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ABSTRACT 

A novel running wearable called the Stryd Summit footpod attaches to a runner’s right or 

left shoe and measures running power output.  The developers of the product purport that the 

footpod’s power and form power measures may correlate with metabolic data gathered in a 

lab.  PURPOSE: Explore the relationship between power output and running economy at 

threshold pace.  METHODS:  Seventeen well-trained distance runners, 9 males and 8 

females, completed a running protocol at threshold pace.  Participants ran two discontinuous 

four-minute stages: one with their self-selected cadence (SS), and one with cadence lowered 

by 10% (LC).  Metabolic data, power, and form power output were recorded for each 

cadence condition.  RESULTS: Average self-selected cadence was 179.60 strides·min-1 

(±8.43), while lowered cadence was 172.54 strides·min-1 (±9.46).  Average change in 

cadence from SS to LC was 3.93%.  The average running economy expressed in terms of 

oxygen cost (±SD) at self-selected cadence was 201.58 ml·kg-1·km-1 (±12.80), and at 

lowered cadence was 204.48 ml·kg-1·km-1 (±11.48).  Average caloric unit cost at SS was 

1.05 kcal·kg-1·km-1 (±0.07), and at LC was 1.06 kcal·kg-1·km-1 (±0.06).  Average power at 

SS was 4.37 W·kg-1 (±0.48), and at LC was 4.42 W·kg-1 (±0.49).  Average form power at SS 

was 1.07 W·kg-1 (±0.09), and at LC was 1.13 W·kg-1 (±0.10).  CONCLUSIONS: The 

present findings show that measures of running economy expressed in terms of oxygen cost 

and caloric unit cost are positively correlated with Stryd’s power and form power measures. 
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Chapter 1 

Summary 

Competitive distance running capability may be predicted by three measures: 

running economy, maximal oxygen uptake, and lactate threshold.  Maximal oxygen uptake 

(VO2max) is the highest amount of oxygen a runner can consume per unit of time (Daniels, 

Yarbrough, & Foster, 1978).  Classical literature attributed improvements in running 

performance to increased VO2max from training stimuli, though research has shown VO2max 

does not change significantly over training periods (Daniels et al., 1978).  The runner’s 

lactate threshold is the point in exercise when blood lactate concentration begins to increase 

nonlinearly as intensity increases linearly (Forsyth, Burt, Ridley, & Mann, 2017).  Since 

high blood lactate concentration can cause discomfort during running, it is desirable to 

maximize ability to clear lactate from the blood (Daniels, 2014).  According to Daniels 

(2014), training at 80-88% of VO2max (lactate threshold pace, or T pace) can help improve 

the body’s ability to clear lactate from the blood.   

Running economy (RE) is the amount of oxygen a runner consumes to maintain a 

given submaximal velocity (Saunders, Pyne, Telford, & Hawley, 2004).  RE may also be 

expressed in terms of oxygen cost or energy cost, with researchers using units of ml·kg-

1·km-1 and kcal·kg-1·km-1, respectively (Fletcher, Esau, & MacIntosh, 2009; Shaw, Ingham, 

& Folland, 2014; Skovgaard et al., 2018).  Since oxygen consumption increases with 

velocity, improvements in RE mean lower energy demands at a given velocity (Hoogkamer 

et al., 2016).  These lower energy demands, in turn, may lead to improvements in race 

performance (Saunders et al., 2004).  It is desirable for competitive runners to improve RE, 
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but measuring RE usually requires expensive equipment and lab visits (Stryd Team, 2016).  

However, recent advancements in wearable running technology provide runners with more 

advanced data than ever (Woodman, Crouter, Bassettt, Fitzhugh, & Boyer, 2017), some of 

which may be related to RE. 

The Stryd Summit running footpod (Stryd, Boulder, Colorado) uses a triaxial 

accelerometer, a gyroscope, and barometer to provide runners with data for numerous 

metrics including speed, distance and a novel measure of running power output (K. Li, 

personal communication, May 26, 2017).  The Stryd Team has released two white papers to 

inform users on the benefits of using power in training and how the footpod measures a 

runner’s power (Stryd Team, 2016; 2017).  A runner’s external power output may be 

separated into three components: horizontal (forward moving) power, vertical power, and 

lateral (rotational) power (Stryd Team, 2017; Vance 2016).  The Stryd footpod reports a 

proprietary measure called form power that is intended to represent the amount of power a 

runner expends to raise their center of mass upward against gravity with each step (Stryd 

Team, 2016).  Much like running economy, a lower form power value may indicate 

improvements in running form (Stryd Team, 2016).  Since low form power values are 

contingent upon minimizing vertical and lateral power output through optimization of 

biomechanical factors (Stryd Team, 2016), it is believed, but not substantiated that 

improvements in this measure may be related to improvements in RE.  

Statement of the Problem 

Improving running economy is a desirable outcome of distance running training 

because better RE may lead to better performance (Daniels, 1985; Williams & Cavanagh, 
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1987; Hoogkamer et al., 2017).  However, measurement of running economy requires 

expensive equipment that most runners do not have access to.  Recent advancements in 

consumer wearable technology have caused an increase in use of these devices (Meyer & 

Hein, 2013).  As the devices have become more sophisticated, consumers have had access to 

more fitness data than ever before (Li et al., 2015).  While wearable technology has seen an 

increase in use, there have been few studies examining the use of new proprietary measures.  

Since RE is considered central to running performance, but can be costly to measure, an 

alternative metric (form power) measured by a wearable sensor may be useful to runners.   

Purpose 

The purpose of this study was to measure the correlation between Stryd form power 

and running economy at lactate threshold pace (Daniels, 2014) in well-trained collegiate 

distance runners. 

Hypotheses 

H0:  There is no positive relationship (r < 0.3) between Stryd’s form power and 

running economy. 

Ha: There is a positive relationship (r > 0.3) between Stryd’s form power and 

running economy. 

Delimitations 

The delimitations of this study include: 

1. Participants were “well-trained” runners.  “Well-trained” was defined as running 

an average of 25 miles per week or greater, with minimum VDOT values of 44 ml·kg-1·min-

1 for women and 50 for men. 
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2. VO2max was estimated using VDOT values from Daniels (2014, p. 81-82). 

3. Threshold (T) pace was set according to the pace tables from Daniels (2014, p. 

84-85).   

4. Self-selected cadence was measured and participants ran in time with a 

metronome at their self-selected cadence for the “SS” stage.  Participants were instructed to 

lower cadence by 10% in time with a metronome for the “LC” stage of the running trial.  

Order of stages was randomized via coin flip. 

5. By default, the Stryd Summit footpod system calibrates itself over time to the 

main user’s stride, so the autocalibration on the Garmin watch was set to “OFF” with the 

calibration factor set to 100. 

Limitations 

The limitations of this study include: 

1. The actual sample size (N = 17) of the study was below the power analysis 

recommendation of 21 participants due to lack of readily available participants who were 

inside the required age range and met performance standards.  

2. The Stryd Summit sometimes took a few moments to link to the Garmin Fenix 3, 

and momentarily experienced data dropout of certain metrics.  These difficulties did not 

impact statistics.   

3. Technical issues with the heart rate monitors caused unreliable heart rate data for 

some participants. 

4. While participants were instructed to abstain from vigorous activity for 12 hours 

prior to testing, this could not be controlled. 
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5. Collegiate athlete participants were in-season and completing their training 

concurrently with the study. 

6. Since it is intellectual property, the specifics of the Stryde power calculation are 

unknown to the researchers. 

7.  Some participants had trouble matching their footfalls with the metronome beats 

causing recorded cadence values to deviate from the assigned cadence values. 

Assumptions 

The following assumptions were made regarding this study: 

1. All participants were assumed to be well-trained distance runners given their 

answers from the running history questionnaire.   

2. Participants were able to hold threshold (T) pace for the trial duration. 

3. Decreasing stride frequency changed running economy. 

4. Participants abstained from vigorous running and/or weightlifting for at least 12 

hours prior to testing.   

5. Participants answered the questions on the running questionnaire honestly. 

Definition of Terms 

Running Economy Energy demand (VO2) for a given submaximal running 

velocity and calculated as the VO2 per distance run 

(ml·kg-1·km-1, also known as cost of running) (Daniels, 1985; 

Saunders et al., 2004; Skovgaard et al., 2018).  It may also be 

expressed in terms of caloric cost per distance run (kcal·kg-

1·km-1) (Shaw et al., 2014). 
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Stryd Summit Footpod A small pod that attaches to a runner’s shoelaces to record 

several variables of interest, including power and form power.  

The footpod can be attached to either the right of left shoe.  

The power values reported are intended to be a mechanical 

estimate of running intensity.  The footpod uses a triaxial 

accelerometer, a gyroscope, and a barometer to calculate 

values reported. 

Power A metric of mechanical output expressed in watts.  Power is 

defined as the amount of work done over a given unit of time.  

External running power output can be separated into positive 

and negative components from push off and braking, 

respectively (Cavagna, Komarek, & Mazzoleni, 1971).  The 

Stryd footpod measures the positive value component of a 

runner’s stride that comes from push-off (Stryd Team, 2017). 

Form Power A Stryd proprietary measure, expressed in watts.  Represents 

the power expended to raise one’s center of mass against 

gravity with each step (Stryd Team, 2016). 

Cadence The number of strides a runner takes per given amount of 

time.  Usually reported in strides per minute (spm).  

Ground Contact Time The amount of time a runner’s foot spends touching the 

ground before liftoff. 
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Vertical Oscillation A measure of a runner’s vertical displacement of the center of 

mass from stride to stride (Cavagna et al., 2005). 

