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ABSTRACT 

Amyotrophic Lateral Sclerosis, ALS, is a neurodegenerative disease characterized by the 

dysfunction of motor neurons in the spinal column, which prevents muscle movements and 

eventually, breathing. The prognosis is death typically within 2 to 5 years with only one drug 

available for treatment, Riluzole. This drug can only help select ALS patients as ALS is 

associated with many different protein mutations. One protein frequently found in ALS patient 

samples is TDP-43. These samples are from stress granules that form when there is toxicity in 

the cell. TDP-43 has been studied in an isolated context of its RNA-Recognition Motifs, RRM. 

These RRM domains are approximately 90 amino acids long, typically containing 2 alpha helices 

and 3 beta pleated sheets. Using this information, the secondary structure of the protein can be 

examined. The RRMs are highly specific regions that only bind to a certain DNA sequence, 

RNA sequence, or protein. Having an ordered region such as the RRM, allows for probing of the 

folding free-energy landscape, or the conformations that the protein takes as it is denatured to an 

unfolded state. This landscape is studied in hopes of locating an intermediate state; a state where 

either the secondary or tertiary structure is maintained, even though the protein continues to 

unfold. This intermediate conformation would be targeted for therapeutic development with the 

hope of forcing proteins in this state back to a native and functioning conformation. This would 

decrease the amount of misfolded protein and hopefully slow stress granule formation. RNA-

binding ALS-linked protein matrin 3 is typically found alongside TDP-43 in stress granules of 

ALS patients. MATR3 gene mutations have been associated with RNA mismanagement. 

Repeating the isolated experiments performed with TDP-43, matrin 3 was examined for the 

presence of an intermediate state. Like TDP-43, matrin 3 has 2 RRMs and a tethered complex of 

the two RRMs. Unlike TDP-43, an intermediate state was not found. This brings to question the 

biological purpose of intermediate state conformations, which is investigated here.  
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INTRODUCTION 

Amyotrophic lateral sclerosis (ALS) is a dysfunction of motor neurons in the spinal 

column that prevents muscle movements, causing trouble swallowing, speaking, and eventually 

breathing. Currently, there is no known cure, and the progressive nature of the disease leads to 

fatality, typically within 2 to 5 years of diagnosis (ALS Association, 2016).  

 Approximately 10% of ALS cases have been linked to genetic factors (e.g. familial cases) 

while over 90% are sporadically occurring without a genetic link or family history. This lack of a 

genetic factor is concerning to researchers and the general population because ALS can strike at 

any time before age 60, with fatality guaranteed to follow (Xu and Yang, 2014). Even with 

genetic testing, the lack of biomarkers makes it difficult to determine the presence of ALS until it 

is too late for treatment to be effective. The diagnosis of ALS typically comes once all other 

neurodegenerative causes are ruled out (ALS Association, 2016). There is only one drug 

available for treating ALS. Riluzole works by inhibiting glutamate receptors of damaged 

neurons. Generally, the drug only allows for a 2 to 3 month extension of life; a substantial but 

still very limited amount of time for a patient that is only given 2 years to live (Miller et al., 

2012). 

 The presented research focuses on matrin 3, an RNA-binding protein, encoded from the 

gene MATR3. The matrin 3 protein is a member of a family of RNA-binding proteins and has 

been associated with ALS by its abundance in protein aggregates of ALS patients post-mortem. 

matrin 3 is typically found in conjunction with TDP-43, trans-activation response (TAR) 

deoxyribonucleic acid (DNA) Binding Protein 43 (Wang, 2015; Blatter et al., 2015). TDP-43 has 

been studied in a purified, isolated state to examine the folding free-energy landscape of the 

protein as a denaturing agent is added to the TDP-43 solution. Examining secondary and tertiary 
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structure of TDP-43 helped uncover the existence of an intermediate state in the second 

RiboNucleic Acid Recognition Motif (RRM) between the native and unfolded conformations 

(Mackness et al., 2014).  

Within the class of RNA-binding ALS-linked proteins, matrin 3 was examined for the 

presence of an intermediate state along its folding free-energy landscape. The ultimate goals of 

this research are:  1) to discover an intermediate conformation state of a protein that is found 

aggregated in patient samples and 2) to develop a therapeutic that could force protein in this state 

back to a native conformation.  

 

History of ALS Research 

 ALS is known as an orphan disease. Orphan diseases afflict less than 1 in 1600 people, 

making it a rare disease. Often, research in these fields is limited, slowing development of 

treatments. However, most diseases have been linked to some sort of genetic mutation or a 

genetic biomarker that has been developed (107th Congress, 2002). Even though ALS was 

identified nearly 200 years ago, it is still difficult to diagnose. In most cases there is no genetic 

marker, which results in a late diagnosis of ALS. Sporadic ALS (SALS) accounts for 90% of 

ALS cases versus 10% of Familial cases (FALS) (Xu and Yang, 2014; Wu et al., 2012). 

Researchers identified many proteins in patient biopsies and began to study these proteins to find 

a link to ALS. To replicate conditions and phenotypes of disease, different model organisms 

were designed. Although many research techniques are used to study ALS, it has proven difficult 

to identify a marker that indicates ALS before the onset of disease. This introduction will expand 

upon historic findings of ALS, protein structure and function, and what proteins have been 

identified in association with this disease. 
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 The first case of ALS was reported by Charles Bell in France in 1824. At the time, there 

was no name for the disease because little was known about it, as it was only identified as a 

motor disorder. After additional investigation, Jean-Martin Charcot had named the disease by 

1874. Identifying the disease that was first reported 50 years prior proved difficult because many 

of the phenotypes, such as muscle weakness and degeneration (atrophy), were attributed to other 

degenerative diseases. Charcot was able to correctly create a timeline of disease progression 

through patient observation (Rowland, 2001).  

Effects begin with immobilization but not loss of sensation in the upper limbs, controlled 

by lower motor neurons, over the course of several months. The atrophy then spreads to the 

lower limbs, controlled by upper motor neurons. Eventually walking is impossible because the 

muscles can no longer function without fibrillary tremors. The last step in the timeline is bulbar 

symptoms, localized in the mouth. For some patients this is the location of disease onset. 

Paralysis begins in the tongue before moving to the uvula, lips and finally the vagus cranial 

nerve. This paralysis initiates with trouble swallowing, pronunciation, closing the mouth, and, if 

the vagus nerve is paralyzed, trouble breathing which causes imminent death (Rowland, 2001). 

Even with limitations of technology, Charcot was able to identify the origin of the disease 

(lateral spine) and the related phenotypes (muscle malnourishment by hardening or deadening of 

neurons), to create an accurate name. According to the Greek origin, it literally means no muscle 

nourishment (ALS Association, 2016). 

 Throughout the next 60 years, little progress was made in identifying the cause of the 

disease. In 1939, all-star Yankees player Lou Gehrig was diagnosed with the disease, eventually 

killing him two years later. This celebrity diagnosis spread the name of ALS; the two were so 

intertwined that ALS is sometimes called Lou Gehrig’s disease (RVW Foundation, 2015). There 
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was no prescription to help stave off the onset of the disease and there were no indicators 

developed to provide an early diagnosis. The only course of treatment was light exercise to treat 

unaffected muscles (NINDS, 2016). Gehrig was unable to benefit from this protocol because the 

disease had already taken hold of his body and his physical condition continued to diminish 

rapidly after his retirement (RVW Foundation, 2015). Stephen Hawking was also diagnosed with 

ALS back in 1963 with some difficulty determining the disease because of symptoms similar to 

other neurodegenerative disease. He is an atypical patient with ALS because he is still fighting 

54 years after diagnosis (Weebly, 2014). His survival of 10 to 27 times the expected number of 

years cannot be explained because the disease itself has yet to be explained. 

 Moderate amounts of research on ALS continued, but few significant strides were made 

until the turn of the century. In 1983, the Orphan Drug Act was passed to increase research on 

drug development for orphan diseases, but could not be sustained for more than a decade. The 

Rare Disease Act of 2002 created more research opportunities for orphan diseases because funds 

were established for those fields of research. It defined a rare disease as one actively affecting 

fewer than 200,000 Americans. The Congress who passed the act addressed the fact that large 

pharmaceutical companies were not funding research for orphan disease drug development 

because they would not have a large audience to market. This Act of 2002 established a new 

wave of research and funding (107th Congress, 2002). 

Currently, there is only one drug available for treating ALS, Riluzole. It was first 

identified as an ALS treatment in 2003. This drug prolongs life for a mere 2 months during the 

course of the 2-5 year terminal prognosis. It may also increase the quality of life as it staves off 

the use of tracheostomy and mechanical ventilation. Riluzole (Rilutek) acts by inhibiting 

glutamate receptors in the neurons. These receptors were reportedly overexcited in cases of ALS, 
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which caused early neuron death. The use of Riluzole caused researchers to investigate the 

glutamate receptor in relation to ALS (Miller et al., 2012).  

No other drug has been used to treat ALS because little is known about what factors are 

implicated in the disease and what can be done to slow disease progression. Recently, ALS has 

become better known from the ALS Ice Bucket Challenge, which started in the summer of 2014. 

The movement of dousing participants in ice water has raised millions for the ALS Association 

as well as other foundations, benefitting patient support, outreach and treatment. A portion of 

money raised by the ALS Ice Bucket Challenge goes to funding drug development.  

