)
– (D,C, . . . , F, . . . , E, . . .) 7→ (D, F, . . . ,C, . . . , E, . . .) 7→ (E, F, . . . ,C, . . . ,D, . . .)
– (G,C, . . . , F, . . . ,H, . . .) 7→ (G, F, . . . ,C, . . . ,H, . . .) 7→ (H, F, . . . ,C, . . . ,G, . . .)
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These cases can be written more simply as (a, x, . . . , b, . . . y) 7→ (b, x, . . . , a, . . . y) 7→
(b, y, . . . , a, . . . x),
or (a, x, . . . , y, . . . b) 7→ (a, y, . . . , x, . . . b) 7→ (b, y, . . . , x, . . . a) where the val-
ues {a, b, x, y} can be in any numerical ordering. Therefore, we cancel these
sequences in our algorithm for S1342

�

• S1423 = x2
0 + x0x1 + x2

1. This equals (x0 + x1)(x0 + x1) − x0x1. A procedure for
evaluating the product SwS1423 is to evaluate (S132S132 −S231)Sw.
Proposition. It is sufficient to perform the following algorithm for computing the
product S1423 Sw.

1. Apply Monk’s formula with r=2, i=1 or i=2 to Schubert polynomial Sw.
2a. If in step 1 Monk r=2, i=1 was performed, apply Monk with r=2, i=1 to each

term Sw′ of the output of the previous step.
2b. If in step 1 Monk r=2, i=2 was performed, apply Monk with r=2, i=1 or i=2

to each term Sw′ of the output of the previous step.
3. Discard from 2b each Sw′′ such that the sequence of steps we just per-

formed permutes three values according to the form (A, B, . . . ,C, . . .) 7→
(A,C, . . . , B, . . .) 7→ (B,C, . . . , A, . . .) where the values satisfy the inequality
A < B < C.

Proof. We seek to evaluate the product (S132S132−S231)Sw. This can be conducted
by the following algebraic procedure.
(1) Evaluate the product S132 Sw by applying Monk’s formula with r=2 to Sw.

The output is a sum of Schubert polynomials; let Sw′ denote any arbitrary
one of these terms. This application is without restriction: the possible values
of the ordered pair (i, j) are any that satisfy that i ∈ {1, 2} and j ≥ 3.

(2) Evaluate the product S132(S132 Sw) by applying Monk with r=2 to each term
Sw′ of the output of the previous step. The output is a sum of Schubert
polynomials; let Sw′′ denote any arbitrary one of these terms. This application
is without restriction: the possible values of the ordered pair (i, j) are any that
satisfy that i ∈ {1, 2} and j ≥ 3.

(3) Evaluate S231 by performing the following algorithm (found earlier in the
thesis)

(a) Apply Monk’s formula with r = 1 to our given Schubert polynomial
Sw.

(b) Then apply Monk’s formula, with r = 2 and restrict to the specific case
i = 2, to each of the Schubert polynomials Sw′ of the output of the
previous step.

(c) From this final output, discard each Schubert polynomial Sw′′ for which
the sequence of steps we have just performed, w 7→ w′ 7→ w′′, per-
mutes exactly three values according to the form (A,C, . . . , B, . . .) 7→
(C, A, . . . , B, . . .) 7→ (C, B, . . . , A, . . .) where A < B < C. The first ellip-
sis represents any sequence of numbers not in the interval [A, B], the
second ellipsis represents any sequence of numbers, and each ellipsis
sequence may be empty.

(4) Subtract: The output of this Step 2 minus the output of this Step 3
Observe the following properties of Step 3. In the case where Step 3a uses the
ordered pair (i, j) = (1, 2), the instructions of Steps 3b and 3c imply that in the
final output a Schubert polynomial Sw′′ will exist (and not get discarded) only if
w′′ and the original w differ only in the location of three entries, which satisfy
that w = (A, B, . . . ,C, . . .) and w′′ = (B,C, . . . , A, . . .); no other orderings are
admissible. And in the case where Step 3a uses an ordered pair (i, j) such that
j ≥ 3, the discarding rule in Step 3c will not apply.
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So we observe that in the subtraction in Step 4 there is a set of terms that cancel
trivially. That is, for each term that we obtain by applying to the original Sw, in
Step 1 Monk’s formula such that (i, j) satisfies i = 1 and j ≥ 3, then in Step 2
Monk’s formula such that (i, j) satisfies i = 2 and j ≥ 3, we obtain an identical
term by applying the same operations in Steps 3a and 3b.