Leg Spring Stiffness A measure of stiffness, expressed in kN/m.  This measure 

takes all the muscles, tendons, and ligaments in the lower 

extremities and applies a linear spring-mass model to them. 

VO2 A measure of oxygen consumed, generally expressed as 

ml·kg-1·min-1.  A runner’s maximum is known as VO2max. 

VDOT An estimation of VO2max using race performance times 

(Daniels, 2014). 

RER Respiratory exchange ratio; ratio of CO2 produced from 

metabolic activity to O2 consumed.  Can be used to predict 

fuel sources and is part of running economy when calculated 

for kcal/km. 

Blood Lactate A measure of lactate concentration in the blood.   

OBLA Onset of blood lactate accumulation; the moment lactate 

begins to accumulate in the blood. 

Lactate Threshold The exercise intensity at which a rapid increase in blood 

lactate concentration occurs (Forsyth, Burt, Ridley, & Mann, 

2017).  Generally expressed as a percentage of VO2max.   

Threshold Pace  A running intensity that is difficult enough to increase blood 

lactate concentration, but is manageable for roughly an hour in 
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race conditions.  Work at this pace is intended to improve the 

body’s ability to clear blood lactate (Daniels, 2014, p. 53-54). 

Significance of the Study 

Stryd engineered and developed power measurement algorithms based on a runner’s 

body weight and movement data received from the Stryd Summit footpod.  While the 

developer’s own testing showed a strong relationship between power and RE (Stryd Team, 

2017) it is unclear if this relationship is tied to changes in running technique.  If indeed the 

Stryd footpod measures of power and form power are related to running economy, the 

footpod could be a useful tool for runners and coaches to monitor running economy.  Since 

changes to RE may lead to changes in running performance (Hoogkamer et al., 2016), a 

measurable improvement in power or form power over time may improve performance.  

Therefore, the goal of the present study to examine power and form power’s relationship 

with measured running economy.    

  



 
 

9 

Chapter 2 

Review of Literature 

Running economy (RE) can be defined as the energy demand required to sustain a 

submaximal velocity, or the energy cost to cover a given distance at a given submaximal 

running velocity (Daniels, 1985; Saunders et al., 2004).  RE in terms of oxygen cost can be 

calculated using measurements of steady-state oxygen consumption (VO2), distance 

traveled, and participant body mass and may be expressed with units of ml·kg-1·km-1 

(Fletcher et al. 2009; Skovgaard et al., 2018).  RE may also be expressed in terms of caloric 

unit cost with units of kcal·kg-1·km-1 if one factors in respiratory exchange ratios (Shaw et 

al., 2014).  According to Saunders et al. (2004), many factors, both physiological and 

biomechanical, modulate RE in well-trained distance runners.  Metabolic adaptations within 

muscles from training can improve RE (Saunders et al., 2004).   Strength training alongside 

endurance training also has been shown to improve RE (Denadai, Aguiar, Lima, Greco, & 

Caputo, 2016; Paavolainen, Häkkinen, Hämäläinen, Nummela, & Rusko, 1999; Storen, 

Helgerud, Stoa, & Hoff, 2008; Berryman, Maurel, & Bosquet, 2010).  Recent research by 

Skovgaard et al. (2018) has indicated that RE may be improved through high intensity 

interval training (HIIT).  It is believed that HIIT may drive a reduction in expression of 

proteins that have a role in energy intensive processes during exercise, thus resulting in 

improved RE (Skovgaard et al., 2018).  Improving RE is desirable since it is considered one 

of the primary determinants of running performance (Hunter et al., 2015). 

 The Stryd Summit footpod is a new piece of wearable technology that is intended to 

help runners improve their training by using power values.  Power values reported by the 
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Stryd footpod give a near-immediate gauge of intensity to the runner.  The Stryd footpod 

uses Bluetooth wireless technology to pair with either a smart phone or supported GPS 

watch and uses a triaxial accelerometer, gyroscope, and barometer to record a number of 

measures related to biomechanical factors.  The Stryd footpod measures (or calculates) and 

reports to users ground contact time (ms), vertical oscillation (cm), leg spring stiffness 

(kN/M), power (watts), form power (watts) and stride frequency (also known as cadence, 

measured in strides per min).  Form power is one of Stryd’s proprietary measures, which is 

meant to represent the power expended to raise one’s center of mass with each step (Stryd 

Team, 2016). 

Running Economy 

Running economy is considered an essential component of distance running 

performance.  It is generally considered a better predictor of performance than VO2max 

among similarly capable distance runners (Saunders et al., 2004).  Since RE is related to 

oxygen consumption at submaximal velocities, improving RE values could mean lower 

oxygen consumption at faster velocities, which may improve performance (Daniels, 1985). 

Running economy and biomechanical factors.  Running economy is related to a 

number of biomechanical factors including vertical oscillation, ground contact time, stride 

length, and stride frequency. Cavanagh, Pollock, and Landa (1977) compared biomechanical 

characteristics of elite runners against good runners.  The research found that elite runners 

registered slightly less vertical oscillation, had better biomechanical symmetry, and had 

better RE values during a submaximal effort run at 10 mph.  Mean VO2 values for the good 

and elite groups were 55.6 and 52.6 ml·kg-1·min-1, respectively.  The elite runners had a 
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strong correlation between stride length and leg length (r = 0.67), whereas the good runners 

had no significant correlation (r = 0.10) (Cavanagh et al., 1977).  The researchers posited 

that this discrepancy was due to elite runners taking shorter, more optimal strides that better 

suited their leg lengths.  

Williams and Cavanagh (1987) examined the relationship between biomechanical 

factors, RE, and performance measures in 31 participants running at a submaximal velocity 

of 3.6 m·s-1 and found that those with the best RE had greater vertical oscillation of the 

center of mass.  However, the researchers were careful to point out that RE is not modulated 

exclusively by these factors, but instead is influenced by a number of biomechanical factors, 

with the weight of each factor’s influence depending on the individual (Williams & 

Cavanagh, 1987). 

Footwear may have an effect on running economy.  Hoogkamer et al. (2016) added 

discrete weights to running shoes in order cause participants to run with poorer RE.  The 

authors found that 3000 m performance time increased 0.78% per 100g added to each shoe.  

Recently, Hoogkamer et al. (2017) tested a prototypical marathon racing shoe intended for 

high energy return (released to the public as the Nike Vaporfly) against already available 

marathon racing shoes (the Nike Zoom Streak 6, and the Adidas adizero Adios BOOST 2).  

The researchers tested 18 “high-caliber” male runners who could run 10,000 meters in either 

31 minutes or less at sea level or in 32 minutes or less at altitude. The researchers found that 

over three velocities (14, 16, and 18 km·h-1) with all participants completing testing twice, 

runners used an average of 4.16% less metabolic energy in the prototype shoe compared to 
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the Nike Streak 6, and an average of 4.01% less metabolic energy in the prototype shoe 

compared to the Adidas adizero Adios BOOST 2 (Hoogkamer et al., 2017). 

Cavanagh, Heglund, and Williams (2005) forced lower vertical oscillation on five 

participants by having them run across fixed force platforms in an aircraft undergoing flight 

profiles to simulate a gravity value of 1.3g.  It was reported that lowered vertical oscillation 

through simulated gravity resulted in higher stride frequency, lower variation in external 

energy, and high internal work to move the center of mass.   

A runner’s velocity is the product of stride frequency and stride length (Lieberman, 

Warrener, Wang, & Castillo, 2015) and these factors have been manipulated to cause change 

in RE (Halvorsen, Ericksson, & Gullstrand, 2012; De Ruiter, Verdijk, Werker, Zuidema, & 

de Haan, 2014; Lieberman et al., 2015). 

Stride frequency and running economy.  De Ruiter et al. (2014) tested running 

economy in novice and experienced runners across seven different stride frequencies in 

addition to their own self-selected stride frequency in order to calculate each participant’s 

optimal stride frequency based on minimum VO2 values (self-selected frequency ± 18%).  

The researchers successfully caused a change in RE at ±6%, ±12%, and ±18% of self-

selected stride frequency (De Ruiter et al., 2014).  The novice runners chose a self-selected 

stride frequency of 77.8±2.8 strides·min-1 and the experienced runners chose a self-selected 

stride frequency of 84.4±5.3 strides·min-1.  Optimal stride frequencies for the novice and 

experienced runners were calculated as 84.9±5.0 and 87.4±4.8 strides·min-1, respectively.  

These findings were corroborated by past findings from Cavanagh and Williams (1982) who 
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noted that novice runners typically run at a less optimal stride frequency than more 

experienced runners.   

Halvorsen et al. (2012) studied the effects of reducing stride frequency on running 

economy in male runners.  The researchers set target values for stride frequency to 5 and 

10% below self-selected frequencies. VO2 and stride frequency had a correlation value of -

0.19, showing that RE degraded slightly with decreases in stride frequency from self-

selected values.  The researchers concluded that immediate changes to stride frequency 

usually have a negative effect on running economy.  

Tartaruga et al. (2012) examined the relationship between kinematic variables and 

running economy in distance runners.  It was found that RE was correlated with a number of 

the kinematic variables measured including vertical oscillation (r =.65), stride length (r 

=.61), stride frequency (r = -.61), balance time (r =.61), relative stride length (r =.46), range 

of elbow motion (r = .42), internal knee angle at foot strike (r = .41), and internal ankle 

angle at foot strike (r = -.32).  

