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Coordinate system connected with lower extremity and its application

to knee impulsive force induced by landing after vertical fall

Hirohisa TACHIBANA, Tamotsu SEKIYA", Yasuhiko HATANAKA™ and Takaaki NAKAMATA

Abstract
New coordinate system connected with the lower extremity is contrived and the transformation rule to

such a coordinate system from any Cartesian coordinate system is derived. By applying those to a knee

impulsive force induced when a subject lands after the vertical fall, the adduction direction component

of such an impulsive force, which the subject straightforwardly experiences, is analyzed.
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1. Intfroduction

In order to analyze the motion of an object whose
movement is mechanically and/or spatially constrained,

1-5)

physicists use a special coordinate system For ex-

ample, the motion of a free pendulum may be well treat-

2 In

ed by making use of the polar coordinate system
such a coordinate system, the valuables of the position of
the object are reduced to two angles 6 and ¢, since the
motion of the object is constrained on a sphere and the
radius is invariant.

In contrast to usual medical analyses with physical
ones, it seems that the analyses of human movements in
biomechanics are, sometimes, unconditionally accom-
plished with Cartesian coordinate systems in which the
position of an object are represented by (x, Yy,
z)-coordinate ?, in spite of the fact that the movements of
the objects are constrained by the gravity, the ground, the
joints and others. The purpose of this paper is to pro-
pose the most suitable variable for analyses of the lower
extremities.

In section 2, we will formally describe the general
theory of the orthogonal coordinate systems and the or-
thogonal transformations in three dimensions. In sec-
tion 3 and 4, we will contrive the coordinate system
connected with the lower extremity and derive the trans-

formation rule to such a coordinate system from any

Cartesian coordinate system. Section 5 will be devoted
to an application of section 3 and 4 to analyze the knee
impulsive force when a subject lands after the vertical
fall.
this paper will be described.

In section 6, the discussions and the conclusions in

2. Formal theory of orthogonal fransformation

In this section, we use Einstein's summation conven-
tion to indices. Namely, a repeated index appeared in a
term implies summation over the whole range of the in-
dex.

An orthogonal transformation maps an orthogonal
coordinate system (O; e, e,, e;) to another orthogonal

coordinate system (O; €'}, €5, €'5).

'
a

satisfy the conditions

The vectors e, and

e', are orthogonal bases in each coordinate system and

e,re,=¢,¢€,=0,, (D

where J,, is Klonecker's delta and the indices a, b , ...
take the values 1, 2 and 3.

. . P
vector v 1n space 18 represented as v, e, and V,€.,

On such coordinates, any

respectively, that is,

v=v,e,=v €. 2)

The real numbers v, and V', are the components of v
in the coordinate system (O; e, e,, €;) and (O; €',, €5, €'3),
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respectively.
PROPOSITION 1. Let us define t,, as
tab =e‘a'eb. (3)

Then the matrix given by (t,,) is an orthogonal matrix,

that is,
tactbc =14t b =6ab (4)

ca” c

or

tba =t_lab- (5)

Proof. Note that, from (2), €', can be represented as
e, =a,e,.

From this expression and (1), we obtain
Qg =€, €,

and

O Qe =ty (€ 7€.) = (@

. ! — ! -‘ —
acec) €pr=€, eb_dab‘

On the other hand, e, can be written as
e, =¢€ P,
from (2), where
Ba =¢€,€y.
From this expression and (1), we obtain also

ﬂcaﬁca

Noting that 7, =a,, = B,,, we have

= ﬁca (elc .eb)= (evC ﬁca).eb =€,°€¢, =6ab‘

Laclpe = Tealep = Oup-
Thus this proposition is true. |
From the proof of PROPOSITION 1, we have
e, =t,e,, (6a)
or

€, = e'b tba . (6b)

From the equations (6), we can obtain the following true
proposition.

PROPOSITION 2. The equation

V'a = tabvb (7)

holds for any vector v of which the components are v,

and V', in (O; e, e,, €;) and (O; €', €', €'3), respec-

tively.
Proof. From (2) and (6), we have
V‘a e'a =V,€; = Vae'b Z‘ba = tabvbe'a .