And in the subtraction in Step 4 there is another set of terms that cancel. That is,
for each term that we obtain by applying to the original Sw:
(1) in Step 3a, Monk’s formula such that (i, j) = (1, 2),
(2) then in Step 3b, Monk’s formula such that (i, j) satisfies i = 2,
(3) and in 3c verifying that this permutation sequence just performed, w 7→ w′ 7→

w′′ has the form (A, B, . . . ,C, . . .) 7→ (B, A, . . . ,C, . . .) 7→ (B,C, . . . , A, . . .);
there corresponds an identical term that we obtain by applying
(1) in Step 1, Monk’s formula such that (i, j) satisfies i = 2 and j ≥ 3,
(2) then in Step 2, Monk’s formula such that (i, j) satisfies i = 1 and j ≥ 3,
(3) where this sequence has form (A, B, . . . ,C, . . .) 7→ (A,C, . . . , B, . . .) 7→ (B,C, . . . , A, . . .).

This exhausts all of the cases where the subtraction in Step 4 applies. To
conclude: if we take our ”elementary” algorithm at the start of this proof, and
remove the case whose terms cancel trivially (i.e. in Step 1 Monk’s formula with
i = 1, then in Step 2 Monk’s formula with i = 2), and remove the cases whose terms
cancel non trivially (i.e. in Step 1 Monk’s formula with i = 2, then in Step 2 Monk’s
formula with i = 1, where w = (A, B, . . . ,C, . . .) and w′′ = (B,C, . . . , A, . . .)), we
obtain the algorithm for S1423.

• S2341 = x0x1x2. This equals ((x0 + x1 + x2) − (x0 + x1))((x0 + x1) − x0)x0. A
procedure for evaluating the productSw S2341 is to evaluate (S1243−S1324)(S132−

S213)S213Sw.
Proposition. It is sufficient to perform the following algorithm
(1) Apply Monk’s formula with r = 1 and specifying to i = 1 to Schubert

polynomial Sw.
(2) Apply Monk’s formula with r = 2 and specifying to i = 2 to each term Sw′ of

the output of the previous step.
(3) Apply Monk’s formula with r = 3, i = 3, to each term Sw′′ of the output of

the previous step.
(4) Discard each Sw(3) that is the final term of a sequence w 7→ w′ 7→ w′′ 7→

w(3) which contains a subsequence wα 7→ wβ 7→ wγ, possibly nonconsec-
utive, which has the form ( , A,C, . . . , B, . . .) 7→ ( ,C, A, . . . , B, . . .) 7→
( ,C, B, . . . , A, . . .) or (A, ,C, . . . , B, . . .) 7→ (C, , A, . . . , B, . . .) 7→ (C, , B, . . . , A, . . .),
where the values satisfy the inequality A < B < C. If there is a value before the
first named letter, this value has no restriction. If there is a value in between
the first two named letters, this value must not be in the interval [A,C]. The
first ellipses represents any sequence of numbers not in the interval [A, B],
the second ellipses represents any sequence of numbers, and each ellipses
sequence may be empty.

Proof. We seek to evaluate the multiplication of an arbitrary Schubert polynomial,
Sw, by a product. This product is ((x0 + x1 + x2)− (x0 + x1))((x0 + x1)− (x0))x0. This
equals (S1243 − S1324)(S132 − S213)S213Sw. This can be done by the following
algebraic procedure.
(1) Evaluate the productS213 Sw by applying Monk’s formula with r = 1, i = 1 to
Sw. The output is a sum of Schubert polynomials; let Sw′ denote any arbitrary
one of these terms.

(2) Evaluate (S132 −S213)(S213Sw) by applying the following.
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(a) Evaluate S213(S213Sw) by applying Monk’s formula with r = 1 to each
Sw′ . We obtain, for each input Sw′ , an output that is a sum of Schubert
polynomials; let Sw′′ denote any arbitrary one of these terms.

(b) EvaluateS132(S213Sw) by applying Monk’s formula with r = 2 to each
Sw′ . Again we obtain, for each Sw′ , a sum of Schubert polynomials.

(c) Subtract the output of this Step 2a from the output of this Step 2b.
(3) Evaluate (S1243 −S1324)(S132 −S213)(S213Sw) by applying the following.

(a) EvaluateS1324(S132−S213)(S213Sw) by applying Monk’s formula with
r = 2 to each Sw′′ . We obtain, for each input Sw′′ , an output that is a
sum of Schubert polynomials; let Sw(3) denote any arbitrary one of these
terms.

(b) Evaluate S1243(S132 − S213)(S213Sw) by applying Monk’s formula
with r = 3 to each Sw′′ . Again we obtain, for each Sw′′ , a sum of
Schubert polynomials.