Lieberman et al. (2015) tested 14 experienced runners who averaged 30 km or more 

of running per week at stride frequencies of 75, 80, 85, 90 and 95 strides per minute at a 

velocity of 3.0 m·s−1 with a goal of finding a metabolically optimal stride frequency along 

with creating a regression calculation to predict optimal stride frequency.  Researchers 

predicted optimal stride frequencies (OSF) for participants by solving for the intersection of 

two regressions:  measured stride frequency versus braking impulse, and measured stride 

frequency versus maximum hip flexion moment in the sagittal plane during swing phase.  

The researchers were unable to measure metabolically optimal stride frequency for two 
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subjects and excluded one outlier with very high OSF.  Metabolically OSF averaged 

84.79±3.62 strides per minute (N = 11) with a range of 79.5-93.4 strides per minute.  

Predicted OSF averaged 84.7±1.74 (N = 13) and was calculated with all subjects but one 

outlier.  The researchers concluded that many runners have a submaximal OSF of about 85 

strides per minute. 

Running economy and physiological factors.  Running economy is influenced by a 

number of physiological factors as well.  Maximal aerobic capacity (VO2max), lactate 

threshold, and running economy are considered to be main physiological factors of running 

performance (Saunders et al., 2004).  Bosco et al. (1987) explored the relationship between 

muscular efficiency and running economy.  Since muscle fiber type composition differs 

between individuals, part of inter-individual differences in RE may be explained by 

differences in ability to store and use elastic energy from muscle (Bosco et al., 1987).  The 

researchers concluded that runners with higher numbers of type-I muscle might be more 

economical at slow speeds, whereas faster runners and sprinters might be more economical 

at faster speeds (Bosco et al., 1987).  These claims are corroborated by the findings of Inbar, 

Kaiser, and Tesch (1981).  Inbar et al. recruited 29 males (long distance runners n = 7, short 

distance runners n = 9, sedentary n = 8, physical education students n = 5).  Among the 

sample, there was a positive correlation between percent of fast-twitch muscle fibers and 40-

m sprint time (r = 0.45), and a negative correlation between percent of fast-twitch muscle 

fibers and 2000-m run time (r = -0.60).  It would appear that having a higher percentage of 

slow-twitch (type-I) muscle fibers is beneficial for distance running performance. 

 Hunter et al. (2015) found that longer Achilles tendon length, high type-II muscle 
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fiber concentration, and leg strength (as measured by leg press) may have a positive 

relationship with RE.  While running, generation of power comes from elastic energy 

obtained during the push-off phase of a runner’s stride (stretch-shortening cycle [SSC] 

potentiation) (Hunter et al., 2015).  It is believe that energy gained during the SSC can 

reduce the energy requirements of running (Hunter et al., 2015).  As such, it is desirable to 

maximize elastic energy stored during the SSC to maximize late eccentric force output.  The 

researchers found that type IIx muscle fiber percent and leg strength were correlated to late 

eccentric force development (r = 0.70 and r = 0.95, respectively).  Achilles tendon length 

and late eccentric force development were positively correlated with force stored during the 

SSC (r = 0.42 and r = 0.76, respectively).  Additionally, SSC force was correlated with 

velocity during SSC, and velocity during SSC was correlated with RE (r = 0.61) (Hunter et 

al., 2015).  While the relationship between RE and muscle fiber types is still unclear, the 

researchers suggest that type-II fibers may be related to improved RE at high speeds due to 

increased ability to store and use elastic energy at high contraction rates (Hunter et al., 2015; 

Bosco et al., 1987). 

Shaw, Ingham, Atkinson, and Folland (2015) studied the correlation between RE and 

VO2max in 168 trained distance runners.  There was a small positive correlation between RE 

and VO2max among participants (males r = 0.26, females r = 0.25).  Interestingly, the 

researchers generally found that among these participants, those with high VO2max values 

had poorer RE.  The study was continued longitudinally with 54 participants and researchers 

found that over a median trial separation of 203 days, changes in RE were moderately 

correlated with changes in VO2max (r = 0.35).  The researchers postulate that those with 
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higher VO2max values likely oxidize lipids at a greater ratio compared to carbohydrates, and 

that explaining RE in terms of oxygen cost does not account for substrate oxidation (a higher 

ratio of lipids oxidized equates to higher measured oxygen cost)  (Shaw et al., 2015). 

Therefore, the researchers suggest measuring RE in terms of caloric cost as kcal·kg-1·km-1 

using RER values to account for substrate oxidation. 

Sawka, Pandolf, Avellini, and Shapiro (1983) completed three separate heat 

acclimation studies to test the effect of heat acclimation on metabolic cost (measured as 

VO2) during treadmill walking.  The first study tested 15 men in high (40°C, 49°C) and 

lower temperatures (20°C) before and after a heat acclimation intervention.  The second 

study tested 8 men with the same protocol and factored in time of year to see if seasons had 

an effect on acclimation.  The third study tested 10 men and 9 women to factor in participant 

gender.  The researchers found that across all studies heat acclimation lowered metabolic 

cost by 3% in hot environments (40°C, 49°C) and 5% in cool environments (20°C).  The 

researchers believed that acclimation to exercise in heat improved oxidative phosphorylation 

efficiency at the cellular level, but were unsure exactly why (Sawka et al., 1983). 

 It is believed that reduced expression of mitochondrial uncoupling proteins (UCPs) 

may be an adaptation from heat acclimation (Salgado et al., 2017).  Mitochondrial UCPs 

(mainly UCP3 in skeletal muscle) cause proton leakage through mitochondrial membranes, 

which results in energy loss through thermogenesis (Salgado et al., 2017).  During exercise, 

reduced expression of these UCPs may equate to less energy lost as heat and greater 

mitochondrial efficiency.  Salgado et al. (2017) heat stressed in-vitro myocytes by exposing 

them to 40°C heat for 24 hours.  After being heat stressed, the myocytes showed 
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significantly reduced expression of UCP3 and had increased mitochondrial efficiency.  As 

part of the same study, Salgado et al. (2017) had eight trained male runners and cyclists 

complete a ten-day heat acclimation protocol and compared exercise economy (cycling) 

from pre to post test.  The heat acclimation protocol involved ten consecutive days with two 

50-minute cycling bouts in 40°C heat separated with a 10-minute passive rest.  The exercise 

intensity for the bouts was submaximal and prescribed based on maximal exercise testing.  

The researchers found no significant change in exercise economy in the sample from pre to 

post test (Salgado et al. 2017). 

Recent research by Skovgaard et al. (2018) tested the effect of a low-volume, high 

intensity interval training intervention on the running economy of 20 trained runners.  The 

researchers took muscle biopsies before and after the intervention to monitor muscle fiber 

adaptions from pre to post intervention.  The intervention lasted 40 days and featured 10 

supervised sessions of 5-10, 30-second maximal effort runs along with 10 non-supervised 

sessions of moderate-intensity aerobic training (Skovgaard et al., 2018).  The total training 

volume (in running distance) over the 40-day intervention was reduced by 36% compared to 

before the intervention.  Participants completed two 10-km performance runs both before the 

intervention and after the intervention.  One of the 10-km trials was run the day after 

participants completed a three-hour glycogen depletion protocol, which allowed researchers 

to force increased fast twitch muscle fiber recruitment for the duration of the 10-km test.  

Participants showed improved running economy and decreased expression of UCP3 from 

pre to post test for the normal 10-km trial.  However, participants showed no significant 

change in running economy from pre-to-post test for the glycogen-depleted 10-km trial 
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(Skovgaard et al., 2018).  The researchers believe the improved economy is a result of 

adaptations in slow twitch muscle fibers elicited by the high intensity, low volume 

intervention. 

Physiological factors and aging.  Recent research into aging and running 

performance has shown that there is a general gradual decline in fitness through aging 

(Everman, Farris, Bay, & Daniels, 2017; Forsyth et al., 2017).  However, the number of 

athletes older than 35 is steadily increasing as people turn to fitness to fight aging (Forsyth 

et al., 2017).  Everman et al. (2017) conducted a 45-year longitudinal study on 26 elite 

distance runners.  Initially tested in 1968 prior to the US Olympic trials, participants had a 

mean VO2max value of 78 ± 3.1 ml·kg-1·min-1 and mean running economy value of 196 ± 7.0 

ml·kg-1·km-1.  In 1993 and 2013, 22 of the 26 participants returned for testing.  VO2max 

values degraded to 65 ± 6.0 in 1993 and 47 ± 8.1 ml·kg-1·min-1 in 2013.  RE values 

increased to 205 ± 16.5 in 1993 and 240 ± 27.0 ml·kg-1·km-1 in 2013, indicating higher 

energy demands at submaximal effort.  Researchers concluded that high fitness levels in 

early years of life seem to contribute to high fitness levels through years of aging (Everman 

et al., 2017). 

Lactate thresholds are also affected by aging (Forsyth et al., 2017).  There is a net 

decrease in blood lactate concentration as aging occurs, so methods of determining lactate 

threshold that use absolute blood lactate concentrations are unsuitable for veteran runners.  

The researchers also posit that decreases in VO2max due to aging cause the lactate threshold 

to shift to a higher percentage of VO2max (Forsyth et al., 2017).  It was found that using the 

maximal deviation method of lactate threshold determination is most appropriate for veteran 
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athletes.  This method measures the maximal distance between distance between the line of 

best fit on a lactate curve, and a straight line that connects the two endpoints of the curve 

(Forsyth et al., 2017).   