 

A Protein’s Structure Drives its Functionality 

 The role of proteins in survival becomes clear as they are needed to carry out many 

functional duties in the cell. Not being able to function properly is linked to disease. 

Proteins often play a role in disease propagation because of their relation to DNA, the genetic 

code of mammalian systems. DNA is the genetic code because it is the starting point of 

development. DNA transcribes RNA and RNA regulates the translation of a specific protein, or 

group of proteins. This statement relating DNA to RNA to protein is what is known as the central 

dogma in biology. Due to this relationship, proteins may be implicated in disease if there is a 

coding error in the DNA it comes from.  

Proteins contain four different types of structure. Primary structure is the order in which 

the amino acids are connected. In humans, there are 20 amino acids, the building blocks of 

proteins, that can be in any order or length to give the sequence of the protein. Secondary 

structure comes from the bonds that hydrogens make throughout the local amino acid sequence; 

this can take the form of beta pleated sheets (β) or alpha helices (α). Tertiary structure occurs 
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when other bonds are formed, such as sulfur-sulfur bonds, causing three-dimensional interactions 

in the protein. Typically, proteins also contain quaternary structure, the interactions of multiple 

amino acid sequences, allowing the formation of larger protein complexes. Whatever the 

sequence, many proteins need to fold to function, and may contain some or all of the types of 

structure listed above. 

Proteins can produce alterations in structure as different conformations- or shapes- are 

formed. This is akin to a slinky stretching and compressing. The movement of the protein allows 

it to adapt to different conditions such as heat, pH levels, and salt concentrations. After RNA 

translates a protein, the protein must fold into the shape it has been coded for. When a slinky is 

first made, it is fully stretched and changes shape to suit the purpose it was designed for. These 

conformational changes can be essential for protein function and it helps to bring the protein to a 

stable conformation, promoting better functioning of the protein. The most stable state of a 

slinky is when it is closed. Proteins have different amounts of energy stored in their 

conformation depending upon the amount of energy required to make and maintain their bonds 

and structure. A stretched slinky contains a lot of energy, as does an unfolded protein. The 

different conformations of proteins can be plotted in an energy landscape; a depiction of how 

energetically stable the different conformations of proteins are. The more favorable 

conformations of proteins exist at lower energy. 

Some proteins have an intermediate state; a partially folded shape that a protein can hold 

while another segment of the protein folds. The number of intermediates per protein depends 

upon its folding pathway and the function the intermediate may serve within the cell. These 

intermediates are hypothesized to aid in overall protein folding because they exist in the middle 

of the energy landscape. The folding free-energy pathway is visual representation of the different 
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conformations a protein can take and the amount of free energy stored in that conformation 

mapped among the other conformations and the amount of energy needed to get to them. Often it 

looks like an actual landscape with local maxima and minima as peaks and valleys in the two or 

even three dimensional map (Figure 1). 

An imbalance in homeostatic conditions may cause the protein to misfold, thereby taking 

on a non-native conformation. Misfolding can bring the protein beyond the lowest energetic state 

on the native energy landscape. This state is so stable that it cannot refold to gain functionality in 

its native state, which occurs in cases of protein aggregation. If a slinky is misfolded, its structure 

is damaged so it cannot return to its normal function. Normal protein structures exist around the 

native conformation as the local minima, while misfolding states surround other minima. Often 

the free energy stored in the aggregated conformations is much lower that of the native 

conformations so the protein cannot overcome the barrier to return to a native state. This lack of 

functionality makes the state immediately before the point of no return very important; it is the 

precipice before a long fall. Researchers examine the importance and propagation of the 

intermediate in the folding and misfolding or function and dysfunction of a protein (Cooper, 

2000).  

 The RRM domains are approximately 90 amino acids long, typically containing β-1, α-1, 

β-2, β-3, α-2, β-4 secondary structure. They are highly specific regions, meaning that they will 

only bind to a certain DNA sequence, RNA sequence, or protein (Afroz, 2015). Binding to an 

RNA sequence allows the protein to perform different functions within the cell.  

 

Research of ALS-linked Proteins 

 In 1993, researchers began looking at potential molecules that contribute to ALS. Cu-Zn 

Superoxide Dismutase (SOD1) was the first enzyme identified in cases of ALS during this 
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movement (ALS Association, 2016). Mutated SOD1 was reported in 20% of FALS cases with 

150 different cases of mutations in the course of its 153 amino acid sequence. These mutant 

enzymes would misfold (changing from their normal, native state conformation) and be 

ubiquitinated. Ubiquitin is a molecule that tags a protein for transportation into protease so the 

protein can be degraded. In cases of ALS, this ubiquitinated protein builds up, potentially 

causing the lack of neuronal functionality because excess protein is unable to be broken down 

(Miller et al., 2012). The genetic link of FALS and SOD1 launched investigation into SOD1 and 

why it builds up in diseased cells. 

Trans-activation response [TAR] deoxyribonucleic acid [DNA] binding protein 43 (TDP-

43) was not implicated in ALS until 2006. This protein contains 414 amino acids and 2 RRM 

domains, a nuclear exportation sequence (NES), a nuclear localization sequence (NLS), and a 

glycine rich domain (Gly-rich) (Mackenzie et al., 2010) (Figure 2 A,D). Like SOD1, 

ubiquitinated TDP-43 was found to be built up (aggregated) in cases of ALS (Wu et al., 2012). 

This discovery was incredibly significant because TDP-43 was reported in 95% of SALS cases 

(Xu and Yang, 2014). This protein linked ALS to Frontotemporal Lobular Degeneration (FTLD), 

establishing a correlation between the two diseases. Some patients showed pure ALS character 

(motor degeneration) while others showed pure FTLD character (cognitive degeneration), 

however the majority shared some combination of the two (Robberechet and Philips, 2013).  

Inappropriate levels of TDP-43 has been found to cause motor dysfunction in mammalian 

models (Stoica et al., 2014). These levels of TDP-43 are influenced by the amount of misfolded 

protein in aggregates, puncta, or stress granules. The misfolding of TDP-43 in ALS has been 

associated with mutations in the largely disordered glycine rich region. Studying the secondary 

and tertiary structures of isolated TDP-43 RRM enables investigation into the biophysics of 
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protein folding. Only a select region of the full-length protein was examined to discover if there 

was a folding intermediate, which may play an important role in disease as it may toggle 

between the two energy landscapes of folded and misfolded aggregation. The structured RRM 

have a stable native conformation with secondary structure that is distinct from its unfolded state, 

which lacks all but primary structure. An intermediate state has been identified in RRM2 or 

TDP-43 (Mackness et al., 2014). The role of the intermediate in RRM2 is under investigation 

because it alters the shape of the protein, potentially aiding in the folding process (Mackness, 

2016). 

 Fused in sarcoma (FUS) is another protein that is highly investigated in cases of ALS 

although it is typically not found in patients that contain ubiquitinated clusters of TDP-43 

(Mackenzie et al., 2010). FUS is 526 amino acids long. However, for such a lengthy protein only 

a few mutants have been found to relate to ALS. Similar to TDP-43, it contains an NLS, NES, 

and a Gly-rich region. It varies in that it has only one RRM and contains two arginine-glycine-

glycine repeating regions (RGG-Rich), a zinc finger (ZnF), and a glutamine-glycine-serine-

tyrosine rich region (QGSY-Rich) (Figure 2 B,E). Unlike SOD1 and TDP-43, ubiquitination was 

not found in protein aggregates of FUS, neither was any other modification to the protein 

(Neumann, et al., 2006; Zhou et al., 2014). This difference is interesting because there was no 

mutation or conformational change to the protein, making it unclear what mechanism caused 

protein accumulation or disease propagation. Creating a biomarker to identify when the disease 

is propagating would be helpful in identifying SALS cases because they are the majority of all 

ALS cases.  
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Research Involving matrin 3 

 Like FUS and TDP-43, matrin 3 is an ALS-linked RNA-binding protein. Compared to 

the other proteins, matrin 3 has largely been uninvestigated until recently.  It is composed of 847 

amino acids and while it is longer than the other proteins previously mentioned, it also has more 

ordered domains; 2 RRMS (mRRM1, mRRM2, and a tethered depiction of the two in mtRRM), 

2 ZnF’s, an NES and an NLS (Figure 2 C,F). matrin 3 has 4 mutations associated with ALS 

which have been identified through studies of stress granules and droplet formation in patient 

samples (Taylor et al., 2016). TDP-43 has been associated with some stress granules which 

contain matrin 3 (Wang, 2015). Even with this association, the majority of matrin 3 ALS cases 

are found in familial ALS, while TDP-43 mutations are associated with more sporadic cases of 

ALS.  

MATR3 gene mutations have been associated with RNA mismanagement. This 

interaction with RNA has been localized to the interaction of mRRM2, which is also involved in 

mRNA stabilization (Salton et al., 2011). The RNA binding affinity of this protein will also be 

discussed because, although it is in the family of RNA-binding proteins, its main function seems 

to be as a scafolding protein because of its zinc fingers. These features also allow the protein to 

bring together mRNA and DNA for interaction. The RNA binding will be examined by an 

Electromobility Gel Shift Assay (EMSA).  