From the left and right hand sides of this expression, we
obtain

O, —tyvy)e,=0.

In order that this equation holds for any e',, those coef-

ficients must vanish. Therefore we obtain
Vii=twVy-
Thus this proposition is true. |

The equation (7) provides us the orthogonal transfor-
mation rule for components v, of any vector v from the
coordinate system (O; e, e,, €;) to (O; e',, e',, e'5). The
transformation rule (7) can be easily extended to any
tensor. Since the tensor space is represented by the
direct product V® V®:--® V of the vector space V,

the components w,,.... of any tensor w" is transformed

e

by the rule
W'abmc:tadtbe”'tcfwdew-f‘ (8)

As an example of above the transformation, let us
consider the transformation from a Cartesian coordinate
system (O; i, j, k) to the polar coordinate system
O; er,eg,e(p). As is well known, any Cartesian coor-
dinate (x, y, z) corresponds to the polar coordinate
(r,0,¢p) as follows;

X =rsinf cos@
y =rsinf@sing . )
z=rcos0

Taking the total differentiations of those, we obtain

dx =sinf cos@ dr + r cosf cos@ d6 - rsinf sing dg
dy =sinfsing dr + r cosf sing d6 + rsinf cosp dg
dz =cos6 dr - rsinf d6. 10)

Since the bases correspond to the line element in the co-
ordinate system, we have

iedr, jedy, k<dz, (1D

and

: Namely, the tensor w is represented by
W= Wap..c8qR0€pQ - Qe =w'y), €08 @



e, <>dr, e, <>rdf, e, <> rsinfdg. (12)
From (10), (11) and (12), we obtain

i=sinfcosg e, +cost cosp e, —sing e,

J=sinfsing e, +cosfsing e, + cosp e, . (13)

k =cos0 e, —sin0 ey

Comparing (13) with (6b), we find the following trans-
formation matrix (z,,) which maps the Cartesian coor-
dinate system (O; 1, j, k) to the polar coordinate system
Ose,.ep.€,);

sinfcosgp sinfsing  cos6
(t,,)=|cosOcosp cosOsing —sinf |. (14)
—sing cos @ 0

Furthermore, from (7), acting the matrix (14) to compo-

nents (v,,v ) of any vector v in (O; i, j, k), we can

y?vz
obtain its components (v,.,vg,vq)) in (O; er,eg,e(p) as

follows;

v, =sinf cos@ v, +sinfsing v, +cost v,

Vg =cost cos@ v, +cosOsing v, —sinfv_.  (15)
Ve ==SINQ v, +CcosQ v,
In general, the determinant of the matrix (7,,) de-
fined by (3) takes the value +1 or -1, that is,
det(tyy) = Egpelarlpales = *1, (16)
where ¢, is Levi-Civita's symbol;
Eabe = “€pac = ~€achs €123 = L. a7

This implies that the set of transformations defined by
(7) includes the reflections of coordinate systems.
Namely, an orthogonal transformation of which matrix is

denoted by (r,) includes the reflection if
det(t,,) =-1. If we do not wish to treat any reflections,
we must carefully take our coordinate systems. When

the set of orthogonal transformations does not include
any reflections of coordinate systems, such transforma-
tions can be represented by the rotations of coordinate
systems.

" The quantities provided by the vector products are not in-
variant to the reflection. For example, the angular velocity,
the angular momentum, the moment of force and others are
such quantities.
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3. Coordinate system connected with a lower
extremity

It seems that, in order to represent the configuration of
a (right or left) lower extremity simplified by a rod, we
can use the polar coordinate system described in section
2. However, since the lower extremity is connected
with the upper extremity and the foot with the knee joint
and the ankle joint, respectively, the movement of the
rod by which the lower extremity is simplified is con-
strained by the rods corresponding to the upper extremity
and the foot, respectively. Thus it is not appropriate to
represent the configuration of the lower extremity by the
polar coordinate system.