Caloric unit cost.  While running economy can be defined as the energy demand 

required to cover a given distance or run a submaximal speed, it can also be expressed in 

terms of caloric cost (Shaw et al., 2014).  Classically, running economy based on energy 

cost has been expressed in terms of oxygen consumption as ml·kg-1·km-1.  However, Shaw 

et al. (2014) suggest that measuring RE as a function of oxygen cost may not be valid at 

high intensity since at VO2max, oxygen cost will not continue to increase with increasing 

running speed.  The classical RE calculation also assumes that oxygen consumption alone 

can provide an accurate representation of ATP turnover (Shaw et al., 2014).  As such, the 

authors concluded that expressing running economy as a function of caloric unit cost may be 

more appropriate because it factors in respiratory exchange ratio.  Respiratory exchange 

ratio (RER) equations were used to estimate substrate utilization (g/min) and energy cost 

was calculated under the assumption that fat and carbohydrate provided 9.75 and 4.07 kcal 

per gram, respectively (Shaw et al., 2014). 

Running economy on treadmill vs. on track.  Since the energy demands differ, 

running economy may differ slightly between overground and treadmill running conditions.  

Saunders et al. (2004) posit that 2-8% of energy expenditure during overground running is 

spent overcoming air resistance depending on race pace and wind.  Since running on a 

treadmill removes most air resistance, energy costs are believed to be lower during treadmill 

running when compared to overground running.  Jones and Doust (1996) recommend using 
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a treadmill grade of 1% to compensate adequately for the extra energy demand air resistance 

presents.  However, Mooses, Tippi, Mooses, Durussel, and Mäestu (2015) found that 

competitive European distance runners had significantly better RE on a running track when 

compared to a treadmill with a 1% incline.  The researchers found that recorded VO2max 

values were identical on the track and treadmill, but participants were running at a higher 

percentage of their VO2max while on the treadmill.  All participants were habituated to 

treadmill running, but still had better RE on the track (215.4 ± 12.4 on track, 236.8 ± 18.0 

ml·kg-1·km-1 on treadmill).  It is believed that the relationship between RE and running 

surface changes depending on the participant demographic and the biomechanical 

adjustments they make between surfaces (Mooses et al., 2015). 

Running economy and weight training.  It has been generally agreed that running 

economy can be improved with concurrent endurance and strength training (Denadai et al., 

2016).  Paavolainen et al. (1999) implemented a nine-week explosive strength training 

intervention for a group of 10 experimental participants.  The experimental group replaced 

32% of their training volume with 15-90 min explosive strength training sessions consisting 

of different sprint and jump exercises.  A control group (n = 8) replaced just 3% of their 

training volume with explosive strength training.  The experimental group saw a significant 

improvement in RE and 5k performance time (from 18.5 to 17.8 min) (Paavolainen et al., 

1999).  

Storen et al. (2008) supplemented normal endurance training with an 8-week heavy 

weight training program.  Participants performed half squat sets three times a week over the 

intervention and it was found that the participants improved their RE by about 5% when 
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running at 70% of VO2max.  Berryman et al. (2010) had 35 well trained male distance runners 

assigned to either plyometric, weight training, or control interventions over an 8-week 

period.  All participants performed the same endurance training program.  The researchers 

found that plyometric training lead to a larger improvement (218 ± 16 to 203 ± 13 ml·kg-

1·km-1) in running economy when compared to the weight training group (207 ± 15 to 199 ± 

12 ml·kg-1·km-1), though both groups saw a significant improvement.  The control group 

saw no change.   

Wearable Technology in Running 

 Use of wearable technologies (wearables) like GPS watches, fitness trackers, and 

pedometers has increased in recent years (Woodman et al., 2017).  Researchers have studied 

wearables as a means to increase physical activity, but have found that sometimes users face 

barriers in usability and acceptance of technology (Meyer & Hein, 2013).  However, 

wearables have been cited as an exciting advancement since they provide more precise data 

than self-assessment can (Meyer & Hein, 2013).  Wearables have been seeing increased use 

in performance settings as well, with sports teams and high level athletes taking advantage 

of technological advancements to track data over time to pinpoint areas for improvement (Li 

et al., 2015).  Recent advancements in wearables are leading to novel metrics that may or 

may not be useful to athletes trying to improve their performance, much like Stryd’s form 

power.   

Stryd Summit footpod.  The Stryd Summit (Stryd, Boulder, Colorado) footpod is a 

novel wearable sensor for competitive runners and triathletes and reports pace, distance, 

vertical oscillation, cadence, leg spring stiffness and ground contact time data.  The Stryd 
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footpod is unique in that it also reports proprietary running power and form power measures 

to users (Stryd, Power Meter for Running).  

 Running power output can be separated into horizontal, vertical, and lateral 

components (Vance, 2016; Stryd Team, 2017).  The Stryd Team points out in their 2017 

white paper that running is a cyclic activity and that within a complete stride, net work done 

is roughly equal to zero (power = work · time-1, therefore, net power output is also roughly 

zero).  Negative external work is applied the runner by environmental forces like gravity, 

ground friction, and wind resistance (Stryd Team, 2017). The team explains that positive 

external work done during running is a result of the runner working against environmental 

forces by pushing off the ground.  The Stryd footpod uses a triaxial accelerometer, a 

gyroscope, and a barometer embedded into a small shoe-mounted chip to measure the power 

output from the positive component of the runner’s net work completed (K. Li, personal 

communication, 2017; Stryd Team, 2017).  The Stryd Team purports that this positive 

component of external work is directly correlated with metabolic energy expenditure (Stryd 

Team, 2017).  To compare power values against metabolic expenditure, the Stryd Team 

tested nine runners from the recreational to sub-elite level at eight different speeds (8 km·h-1 

through 20 km·h-1 increasing by 2 km·h-1 per stage) for three minutes each while recording 

power output and oxygen consumption.  The team found that power (W·kg-1) was strongly 

correlated with metabolic cost (VO2 in ml·kg-1·min-1) in their sample (r2 = 0.96). The exact 

methodology behind the power calculations is unknown to the researchers since the power 

calculation algorithm is part of Stryd’s intellectual property. 
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Form power is explained as the power to raise one’s center of mass against gravity 

with each stride (Stryd Team, 2016) and can be considered as a factor of vertical and lateral 

components of positive external work (Stryd Team, 2017).  It is believed that a runner may 

be able to improve their biomechanical efficiency over a long period time through 

monitoring power and form power values both acutely during daily runs and longitudinally 

over training periods (Stryd Team, 2016).  Improvements in biomechanical factors can also 

improve RE, and over time may help a runner perform better in competition (Williams & 

Cavanagh, 1987).  The Stryd Team posits that runners who train with the Stryd footpod 

while monitoring power values may be able to monitor changes in running economy through 

changes in power and form power (Stryd Team, 2016). 
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Chapter 3 

Methods 

 Running economy is the energy demand required to run at a given submaximal pace 

or cover a given distance (Jones & Carter, 2000; Saunders et al. 2004).  It may also be 

expressed in terms of oxygen cost or energetic cost, with units of ml·kg-1·km-1 and kcal·kg-

1·km-1, respectively (Fletcher et al. 2009; Shaw et al., 2014; Skovgaard et al., 2018).  It is a 

well-known measure associated with running capability, but is fairly difficult to measure.  A 

new running wearable sensor that has been released, the Stryd Summit footpod, that attaches 

to a runner’s shoe and records power output during runs.  It also records its own proprietary 

measure of efficiency called form power.  Form power is a metric that is meant to represent 

power that raises one’s center of mass against gravity with each step (Stryd Team, 2016).  

Form power may have a relationship with running economy.  The product is attractive to 

runners and triathletes alike because it may provide a relatively low-cost alternative to 

monitoring running economy through lab testing using expensive equipment.  Improvement 

in running economy and efficiency usually leads to better performance (Williams & 

Cavanagh, 1987).  As such, runners monitoring Stryd power readings may more easily see 

improvement over time, and may be able to narrow down training methods that improve 

economy. 

 Improvements in running economy may largely be attributed to improvements in 

biomechanical running form.  In its simplest form, a runner’s velocity is their stride length 

multiplied by stride frequency (Lieberman et al., 2015).  While running economy is related 

to these factors, it is modulated by many additional biomechanical factors.  Tartaruga et al. 
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(2012) found correlations between many biomechanical factors and running economy 

including vertical oscillation, stride length, stride frequency, balance time, and knee and 

ankle angles.  It is difficult to tell which factors improve running economy the most.  For 

example, some researchers have reported lower vertical oscillation leads to improvements in 

RE (Cavanagh et al., 1977), while others report those tested with best economy have higher 

vertical oscillation (Williams & Cavanagh, 1987). 

 Running economy often changes based on the running surface.  Most believe running 

economy to be highest on a treadmill because of lack of air resistance (Saunders et al, 2004; 

Jones & Doust, 1996).  However, Mooses et al. (2016) found that high-level runners actually 

had better running economy on a running track compared to a treadmill even though the 

participants were habituated to treadmill running.   

 The purpose of this study was to measure form power and running economy and 

assess the relationship.  It was hypothesized that form power would be positively correlated 

with running economy. 

Methods 

Participants.  A correlational power analysis was run to determine a required 

sample size using G*Power 3.1.9.2 (Universität Düsseldorf, Germany).  With effect size set 

to .60, α < .05, and power set to 0.95, a total required sample size of 21 participants was 

recommended.  A total of 17 participants were recruited and took part in the study.  

Participants were recruited from the SUNY Cortland cross country team and the SUNY 

Cortland kinesiology department.  Participant VO2max values were estimated and reported as 

VDOT using the participant’s most recent race performance times and VDOT estimation 
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charts from Daniels (2014, p. 81-82). “Well-trained” was defined as running an average of 

25 miles per week, with a minimum VDOT of 44 ml·kg-1·min-1 for women (a 22:15 5k) and 

50 ml·kg-1·min-1 for men (a 19:57 5k).  Informed consent was obtained, and a physical 

activity readiness questionnaire was completed before the running trial.   