(c) Subtract the output of this Step 3a from the output of this Step 3b.
We have a sequence w 7→ w′ 7→ w′′ 7→ w(3). Let’s use this sequence for steps

2a, 3a. We have a sequence that we will call W 7→ W ′ 7→ W ′′ 7→ W (3), which
we will use for steps 2b, 3b (the ones that we will ”subtract”). In this elementary
procedure, let us pause at each step to see more clearly the terms that we will
subtract. Let us start with step 2. There are two cases:
(1) Case 1: Suppose that in step 2a we have used an ordered pair, call it (i, j) such

that i = 1 and j ≥ 3. We have a sequence w 7→ w′ 7→ w′′. In step 2b, this same
ordered pair is admissible and, beginning with the same input, we obtain an
identical sequence, W 7→ W ′ 7→ W ′′. These terms cancel in step 2c. Note:
This is why in our algorithm, when we perform Monk’s rule with r = 2, we
restrict to i = 2.

(2) Case 2: Suppose that in step 2a, to exhaust all cases, we use the ordered
pair (i, j), where i = 1 and j = 2. For this to be the admissible (i, j) pair in
our first step, we must have used the ordered pair (i, j) such that i = 1 and
j ≥ 3. The sequence w 7→ w′ 7→ w′′ must have the form (A,C, . . . B, . . .) 7→
(B,C, . . . , A, . . .) 7→ (C, B, . . . , A, . . .) for A < B < C. In step 2b a sequence
arises, which begins with the same input and we are assuming cancellation,
so it has the same output. The sequence that we obtain, W 7→ W ′ 7→ W ′′,
has the form (A,C, . . . , B, . . .) 7→ (C, A, . . . , B, . . .) 7→ (C, B, . . . , A, . . .), where
A < B < C. These terms cancel in step 2c, so in our algorithm, we cancel this
subsequence (A,C, . . . , B, . . .) 7→ (C, A, . . . , B, . . .) 7→ (C, B, . . . , A, . . .). Note:
In this proof, we assume that the contents of what is included in the dots is
arbitrary. We will address this in a lemma and subsequent proof, following
this proof.

In step 3, there are two cases to consider:
(1) Case 1: Suppose that in step 3a, we use an ordered pair, call it (i, j) such that

i = 1 and j ≥ 4 or i = 2 and j ≥ 4. We have a sequence w 7→ w′ 7→ w′′ 7→ w(3).
In step 3b this same ordered pair is admissible and, beginning with the same
input, we obtain an identical sequence, W 7→ W ′ 7→ W ′′ 7→ W (3). These
terms cancel in step 3c. Note: This is why in our algorithm, when we perform
Monk’s rule with r = 3, we restrict to i = 3.

(2) Case 2: Suppose that in step 3a, to exhaust all cases, we use the ordered pair
(i, j), where i = 1, j = 3 or i = 2, j = 3. For this to be the admissible (i, j) pair
we must have a subsequence, starting with step 2b that used the ordered pair
(i, j) such that i = 1 and j ≥ 3. The sequence w′ 7→ w′′ 7→ w(3) must have the
following form (A, ,C, . . . B, . . .) 7→ (B, ,C, . . . , A, . . .) 7→ (C, , B, . . . , A, . . .)
or ( , A,C, . . . B, . . .) 7→ ( , B,C, . . . , A, . . .) 7→ ( ,C, B, . . . , A, . . .), where A <
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B < C and each of the ellipses (. . .) may vary in length. In step 3b a se-
quence arises, which begins with the an input that has the same starting
form and assumes cancellation, W ′ 7→ W ′′ 7→ W (3). This sequence must
have the form (A, ,C, . . . , B, . . .) 7→ (C, , A, . . . , B, . . .) 7→ (C, , B, . . . , A, . . .),
or ( , A,C, . . . , B, . . .) 7→ ( ,C, A, . . . , B, . . .) 7→ ( ,C, B, . . . , A, . . .) where
A < B < C and each of the ellipses (. . .) may vary in length. These
terms cancel in step 3c, so in our algorithm, we cancel these subsequences
( , A,C, . . . , B, . . .) 7→ ( ,C, A, . . . , B, . . .) 7→ ( ,C, B, . . . , A, . . .) and (A, ,C, . . . , B, . . .) 7→
(C, , A, . . . , B, . . .) 7→ (C, , B, . . . , A, . . .).

�

5. General Algorithms

In this section we generalize some of the specific algorithms, to S n.

