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Abstract 

 

We used stable isotope analysis and a bioaccumulation model to estimate 

concentrations of total polychlorinated biphenyls (PCB), dioxin-furan toxic equivalents 

(TEQ), and total mercury (Hg) in mink and to compare predicted ranges with their 

chemical concentrations in mink liver (PCB, TEQ) and brain (Hg). Actual concentrations 

were within predicted bounds for total PCB, dioxin-furan TEQ, and Hg except in two 

cases (lowest PCB and highest Hg) which were very close to predicted bounds. Based on 
15

N analysis, the trophic level of mink ranged from 3.4 to 3.9. Animals at the upper end 

of the range were exposed to Lake Ontario water and its food web while those at the 

lower end were captured at inland locations. Because of the complexity of wetland (an 

important habitat for mink in this study) food webs with pelagic, littoral, and terrestrial 

carbon sources and overlapping 
13

C signatures, whether the origins of mink diets were 

aquatic or terrestrial could not be determined. We have established a non-destructive 

biomonitoring tool to reasonably estimate concentrations of total PCB, TEQ and total Hg 

in mink tissues as concentrations of these chemicals change in their water supply.  

 

Introduction 

 

Stable isotopes of nitrogen and carbon are used to evaluate trophic webs of 

ecosystems to give lifetime, integrated estimates of both trophic level and dietary sources 

for organisms (DeNiro and Epstein 1978, Cabana and Rasmussen 1994). Both 
12

C and 
14

N have stable, heavier isotopes (
13

C and 
15

N) which occur naturally, and the heavier and 

lighter isotopes are differentially absorbed and metabolized by organisms (Fry 1991). 

Usually the lighter isotopes are excreted preferentially, leading to a relative enrichment of 

the heavier isotopes in organisms relative to their environment or diet. These enrichments 

http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00244-009-9361-4&sa_campaign=Email/ACE/OF
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are measurable through mass spectrometry, and are reported in parts per thousand (δ‰) 

relative to a standard: 
310]1)[(  standardsample RRX , 

where X is 
13

C or 
15

N and R is the corresponding ratio 
13

C/
12

C or 
15

N/
14

N. The standard 

for carbon is PeeDee Belemnite (PDB) limestone, and the standard for nitrogen is 

atmospheric nitrogen (Fry 1991). 

Selective excretion of 
14

N over 
15

N by animals results in an increase of 

approximately 3.4‰ in the δ
15

N at each trophic level; thus, 
15

N analysis can determine 

the average trophic level at which an animal feeds (Peterson and Fry 1987, Cabana and 

Rasmussen 1994). Carbon is also enriched between trophic levels but at a much lower 

rate between 0 and 1‰. Because freshwater algae have a much less negative δ
13

C than 

terrestrial plants (e.g., terrestrial leaves δ
13

C = -27 to -31‰ versus algae > -17‰; Collier 

and Lyon 1991), 
13

C analysis can differentiate between these as original sources of 

carbon in a diet, indicating whether the diet is primarily of aquatic or terrestrial origin.  

Once trophic level and percent aquatic diet are known, the concentration of a 

persistent organic chemical can be calculated using a model adapted from Sample et al. 

(1996). The model takes into account the concentration of the chemical in the water, daily 

food and water ingestion rates, proportion of the diet originating from aquatic carbon 

sources, body mass of the animal, and bioaccumulation factor (BAF) for the chemical. 

The BAF is dependent upon the trophic level and the octanol-water partition coefficient 

of the compound (Sample et al. 1996).  

Our study originated from reports that identified ―degradation of fish and wildlife 

populations‖ and ―bird or animal deformities and reproductive problems‖ as potential 

problems in the Rochester Embayment of Lake Ontario Area of Concern (AOC; RAP 

1993, 1997). We conducted stable isotope analysis for 
13

C and 
15

N on tissues from the 

same mink collected for total mercury, total PCB, and dioxin-furan TEQ analyses 

(Haynes et al. 2009). The questions addressed here are: Can stable isotope analysis be 

used to evaluate mink diets, at lakeshore and inland areas, in terms of trophic levels and 

terrestrial and aquatic food sources? Can stable isotope results be used to construct a food 

web/bioaccumulation model for mink to predict body burdens of total PCB, dioxin-furan 

TEQ, and total mercury in mink? How do predicted concentrations of these chemicals in 

mink liver (PCB, TEQ) and brain (Hg) (based on concentrations in Lake Ontario water) 

compare with measured concentrations? 

 

Methods 

 

Complete methods for specimen collection, processing, and handling of tissues, as 

well as biological and chemical data, for the mink used in this study are in Haynes et al. 