The presence of different missense mutations result in different disease phenotypes. For 

example a serine 85 to cysteine mutation results in slow disease progression while a 

phenylalanine 115 to cysteine mutation results in respiratory failure and fatality within 5 years 

(Johnson et al., 2014). This difference in disease progression was also seen when a mouse model 

using human wildtype matrin 3 resulted in hind limb and forelimb muscle atrophy, and human 
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symptoms with MATR3 mutation resulted in autosomal dominant distal myopathy (vocal cord 

and pharyngeal weakness) (Moloney, 2016). 

 The effects of matrin 3 can also be considered globally. First, in the sense of the whole 

body. Mutations in matrin 3 have been shown to not change its localization, meaning that it 

continues to stay in the nucleus while mutated (Gallego-Iradi et al., 2015). This localization is 

relative as matrin 3 has been examined as it acts as a nuclear protein that can translocate to the 

cytoplasm. The microtubule system by which matrin 3 travels allows its movement to become a 

tool in its ability to act a tumor suppressor. In breast cancer samples, lower quantities of matrin 3 

were found in patient samples while the expression of matrin 3 resulted in lower tumor 

expression (Subbarayalu et al., 2015). In a truly international sense, the localization of certain 

ALS mutations can be considered around the world. The ALSOD data base allows this reporting 

and tracking of protein mutations across countries (Institute, 2007). Using this and other 

resources, it was identified that a high percentage of French patients with matrin 3 mutations had 

familial ALS (Millecamps et al., 2014). matrin 3 mutants found in Italian ALS patients occurred 

in both familial and sporadic cases. This more recent study identified 5 missense mutations; 

Q66K, G153C, E664A, S707L, and N787S (Marangi et al., 2016). 

 Considering the established base of knowledge concerning matrin 3 and other RNA-

binding ALS-linked proteins, matrin 3 was examined in its RRMs. This was done as it was for 

TDP-43 because of the innate order of these regions (Mackness et al., 2014). Since the goal is to 

identify if there is an intermediate state, there needs to be a clear transition from folded to 

unfolded. The RRM regions typically contain 2 alpha helices and 3 beta pleated sheets. From this 

the secondary structure of the protein can be examined. This can be performed by Circular 
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Dichroism (CD), which examines the absorption of polarized light from two directions as light 

passes through a sample (Greenfield, 2009).  

To compliment the information gathered on secondary structure, the tertiary structure of a 

protein can be identified by the location of the aromatic groups, tryptophan and tyrosine. The 

segment mRRM1 contains 4 tyrosines while mRRM2 contains 4 tyrosines and 1 tryptophan 

(Figure 3). Therefore, mtRRM contains 8 tyrosines and a tryptophan. The method used to study 

tertiary structure is Fluorescence Spectroscopy (FL). Similar to CD, FL uses light to determine 

the location of protein in a liquid sample. The difference arises in the wavelength of light used. 

FL intentionally uses a wavelength of light that will excite the aromatic amino acids present in 

the sample.  

 Using the compilation of CD and FL data, the structure of the protein can be determined 

as it relates to the folding free-energy landscape (Figure 1). After identifying the intermediate 

state of TDP-43, the idea of therapeutic development targeting this intermediate state was 

formed. These therapeutics would aid protein folding like molecular chaperones do within the 

cell. These proteins help other proteins properly fold and shuttle proteins through cell 

membranes by binding to folding intermediates and redirecting them. They act as the ‘big 

brother’ in the cell (Muchowski, 2002). The proteins are studied in isolation so that chaperones 

do not affect the unfolding of the protein. The aim is to first understand the biophysics of protein 

folding from a basic science perspective before advancing into other mechanisms. 
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MATERIALS AND METHODS 

 The following protocol was tested to optimize the growing and purification conditions 

utilizing the equipment available in the University of Massachusetts Medical School laboratory 

of Dr. Jill Zitzewitz. The experiments involving matrin 3 were divided into 3 RRM segments; the 

first mRRM1, the second mRRM2, and the tethered complex mtRRM (Figure 4). Unless 

otherwise stated, the method was used for all three segments. 

 

Preparation 

Transformation 

Matrin 3 was purchased in a puc57 vector and transformed into a PET 3d vector for 

optimal growth and expression. Four nanograms of the matrin 3 DNA was resuspened in 40μL of 

RoH2O (a water free of metal and other contaminants) resulting in a final concentration of 

100ng/mL. This solution was spun in a mini centrifuge to ensure the DNA was in the RoH2O. 

Two microliters of this solution was added to 50-75μL of XL1 blue bacteria cells. The bacteria 

were stored at -80°C and before adding the DNA solution; they were moved onto ice to thaw. 

The DNA was mixed into the cells and stored on ice for 15 minutes. Heat shock was not needed 

as the cells were z-competent. The cells were then plated on ampicillin (AMP [100mg/1mL H2O) 

plates and incubated at 37°C for 12-16 hours. A plate of stock protein in PET 3d was also 

prepared in this manner. This step grew the desired matrin 3 plasmid and the PET 3d vector 

simultaneously.  

 After 12-16 hours, round bottom tubes with 5mL of LB broth and 5μL of AMP were 

prepared. A sterile pipette tip was used to select one grown colony of matrin 3 and it was 
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inserted into the LB broth. The same was done for all of the mRRMs and PET 3d. These tubes 

were placed in a rotating incubator at 37°C for 12-16 hours.  

 

DNA Mini Prep 

 Once the cells had grown in the LB broth overnight, a Qiagen DNA mini prep was 

performed to isolate the DNA. The cells were spun at 3000g for 15 minutes. The LB was 

decanted, leaving the cells. The cell sample was prepared using the Qiagen reagents, resulting in 

850μL sample which was spun at 1300rpm for 10 minutes to remove the cell membranes. The 

supernatant containing the DNA and was decanted into a spin column where the DNA bound to 

the resin. The flow-through was discarded and the resin was rinsed to remove all non-DNA 

particulates, by centrifugation at 13000rpm for 1 minute.  The resin was then dried by 

centrifugation without any buffer. The DNA was then eluted off of the resin into a clean 

Eppendorf with a buffer that raises the pH of sample to unbind the DNA from the resin. This 

mini prep was repeated with all of the cells samples.  

 The concentration of the DNA was measured with a NANO drop machine. A sample of 

the read out is Figure 5. The concentration of the DNA must be at least 100ng/μL in order to put 

the plasmid into the correct expression vector.  

 

 

Enzyme Digest 

 Once the required concentration of DNA was obtained, an enzyme digest reaction was 

completed to cut the plasmid from the vector. The reaction contained the DNA, dH2O, Biolabs 

Cutsmart buffer, and restriction enzymes. The enzymes used were high fidelity BamH1 and 

Nco1. These enzymes must be kept cold and mixed well before use, as they are stored in 
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glycerol. The volumes of each reagent used are reported in Table 1. After combining the 

reagents, the mixture was incubated at 37°C for 1 hour. The solution was then run on a low 

melting agarose or a Lonza flash gel as described below. One type of gel may prove more 

successful for DNA extraction but the goal and obtaining of DNA is true for both.  

 

Table 1 Reaction volumes for cutting the matrin 3 plasmid and vector. This table was used 

to calculate the volumes needed to complete the enzymatic reaction combining the matrin 3 

plasmids into the PET 3d vector. 

Reaction Volume  50μL 20μL Control Enzyme 

Cutsmart Buffer (μL) 5 2 0.5 0.5 

DNA (μL) 4 10 1 1 

Nco1-HF (μL) 1 1 0 0 or 0.25 

BamH1-HF (μL) 1 1 0 0.25 or 0 

dH2O (μL) 39 6 3.5 3.25 

 

Gel Extraction 

 A 1% Agarose gel was used to separate the plasmid and the vector that were just cut in 

the enzyme digest described above. This gel was prepared by adding 600mg agarose to 60mL 

TAE Buffer and heating until the agarose dissolved. The mixture was then cooled before adding 

4μL of ethidium bromide (EtBr). The gel was then poured into a 14-16 lane mold and cooled 

until hardened. The digests were prepared by adding 1μL of gel loading dye to 5μL digest. These 

samples and a DNA ladder of known size was loaded onto the cooled gel. The gel was then run 

at 160V for 20 minutes in 1x TAE buffer. Once finished, the gel was scanned with a Typhoon 

FLA-9000 to locate the DNA fragments. The EtBr allows the bands of separated vector and 

plasmid to be visualized (Figure 6). 

 The DNA band of interest was then cut out of the gel using a UV light box. The DNA of 

the matrin 3 plasmids were cut and the band of the PET 3d vector was also cut. The rest of the 

gel was discarded. The mass of the cut gel blocks was measured to perform the following 
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experiments. The gel was then dissolved to remove the DNA by using a Qiagen kit for gel 

extraction. Following the manufacturer’s instructions, the gel was dissolved by addition of 

Buffer A.  The solution was run over a mini spin column to isolate the DNA. The pH of the DNA 

was raised with a buffer to elute it into a clean Eppendorf. Like before, the concentration of the 

DNA was measured via Nano-drop.  

 

Ligation 

After isolation and purification of the vector and plasmid DNA, a ligation reaction was 

performed to insert the plasmid into the correct vector. This reaction was performed at different 

volumes and concentrations, Table 2. Depending on the size of the vector and plasmid and their 

concentrations, different proportions of vector to plasmid may be more optimal. The exact ratio 

can be determined through trial and error. Once the reactions were made, half of the mixture was 

incubated at 20°C for 1 hour and the other half was incubated for more than 4 hours. This 

process of trial and error was repeated throughout the transformation process. 