5.1. The Case Where 1 Goes to the Right. In this subsection, we present a general algo-
rithm to evaluate the Schubert polynomial product SwSσ in all cases where the permutation
σ has the following form: σ = [2, 3, 4, 5, . . . , k, 1], for any k ≥ 3. Here is the algorithm.

(1) Apply Monk’s formula, with r = 1 and specifying to i = 1, to Schubert polynomial
Sw.

(2) Apply Monk with r = 2, i = 2, to each term Sw′ of the output of the previous step.
(3) Apply Monk with r = 3, i = 3, to each term Sw′′ of the output of the previous step.
. . . . . .

(k-1) Apply Monk with r = k − 1, i = k − 1, to each term Sw(k−2) of the output of previous
step.

(Lastly) Discard each Sw(k−1) that is the final term of a sequence w 7→ w′ 7→ w′′ 7→ · · · 7→
w(k−1) which contains a subsequence wα 7→ wβ 7→ wγ, possibly nonconsecu-
tive, which has the form (. . . , A, . . . ,C, . . . , B, . . .) 7→ (. . . ,C, . . . , A, . . . , B, . . .) 7→
(. . . ,C, . . . , B, . . . , A, . . .), where the values satify the inequality A < B < C and
each of the ellipses (. . .) may vary in length, and in these permutations wα,wβ,wγ,
the first two named letters are in positions that are to the left of position #k.

Proof. We seek to evaluate the multiplication of an arbitrary Schubert polynomial, Sw, by a
product. This product is ((x0 + x1 + x2 + x3 + . . .+ xk−2)− (x0 + x1 + x2 + . . .+ xk−3)) · · · ((x0 +

x1 + x2 + x3) − (x0 + x1 + x2))((x0 + x1 + x2) − (x0 + x1))((x0 + x1) − (x0))x0. This can be
done by the following algebraic procedure.

(1) Evaluate the product x0Sw by applying Monk’s formula with r = 1, i = 1 to Sw.
The output is a sum of Schubert polynomials; let Sw′ denote any arbitrary one of
these terms.

(2) Evaluate ((x0 + x1) − (x0))x0Sw) by applying the following.
(a) Evaluate x0(x0Sw) by applying Monk’s formula with r = 1 to each Sw′ . We

obtain, for each input Sw′ , an output that is a sum of Schubert polynomials;
let Sw′′ denote any arbitrary one of these terms.

(b) Evaluate (x0 + x1)(x0Sw) by applying Monk’s formula with r = 2 to each Sw′ .
Again we obtain, for each Sw′ , a sum of Schubert polynomials.

(c) Subtract the output of this Step 2a from the output of this Step 2b.
(3) Evaluate ((x0 + x1 + x2)− (x0 + x1))((x0 + x1)− (x0))x0Sw) by applying the following.

(a) Evaluate (x0 + x1)((x0 + x1) − (x0))x0Sw by applying Monk’s formula with
r = 2 to each Sw′′ . We obtain, for each input Sw′′ , an output that is a sum of
Schubert polynomials; let Sw(3) denote any arbitrary one of these terms.

(b) Evaluate (x0 + x1 + x2)((x0 + x1) − (x0))x0Sw) by applying Monk’s formula
with r = 3 to each Sw′′ . Again we obtain, for each Sw′′ , a sum of Schubert
polynomials.
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(c) Subtract the output of this Step 3a from the output of this Step 3b.
(4) Evaluate ((x0 + x1 + x2 + x3)− (x0 + x1 + x2))((x0 + x1 + x2)− (x0 + x1))((x0 + x1)−

(x0))x0Sw) by applying the following.
(a) Evaluate (x0 + x1 + x2)((x0 + x1 + x2) − (x0 + x1))((x0 + x1) − (x0))x0Sw) by

applying Monk’s formula with r = 3 to each Sw(3) . We obtain, for each input
Sw(3) , an output that is a sum of Schubert polynomials; let Sw(4) denote any
arbitrary one of these terms.

(b) Evaluate (x0 + x1 + x2 + x3)((x0 + x1 + x2) − (x0 + x1))((x0 + x1) − (x0))x0Sw)
by applying Monk’s formula with r = 4 to each Sw(3) . Again we obtain, for
each Sw(3) , a sum of Schubert polynomials.

(c) Subtract the output of this Step 4a from the output of this Step 4b.
. . . . . .