In order to well represent the constrained movement of
the lower extremity, we define a new orthogonal coordi-
nate system in this section. Let us consider an or-
thogonal coordinate system (O; 1, m, n), where 1, m and
n are the unit vectors which are normal to the frontal
plane, the sagittal plane and the transverse plane, respec-
tively, and are frontward, the leftward and upward, re-
spectively. Moreover, let §, 1 and { be the axes
parallel to 1, m and n, respectively, and [] be (n,&)-
plane (or the frontal plane).

We label the two joints of the lower extremity with K

and A, where K is the knee joint and A is the ankle, and

write the vector AK as follows;

ﬁ=r=§l+nm+§n. (18)

Then for the projective vector r* of r to [], we have

r¥=nm+¢n. (19)

Let 1 be the angle between the fixed vector n and
the radius vector r*. The angle 1y takes the positive
value if it is the counterclockwise angle around the rota-
tion axis 1 and the negative value if it is the clockwise
angle around the same rotation axis. Then we have the

following true proposition.

PROPOSITION 3. The angle v is given by
W=sin |- —L |, (20)
n?+¢2
if it takes the range
b4 T
——=syY=s—. 21
> v > 2D
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Proof. From (19), we have
nxr¥*=mnxm+&nxn=-nl.

On the other hand, from the definition of the angle 1,
we have

r* =|r * cosyn-|r *sinym,
and

nx r* =|r * cosy (nx n) —|r *sinyy (n x m)

= |r *|sin1p L
Therefore, we obtain

i/l n

Ei =

Since the principal value of arcsine takes the range (21),
Thus this
|

siny =

the solution of this equation is given by (20).

proposition is true.
We define a normal unit vector e, to 1 on ] as fol-

lows;

o - Ixr* -Cm+nn
w_|lxr*|_ \/172+Z;2 .

(22)

Note that e, is pointed to the positive direction of 1.

PROPOSITION 4. The unit vector e, defined by (22)

is orthogonal to the vector r given by (18), or

r=0 (23)

€y
Proof. From (18) and (19), we have
e, r=e, -(§l+r*)=f§ew I+e, r*.
From the definition of e, we have clearly e, r*=0.
Moreover, from (22) and
(Axr*)-1=(AxD)-r*=0,

we have ew-l=0. Thus the equation (23) holds.

Therefore this proposition is true.

Let p be the angle between the fixed vector r* and
From PROPOSITION 4, it is
shown that the angle p takes the positive value if it is

the radius vectors r.

the counterclockwise angle around the rotation axis -e,,
and the negative value if it is the clockwise angle around

the same rotation axis. Then we have the following
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true proposition.

PROPOSITION 5. The angle p is given by
p= sin”! 5 , 24)
/52 P+l
if it takes the range
b4 4
-——=p=s—. 25
=P (25)

Proof. From (18), (19) and (22), we have
r*xr=(mm+Zn)xEl+nm+&n)
=EEm-nEn=E5C m-nn)=&Jr*|(-e,).

On the other hand, from the definition of the vector prod-
uct, we have

r*xr = |r ¥rlsinp (-e,,).

From these two expressions, we obtain

5 5

sinp == =

H_1I§2+n2+§2.

Since the principal value of arcsine takes the range (25),
the solution of this equation is given by (24). Thus this

proposition is true. W

We define a unit vector e, by

e =T _ El+mm+Cn

' |r| VE + P +E7 ,

From (23), it is clearly orthogonal to e, i.e.

(26)

e e, =0. 27

Furthermore, we define another unit vector e, by

e,=¢,xe,. (28)

From (27) and (28), we see that the unit vectors e,, e,

and e, are mutually orthogonal, that is,

[oblobl

0

(29)
e e =e ‘e =¢

p =€ e, =0.

P

Thus it is clear that the following true proposition holds.



PROPOSITION 6. The set (O;e,,

an orthogonal coordinate system.