 

Table 2 Ligation ratios for inserting the matrin 3 plasmid into PET 3d. The different 

reactions corresponded to the concentration of the DNA and the size of the plasmid or vector. 

The ratios of insert:vector influence the volume of reagents used in the reactions. The base pair 

lengths for the matrin 3 RRMs were 600bp for mtRRM and 300bp for mRRM1 and mRRM. The 

vector PET 3d was 5000bp. The concentration of vector was 50ng or at least 3μL. The Biolabs 

Quick Ligase kit was used for the buffer and enzyme in these 10μL reactions.  

Reactant 1:9 Ratio 1:18 Ratio 

Plasmid Size (bp) 300bp 600bp 300bp 600bp 

Reaction Buffer (μL) 5 5 5 5 

Enzyme (μL) 1 1 1 1 

Vector (μL) 1 1 1 1 

Plasmid (μL) 1 .5 2 1 

dH2O (μL) 2 2.5 1 2 
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The following equation was used to calculate the volume of insert (plasmid) to use. 

[𝑉𝑒𝑐𝑡𝑜𝑟] ∗
𝑏𝑝 𝑖𝑛𝑠𝑒𝑟𝑡

𝑏𝑝 𝑣𝑒𝑐𝑡𝑜𝑟
∗ 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 

𝑖𝑛𝑠𝑒𝑟𝑡

𝑣𝑒𝑐𝑡𝑜𝑟
∗

𝑖𝑛𝑠𝑒𝑟𝑡 𝑛𝑔

[𝑖𝑛𝑠𝑒𝑟𝑡]
=  𝜇𝐿 𝑖𝑛𝑠𝑒𝑟𝑡 

 Six microliters of the ligation mixture was transferred into 50-75μL of DH5α cells and 

incubated on ice for 30 minutes. Then, 10μL of the reaction was plated on an LB+AMP plate. It 

was then incubated for 12 to 16 hours at 37°C. One of these grown colonies was picked and 

added to 6mL of LB broth with 6μL of AMP and the mixture was placed in a rotating incubator 

for 12 to 16 hours at 37°C. The DNA mini prep, see above, was performed on these cells. A 

10μL sample of the isolated DNA was sent to Eton Bio or Genewiz for sequencing. If the 

sequence matches Figure 4, then the ligation and enzyme reactions were successful. 

 

E. coli Stocks 

If the sequencing matched the known sequence of the protein, then the DNA was inserted 

into cells to make glycerol stocks. BL21 DE3 cells are used for growing and protein expression 

while DH5α cells are used for cloning vectors. A volume of 2.0-3.0μL of DNA of each RRM 

was placed into these cell types. The cells were incubated with the DNA on ice for 30 minutes 

before plating onto LB+AMP plates. These plates were incubated at 37°C for 12-16 hours. A 

colony from each plate was selected and placed into 5mL of LB Broth containing 5μL of AMP 

for 16-18 hours. The next day, 800μL of cells were added to 500μL of glycerol for 12 hours. 

This mixture (75μL) was then aliquoted into Eppendorf tubes, frozen in liquid nitrogen and then 

stored at -80°C.   
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Purification 

Growing Conditions 

 The protein was first grown in a strain of Escherichia coli that is resistant to AMP and 

chloramphenicol, CAM. The volume of E. coli grown depends on the amount of protein needed, 

so the following volumes are what was typically used for experiments.  

Two 14mL round bottom tubes were prepared near a flame with 5mL of LB and 5μL of 

AMP (1mL/1L). A pipette tip containing the Bl21 DE3 E. coli cells was obtained from the 

freezer and placed into the broth. This was repeated for both tubes. The tubes were then placed in 

a 37°C rotating incubator for 8 hours. Then 250μL of the grown cells were transferred to a 2 L 

beveled Erlenmeyer flask with 1L LB and 1mL AMP. This was grown 12-16 hours at 37°C in a 

shaker, 180rmp. The cells were equally divided into 6 3L beveled flasks with 1.5L LB and 

1.5mL AMP. These flasks were grown in the shaker until absorbance of a sample of the LB is 

OD600=0.6-0.8, typically 6-8 hours. The cells were then induced with 1mL/1L of 1M IGTP and 

shaken 12-16 hours at 20°C.  

After growing the cells, the broth was transferred to 750mL containers to spin at 400rpm 

for 10 minutes at 4°C. This process was repeated to all the broth containing the same cell line. 

Each time, the supernatant was decanted, leaving only the cells. Once all the broth has been 

removed, the mass of the cells was obtained. At this point the cells were frozen or used in further 

purification.  

  

Lysing expressed protein out of E. coli cells 

mRRM1: In a ratio of 2mL/g of cells, a native lysis buffer was added to thawed cells. The buffer 

for mRRM1 was 20mM NaPi, 300mM NaCl, and 30mM imidazole, pH 7.4. In addition to the 
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buffer, DNAse and a protease inhibitor tablet were added to the protein, not to the stock buffer, 

and stirred until all components were dissolved. This mixture was then placed in a container on 

ice. A sonicator, Ultrasonic Processor XL, was used to break apart the cells. The cells were 

placed in this machine for a cycle of 10seconds of sonication and 45seconds of rest for a total of 

6 minutes of sonication. The cells were then spun at 18000rpm in an SS34 rotor for 45minutes at 

4°C. 

mRRM2: This protein domain was treated similarly to mRRM1 except that its native lysis buffer 

was pH 8.0.  

mtRRM: The mtRRM pellet was resuspended at 2mL/g in a urea lysis buffer at pH 7.4 containing 

20mM NaPi, 300mM NaCl, 30mM Imidazole, and 6M Urea. Like before, a protease inhibitor 

tablet and DNAse are added to the protein pellet which was lysed and spun as described above. 

 

Nickel Affinity Chromatography 

mRRM1: A 75mL Ni+ column was cleaned with 3 column volumes (CV) of 20mM MES, 

300mM NaCl pH5. It was then washed with 5CV of RoH2O. Next, it was equilibrated with 2CV 

of native lysis buffer used for sonication. The buffer was run at a flow rate of 1.5mL/minute. The 

cell supernatant was poured over the equilibrated column. The flow-through was collected for 

testing. After the protein was loaded onto the column, it was imperative that the column was 

never allowed to dry. The column was washed with 15CV of the native lysis buffer. The protein 

was then eluted with 2CV native elution buffer. This buffer was 20mM NaPi, 25mM NaCl, and 

300mM Imidazole, pH 7.4. The protein was eluted with 1.5L 20mM Tris, pH 6.5 or NaPi plus 

1mM DTT. Once the protein was fully eluted, 10mL of precision protease was added to the 
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protein to cleave the His-tag. The solution was continuously stirred and incubated at 4°C for 20 

to 24 hours.  

mRRM2: Like mRRM1, the Ni+ column was washed and equilibrated with the buffer unique to 

mRRM2. The protein was loaded, washed, and then eluted with 2CV of a buffer at pH 7.0 

containing 20mM NaPi, 25mM NaCl and 300mM Imidazole into 1.5 liters of 20mM Tris and 

1mM DTT at pH 6.5. This was then cut with precision protease for 20 to 24 hours. 

mtRRM: The Ni+ column was washed and equilibrated with the buffer unique to mtRRM. The 

protein was loaded, washed, and then eluted with 2CV of a buffer at pH 7.0 containing 20mM 

NaPi, 300mM Imidazole, and 6M urea. The eluted protein was dripped slowly via separator 

funnel into 2L of pH 6.5 protein containing 20mM Tris and 1mM DTT. It was then cut with 

precision protease as previously stated.  

 

Further Purification 

After the incubation with precision protease, the protein was filtered with 20micron filter 

to remove any aggregates. The 5mL S-column was cleaned with 5CV filtered RoH2O, 5CV of 

filtered 1M NaOH, and then rinsed with 5CV of filtered RoH2O. It was then equilibrated with 

3CV of filtered 20mM NaPi, pH 6.5. The filtered protein was then loaded onto the column at 

1.5mL/minute at 4°C. The column was washed with 5CV of filtered NaPi. The column was then 

linked to a Biorad DuoFlow, which elutes the protein in a gradient by combining two buffers. 

The two buffers are a low salt filtered 20mM NaPi and a filtered high salt 1M NaCl, 20mM 

NaPi, both at pH 6.5. Once the protein was eluted in a gradient, the resulting graph is analyzed.  

The graph displays the absorbance of different aliquots at varying concentrations of the 

two buffers, (Figure 7). Samples of the peaks were collected and run on a gel to determine the 



DiLoreto 24 

 

location of the protein. Once this was determined, the protein was pooled and dialyzed in 3kDa 

tubing for the individual RRMs and 6-8kDa tubing for mtRRM. The dialysis buffer is 1L of pH 

7.2 10mM KPi, 150mM KCl, and 1mM BME. The tubing was moved into another container of 

this buffer after 6 hours to fully buffer exchange the protein. The protein was then filtered and 

ready for experiments. The concentration of the protein was calculated from Beer’s Law 

Adaptation. 