Instruments.  Testing took place at the SUNY Cortland exercise physiology lab.  A 

Parvo Medics TrueOne 2400 metabolic analyzer (Parvo Medics, Sandy, UT) was used to 

record gas exchange measures.  Gas exchange data were recorded on a Dell desktop 

computer running Windows 7.  Form power and cadence were recorded by a Stryd Summit 

footpod (Stryd, Boulder, Colorado).  The footpod was paired via ANT+ to a Garmin Fenix 3 

(Garmin Ltd., Olathe, Kansas) with the Stryd Run Data Field loaded.  Testing was 

completed on a Trackmaster TMX425c treadmill (Trackmaster Treadmills, Newton, KS). 

Design and procedures.  Participants completed a running history questionnaire 

(Appendix C), an informed consent form (Appendix B) and a physical activity readiness 

questionnaire (Appendix A) in the SUNY Cortland exercise physiology lab prior to testing.  

Height and weight were measured and subsequently entered into the Stryd application to 

calibrate the footpod to the participants’ anthropometric data.  Threshold pace was set 

according to Daniels’ VDOT pace table (Daniels, 2014, p. 84-85).  This table lists VDOT 

values (estimated VO2max predicted using race performance times) and corresponding 

training paces for the values. 

Before testing, participants were given a brief overview of the protocol and 

instructed about how they should time their strides to match a metronome.  The participants 

then put on the gas analyzer mask and heart rate monitor, and the Stryd footpod was 
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attached to the runner’s left shoe.  The Stryd footpod uses a clip-on mount that locks to a 

runner’s shoelaces. The Stryd footpod was mounted approximately equidistant from 

participants’ malleolus and the toe of their shoe. If there was an obstruction on the tongue of 

the shoe that prevented ideal placement, the Stryd footpod was placed on the next row of 

laces distal from the malleolus. The same researcher mounted the Stryd footpod for all 

participants.  

Participants completed a two-stage discontinuous running protocol.  Metabolic and 

power data collection began with a five-minute warm-up run with all experimental 

equipment donned to acclimate participants to running while connected to the analyzer.  The 

participants’ self-selected cadence was determined during a one-minute run at assigned 

threshold pace at the immediate conclusion of the five-minute warm-up.  After the warm-up 

and cadence measurement, participants took a 3-minute rest.  During the rest, researchers 

calculated a cadence value 10% lower than the participants’ self-selected cadence for them 

to replicate during the experimental protocol using a Microsoft Excel Spreadsheet.  A coin 

was flipped to determine the order of testing protocol stages (SS then LC, or LC then SS):   

Self-selected cadence (SS) stage – Participants ran four minutes at assigned 

threshold pace.  Participants attempted to match their cadence with a metronome set to 

replicate their self-selected cadence from the warm-up period. 

Lower cadence (LC) stage – Participants ran four minutes at assigned threshold 

pace.  Participants attempted to match their cadence with a metronome set to a value that is 

10% lower than their self-selected cadence from the warm-up period. 
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After the warm-up rest period, participants began the first stage of the experimental 

protocol with a metronome clicking at a beat corresponding the cadence stage (SS or LC).  

Participants were instructed to match their strides with the beat of the metronome.  Upon 

completion of their first randomly assigned stage, participants rested for three minutes.  

After the first stage’s rest period, participants began their second randomly assigned stage 

with the metronome clicking at the appropriate cadence value.  Upon completion of the 

second stage, participants rested for one minute and data collection ceased. The Stryd data 

and metabolic data were then extracted from the final minute of each stage based on event 

time points noted by the researchers.  Ratings of perceived exertion were recorded at the 

completion of the SS and LC running stages.  Running economy (in terms of O2 cost and 

caloric unit cost), average power, average form power, and average cadence were calculated 

from the last minute of each running stage. 

Statistical analysis.  Statistical analysis was completed using IBM SPSS Statistics 

version 23.  A bivariate correlation analysis was run to determine if there is a relationship 

between running economy, power, and form power.  
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The Relationship Between Stryd Power and Running Economy 
In Well-Trained Distance Runners 

 
Abstract  

A novel running wearable called the Stryd Summit footpod attaches to a runner’s right or 

left shoe and measures running power output.  The developers of the product purport that the 

footpod’s power and form power measures may correlate with metabolic data gathered in a 

lab.  PURPOSE: Explore the relationship between power output and running economy at 

threshold pace.  METHODS:  Seventeen well-trained distance runners, 9 males and 8 

females, completed a running protocol at threshold pace.  Participants ran two discontinuous 

four-minute stages: one with their self-selected cadence (SS), and one with cadence lowered 

by 10% (LC).  Metabolic data, power, and form power output were recorded for each 

cadence condition.  RESULTS: Average self-selected cadence was 179.60 strides·min-1 

(±8.43), while lowered cadence was 172.54 strides·min-1 (±9.46).  Average change in 

cadence from SS to LC was 3.93%.  The average running economy (±SD) at self-selected 

cadence was 201.58 ml·kg-1·km-1 (±12.80), and at lowered cadence was 203.89 ml·kg-1·km-1 

(±11.48).  Average caloric unit cost at SS was 1.05 kcal·kg-1·km-1 (±0.07), and at LC was 

1.06 kcal·kg-1·km-1 (±0.06).  Average power at SS was 4.37 W·kg-1 (±0.48), and at LC was 

4.42 W·kg-1 (±0.49).  Average form power at SS was 1.07 W·kg-1 (±0.09), and at LC was 

1.13 W·kg-1 (±0.10).  CONCLUSIONS: The present findings show that measures of 

running economy expressed in terms of oxygen cost and caloric unit cost are correlated with 

Stryd’s power and form power measures.  
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Introduction 

 Running economy (RE) can be defined as the energy demand required to sustain a 

submaximal velocity, or the energy demand to cover a given distance at a given submaximal 

running velocity (Daniels, 1985; Saunders et al., 2004).  RE in terms of oxygen cost can be 

calculated using measurements of steady-state oxygen consumption (VO2), participant body 

mass, and distance traveled and may be expressed with units of ml·kg-1·km-1 (Fletcher et al. 

2009; Skovgaard et al., 2018).  RE may also be expressed in terms of caloric unit cost with 

units of kcal·kg-1·km-1 respiratory exchange ratios (Fletcher et al. 2009; Shaw et al., 2014).  

 Running economy is considered an essential component of distance running 

performance and is modulated by factors both biomechanical and physiological (Saunders et 

al., 2004).  It is generally considered a better predictor of performance than VO2max among 

similarly capable distance runners (Saunders et al., 2004).  Since RE is related to oxygen 

consumption at submaximal velocities (Shaw et al., 2015), improving RE values means 

lowering oxygen consumption at faster velocities, which may lead to improved performance 

(Daniels, 1985;Williams & Cavanagh, 1987; Hoogkamer et al. 2017).  Therefore, it is 

desirable for competitive distance runners to improve their economy by lowering the energy 

cost of running.   

 Running economy is related to biomechanical factors including vertical oscillation, 

ground contact time, stride length, and stride frequency (Cavanagh et al. 1977, Tartaruga et 

al., 2012).  A runner’s velocity is the product of stride frequency (cadence) and stride length 

(Lieberman et al., 2015) and these factors have been manipulated to cause change in RE 
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(Halvorsen et al., 2012; De Ruiter et al., 2014; Lieberman et al., 2015).  De Ruiter et al. 

(2014) tested runners over seven cadence values (self-selected frequency ± 18%) and 

successfully elicited a change in RE at ±6%, ±12%, and ±18% of self-selected cadence. 

 RE is also related to physiological factors including muscle fiber composition, achilles 

tendon length, and oxidative phosphorylation efficiency (Inbar et al., 1981; Sawka et al., 

1983; Bosco et al., 1987; Hunter et al.; 2015).  As such, a runner can improve RE through 

optimization of biomechanical and physiological factors competition (Williams & 

Cavanagh, 1987).  Past studies have shown RE improvements with the addition of 

strength/explosive training interventions in addition to normal endurance training 

(Paavolainen et al., 1999; Storen et al., 2008; Berryman et al., 2010; Denadai et al., 2016).  

A recent study by Skovgaard et al. (2018) found that a low-volume, high intensity interval 

training intervention improved RE of 20 trained runners. 

Use of wearable technologies (wearables) like GPS watches, fitness trackers, and 

pedometers has increased in recent years (Woodman et al., 2017).  Wearables have been 

cited as an exciting advancement since they provide more precise data than classic self-

assessment can (Meyer & Hein, 2013).  Wearables have been seeing increased use in 

performance settings as well, with sports teams and high-level athletes taking advantage of 

technological advancements to track data over time to pinpoint areas for improvement (Li et 

al., 2015).  Recent advancements in wearables are leading to novel metrics that may be 

useful to athletes trying to improve their performance. 

The Stryd Summit (Stryd, Boulder, Colorado) footpod is novel wearable sensor for 

competitive runners and triathletes and reports pace, distance, vertical oscillation, cadence, 
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leg spring stiffness and ground contact time data.  The Stryd footpod is unique in that it also 

reports running power and form power measures to users.  The Stryd footpod uses a triaxial 

accelerometer, a gyroscope, and a barometer embedded into a small shoe-mounted chip (K. 