(k-1) Evaluate ((x0 + x1 + x2 + x3 + . . . + xk−2) − (x0 + x1 + x2 + . . . + xk−3) · · · ((x0 +

x1 + x2 + x3) − (x0 + x1 + x2))((x0 + x1 + x2) − (x0 + x1))((x0 + x1) − (x0))x0Sw by
applying the following.
(a) Evaluate (x0 + x1 + x2 + . . .+ xk−3) · · · ((x0 + x1 + x2 + x3)− (x0 + x1 + x2))((x0 +

x1 + x2) − (x0 + x1))((x0 + x1) − (x0))x0Sw by applying Monk’s formula with
r = k − 2 to each Sw(k−2) . We obtain for each input Sw(k−2) , an output that is a
sum of Schubert polynomials; let Sw(k−1) denote any arbitrary one of these.

(b) Evaluate (x0 + x1 + x2 + x3 + . . . + xk−2) · · · ((x0 + x1 + x2 + x3) − (x0 + x1 +

x2))((x0 + x1 + x2) − (x0 + x1))((x0 + x1) − (x0))x0Sw by applying Monk’s
formula with r = k− 1 to each Sw(k−2) . Again we obtain, for each Sw(k−2) , a sum
of Schubert polynomials.

(c) Subtract that output of this step k − 1a for the output of this step k − 1b.
We have a sequence w 7→ w′ 7→ w′′ 7→ w(3) 7→ w(4) 7→ . . . 7→ w(k−1). Let’s use this

sequence for steps 2a, 3a, . . .. We have a sequence that we will call W 7→ W ′ 7→ W ′′ 7→
W (3) 7→ W (4) 7→ . . . 7→ W (k−1), which we will use for steps 2b, 3b, . . . (the ones that we will
”subtract”). In this elementary procedure, let us pause at each step to see more clearly the
terms that we will subtract. Let us start with step 2. There are two cases:

(1) Case 1: Suppose that in step 2a we have used an ordered pair, call it (i, j) such
that i = 1 and j ≥ 3. We have a sequence w 7→ w′ 7→ w′′. In step 2b, this
same ordered pair is admissible and, beginning with the same input, we obtain an
identical sequence, W 7→ W ′ 7→ W ′′. These terms cancel in step 2c. Note: This
is why in our algorithm, when we perform Monk’s rule with r = 2, we restrict to
i = 2.

(2) Case 2: Suppose that in step 2a, to exhaust all cases, we use the ordered pair
(i, j), where i = 1 and j = 2. For this to be the admissible (i, j) pair in our first
step, we must have used the ordered pair (i, j) such that i = 1 and j ≥ 3. The se-
quence w 7→ w′ 7→ w′′ must have the form (A,C, . . . B, . . .) 7→ (B,C, . . . , A, . . .) 7→
(C, B, . . . , A, . . .) for A < B < C. In step 2b a sequence arises, which begins
with the same input and we are assuming cancellation, so it has the same output.
The sequence that we obtain, W 7→ W ′ 7→ W ′′, has the form (A,C, . . . , B, . . .) 7→
(C, A, . . . , B, . . .) 7→ (C, B, . . . , A, . . .), where A < B < C. These terms cancel
in step 2c, so in our algorithm, we cancel this subsequence (A,C, . . . , B, . . .) 7→
(C, A, . . . , B, . . .) 7→ (C, B, . . . , A, . . .). Note: In this proof, we assume that the
contents of what is included in the dots is arbitrary. We will address this in a lemma
and subsequent proof, following this proof.

In step 3, there are two cases to consider:
(1) Case 1: Suppose that in step 3a, we use an ordered pair, call it (i, j) such that i = 1

and j ≥ 4 or i = 2 and j ≥ 4. We have a sequence w 7→ w′ 7→ w′′ 7→ w(3). In step
3b this same ordered pair is admissible and, beginning with the same input, we
obtain an identical sequence, W 7→ W ′ 7→ W ′′ 7→ W (3). These terms cancel in step
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3c. Note: This is why in our algorithm, when we perform Monk’s rule with r = 3,
we restrict to i = 3.