 

Beer’s Law Adaptation 

To find the protein concentration a UV spectrometer was used. The wavelengths 

collected in this scan were from 350nm-250nm. The absorbance of protein is at 280nm. A 

sample of 1mL LB Broth was inserted into a UV Spec cuvette. This sample was scanned as the 

baseline for the absorbance. Once the baseline was established, 1mL of the protein sample was 

inserted into the cuvette and scanned. The resulting graph was used to calculate the following: 

𝐴280 − 𝐴320

𝐸 ∗ 𝑙
= 𝐶 

The absorbance (A) of the protein at wavelengths of 280 and 320 is used to baseline correct the 

scan. The extinction coefficient (E) is specific to different proteins at 280nm. For matrin 3 the 

values are as follows: mRRM1=6970, mRRM2=3840, and mtRRM=10810. The path length (l) is 

the length of the cuvette, 1cm. The factors are used to calculate the concentration of the protein.  

 

Electrophoresis glycerol gel to test protein purity  

 Samples at each step of the purification were collected for gel analysis. To run this gel, a 

dilute 16μL sample was prepared. Each sample was combined with 6μL of SDS-page running 

buffer. This dye, like EtBr for DNA, allows the protein sample to be seen on the gel. These 
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samples were then heated to 98°C for 7minutes. A 15% Tris gel was used for these runs. The 

running buffer used in this process prepared in 4L to create a 5x stock at pH 8.3, containing 376g 

glycine, 60.4g Tris base, and 20g SDS. To use the running buffer, the stock is diluted to 1x with 

RoH2O.  After the samples were heated, 15μL of sample was loaded into the 14 well gel after the 

gel tray had been filled with the running buffer. The gel was then run at 140V for 75minutes. See 

Figure 8 for a sample gel.  

  

Size Exclusion Chromatography for mRRM2 

 To run this size exclusion column, the protein must be concentrated because only 10mL 

of sample can be used per each 8 hour run. Similar to the gradient elution, this column eluted the 

protein in small aliquots. The buffer used on the column was filtered 20mM Tris and 1mM DTT 

at pH 8.8. This buffer was appropriate for mRRM2 purification because of the buffer’s pH..  

 Once the size exclusion column was connected to the Biorad Duoflow system, 5mL of 

concentrated protein was injected. After 16 minutes, the other 5mL was injected into the system. 

There was this delay because the column can only handle 5mL of protein every 4 hours and so 

this delayed injection allows this to occur.  

 After the sample was run for 8 hours, a conductance graph was generated. From the 

graph, the location of the protein was determined. To check that this was the correct sample, an 

electrophoresis gel was run. Once the identity of the protein was confirmed, the concentration of 

the sample was measured via NanoDrop. After this, the protein was dialyzed in 3kDa dialysis 

tubing into 10mM KPi and 150mM KCl at pH 7.2 (the physiologically relevant buffer). It took 

approximately 16 hours and 2L of buffer for a full buffer exchange to occur. Once the protein 

was in this physiological buffer, it was ready for experiments.  
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mRRM1-ICC  

 Initial studies were done with mRRM1, Figure 9. However, a paper was released 

indicating that the residues IKK at the beginning of the linker actually forms an Interacting C-

terminal Coil (ICC) (Blatter et al., 2015). Knowing this, these residues were added back in using 

the protocol stated in Preparation. This new RNA Recognition Motif was tested as the others 

were. It was found to be best purified by the method of mRRM1, using a native buffer. This 

resulted in the following sequence.  

 

Data Collection 

Equilibrium Unfolding Experiments 

After obtaining purified samples in the physiological buffer, it was important to know 

their concentrations. This measure is stated in Beer’s Law Adaptation. Calculations were then 

performed to create stocks of protein with denaturant and without denaturant. The exact volumes 

of sample needed, concentration of protein required, and the concentration of the denaturant 

required depended on the experiment. The following conditions were used.  

Sample of tRRM 

Volume of each sample: 0.50mL 

Concentration of Protein/Sample: 4.20uM 

Number of Samples: 41 

Denaturant (Urea) Gradient: 0-8M 

Aliquots every: 0.2M urea 

 

Measured Stocks:  

Concentration of Protein: 68.70uM 

Concentration of Denaturant: 9.80M 

 

Knowing these conditions, 2 stocks were made. The first had no denaturant, the second had the 

highest concentration. In calculating the total volume of these samples, it was important to 
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consider the total volume required, in this case 20.5mL, and add a ‘dead’ volume, 5.50mL was 

used in these calculations. With these parameters, each stock was 13.00mL. 

Calculations: 

𝑀1𝑉1 = 𝑀2𝑉2 

𝑉2 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 =
𝑀1𝑉1

𝑀2
=

4.20𝑢𝑀 ∗ 13𝑚𝐿

68.70𝑢𝑀
= 0.795𝑚𝐿 𝑝𝑒𝑟 𝑠𝑡𝑜𝑐𝑘 

𝑀1𝑉1 = 𝑀2𝑉2 

𝑉2 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑑 𝑑𝑒𝑛𝑎𝑡𝑢𝑟𝑎𝑛𝑡 =
𝑀1𝑉1

𝑀2
=

8𝑀 ∗ 13𝑚𝐿

9.8𝑀
= 10.612𝑚𝐿  

 

Therefore the compositions of the stocks are as follows: 

 Low Denaturant: 0.795mL protein, 12.205mL physiological buffer 

 High Denaturant: 0.795mL protein, 10.612mL denaturant, 1.593mL physiological buffer 

These buffers were then aliquoted into 0.5mL samples while increasing the denaturant 

concentration by 0.2M in each sample. This was done by hand with further calculations like the 

ones listed above or by an auto-sampler program. Once made, the samples sat in light-proof 

wrapping for 12-24 hours before testing.  

 

Circular Dichroism 

 This method allows for the observation of secondary protein structure. Following the 

sample used in the above calculations, a 2mm cuvette is used. This cuvette required 0.5mL of 

sample. The size of the cuvette required depended upon the concentration of the protein. If the 

concentration is too high for a large volume cuvette, then the proteins will cause the light to 

scatter, interrupting the data gathered. This protein concentration to cuvette size ratio was 

established through several trials.  
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 As eluded to, circular dichroism requires light to be passed through a cuvette. The 

recording is taken over a range of wavelengths. Typically this range is 195-260nm, but if trials 

found that the protein produced a signal that scattered the lights too much to get a reading, then 

the range was 215nm to 245 or 260nm. The data was manipulated to show the MRE value. The 

data coming off of the machine was interpreted with a lesser degree of intensity. To understand 

the secondary structure of a protein, a few things must be understood. Firstly, it that a protein is 

made of alpha helices and beta-pleated sheets. The interpretation of this data is shown in Figure 

10.  

  

Far-UV CD 

The analysis thus far used Far-UV. This type of CD was useful for analyzing the 

secondary structure of the protein. It does this by scanning across the ultraviolet light spectrum. 

It was used across a denaturation gradient because it allowed analysis as to at what concentration 

the protein loses its secondary structure. This is evident because there were no longer any peaks 

in the CD reading.  

 

Near-UV CD 

A Near-UV reading occurs at a spectrum higher than that of Far-UV. In this experiment, 

a range of 320-245nm was used. It was used to study the more disordered regions of the protein. 

The cuvette was larger at 5cm and it holds 10mL of sample. A larger sample at a lower protein 

concentration was used to reduce the amount of light scattered. The samples was prepared by the 

same method as discussed.  
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Refractometer 

 The concentration of denaturant was checked by a refractometer. Using a blank with no 

denaturant, the refractometer will be able to determine the concentration of denaturant based on 

the refraction of light. Even though the samples were calculated to have a certain concentration, 

the refractometer reading was considered to be the actual denaturant concentration for the sample 

as incubation of the samples overnight may have changed the concentration should some 

denaturant crystalize.  

 

Fluorescence Spectroscopy 

 Fluorescence spectroscopy was used to measure the tertiary structure of the protein. It is 

able to do this by analyzing aromatics, tryptophan and tyrosine which are excited at 295nm and 

274nm, respectively. The spectroscopy uses these fluorescing residues to measure their location 

in space and also their fluorescence intensity. From the same sample used with CD, 70uL of 

sample was needed in the special fluorescence cuvette. Depending on the composition of the 

RRM, a different excitation wavelength was used. The tryptophan excitation was used for 

mRRM2 and mtRRM rather than the tyrosine excitation, which was used for mRRM1, because 

the fluorescence intensity signal for tryptophan is 4 times that of tyrosine.  

 

Calcium Binding Assay 

 A paper published by the Liu lab in 2007 indicates that matrin 3 may bind to calcium. 

Specifically it is mRRM2 that binds to calmodulin (Valenci et al., 2007). Knowing this, a 

calcium binding prepared for mRRM2. The calcium buffer contained 20mM HEPES, 150mM 

KCl, 1mM CaCl2, and 1mM BME. The control buffer without calcium contained 10mM KPi, 
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150mM KCl, and 1mM BME. Using these buffers, samples both with and without calcium were 

made at protein concentrations of 0uM, 2.5uM, 5uM, 7.5uM, and 10uM. The samples were then 

scanned by FL and CD, as previously stated.  