Li, personal communication, 2017) to measure the power output from the positive 

component of the runner’s net work completed (Stryd Team, 2017).  The Stryd Team 

purports that this positive component of external work is correlated with metabolic energy 

expenditure (Stryd Team, 2017).  To compare power values against metabolic expenditure, 

the Stryd Team conducted internal testing.  The team found that power (W·kg-1) was 

strongly correlated with metabolic cost (VO2 in ml·kg-1·min-1) in their sample (r2 = 0.96).  

External mechanical power output has been measured in previous research using 

videography and force plates (Cavagna, Komarek, & Mazzoleni, 1971; Fukunaga et al., 

1980; Schepens et al., 2001). 

Stryd’s form power is explained as the power to raise one’s center of mass against 

gravity with each step (Stryd Team, 2016).  It is believed that a runner may be able to 

improve their biomechanical efficiency over a long period time through monitoring power 

and form power values both acutely during daily runs and longitudinally over training 

periods (Stryd Team, 2016).  The Stryd Team posits that runners who train with the Stryd 

footpod while monitoring power values may be able to monitor changes in running economy 

through changes in power and form power (Stryd Team, 2016). 

Improving running economy is a desirable outcome of distance running training 

because better RE may lead to better performance (Daniels, 1985; Williams & Cavanagh, 

1987; Hoogkamer et al. 2017).  However, measurement of running economy requires 
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expensive equipment that most runners do not have access to.  Recent advancements in 

consumer wearable technology have caused an increase in use of these devices (Meyer & 

Hein, 2013).  As the devices have become more sophisticated, consumers have had access to 

more fitness data than ever before (Li et al., 2015).  While wearable technology has seen an 

increase in use, there have been few studies examining the use of new proprietary measures.  

Since RE is considered central to running performance, but can be costly to measure, an 

alternative metric (power or form power) measured by a wearable sensor may be useful to 

runners.  As such, the purpose of this study was to measure the correlation between Stryd 

form power and running economy at lactate threshold pace (Daniels, 2014) in well-trained 

collegiate distance runners. 

Methods 

Participants.  A correlational power analysis was run to determine a required 

sample size using G*Power 3.1.9.2 (Universität Düsseldorf, Germany).  With effect size set 

to .60, α < .05, and power set to 0.95, a sample size of 21 participants was recommended.  A 

total of 17 participants were recruited and took part in the study (nine males, eight females).    

Participants were recruited from the university cross country team and the university’s 

exercise science department.   

Participant VO2max were estimated using race performance times and reported as 

VDOT based on the VDOT estimation chart from Daniels (2014, p. 81-82).  This chart lists 

performance times for race distances from 1500m up to a marathon and provides VO2max 

estimates based on them.  Reported VDOT for each participant was based on the race 

performance time that gave them the highest VDOT according to the chart.  “Well-trained” 
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was defined as running an average of 25 miles per week, with a minimum VDOT of 44 

ml·kg-1·min-1 for women (a 22:15 5k) and 50 ml·kg-1·min-1 for men (a 19:57 5k).  Average 

participant age (±SD) was 20.59 years (±2.29).  Average height was 1.75m (±0.08).  

Average mass was 62.42 kg (±6.91).   Average VDOT was 56.59 ml·kg-1·min-1  (±8.21).  

Informed consent was obtained, and a physical activity readiness questionnaire was 

completed before the running trial.   

Instruments.  Testing took place at the university exercise physiology lab.  A Parvo 

Medics TrueOne 2400 metabolic analyzer (Parvo Medics, Sandy, UT) was used to record 

gas exchange measures.  Gas exchange data were recorded on a Dell desktop computer 

running Windows 7.  Prior to each testing session, the metabolic analyzer was powered on 

for at least 30 minutes to warm up, then O2 and CO2 sensors were calibrated based on 

known gas tank concentrations and room air. Flowmeter calibrations were then completed 

using a 3.0L syringe.  Form power and cadence were recorded by a Stryd Summit footpod 

(Stryd, Boulder, Colorado).  The footpod was paired via ANT+ to a Garmin Fenix 3 

(Garmin Ltd., Olathe, Kansas) with the Stryd Run Data Field loaded.  Testing was 

completed on a Trackmaster TMX425c treadmill (Trackmaster Treadmills, Newton, KS). 

Design and procedures.  Participants completed a running history questionnaire, an 

informed consent form, and a physical activity readiness questionnaire in the exercise 

physiology lab prior to testing.  Height and weight were measured and subsequently entered 

into the Stryd application to calibrate the footpod to the participants’ anthropometric data.  

Threshold pace was set according to Daniels’ VDOT pace table (Daniels, 2014, p. 84-85).  
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This table lists VDOT values (estimated VO2max predicted using race performance times) 

and corresponding training paces for the values. 

Before testing, participants were given a brief overview of the protocol and 

instructed about how they should time their strides to match a metronome.  The participants 

then put on the gas analyzer mask and heart rate monitor, and the Stryd footpod was 

attached to the runner’s left shoe.  The Stryd footpod uses a clip-on mount that locks to a 

runner’s shoelaces. The Stryd footpod was mounted approximately equidistant from 

participants’ malleolus and the toe of their shoe. If there was an obstruction on the tongue of 

the shoe that prevented ideal placement, the Stryd footpod was placed on the next row of 

laces distal from the malleolus. The same researcher mounted the Stryd footpod for all 

participants.  

Participants completed a two-stage discontinuous running protocol.  Metabolic and 

power data collection began with a five-minute warm-up run with all experimental 

equipment donned to acclimate participants to running while connected to the analyzer.  The 

participants’ self-selected cadence was determined during a one-minute run at assigned 

threshold pace at the immediate conclusion of the five-minute warm-up.  After the warm-up 

and cadence measurement, participants took a 3-minute rest.  During the rest, researchers 

calculated a cadence value 10% lower than the participants’ self-selected cadence for them 

to replicate during the experimental protocol.  A coin was flipped to determine the order of 

testing protocol stages (SS then LC, or LC then SS).   

For the self-selected cadence (SS) stage, participants ran four minutes at assigned 

threshold pace while attempting to match their cadence with a metronome set to replicate 
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their self-selected cadence from the warm-up period.  For the lower cadence (LC) stage 

participants ran four minutes at assigned threshold pace while attempting to match their 

cadence with a metronome set to a value that was 10% lower than their self-selected cadence 

from the warm-up period. 

After the warm-up rest period, participants began the first stage of the experimental 

protocol with a metronome clicking at the cadence value appropriate for the stage (SS or 

LC).  Upon completion of their first stage, participants rested for three minutes.  After the 

first stage’s rest period, participants began their second stage (SS or LC) with the 

metronome clicking at the appropriate cadence value.  Upon completion of the second stage, 

participants rested for one minute and data collection ceased. The Stryd data and metabolic 

data were then lined up based on event time points noted by the researchers.  Ratings of 

perceived exertion were recorded at the completion of the SS and LC running stages.  

Running economy (in terms of O2 cost and caloric unit cost), average power, average form 

power, and average cadence were calculated from the last minute of each running stage. 

Statistical analysis.  Statistical analysis was completed using IBM SPSS Statistics 

version 23.  Paired t-tests were run to determine if statistically significant differences 

occurred in variables of interest between the two cadence conditions.  A bivariate correlation 

analysis was run to determine if there was a relationship between running economy, power, 

and form power. 

Results 

Mean data (±SD) for cadence, oxygen consumption (VO2), respiratory exchange 

ratio (RER), rating of perceived exertion (RPE), and ventilation (Ve) separated by cadence 
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condition are reported in Table 1.  One-tailed paired t-tests were run on these variables to 

find if significant differences occurred between the two cadence conditions (SS or LC).  

There were statistically significant differences between cadence conditions in the following 

variables: cadence, t(15) = 6.573, p = 0.000; VO2, t(16) = -1.856, p = 0.041; RER, t(16) = -

1.962, p = 0.034.  There were no statistically significant differences between cadence 

conditions for the following variables:  RPE, t(16) = -1.515, p = 0.075; Ve, t(16) = -1.495, p 

= 0.77. 

 
Table 1 
Cadence, VO2, RER, RPE, and Ve by Cadence Condition 

 

Cadence 
(strides·min-1) 

VO2 
(ml·kg-1·min-1) RER RPE 

Ve 
(L·min-1) 

Self-
selected 
cadence 

179.60 
(±8.43)* 

52.81 
(±8.68)* 

0.96 
(±0.06)* 

11.65 
(±1.66) 

93.80 
(±19.34) 

Lowered 
cadence 

172.54 
(±9.46)* 

53.44 
(±8.54)* 

0.98 
(±0.06)* 

12.12 
(±1.65) 

96.00 
(±18.38) 

Note. Data reported as mean (±SD). 

* Paired T-test is significant at the 0.05 level (one-tailed). 
 

Mean data (±SD) for running economy, caloric unit cost, power, and form power are 

reported in Table 2.  One-tailed paired T-tests were conducted to determine if significant 

differences occurred between the two cadence conditions (SS or LC).  There were 

statistically significant differences between cadence conditions in the following variables: 

running economy t(16) = -2.017, p = 0.031; caloric unit cost t(16) = -2.093, p = 0.027; 

power, t(16) = -6.349, p = 0.000; form power t(16) = -5.664, p = 0.000. 
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Table 2 
Running Economy and Power by Cadence Condition 

 

Running 
economy 

(mL·kg-1·km-1) 
Caloric unit cost     
(kcal·kg-1·km-1) Power (W·kg-1) 

Form power 
(W·kg-1) 

Self-selected 
cadence  

201.58 
(±12.80)* 1.05 (±0.07)* 4.37 (±0.48)* 1.07 (±0.09)* 

Lowered 
cadence 

204.48 
(±10.65)* 1.06 (±0.06)* 4.42 (±0.49)* 1.13 (±0.10)* 

Note. Data reported as mean (±SD). 
* Paired T-test is significant at the 0.05 level (one-tailed). 