€,.€,) constructs

Note that the set of the origin and the bases in
PROPOSITION 6 but
O; er,ep,ew). It is the reason that, as shown in the

is not (O er,ew,ep)
next section, the transformation to (O;e,, € ep) from
(O; 1, m, n) does not include any reflection.

The restrictions (25) and (21) to the angles p and v,
respectively, do not induce any problems if the foot
connected with it contacts with the ground, since the
lower extremity never be parallel to the ground.
Therefore, it is appropriate that we suppose the coordi-
nate system (O; er,ep,ew) defined in PROPOSITION
6.

From the proof of PROPOSITION 3, we have

r* =|r * cosyn—|r *sinyy m. (30)
Note that the vector n and r* lie on the plane [] (or the
frontal plane), r* is the projective vector of r to [] and

r = AK is the vector along a lower extremity with the

ankle A and the knee joint K. Therefore, from (30), we
understand that the angle 1 represents the transverse
inclination of the lower extremity with the fixed point A.
Namely, if 1 takes the positive value, the left (or the
right) lower extremity inclines to the inside (or the out-
side).

left (or the right) lower extremity inclines to the outside

Conversely, if 1 takes the negative value, the

(or the inside).
On the other hand, from the proof of PROPOSITION
5, we have

r*
XN

31
i

sinp (-e,,).
From (31), we understand that p represents inclination
of the vector r along the lower extremity to the front and
the rear from r* with the fixed point A. Namely, if p
takes the positive value, the lower extremity inclines to
the front from r* Conversely, if p takes the negative
value, the lower extremity inclines to the rear from r*.
The above discussions are suggested that, by making
use of the orthogonal coordinate system (O;e,,e 09 eq,),
we can appropriately represent each component of any
vector with respect to the lower extremity. For example,
let the components of some force f acting on a knee joint
from with respect to such a coordinate system be f,,
fp and f,, respectively. Then we can regard f, as
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the element of f along the lower extremity, f, as the
element of f making the lower extremity incline to the
front or the rear and f,, as the element of f making the

lower extremity expand or close.

4. Transformation rule to the coordinate system
connected a lower exiremity

Let us consider the transformation rule to map (O; 1, m,
n) to (Ose,, €, ew). The transformation matrix (¢,,)
From PRPPOSITION 1,
such a matrix can be formally represented by

must be an orthogonal matrix.

el e.m e,.n

(ta)=|€,1 €, m e, n|. (32a)

e,’l1 e, m e, n
Therefore, from PROPOSITION 2, the components of

any vector

v=vl+v,m+vsn=v.e +ve,+v,e, (33)

is mapped from (O; 1, m,n) to (O;e,, €, ew) according

to the transformation rule

v, =(e, Dy, +(e, - myv, + (e, n)v,
v, =(e, Dy +(e, mv, +(e, nv;. (34a)

vy = (ew Dy, + (ew ‘m)v, + (ew D 1))V

Since e,, e ps €ys P and 1 are completely deter-
mined by (26), (28), (22), (24) and (20), respectively, we

can obtain v,, v, and v, by applying to the trans-

formation (34a) tol;he given v, v, and vj.

From the discussions of POROPOSITION 5 and 6 and
the expressions (22), (26), (28) and (29), we can also
rewrite the components of the matrix (¢,,) by the ex-
pressions of only p and . For that purpose, we
must rewrite the bases e,, e, and e, by the expres-

sionsof , m,n, p and .

PROPOSITION 7. The unit vectors e,, e, and e,
provided by (26), (28) and (22), respectively, can be re-

written by

e, =sinpl—cos psinyym+ cos pcosyn

e = (34)

P
e, =—cosym-sinyn

—cos pl-sinpsiny m+sinpcosyn.

Proof. Firstly, note that v is the angle between r*

and n and the expression (19) holds. Thus, from
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n-r* =|nlr *|cosy = r *|cos
=nm-m)+Z(n-n)=_,
we have

|rc—*|=cosw.

From this expression, (30) and (22), we obtain the third

expression in (34), that is,

€, =—cosyym-sinyn.