 

Electomobility Shift Assay (EMSA) 

 The protein matrin 3 was selected in this investigation because it is an RNA-binding 

protein. Previous projects had investigated other RNA-binding ALS-linked proteins such as 

TDP-43, hnRNP A1, SOD-1, and FUS. To test the RNA binding of the protein, an RNA 

sequence was selected that matrin 3 has an affinity for (Yamazaki et al., 2014). 

5ˈ- CUUCUCACUACUGCACUUGACUAGUCU - 3ˈ 

The bolded regions are the parts of the sequence that the protein binds to.  

 To perform this assay, the concentration protein must be measured. Based on the 

concentration, a serial dilution was made by changing the protein concentration, either by half or 

a third. A 96 well plate is used to make the dilutions. The dilution was made by adding 30uL of 

the highest concentration protein into the first well. Then 15uL of physiological buffer was 

added to all the 20 wells. After mixing the first cell, 15uL was removed and added to the second 

cell. This too was mixed and 15uL was removed and added to the third cell. This repeats until the 

last cell was reached, the 15uL removed was discarded. 

To make the RNA part of the sample, calculations are made taking into account that 45uL 

will go into each well (Table 3). 

Require 2200uL total= 20 wells*45uL+1300uL dead volume 

Buffer:  

𝑀1𝑉1 = 𝑀2𝑉2 

𝑉𝑜𝑙𝑢𝑚𝑒 =
1𝑥 ∗ 2200𝑢𝐿

10𝑥
= 220𝑢𝐿 
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tRNA and IGEPAL: 

𝑉𝑜𝑙𝑢𝑚𝑒 =
1𝑥 ∗ 2200𝑢𝐿

100𝑥
= 22𝑢𝐿 ∗

4

3
= 29.3𝑢𝐿 

DTT: 

𝑉𝑜𝑙𝑢𝑚𝑒 =
2𝑚𝑀 ∗ 2200𝑢𝐿

1000𝑚𝑀
= 4.4𝑢𝐿 ∗

4

3
= 5.87𝑢𝐿 

RNA: 

Measured concentration by Nanodrop: 1120nM 

𝑉𝑜𝑙𝑢𝑚𝑒 =
3𝑛𝑀 ∗ 2200𝑢𝐿

1120𝑛𝑀
= 5.89𝑢𝐿 ∗

4

3
= 7.86𝑢𝐿 

dH2O: 

𝑉𝑜𝑙𝑢𝑚𝑒 = 2200𝑢𝐿 − 2200𝑢𝐿 − (29.3𝑢𝐿 ∗ 2) − 5.87𝑢𝑙 − 7.86𝑢𝐿 = 1907.8𝑢𝐿 

 

Table 3 EMSA sample Buffer volumes. Following the above calculations, the following table 

summarizes the volumes needed to create the desired concentrations for the reagents. 

Stock [Stock] [Desired]  Calculated Volume (uL) 

Physiological buffer 10x 1x 220 

tRNA 100x 1x*4/3 29.3 

IGEPAL 100x 1x*4/3 29.3 

DTT 1M 2mM*4/3 5.87 

RNA 1120nM 3nM*4/3 7.86 

dH2O - - 1907.8 

 

The buffer was mixed, save for adding the DTT and RNA. The mixture was heated for 5 

minutes and then DTT and RNA are added once it has cooled a bit. Then, 45uL of this buffer 

was added to each well. The plate then equilibrates for 2 hours.  

 During that time, the acrylamide gel was made. This gel is 8% acrylamide and is made of 

90mL acrylamide, 450mL dH2O, 45mL 10x running buffer (TB buffer for 1L 55g Boric acid, 

108g Tris base), 4.5mL 10% APA (450mg ammonium persulfate), and 450mL TEMED. The 

TEMED and APS were added simultaneously to the rest of the mixture in a graduated cylinder 

and it was covered and inverted. A gel mold with 20 50uL wells was prepared and washed with 

RoH2O. Once the mixture was made, it was poured into the mold to set.  
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 Once the samples have equilibrated and the gel set, 6uL of 1uM bromocresol gel shift dye 

was added to each well. Only 50uL of the sample was loaded into each well. The 10x running 

buffer was diluted to 1x to run this gel. The gel was then run by electrophoresis at 140V for 

60minutes. After the run, the gel was scanned using a fluorescence machine called Typhon FLA. 

This measured the fluorescence of the protein and RNA bands in this neurotoxic gel. The images 

were then be analyzed according the Hill equation to measure the cooperativity of the binding.   

 

RESULTS 

 From the methods discussed in Data Collection, the following results have been obtained 

and interpreted. The data was presented to show the raw data from CD, FL, and EMSA and what 

can be drawn from this information. The data was then expanded upon in the interpretation of 

graphs and by using analysis software to manipulate the data. Throughout the data 

representation, the same coloring scheme is used: mRRM1 is light blue, mRRM1-ICC is blue, 

mRRM2 is orange, and mtRRM is grey. If additional information is displayed, the legend and 

caption contain details. Some figures have multiple panels, preventing the caption from being on 

the same page. In cases like this, the caption was placed after the figure.  

 

Initial CD Studies 

 In the far-UV CD Scan (Figure 11), mRRM1 has defined helixes indicated by its distinct 

divots at 222nm and 208nm. mRRM2 is more random because it’s helixes are less defined, yet it 

doesn’t completely resemble beta structure. When denaturant is added, mRRM1 loses all 

structure. mtRRM resembles both of them with more defined helixes than mRRM1. 

 In CD signal of the tethered domains as mtRRM can be compared to the signals of 

mRRM1+mRRM2. If the CD signal of the additive structure does not shift the minima compared 
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to the mtRRM signal, then the tethered complex provides no additional support in joining the 

two domains together (Figure 12). 

 

 

Protein Concentration CD Experiments 

 To analyze the data to test the effects of denaturant at different concentrations of 

mRRM2, SAVUKA can be used. The graphs demonstrate this analysis in addition to the 

importance of protein concentration. To start the analysis, the CD signal is obtained across a 

spectrum of wavelengths (Figure 13 A). Initial CD gathers data across a spectrum of 

wavelengths.  

With different samples of protein with different concentrations of denaturant, not only 

was there data regarding the secondary structure across wavelengths but the data from the 

different samples were compiled to look at one wavelength across different denaturant 

concentrations. The wavelength selected was the one where the data points best fit a modeled 

two-state or three-state curve. A model two-state unfolding curve represents a protein going right 

from a native state to an unfolded state 𝑁 ↔ 𝑈. In a three-state model, a protein would unfold to 

an intermediate state before unfolding, 𝑁 ↔ 𝐼 ↔ 𝑈 (Figure 13 B).  

Finally, the data was fit to a Fraction Apparent Plot (Figure 13 C). This type of plot takes 

the data of MRE and flattens the base lines because the protein is either folded/native (0 Fraction 

Apparent Unfolded) or unfolded (1 Fraction Apparent Unfolded). Free energy of the systems 

equilibrium is calculated based on midpoint of the FAP curve. The differences between 

concentrations of protein are determined by the location of the positive slope relative to the other 

slopes. This analysis determined that the higher the concentration of denaturant needed to reach 

the midpoint of this slope, the more stable to the complex. 
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Initial FL Studies 

 

 In order to examine tertiary structure, fluorescence spectroscopy was performed. In the 

native FL scan, looking at the 4 tyrosines in mRRM1 a scan was performed to excite at 274nm 

(Figure 14 A). mRRM2 contains 4 tyrosines, like mRRM1, and a tryptophan. Therefore, the 

mtRRM contains 8 tyrosines and a tryptophan, so the scan used excited the tryptophan at 295nm 

(Figure 14 B).  

 

Addition of the Interacting C-terminal Coil to mRRM1 

 The addition of the Interacting C-terminal Coil did affect the stability of the motif 

(Figure 15). Therefore, the results beyond this point will display mRRM1-ICC as the results 

because it more accurately represents the motif. 

 

Near- UV CD 

 In Near-UV CD, the more disordered domains were probed. The spectra occurred at a 

higher wavelength than the Far-UV CD (Figure 16) and so the MRE wavelength used was 

280nm. 

  

Comparative CD and FL signaling across and between domains  

 After obtaining CD and FL data, the results were compared to the Far-UV CD MRE and 

against the FL intensity. Typically the FL signal will go from high to low across the denaturant 

gradient and the CD will go from low to high. This doesn’t appear to be the case for any of the 

motifs, even though all were properly fit to a two-state model (Figure 17).  
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 Comparing the FAP of all the motifs reveals forces in each domain stabilizing itself 

without the tethering to another domain (Figure 18). Adding the ICC to mRRM1 stabilized the 

domain so it could withstand higher concentrations of denaturant before unfolding. Each 

individual RRM domain and the tethered RRMs of matrin 3 reveal two-state equilibrium 

unfolding transitions, providing no evidence for an intermediate state. 

 

Calcium Binding of mRRM2 

 In order to examine calcium binding to mRRM2, a calcium buffer was created. The 

experiments shown in Figure 19 were replicated to compare to this new set of data. This domain 

has been shown to bind calcium. The Calcium binding loop of the protein contains the single 

tryptophan present in mRRM2 and without the Ca+2, it is switching between conformations, 

lending to the ‘unfolded’ looking signal when it is supposed to be native baseline. 