 

The results of the bivariate correlation of cadence, running economy, caloric unit 

cost, power, and form power are shown in Table 3. The correlation was run on all data 

collected between the two cadence conditions combined.  It should be noted that the target 

lowered cadence of 10% below self-selected cadence was not realized. 
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Table 3 
Bivariate Correlation Matrix of Cadence, Running Economy, Caloric Unit Cost, Power, and 
Form Power 

 

Cadence Running 
economy 

Caloric 
unit cost Power Form 

power 

Cadence  -         

Running economy -0.441** - 

   Caloric unit cost -0.482** 0.985** - 

  Power -0.383* 0.560** 0.554** - 

 Form power -0.858** 0.523** 0.542** 0.707** - 

* Correlation is significant at the 0.05 level (one-tailed).  

** Correlation is significant at the 0.01 level (one-tailed). 
 
 

There were moderate, negative, linear relationships between the following variables: 

cadence and RE; cadence and form power.  There were moderate, positive, linear 

relationships between the following variables: RE and power (Figure 1); RE and form power 

(Figure 2); CUC and power (Figure 3); CUC and form power (Figure 4).  There was a 

moderately strong, positive, linear relationship between power and form power.  There was 

a strong, negative, linear relationship between cadence and form power. 
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Figure 1.   Correlation scatterplot for power and running economy. The black circles and 

solid line of best fit represent the SS condition.  The gray diamonds and dotted line of best 

fit represent the LC condition.  Data recorded during the last minute of each stage. 
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Figure 2.   Correlation scatterplot for form power and running economy. The black circles 

and solid line of best fit represent the SS condition.  The gray diamonds and dotted line of 

best fit represent the LC condition.  Data recorded during the last minute of each stage. 

  

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

150 160 170 180 190 200 210 220 230 

Fo
rm

 P
ow

er
 (W
·k

g-1
) 

Running Economy (mL·kg-1·km-1) 



 
 

42 

 

Figure 3.   Correlation scatterplot for power and caloric unit cost. The black circles and solid 

line of best fit represent the SS condition.  The gray diamonds and dotted line of best fit 

represent the LC condition.  Data recorded during the last minute of each stage. 
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Figure 4.   Correlation scatterplot for form power and caloric unit cost. The black circles and 

solid line of best fit represent the SS condition.  The gray diamonds and dotted line of best 

fit represent the LC condition.  Data recorded during the last minute of each stage. 
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Discussion 

 The purpose of this study was to explore the relationship between established 

measures of running economy (oxygen cost, caloric unit cost) and Stryd’s proprietary power 

measures (power, form power).  In the company’s white papers, the Stryd Team (2016; 

2017) purport that athletes using power measurements in training may be able to monitor 

changes in running economy through changes in power values. The present researchers 

aimed to elicit a significant change to participants’ running economy and power by forcing a 

10% decrease in cadence using a metronome.  The actual decrease in cadence was just 

3.93%.  It is believed that this smaller cadence change is the reason there was no significant 

difference in oxygen cost or caloric unit cost between the two cadence conditions.  

However, the moderate positive correlation that was found between running economy and 

Stryd’s power and form power is encouraging.  These findings suggest that there is a 

relationship between Stryd’s power metrics and running economy. 

Cadence had a strong negative correlation with form power and a moderate negative 

correlation with both measures of running economy.  Previous studies have found a 

relationship between cadence and RE (Halvorsen et al., 2012; Tartaruga et al., 2012; 

Lieberman et al. 2015), though form power may be more sensitive to changes in cadence.  

The percent change in RE from self-selected cadence to lowered cadence was 1.13%.  The 

percent change in form power from self-selected cadence to lowered cadence was 5.31%.  

Form power’s apparent greater sensitivity to cadence change may be due to the mechanical 

nature of the power measure. 
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Stryd represents a novel method of measuring running power.  Previous research by 

Cavagna, Komarek, and Mazzoleni (1971) involved using videography along with force 

plates to calculate external mechanical work and running power.  The researchers measured 

average forces during push off and braking phases of runners’ strides and used video footage 

to measure the distance and velocity traveled by each participant’s trunk between strides.  

This method resulted in power values of 2500-3000W for subjects running at 9.5 m·s-1 

(Cavagna, Komarek, and Mazzoleni, 1991). 

Should power be related to economy, it may be desirable for runners to monitor 

power values for improvement both acutely and longitudinally.  Previous studies have used 

various strength-oriented interventions for improving running economy (Denadai et al., 

2016), and similar interventions are necessary to test for improvements in power values.  

Interventions that have improved running economy in previous studies include heavy weight 

training (squats) (Storen et al., 2008), explosive strength sessions (sprinting and jumping) 

(Paavolainen et al., 1999), and plyometric training (Berryman et al., 2010). 

Conclusion 

 The present study suggests there is a relationship between Stryd’s power and form 

power, and running economy expressed in terms of oxygen cost and caloric unit cost.  While 

target lowered cadence values were not met, it would appear that form power is more 

sensitive to changes in cadence and may be more sensitive to biomechanical changes than 

RE or CUC.  
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Chapter 5 

Summary, Conclusions, Implications, and Recommendations 

Summary 

 The purpose of this study was to measure the correlation between Stryd form power 

and running economy at lactate threshold pace (Daniels, 2014) in well-trained collegiate 

distance runners.  Participants were 17 well-trained distance runners (nine male, eight 

female).  The researchers hypothesized that there would be a moderate relationship between 

form power and running economy.  This hypothesis was confirmed, though the researchers 

goal of eliciting a significant change in running economy through forced changes in cadence 

was unsuccessful.  Data from the metabolic cart were used to examine average values for 

VO2, VCO2, Ve, and RER.  Running economy expressed in terms of oxygen cost was 

calculated using VO2 values and time it would take the participant to run a kilometer at their 

assigned pace.  Caloric unit cost was calculated using Peronnet and Massicotte’s (1991) 

table of nonprotein respiratory quotients.  Data from the Stryd footpod was used to examine 

average values of cadence, power, form power, ground contact time, vertical oscillation and 

leg spring stiffness.  Form power had a moderate positive correlation with running economy 

(r = 0.524) and a moderate positive correlation with caloric unit cost (r = 0.541). 

Conclusions 

It was concluded from this study that: 

1.  There were moderate, negative, linear relationships between the following variables: 

cadence and RE (r = -0.426); cadence and CUC (r = -0.478). 
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2.  There were moderate, positive, linear relationships between the following variables: 

RE and power (r = 0.571); RE and form power (r  = 0.524); CUC and power (r = 

0.556); CUC and form power (r = 0.541). 

3.  There was a strong, negative, linear relationship between cadence and form power (r 

= -0.858). 

Implications 

 The results of the present study could be of use to coaches and athletes aiming to 

expand their data tracking with wearable technology.  The Stryd Summit footpod appears to 

accomplish the developers’ claim of providing users with “an accurate, reliable device to 

provide real-time metabolic cost estimation” (Stryd Team, 2017) through the mechanical 

measures of power and form power output as evidenced by the moderate positive 

correlations that exist between these metrics and running economy.  However, the 

participants’ inability to elicit a significant change in running economy through changes in 

cadence leaves some question as to how well the Stryd footpod can measure intraindividual 

changes in economy. 

 Should the relationship between running economy and power hold up across a range 

of running economy values, then Stryd could be an exciting new tool for coaches and 

runners.  Power may give runners a real-time estimation of metabolic activity in the field, 

allowing them to estimate their running economy both acutely during daily runs and 

longitudinally over long training periods.  With the cost to buy a Stryd Summit being 

relatively low (MSRP $199.99), power metrics present a possible alternative to expensive 

testing using established methods with metabolic carts in labs. 
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Recommendations 

 Future research involving the Stryd Summit footpod should focus on both acute and 

longitudinal methods in a similar manner to running economy studies.  It would be useful to 

examine the validity and reliability of the biomechanical factors that Stryd reports (ground 

contact time, vertical oscillation, leg spring stiffness, and cadence) against established 

measurement methods.  It may also be necessary to explore the effect footwear has on power 

metrics in a similar fashion to how Hoogkamer et al. (2016, 2017) tested footwear’s effect 

on running economy. 

 It may be beneficial to further explore the effect of cadence on power and running 

economy.  While the present researchers lowered cadence by 10%, past research has 

examined running economy over ranges of cadences (De Ruiter et al., 2014; Halvorsen et 

al., 2012; Lieberman et al., 2015).  Lieberman et al. (2015) tested participants from cadences 

between 150 and 190 strides per minute and used a regression to find a metabolically 

optimal cadence.  A similar study to find optimized cadences for power values should be 

conducted.   

 Past research has explored the effect of strength training interventions on running 

economy (Paavolainen et al., 1999; Storen et al., 2008; Berryman et al., 2010; Denadai et al., 

2016).  Longitudinal studies involving similar weight training and plyometric interventions 

should be conducted to explore the effect of said interventions on participant power values.  