Secondly, from (26), the proof of PROPOSITION 3
and the first expression in this proof, we have

1 ) *
e~ ppetemecn=sipte Ll Cme o
=sinpl + ||—>|k (-sinyym+ cosyn).
r

Note that, since p is the angle between r* and r and

r *-r can be expressed by
r#r=(@m+in)- El+nm+En) =0’ +£% =|r 4,
we have

r*r ) m
e |

cosp =

Therefore, we obtain the first expression in (34), that is,
e, =sinpl + cos psinyym+ cos pcosyn.

Lastly, from (28), the first and third expressions of
(33), we obtain the second expression in (34), that is,

e, = (-cosyym+siny n)
x (sinpl + cos psiny m+ cos p cosy n)
=—cos pl-sinpsiny m+sinp cosy n.

Thus this proposition is true.

Substituting (34) into each component of (32a), we
obtain

sinp  —cospsiny cosp cosy
([ab) =|—cosp
0 —cosy

—sinpsiny sinpcosy |.

—siny

(32b)

Moreover, we can represent the transformation rule (34a)

74

as follows;

Vv, =sinp v, — cos psiny v, + cos P cosy vs
Vv, ==C0s 0V —sinpsiny v, +sinp cosy vy .
Vy =—COSY vy =Sy vy

(34b)

PROPOSITION 8. The orthogonal transformation
(34a) or (34b) from (O;1, m, n) 1o (O;e,,

not include any reflection.

e,.e,) does

Proof. Taking the determinant of the transformation
matrix (32b), we have

sinp  —cospsiny cosp cosy
det(t,,) =|—-cosp —sinpsiny sinpcosy
0 —cosy —siny

= sinzp sinzlp + coszp coszzp
+ sinzp cos?y+ coszp siny
= sinzp (sinzw +cos? P)

+ coszp (cos2w+sin2w) =1.

Thus this proposition is true.

5. Application to knee impulsive force in-
duced by landing after vertical fall

When a subject lands on his feet after the vertical fall,
We
are particularly interested in the impulsive force acting

the impulsive force acts on every joint of his body.

on the knee joint. Such an impulsive force (vector) R
which occurs at the time #, and vanishes at the time ¢, is

given by the following equation;

N- ml(—vl (t) =, (@) | gk)

=1

R-=

(35)

_ mz(vz(tz)— V(1) +gk),
-4

where m,, m,, v,, V,, N, g and k are the mass of the foot,
the mass of the lower extremity, the velocity of the cen-
ter of mass of the foot, the velocity of the center of mass
of the lower extremity, the grand reaction, the constant
of gravitational acceleration and the upward unit vector,
respectively. From an experiment, we can immediately
obtain the data of the coordinate value of the every joint
the of the N.
such data and the appropriate

and components grand reaction
Furthermore, using
constants ", we can compute the components of the
impulsive force R acting to the knee joint. In order to

analyze the variable data obtained by the experiment, we



data obtained by the experiment, we use Mathematica"
on the computer *'°,

By making use of the data accumulated by repeating
such an experiment, we can compute the sets of the
components of R. They are the components with re-
spect to a coordinate system (O; i, j, k) determined by
the device for the experiment. Therefore, we must
firstly transform such components to ones with respect to
the coordinate system (O; 1, m, n).

The coordinate system (O; 1, m, n) is defined as fol-
lows. When a subject lands on his feet, we take the unit

vector m of (O; 1, m, n) as

hi+hj
m- (36a)
NU® +h,
where
h=hi+hj+hk= ArAr (37)
ARAL
and Ay and A, are the right and left ankles. Now, we
take
n=k, l=mxk. (36b)

Then, from (3), the transformation matrix (¢,,,) from
(051, j, k) to (O; 1, m, n) is provided by

1 Y
ol. (37)

(llab) = ﬁ hy hx
VTl 0 1

Furthermore, from (32b), the transformation matrix
(tygp) from (O; 1, m, m) to the coordinate system

O; er,ep,ew) connected with the lower extremity is

provided by
sinp  —cospsiny cosp cosy
(tyay) =|—cosp —sinpsiny sinpcosy |. (38)
0 —CosY —siny

By composing these transformations, we can obtain the
components R,, Rp and R.P of R in (Ose,, €, eq,)
from R,, R, and R, of R in (O; i, j, k), i.e.