(2) Case 2: Suppose that in step 3a, to exhaust all cases, we use the ordered pair
(i, j), where i = 1, j = 3 or i = 2, j = 3. For this to be the admissible (i, j)
pair we must have a subsequence, starting with step 2b that used the ordered pair
(i, j) such that i = 1 and j ≥ 3. The sequence w′ 7→ w′′ 7→ w(3) must have the
following form (A, ,C, . . . B, . . .) 7→ (B, ,C, . . . , A, . . .) 7→ (C, , B, . . . , A, . . .) or
( , A,C, . . . B, . . .) 7→ ( , B,C, . . . , A, . . .) 7→ ( ,C, B, . . . , A, . . .), where A < B < C
and each of the ellipses (. . .) may vary in length. In step 3b a sequence arises,
which begins with the an input that has the same starting form and assumes cancel-
lation, W ′ 7→ W ′′ 7→ W (3). This sequence must have the form (A, ,C, . . . , B, . . .) 7→
(C, , A, . . . , B, . . .) 7→ (C, , B, . . . , A, . . .), or ( , A,C, . . . , B, . . .) 7→ ( ,C, A, . . . , B, . . .) 7→
( ,C, B, . . . , A, . . .) where A < B < C and each of the ellipses (. . .) may vary in
length. These terms cancel in step 3c, so in our algorithm, we cancel these sub-
sequences ( , A,C, . . . , B, . . .) 7→ ( ,C, A, . . . , B, . . .) 7→ ( ,C, B, . . . , A, . . .) and
(A, ,C, . . . , B, . . .) 7→ (C, , A, . . . , B, . . .) 7→ (C, , B, . . . , A, . . .).

In step 4, there are 2 cases to consider

(1) Case 1: Suppose that in step 4a we use an ordered pair, call it (i, j) such that
i = 1 and j ≥ 5 or i = 2 and j ≥ 5 or i = 3 and j ≥ 5. We have a sequence
w 7→ w′ 7→ w′′ 7→ w(3) 7→ w(4). In step 4b this same ordered pair is admissible
and ,beginning with the same input, we obtain an identical sequence, W 7→ W ′ 7→
W ′′ 7→ W (3) 7→ W (4). These terms cancel in step 4c. Note: This is why in our
algorithm, when we perform Monk’s rule with r = 4, we restrict to i = 4.

(2) Case 2: Suppose that in step 4a, to exhaust all cases, we use the ordered pair (i, j),
where i = 1, j = 4 or i = 2, j = 4or i = 3, j = 4. For this to be the admissible (i, j)
pair we must have a subsequence, starting with step 3b that used the ordered pair
(i, j) such that i = 1 and j ≥ 4. The sequence w′′ 7→ w(3) 7→ w(4) must have the fol-
lowing form (A, , ,C, . . . , B, . . .) 7→ (B, , ,C, . . . , A, . . .) 7→ (C, , , B, . . . , A, . . .) or
( , A, ,C, . . . , B, . . .) 7→ ( , B, ,C, . . . , A, . . .) 7→ ( ,C, , B, . . . , A, . . .) or ( , , A,C, . . . , B, . . .) 7→
( , , B,C, . . . , A, . . .) 7→ ( , ,C, B, . . . , A, . . .) , where A < B < C and each of the
ellipses (. . .) may vary in length. In step 4b a sequences arises which begins with the
same starting form and assumes cancellation, W ′′ 7→ W (3) 7→ W (4). This sequence
has the form (A, , ,C, . . . , B, . . .) 7→ (C, , , A, . . . , B, . . .) 7→ (C, , , B, . . . , A, . . .) or
( , A, ,C, . . . , B, . . .) 7→ ( ,C, , A, . . . , B, . . .) 7→ ( ,C, , B, . . . , A, . . .) or ( , , A,C, . . . , B, . . .) 7→
( , ,C, A, . . . , B, . . .) 7→ ( , ,C, B, . . . , A, . . .) where A < B < C and each of the el-
lipses (. . .) may vary in length. These terms cancel in step 4c, so in our algorithm,
we cancel these subsequences (A, , ,C, . . . , B, . . .) 7→ (C, , , A, . . . , B, . . .) 7→ (C, , , B, . . . , A, . . .)
or ( , A, ,C, . . . , B, . . .) 7→ ( ,C, , A, . . . , B, . . .) 7→ ( ,C, , B, . . . , A, . . .) or ( , , A,C, . . . , B, . . .) 7→
( , ,C, A, . . . , B, . . .) 7→ ( , ,C, B, . . . , A, . . .).

�

. . . . . . In step k − 1, there are two cases to consider

(1) Case 1: Suppose that in step (k − 1)a, we use an ordered pair, call it (i, j) such that
i = 1 and j ≥ k or i = 2 and j ≥ k, up to i = k − 2 and j ≥ k. We have a sequence
w 7→ w′ 7→ w′′ 7→ w′′′ 7→ . . . 7→ wk−1. In step (k − 1)b this same ordered pair is
admissible and we obtain a sequence W 7→ W ′ 7→ W ′′ 7→ W ′′′ 7→ . . . 7→ Wk−1,
where wk−1 = Wk−1. These terms cancel in step (k − 1)c. Note: This is why in our
algorithm, when we perform Monk’s rule with r = (k − 1), we restrict to i = (k − 1).