If power and form power have a relationship with running economy and tend to be 

influenced by the same factors, then strength training may allow runners to run at lower 

power values for given paces, much like running economy.  If all these factors are explored, 
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we could get a more complete view of the relationship between Stryd’s power and form 

power and running economy. 
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Appendix A – Physical Activity Readiness Questionnaire (PAR-Q) 
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Appendix B – Informed Consent 

Document of Informed Consent 
Department of Exercise Science 

State University College at Cortland 
 
TITLE: The relationship between running economy and Stryd form power in well-trained distance runners 
 
STUDENT INVESTIGATOR:  Casey Austin, (518) 929-6939 
 
FACULTY SUPERVISOR: James Hokanson, PhD., (607) 423-1854 
  
PURPOSE: The purpose of this study is to determine the relationship between running economy and 
Stryd form power in well-trained distance runners at lactate threshold pace. 
 
PROCEDURES: The data gathered from the testing will be used to determine the running economy, 
average form power, and average stride frequencies of each participant. As a test subject, you will 
report on one occasion for testing.  Anthropometric data (height, weight) will be recorded and 
exercise testing will take place at the exercise physiology lab. You will be familiarized with the 
ParvoMedics TrueOne 2400 metabolic analyzer and Stryd Summit Footpod prior to testing.  To start, 
you complete a 5-minute warm-up run at a pace that is easy for you, then complete a minute at a 
calculated “threshold pace” (similar to half marathon pace).   
 
After the warm-up, you will complete an 8-minute run protocol at your calculated “threshold pace”.  
The 8-minute run will be split into 4-minute stages.  One of the 4-minute stages will be run at a self-
selected cadence.  The other 4-minute stage will be run with a cadence lower than your self-selected 
value by matching your footsteps with a metronome.  The order of the trials will be randomized.  
There will be a three-minute rest between stages.  After the protocol is complete, you will rest for 
three minutes and data collection will be completed. 
 
RISKS: The proper precautions will be to taken to ensure that the testing area, as well as all of the 
equipment being used, is safe for all participants involved in the study. The possibility of injury in 
this study is minimal.  
 
BENEFITS: The results of this study may indicate whether Stryd’s form power has a correlation 
with running economy.  Form power is unique as a novel measure of mechanical running efficiency 
and could be a useful training metric for runners. 
 
CONFIDENTIALITY: All data from the experiment will be stored in a locked cabinet, and the data 
on the computer will be stored anonymously with your identity protected.  
 
FREEDOM OF CONSENT: Participation in this study is completely voluntary, and you may 
withdraw from the project at any time. Individuals may withdraw in writing or by telephone (518 
929-6939). 

 
The student responsible for this research project is Casey Austin, who will be working in conjunction 
with the faculty members of the SUNY Cortland Kinesiology Department. For questions concerning the 
rights of human subjects, please contact, Human Subjects Committee at SUNY Cortland, (607)753-
2511. 

 
I have read and understand the activities required for my involvement in this project, and I consent to 
participate.  
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Name: ________________________________        Telephone#: 
_______________________________ 
 
Signature: _____________________________________          Date: 
____________________________ 
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Appendix C – Running History Questionnaire 

Running History Questionnaire 

Name: ____________________    ID: ______________ 

 

How long (years) have you been running competitively? _________________ 

What are your three most recent race performance times (minutes:seconds, race distance)? 

_________________  Approx. date: 

_________________  Approx. date: 

_________________  Approx. date: 

What is your approximate normal, everyday running pace (min/mile)? ____________ 

How many miles per week have you been running over the past two months (circle one)? 

1-20 miles   20-40 miles  40-60 miles  60+ miles 

How many days per week have you been running over the past two months (on average)? 

1 day  2 days  3 days  4 days  5+ days 

 

POST-TEST: Which stage of running did you prefer (low cadence or high cadence)?  
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Appendix D – Supplemental Tables and Figures 

 
Table 4.  
Cadence, Ground Contact Time, Vertical Oscillation, and Leg Spring Stiffness by Cadence 
Condition 

 

Cadence 
(strides·min-1) 

Ground Contact 
Time (ms) 

Vertical 
Oscillation 

(cm) 
LSS (kN·m-1) 

Self-selected 
cadence  179.60 (±8.43)*  205.94 (±14.03) 7.53 (±1.14)* 9.56 (±1.38) 

Lowered 
cadence 172.54 (±9.46)* 206.37 (±14.26) 8.53 (±1.49)* 9.69 (±1.42) 

* Paired T-test is significant at the 0.05 level (2-tailed). 
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Figure 5. Running economy and cadence averages by cadence condition 

The black circle represents SS cadence condition.  The gray diamond represents LC. 

Data reported as means.  Error bars represent standard deviations.   
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Figure 6. Power and cadence averages by cadence condition. 

The black circle represents SS cadence condition.  The gray diamond represents LC. 

Data reported as means.  Error bars represent standard deviations.   
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Figure 7. Caloric unit cost and cadence averages by cadence condition. 

The black circle represents SS cadence condition.  The gray diamond represents LC. 

Data reported as means.  Error bars represent standard deviations.   
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Figure 8. Form power and cadence averages by cadence conditions 

The black circle represents SS cadence condition.  The gray diamond represents LC. 

Data reported as means.  Error bars represent standard deviations.   
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Appendix E - Pilot Data Results 

 Prior to the writing of this proposal, a case study has been performed along with 

some pilot data gathering.  For the case study, a change in running economy was elicited 

using a high knee running technique.  Researchers instructed the participant to raise their 

knees to be parallel to the ground while running in order to increase cost of transport.  For 

the pilot data, a change in running economy was elicited by lowering cadence by 5% as the 

literature showed this could cause meaningful change to economy (Halvorsen et al., 2012).  

Data were collected in two separate sessions with the same participant.  One session was run 

at 8.5 mph and the second was run at 9.5 mph. 

Case study – High knee method.  Before beginning the protocol, the participant 

was given a brief overview of the protocol and instructed on proper high knee running 

technique (“Lift your knee enough for your thigh to be parallel to the ground…”). 

 The participant then put on the gas analyzer mask and recording in Breeze was 

started.  The participant stood at rest on the treadmill for 2 minutes, then the Stryd app began 

recording and the treadmill belt was turned on to a speed of 7.5 mph.  The participant ran at 

this speed for 3 minutes then began a 3-minute high knee running period to force a change in 

energy demand and running economy.  The treadmill belt was then slowed to 6.5 mph and 

the participant was instructed to resume normal running technique for 3 minutes.  Finally, 

for the last 3 minutes, the participant resumed high knee running to complete the 14-minute 

protocol.  The Stryd application recording and Breeze collection were stopped at the same 

time and time points were lined up after testing.   
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All measures were collected from steady state exercise during the last 30 seconds of 

each stage of the protocol.  The following measures are reported as mean ± standard 

deviation (if applicable).  Steady state VO2 increased as expected when running condition 

was changed (7.5mph = 35.65 ± 0.41 mL·kg-1·min-1, 7.5high knee = 44.73 ± 0.38, 6.5mph = 33.65 

± 0.55, 6.5high knee = 41.61 ± 0.52) (Figure 1).  Since VO2 changes were successfully incited 

by the high knee conditions, running economy changed as well (7.5mph = 177.41 mL·kg-

1·km-1, 7.5high knee = 222.55, 6.5mph = 192.64, 6.5high knee = 238.33) (Figure 2). 

 

 Figure 1. Steady state VO2 values by running speed/condition. VO2avg is steady state VO2 

over last 30 seconds of stage.  Data reported as means, error bars represent standard 

deviation.  



 
 

68 

 

 

Figure 2. Running economy by running speed/condition.  Data reported as means. 

 

Stryd’s form power measure changed slightly between running conditions, but there 

did not appear to be a relationship between form power and running economy (7.5 mph = 

57.64 ± 1.21 watts, 7.5high knee = 56.36 ± 0.5, 6.5mph = 55.55 ± 0.52, 6.5high knee = 57.36 ± 0.67) 

(Figure 3). 
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Figure 3. Form power values by running speed/condition.  Form Power averaged from 

steady state during last 30 seconds of stages.  Data reported as means, error bars represent 

standard deviation.  
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Pilot study – Stride frequency alteration method.  For the pilot testing of this 

study’s protocol, a participant ran two separate sessions at different running speeds while 

making alterations to stride frequency.  Sessions were done of the treadmill in the SUNY 

Cortland exercise physiology lab, and the participant’s gas exchange was measured through 

the MedGraphics Ultima analyzer.  The results from testing can be found in Table 1.  The 

participant ran for three minutes then reduced stride frequency by approximately 5% to 

induce a change in running economy (Halvorsen et al., 2012).  At 8.5mph, running economy 

improved when stride frequency was lowered by about 5%, but form power degraded.  At 

9.5mph, both running economy and form power degraded when stride frequency was 

lowered by 5%.   

 It is believed by the researcher that form power’s meaningful change at both speeds 

shows biomechanical degradation brought about by the decrease in stride frequency.  

Running economy may have improved at 8.5mph because the pace was not demanding 

enough for the runner to increase cost of transport by lowering stride frequency.  As such, it 

will be important to choose a pace that is appropriately demanding for further research.  
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Table 1 
	
Results of Cadence Alteration Method at 8.5 mph and 9.5 mph 

 

Form Power 
Running 
Economy Cadence 

8.5 mph 65.97 (.17) 181.34 85.06 (.57) 

9.5 mph 66.50 (.50) 178.72 87.33 (.83) 

8.5 mph low 
cadence 70.58 (.85) 161.93 80.94 (1.26) 

9.5 mph low 
cadence 71.75 (.67) 192.35 82.34 (.81) 

Notes: 

   Form power reported in watts, running economy reported 
in mL·kg-1·km-1, cadence reported in spm 

 Data reported as means (± SD) where applicable 

Data gathered from last minute of each stage  
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