R'a = t2abllbcR (39)

co

* Mathematica is a trademark of Wolfram Research Inc.
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where R'=R,, R,=R, and R';=R,.

Since any impulsive force rapidly varies, the numeri-
cal values indicating its components computed from the
data obtained by the experiment will be uneven. In
order to solve this problem, we normalize the compo-
nents of every impulsive force obtained by the experi-

ment and the computation as follows;

__ﬁ — _
Rr—|R|, Rp

R, - R,
o Rv=—r (40)
i

We will estimate, in this paper, the relation between the
angle v and the normalized component ﬁw of the

impulsive force.

The height and weight of the subject are 1.7m and
70kg.w, respectively. He lands on his feet after the
vertical fall from the stands of which heights are 0.24m
and 0.44m.

positive ones for the both lower extremities, we put

In order to take the adduction directions the

§2 —>—§2 for the left lower extremity and 1 — -y
for the right lower extremity, where R,, R, and R,

are the components of R/|R| with respect to 1, m and n

in the coordinate system (O; 1, m, mn), respectively.
Therefore, we obtain from (34b)

R, — —costy (-R,) —siny R
" 1£ 2 _1/’ 3 @1a)
= CcOsSy R, —siny Ry

for the left extremity under the replacement R, — —R,
and

Ew — - cos(—f) 1?2 - sirf—tp) E3 @1b)
=—COSY R, +siny R,

for the right extremity under the replacement  — -9.
By the above replacements, 1 and ﬁw can be regard-

ed with the adduction angles of the left and right lower
extremities and the components of the normalized im-
pulsive forces acting on the left and right knees with re-

spect to the adduction directions, respectively. In Fig-

ure 1, we show the relations between 1 and ﬁw rede-

fined above. Moreover, in the same Figure, the relation
between i and R, is also shown, where R, is rede-

fined by applying the above replacement.
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04

y [rad]

04

Figure 1. §2 and R,, with respect to the adduction an-
gle y.

6. Discussions and conclusions

In order to remove the troublesome of the term, we
call any normalized impulsive force merely impulsive
force, in this section.

Figure 1 does not show the general tendency of the
impulsive force that acts on the knee when landing after
the vertical fall, since it is not the statistical result ob-
tained by many subjects. Our result shows that the co-
ordinate system and the coordinate transformation play a
vital role to research the mechanical effect induced by a
human movement, as is below described.

Firstly, let us see the points of §2 or the approximate
curve Ez () (making use of the method of least
squares) in Figure 1.  These values are based on the
data that are measured by the exterior observer in Carte-
sian coordinate defined by the device. If one straight-
forwardly regard §2 as the adduction direction compo-
nent of the knee impulsive force, one may interpret that
it positively increases with the positive increase of the
adduction angle 1. However, one should note that,
since the coordinate system of the observer is exterior to
one of the subject, §2 is not the adduction impulsive
force component which the subject indeed experiences.

Secondly, let us see the points of ﬁw or the approxi-

mate curve IEW (¥) in Figure 1. ﬁw is a component of

the knee impulsive force in the coordinate system con-
nected with the lower extremity. Namely, the adduc-

tion direction component of the knee impulsive force

which the subject indeed experiences is R,. In con-
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trast to ﬁz, IE/}, which takes the comparatively large

value at the negative 1), decreases with the positive in-
crease of the adduction angle 1 and almost vanishes at
P = 0.25[rad].

an effect from the only analyses of experimental data

It is difficult to immediately grasp such

without setting up the appropriate coordinate system
connected with the lower extremity and transforming to
such a coordinate system from the exterior coordinate
system defined by the device.
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