(2) Case 2: Suppose that in step (k − 1)a, we use the ordered pair (i, j), where i =

1, j = (k − 1) or i = 2, j = (k − 1) up to i = (k − 2), j = (k − 1). For this
to be the admissible (i, j) pair we must have a subsequence, starting with step
(k − 2)a that used the ordered pair (i, j) such that i = 1 and j ≥ (k − 1). The
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subsequence wk−3 7→ wk−2 7→ wk−1 must have the form (. . . A, . . . ,C, . . . , B, . . .) 7→
(. . . , B, . . . ,C, . . . , A, . . .) 7→ (. . . ,C, . . . , B, . . . , A, . . .) where A < B < C and each
of the ellipses (. . .) may vary in length and the first two named letters are to
the left of position k. In step (k − 1)b a similar subsequence arises. Wk−3 7→

Wk−2 7→ Wk−1, where wk−1 = Wk−1, which has the form (. . . A, . . . ,C, . . . , B, . . .) 7→
(. . . ,C, . . . , B, . . . , A, . . .) 7→ (. . . ,C, . . . , B, . . . , A, . . .) where A < B < C and each
of the ellipses (. . .) may vary in length and the first two named letters are to the left
of position k. These terms cancel in step (k − 1)c, so in our algorithm, we cancel
these subsequences.

Lemma .... The choice of values of entries in the dots in our proof of the case 1 goes to
the right do not alter the truth of the proof.

Proof. In this proof, we will examine the dots that are in our cancelable sequences in the
proof of our general algorithm for the case of 1 going to the right. Let us first consider, the
case of k = 3, and then we will move on to k = 4 and k = 5.

Here is the case, k = 3.
In step 2a there arises the sequence, w 7→ w′ 7→ w′′, which is (A,C, . . . , B, . . .) 7→
(B,C, . . . , A, . . .) 7→ (C, B, . . . , A, . . .). In step 2b, the sequence that cancels with this arises,
W 7→ W ′ 7→ W ′′, which is (A,C, . . . , B, . . .) 7→ (C, A, . . . , B, . . .) 7→ (C, B, . . . , A, . . .). Look
at the first sequence. Look at w, and suppose we have a value in between C and B, call it
a. A can swap with B only if a < [A, B], according to Monk’s rule. In w′, we now have
(B,C, . . . , A, . . .). B needs to swap with C, to obtain w′′. Any value will work, according to
Monk’s rule. Now, move on to the sequence that arises in step 2b. To go from W to W ′, A
needs to swap with C. This is admissible always, according to Monk’s rule. Now suppose
that in W ′, there is a value, call it, b, that is between A and B. A needs to swap with B and
can only do so if b < [A, B]. Since a < [A, B] and b < [A, B], we can suppose that they are
the same. Since, no switches occur after the third named letter, any value can be in the dots.

Here is the case k = 4.
In step 3a, there arises the sequences, ( A,C, . . . , B, . . .) 7→ ( B,C, . . . , A, . . .) 7→ ( C, B, . . . , A, . . .)
or (A, C, . . . , B, . . .) 7→ (B, C, . . . , A, . . .) 7→ (C, B, . . . , A, . . .). In step 3b, the sequences
that cancel arise. They are ( A,C, . . . , B, . . .) 7→ ( C, A, . . . , B, . . .) 7→ ( C, B, . . . , A, . . .)
or (A, C, . . . , B, . . .) 7→ (C, A, . . . , B, . . .) 7→ (C, B, . . . , A, . . .). Let us consider the se-
quences in step 3a. In these sequences, assume that there is a value, call it x2 in between
C and B in the starting permutation. A can only swap with B, if x2 < [A, B], according to
Monk’s rule. If there is a value in between the first two named letters in the sequence, call
this value, x1. A can only swap with B in the first step, if x1 < [A, B] and B and C can only
swap with each other, in the second step, if x1 < [B,C]. Therefore x1 < [A,C].
In step 3b, consider the sequences that arise. If there is a value in between A and C in the
starting permutation, call it y1. For A to swap with C, y1 < [A,C]. Now, if there is a value in
between C and B in the starting permutation, call this value y2. For A to swap with B in the
second step, y2 < [A, B].
Since x1 < [A,C] and y1 < [A,C], we can suppose that they are the same. Since x2 < [A, B]
and y2 < [A, B], we can suppose that they are the same. Note: If there are values before our
three named letters (A, B, orC) or after, these have no interactions with the switches in this
sequence. Therefore, any value can be in these spots.