 

RNA-Binding Experiments 

matrin 3 was initially identified for this investigation because it is an RNA-binding 

protein associated with ALS. The affinity of the RNA-Recognition Motifs for RNA was studied 

by FCS. Preliminary assays by EMSA suggest that mRRM1 and mRRM2 do not have strong 

RNA binding ability (Figure 20 A, B). If the protein had bound to RNA, then it would have 

created a larger complex that moved more slowly through the gel. Such a complex could be seen 

with mtRRM (Figure 20 C). It showed a higher affinity of RNA binding, so EMSA and FCS was 

run to test this binding and affinity.  In the replication of mtRRM RNA assays at even higher 

protein concentrations, there was binding but there was also free protein (Figure 20 D). This may 
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hint at a higher order species but FCS reveals no higher order species created when there is an 

increase in protein concentration; therefore mtRRM is just a weak binder. 

 

DISCUSSION 

The presence of an intermediate state is marked by a difference in CD and FL midpoints. 

This difference would indicate that there was a conformation formed in which the tertiary or 

secondary structure is changing while the other type of structure is not., meaning the CD or FL 

data fits a three-state model (𝑁 ↔ 𝐼 ↔ 𝑈). For several reasons, an intermediate state was not 

located in the matrin 3 RNA-Recognition Motifs. With the inconclusive fluorescence data 

because it had a positive rather than the expected negative slope, it was not possible to determine 

the difference in midpoints between CD and FL data (Figure 17). Both the data gathered by Far 

and Near-UV CD fit a two-state model (𝑁 ↔ 𝑈) (Figure 16, 17). Even though there was no 

intermediate state found, these results could be used to create a prediction for the presence of an 

intermediate state among other RNA-binding proteins. There was an intermediate state identified 

in FUS RRM and TDP-43 RRM2 (Mackness et al., 2014). TDP-43 RRM1, mRRM1, and 

mRRM2 all lacked an intermediate state. Further analysis into the sequences and structures of 

these domains may unveil some common characteristic differentiating between the intermediate 

contain group and the one that lacks it.  

Beyond the main intermediate investigation, supplemental investigations were performed. 

Studies had said that matrin 3 was a calcium binding protein because of the interaction of 

mRRM2 and ZnF 2 (Valenci et al., 2007). Current experimentation showed that in isolation, 

while there was a stabilization of the domain in the presence of calcium, it was not feasible to 
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perform the same experiments that had been done with TDP-43 (Figure 19). Also, the difference 

with the calcium buffer was not significant enough to pursue this deviation of methodology.  

As an RNA-binding protein, matrin 3 was expected to bind to RNA. Well, it would 

appear as though the RNA-Recognition Motifs of matrin 3 do not play a role in the RNA 

binding. At least, this statement is true given the sequence of RNA used (5’-

CUUCUCACUACUGCACUUGACUAGUCU – 3’) which had been identified in previous 

research to be the sequence that isolated matrin 3 binds to (italicized regions) (Yamazaki et al., 

2014). It is not required that the RRM bind to RNA, only that it is able to interact with it in some 

way. This connects back to the phenotype of matrin 3 ALS mutations being RNA 

mismanagement (Salton et al., 2011). The exact influence of the mutation depends on its location 

(Johnson et al., 2014). This brings into the light how the location of ALS mutations occur in 

disordered domains of the proteins (Figure 1).  

Mutations to the RRMs have been used to induce conformational changes. Currently, 

missense mutations are being investigated for TDP-43 to mimic the conformation of the 

intermediate state. This is not maintained for long and only occurs in 0.2% of the protein 

population at a time (Mackness, 2016). The naturally occurring rate of this conformation would 

make it difficult to develop a therapeutic to treat it. Therefore, mutations can be used to mimic 

these states. Mutants of matrin 3 can also be made to simulate the ALS patient’s mutants. These 

methods could be used to further therapeutic development, which is the next step of this 

research.  

Another step that could be taken is investigating other RNA-binding ALS-linked 

proteins. There is a whole class of these proteins and only some of them have been studied in the 

context used in this experiment. If the prediction of an intermediate state is not clear from the 
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current base of research, then more research must be done to fill this gap of knowledge. The 

ability to make prediction of an intermediate state and eventually being able to create a model for 

this conformation (seen in Figure 1 for TDP-43) would allow for therapeutic testing to begin at a 

later stage than the biophysical experiments seen in these trial. Knowing the shapes of the target 

conformation and the therapeutic could invite computer simulations to mimic these interactions. 

Large scale prediction software has been established in programs like Folding@home. Designed 

by the Pande lab, this program can be downloaded to devices connected to the internet to 

simulate folding patterns of proteins until the proper conformation is formed (Stanford, 2013).  

The marriage of simulation and wet lab work can be continued with further research and 

development from both points of reference. This research has been enabled with national and 

crowd funding, as seen in the Ice Bucket Challenge. There is power in awareness of the public to 

the research that is being done on disease. Although cures are not popping up every day, research 

is always happening to make people’s lives better in any way scientists can. Action arises from 

the ability to understand the cycle of research for the continuation of the pursuit of a better 

future. 
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ABBREVIATION KEY 

 

Amyotrophic Lateral Sclerosis (ALS) 

Familial ALS (FALS) 

Sporadic ALS (SALS) 

Ribonucleic Acid Recognition Motif (RRM) 

Cu-Zn Superoxide Dismutase (SOD1) 

Trans-activation response [TAR] deoxyribonucleic acid [DNA] binding protein 43 (TDP-43) 

Fused in sarcoma (FUS) 

matrin 3 1st RRM domain (mRRM1) 

matrin 3 2nd RRM domain (mRRM2) 

matrin 3 tethered RRM domains (mtRRM) 
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Nuclear Exportation Sequence (NES) 

Nuclear Localization Sequence (NLS) 

Glycine rich domain (Gly-rich) 

Arginine-Glycine-Glycine repeating regions (RGG-Rich) 

Zinc finger (ZnF) 

Glutamine-Glycine-Serine-Tyrosine rich region (QGSY-Rich) 

Protein Databank (PDB) 

Tris base, acetic acid, and EDTA buffer (TAE) 

Ethylenediaminetetraacetic acid (EDTA) 

Escherichia coli (E. coli) 

Ampicillin (AMP) 

Chloramphenicol (CAM) 

Lysogeny Broth (LB) 

Column Volume (CV) 

2-(N-morpholino)ethanesulfonic acid (MES) 

Sodium Phosphate (NaPi) 

Electromobility Gel Shift Assay (EMSA) 

Interacting C-terminal Coil (ICC) 

Circular Dichroism (CD) 

Secondary (2°) 

Molar residue ellipticity (MRE) 

Fluorescence Spectroscopy (FL) 

Tertiary (3°) 

Tryptophan (Trp) 

Tyrosine (Tyr) 

Fraction Apparent Plot (FAP) 
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Misfolding/Dysfunction 
Folding/ 

Function 

Native TDP-43 

Dysfunctional 

Aggregates 

NES 

Figure 1 TDP-43 folding free-energy landscape. After the identification of the 

intermediate state in RRM2-yellow-, it was possible to identify the structure of this 

state. In this intermediate, the NES became exposed. Reaching this point, the protein 

could either fold to its native state- blue, or it could aggregate-red. Once a protein 

aggregates, it is difficult to force it back up the folding pathway as it requires too much 

energy to overcome the transitional barriers. 
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A 

B 

C 

D E 

F 

Figure 2 ALS-linked proteins sequence and 

topology comparison. The sequences are colored 

according to the following key: ribonucleic acid 

(RNA) Recognition Motif (RRM) domains-blue, 

nuclear exportation sequence (NES)- yellow, 

nuclear localization sequence (NLS)-purple, 

glycine rich domain (Gly-rich)- orange, arginine-

glycine-glycine repeating regions (RGG-Rich)-

light green, zinc finger (ZnF)-green, glutamine-

glycine-serine-tyrosine rich region (QGSY-Rich)- 

red, ALS mutation *. A-C: The sequences of 

TDP-43, FUS, and matrin 3, respectively.  

The RRM topologies are colored with alpha 

helices in red and beta-pleated sheets in blue. D: 

In TDP-43, RRM2 is on the left and RRM1 is on 

the right as the tethered complex assembles in this 

manner (PDB: 4BS2). E: FUS RRM is just a 

single complex. (PDB: 2LA6) F: The crystalized 

structure of the tethered matrin RRMs has not 

been identified so the mRRM1 (PDB: 1X4D) and 

the mRRM2 (PDB: 1X4F) are displayed to from 

right to left. 
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Figure 3 mRRM1 and mRRM2 aromatic amino acids. A: mRRM1 contains 4 

tyrosines, teal. B: mRRM2 contains 4 tyrosines and a tryptophan, pink. These aspects of 

tertiary structure are studied because they can be excited at particular wavelengths of 

light.   