Here is the case k = 5.
In step 4a, there arises the sequences ( A,C, . . . , B, . . .) 7→ ( B,C, . . . , A, . . .) 7→ ( C, B, . . . , A, . . .)
or ( A, C, . . . , B, . . .) 7→ ( B, C, . . . , A, . . .) 7→ ( C, B, . . . , A, . . .) or (A, C, . . . , B, . . .) 7→
(B, C, . . . , A, . . .) 7→ (C, B, . . . , A, . . .). In step 4b, the sequences, that cancel arise. They
are ( A,C, . . . , B, . . .) 7→ ( C, A, . . . , B, . . .) 7→ ( C, B, . . . , A, . . .) or ( A, C, . . . , B, . . .) 7→
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( C, A, . . . , B, . . .) 7→ ( C, B, . . . , A, . . .) or (A, C, . . . , B, . . .) 7→ (C, A, . . . , B, . . .) 7→
(C, B, . . . , A, . . .). Let us first consider the sequences in step 4a. If there is a value in
between A and C, in our starting permutation, call it z1. A can only swap with B, in the first
step, if z1 < [A, B], according to Monk’s rule. In the second step B can only swap with C, if
z1 < [B,C], according to Monk’s rule. Therefore, z1 < [A,C]. Now, if there is a value in
between C and B in the starting permutation, call it z2, A can only swap with B, in the first
step, if z2 < [A, B], according to Monk’s rule.
Now, let us look at 4b. If there is a value in between A and C in the starting permutation,
call it t1. A can only swap with C, in the first step, if t1 < [A,C], according the Monk’s rule.
If there is a value in between C and B, in our starting permutation, call it t2. For A to swap
with B in the second step, t2 < [A, B], according to Monk’s rule.
Since z1 < [A,C] and t1 < [A,C], we can suppose that they are the same. Since z2 < [A, B]
and t2 < [A, B], we can suppose that they are the same. Note: If there are values before our
three named letters (A, B, or,C) or after, these have no interactions with the switches in this
sequence. Therefore, any value can be in these spots.

As the spaces in between our first two named letters increases throughout the general
algorithm, we only introduce more values with the same restrictions. Any value before or
after our named letters has no restrictions regardless of the quantity. Any value in between
the first two named letters must not be in the interval [A,C], according to Monk’s rule. Any
value between the second two named letters must not be in the interval [A, B], according to
Monk’s rule.

�

5.2. The Case Where 2 Goes to the Right. In this subsection we present a general algo-
rithm to evaluate the Schubert polynomial product SwSσ in all cases where the permutation
σ has the following form: σ = [1, 3, 4, 5, . . . , k, 2], for any k ≥ 4.
Claim: It is sufficient to perform the following algorithm for S[1345...k2]Sw.

(1) Apply Monk’s formula, with r=2 to Schubert polynomial Sw.
(2) Apply Monk with r=3 to each term Sw′ of the output of the previous step.
(3) Apply Monk with r=4 to each term Sw′′ of the output of the previous step.
. . . . . .

(k-2) Apply Monk r=k-1 to each term Sw(k−3) of the output of the previous step.
(Lastly) Discard each Sw(k−2) that is the final term of a sequence w 7→ w′ 7→ . . . 7→ w(k−2)

such that one or more of the following conditions are satisfied.
• An i-value, in Monk’s rule, is used more than once.
• The sequence contains a subsequence wα 7→ wβ 7→ wγ, possibly noncon-

secutive, with form (. . . , A, . . . ,C, . . . , B, . . .) 7→ (. . . ,C, . . . , A, . . . , B, . . .) 7→
(. . . ,C, . . . , B, . . . , A, . . .), where the values satify the inequality A < B < C
and each of the ellipses (. . .) may vary in length, and in these permutations
wα,wβ,wγ, the first two named letters are in positions that are to the left of
position #k.

• The sequence contains a subsequence, possibly nonconsecutive, which has the
form (. . . a, . . . x, . . . , b, . . . y) 7→ (. . . b, . . . x, . . . , a, . . . y) 7→ (. . . b, . . . y, . . . , a, . . . x),
or (. . . a, . . . x, . . . , y, . . . b) 7→ (. . . a, . . . y, . . . , x, . . . b) 7→ (. . . b, . . . y, . . . , x, . . . a),
where the values {a, b, x, y} are arbitrary, each of the ellipses may vary in length,
and in these permutations the first two named letters are in positions that are
to the left of position #k − 1.

Although, at this point in time, there is no formal proof to this conjecture, we have verified it
computationally up to the case of k = 6. Also, we have investigated the case of any number
going to the right; however, this is still a work in progress.
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