B A 
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mtRRM 

MGHHHHHHGLEVLFQGPVETSRVVHIMDFQRGKNLRYQLLQLVEPFGVISNHLILNKIN

EAFIEMATTEDAQAAVDYYTTTPALVFGKPVRVHLSQKYKRIKKPEGKPDQKFDQKQE

LGRVIHLSNLPHSGYSDSAVLKLAEPYGKIKNYILMRMKSQAFIEMETREDAMAMVDH

CLKKALWFQGRCVKVDLSEKYKKL 

 

mRRM1 

MGHHHHHHGLEVLFQGPVETSRVVHIMDFQRGKNLRYQLLQLVEPFGVISNHLILNKIN

EAFIEMATTEDAQAAVDYYTTTPALVFGKPVRVHLSQKYKR 

 

mRRM2 

MGHHHHHHGLEVLFQGPKQELGRVIHLSNLPHSGYSDSAVLKLAEPYGKIKNYILMRM

KSQAFIEMETREDAMAMVDHCLKKALWFQGRCVKVDLSEKYKKL 

 

Figure 4 Amino acid sequences of matrin 3 RRMs. These amino acid sequences were ordered 

and used for the experiments. The linker of the two RRM domains is underlined. The His-tag 

used in the sequence that is later cleaved is italicized. Without the 17 amino acid His-tag, 

mtRRM is 182 amino acids long, mRRM1 is 83, mRRM1-ICC is 85, and mRRM2 is 84.  
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Figure 5 Nucleic acid concentration of mRRM1. The Nanodrop reading can calculate the 

concentration of the DNA based on the absorbance of the sample and Beer’s Law. The number 

considered in the nucleic acid concentration in ng/μL. 
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Figure 6 Agarose gel scan of PET 3d vector and mtRRM plasmid. The left most column is 

the ladder for measuring the density of the sample. The two highest bands are the vectors as they 

are larger and move through the gel slower. The four lower bands are the vectors for matrin 3 

tRRM. These vectors are smaller so they move through the gel faster. The mtRRM plasmid 

should be in the rectangle, according the ladder used. 
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Figure 7 S-column conductivity readout of mRRM2. This figure demonstrated the reading 

obtained from the Biorad gradiation. The green line, topmost line, represents the absorbance of 

the sample at 280nm, the wavelength that protein absorbs light. The top axis shows the tube 

number in which this sample is. Samples are collected along this peak to determine which tubes 

have the correct protein, as determined by an electrophoresis gel. The tubes that contain the 

protein are then pooled.  
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Figure 8 mtRRM gel with samples from the purification process. This 14 lane gel is a sample 

of the matrin 3 protein purification. The subsequent rows contain the lysis before sonication, the 

lysing supernatant after spinning, the lysing pellet after spinning, the flow through of the nickel 

column, the wash flow through of the nickel column, the elution flow through off of the nickel 

column without urea, the eluate with urea, a sample after the precision protease was added, and 

the s-column flow through. These samples contained steps where protein should and should not 

have been present. Sampling at these points helped to monitor the purification and to ensure 

protein was still present in the samples.  
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mtRRM 

MGHHHHHHGLEVLFQGPVETSRVVHIMDFQRGKNLRYQLLQLVEPFGVISNHLILNKIN

EAFIEMATTEDAQAAVDYYTTTPALVFGKPVRVHLSQKYKRIKKPEGKPDQKFDQKQE

LGRVIHLSNLPHSGYSDSAVLKLAEPYGKIKNYILMRMKSQAFIEMETREDAMAMVDH

CLKKALWFQGRCVKVDLSEKYKKL 

 

mRRM1 

MGHHHHHHGLEVLFQGPVETSRVVHIMDFQRGKNLRYQLLQLVEPFGVISNHLILNKIN

EAFIEMATTEDAQAAVDYYTTTPALVFGKPVRVHLSQKYKR 

 

mRRM1- ICC 

MGHHHHHHGLEVLFQGPVETSRVVHIMDFQRGKNLRYQLLQLVEPFGVISNHLILNKIN

EAFIEMATTEDAQAAVDYYTTTPALVFGKPVRVHLSQKYKRIKK 

 

Figure 9 Adding in the ICC of mRRM1. When this project first began it was believed that the 

segment that was cut out in mtRRM to make mRRM1 and mRRM2 was simply the linker 

between the two segments. This is highlighted. The first three residues of this highlighted 

segment were added back in to make mRRM1-ICC. 
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Figure 10 Sample protein CD analysis by MRE. The mass analysis of CD data was done using 

a computer program called SAVUKA. The resulting graph was used to understand secondary 

structure. The above graph is a demonstration of the different secondary structures CD results. 

The alpha helical structure can be inferred from the 222nm/208nm ratio.  

 

Molar residue ellipticity (MRE) is a measure of intensity by which the secondary structure of the 

protein can be understood. Using the signal obtained by circular dichroism, analysis was 

performed using the following equation. 

 

𝑀𝑅𝐸 =
0 𝑠𝑖𝑔𝑛𝑎𝑙

10 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑢𝑣𝑒𝑡𝑡𝑒 ∗ 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
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Figure 11 RRMs native and unfolded secondary structure. CD uses a spectrum of light that 

the sample is scanned across. The ratios between certain wavelengths can be used to determine 

the presence of secondary structure (see Figure 10). With no denaturant, in this case guanidine-

hydrochloride, the protein is folded and there are local minima between -6000 and -9000 CD 

signal. The intensity of this signal depends on the RRM tested. This graph also displays a 

completely unfolded scan of mRRM1, blue to yellow. This requires denaturant, 7M GDN-HCl. 

The loss of folded structure reduces the signal as there is no secondary structure left. The scan 

does not go far beyond 220nm as the signal beyond this point scatters the light too much.   
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Figure 12 mtRRM CD signal versus the additive mRRM1+mRRM2 signal. This graph 

demonstrates how the tethered domain of mRRM1 and mRRM2 in vitro provides additional 

structure and stability to the complex in terms of secondary structure as compared to the signals 

of mRRM1 and mRRM2 added together. The signal of the tethered domain is lower, indicating 

that it has more secondary structure than the additive complex. 
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Figure 13 mRRM2 concentration analysis from CD signal to FAP. A: The higher the 

concentration of protein, the higher the CD signal. A test like this is done to determine the least 

amount of protein required to produce the clearest signal. The data in the graph is contains no 

denaturant. B: The protein best fit a two-state unfolding curve at 220 nm and so the MRE at this 

point was calculated. C: The stability and signal of the samples is determined by the 

concentration of denaturant needed to unfold the sample. The highest concentration protein is the 

most stable, as it requires 2.29M GDN-HCl to be at equilibrium with its unfolding process. The 

concentration dependence suggesting may be an artifact of probing the isolated mRRM2 domain 

in the absence of mRRM1 rather than suggesting a functional role for dimerization. 
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Figure 14 Tertiary structure unfolding of a tyrosine and tryptophan fluorescence 

excitation. A: mRRM1 was excited at 274nm for its presence of tyrosine. The light was then 

released at 302nm. Unfolding the motif with guanidine hydrochloride revealed an increase in 

fluorescence intensity as the Tyr spell this out moved further from each other. B: mtRRM 

excitation occurred at a 295nm to excite the tryptophan, which released an emission at 354nm. In 

unfolding the motif, the signal increased as the tryptophan moves further from the other 

fluorescent aromatics. 
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Figure 15 Secondary structure stability of mRRM1 and mRRM1-ICC denaturation. The 

addition of ICC inducing residues increases the stability of mRRM1 by 1.88kcal (∆G 3.46 to 

5.34). This stability increase can be seen in the shift to a higher concentration of denaturant 

(1.9M to 2.4M).  
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Figure 16 Near-UV CD of matrin 3 RRM disordered domains. Investigating the RRMs 

individual revealed no intermediate state, fitting a two-state folding landscape. The fluorescence 

studies did not yield useful results in regards to the intermediate studies. 
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Figure 17 Far-UV CD and FL comparison to analyze the intermediate state. In the graphs, 

the Far-UV CD model is represented with a solid line and the data with circles. The FL model is 

a dashed line (mtRRM does not have a model) and the data is squares. A: mRRM1-ICC fits a 

two-state plot. B: mRRM2 fits a two-state plot. FL for mRRM2 is interesting because it does not 

have a native baseline, indicating that it was a folded state going to an unfolded state. Instead it’s 

this checkmark shape which is interesting, looking like it’s already partially unfolded. C: 

mtRRM fits a two-state plot. 
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Figure 18 FAP unfolding comparison of mRRMs. mRRM1-ICC is shifted to the right of 

where mRRM1 initially had FAP signal. Therefore the midpoint is also shifted. All 3 have 

similar slopes as it unfolds. Tethering the two RRM domains indicates that mRRM1 and 

mRRM2 may fold coincidentally as the m-value of mtRRM was not the sum of the individual m-

values for mRRM1 and mRRM2; nor was it the average. 
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Figure 19 Calcium binding of mRRM2 effects on FL intensity. A: different concentrations of 

mRRM2 and their respective fluorescence intensities. B: Calcium binding lower the intensity; at 

2.5uM there is a two-fold difference. Though the intensity of FL was lowered, using calcium 

buffer inhibited the ability to use CD as the signal scattered too much.  
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Figure 20 mtRRM RNA binding to 5ˈ- CUUCUCACUACUGCACUUGACUAGUCU - 3ˈ. 

A: mRRM1 and B: mRRM2 travelled to the bottom of the lane. This protein is considered free, 

meaning that it did not bind to the RNA. C: mtRRM did have some binding at higher protein 

concentrations, leading to a larger and slower complex running through the gel. D: Replication 

of this RNA binding assay at higher concentrations of protein before the serial dilution of protein 

revealed interesting binding behaviors at high protein concentrations. This protein ran lower than 

the free protein at lower protein concentrations so it suggests the possibility of a higher order 

species forming in RNA binding.  
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