(2009). All of the mink were pelt-less and 24 were tail-less which had implications for 

the bioaccumulation models (see the ―Modeling exposure of mink in the AOC to 

persistent organic chemicals‖ section in the Results and Discussion). Thigh muscle was 

used for stable isotope analysis. Muscle samples, frozen and packaged with dry ice, were 

shipped to Cornell University’s Stable Isotope Laboratory (COIL). 
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Tissue Analysis 

 

At COIL, stable isotope analyses for 
13

C and 
15

N were done with a continuous 

flow Elemental Analyzer (NC2500, CE Elantech, New Jersey) interfaced with an Isotope 

Ratio Mass Spectrometer (Delta Plus, Thermo Electron Corp., Germany). Quality control 

procedures included standards to test for instrument linearity, define instrument response 

for the determination of elemental composition, and measure stability of precision and 

accuracy over the length of a run (Arthur Kasson, COIL, Ithaca, NY, personal 

communication). Total PCB, dioxin-furan TEQ, and total mercury analyses were 

performed as reported in Haynes et al. (2009).  

 

Data Analysis 

 

We used Microsoft ® Excel 2000 for data management and non-statistical 

calculations. For statistical analyses, we used Minitab™ Statistical Software Release 

14.13 (2005). We used Minitab’s General Linear Model routine (a 2-way ANOVA with 

two fixed factors, Area—AOC: in vs. out and Location—lakeshore vs. inland followed 

by Tukey’s pair-wise comparisons) to analyze the relationships between each isotope and 

the areas and locations where mink were captured.  

 

Bioaccumulation Modeling 

 

Trophic level was calculated by dividing the δ
15

N value of an organism by the 

change in δ
15

N per trophic level, usually 3.4‰ (Minigawa and Wada 1984, Vander 

Zanden and Rasmussen 1999, Doucett 1999). Calculating percent aquatic diet using δ
13

C 

required 1) determining the δ
13

C value in tissue, 2) estimating the difference between the 

δ
13

C values in the tissue and in the diet, and 3) calculating the relative contributions of 

aquatic and terrestrial sources required to yield the estimated δ
13

C of the diet (DeNiro and 

Epstein 1978). COIL’s analysis provided the data for step 1. Literature review provided 

estimated values for step 2. The equation for step 3, calculating the proportion of a diet 

(%A) originating from one of two dietary sources of carbon with different δ
13

C values, is 

100%
1313

1313







BA

Banimal
A

CC

xfCC




, 

where δ
13

Canimal is the stable-isotope ratio in the animal, δ
13

CA and δ
13

CB are the stable-

isotope ratios of the two carbon sources, f is the trophic fractionation between the animal 

and its diet, and x is the trophic position of the animal (adapted from Doucett 1999). 

Once the trophic level and aquatic portion of an animal’s diet are known, the animal’s 

exposure to a persistent organic chemical can be modeled knowing the concentration of 

the compound in ambient water. We started with Equation 28 from Sample et al. (1996), 

adding the units for clarity: 

 
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OAELN
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Cw ,    (1) 
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where Cw is the concentration of the POP in the water, NOAEL is the No Observed 

Adverse Effects Level; W and F are the daily water and food consumption rates in L/day 

and kg/day, respectively; BAF is the bioaccumulation factor for the chemical of concern 

(based on the trophic level of the animal and the octanol-water partition coefficient, kow, a 

measure of hydrophobicity or lipophilicity of the compound); and bw is the body mass of 

the animal in kilograms (Sample et al. 1996). 

We solved for NOAEL and, taking into account the aquatic portion of the animal’s 

diet (Paq), got an equation to predict the exposure concentration of an animal to a 

chemical in water: 

 

   

 kgbw

kg

L
BAFPkgFLW

L

mg
C

dbwkg

mg
NOAEL

aqw






















































.    (2) 

The inclusion of the Paq factor in this equation implies that there is no contribution of the 

chemical from the terrestrial portion of the diet. We made this assumption because our 

literature review (Gerell 1967, Melquist et al. 1981, Dunstone and Birks 1987, USEPA 

1993, Sullivan 1996) indicated that the terrestrial portion of minks’ diet consists mainly 

of lagomorphs and small rodents, which are herbivores and would have negligible 

bioaccumulations of persistent organic chemicals. 

According to Sample et al. (1996), the dietary concentration Cf (mg/kg) 

equivalent to the NOAEL is: 

 






























d

kg
F

kgbw
dkg

mg
NOAEL

kg

mg
C f .               (3) 

Substituting equation (2) for NOAEL into equation (3) for Cf , the bw terms in the 

numerator and denominator cancel out and give a dietary concentration equivalent to the 

exposure concentration based on a chemical’s concentration in water, the food and water 

consumption rates of mink, the percent aquatic diet, and the bioaccumulation factor 

(Sample et al. 1996): 




















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
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


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















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












d

kg
F

kg

L
BAFP

d

kg
F

d

L
W

L

mg
C

kg

mg
C

aqw

f .   (4) 

This dietary concentration equivalent can be directly compared to dietary concentrations 

of persistent organic chemicals known to cause adverse effects in mink. 

Using the highest and lowest values for diet-to-tissue biomagnification factors 

(BMFt) calculated from the literature (see the ―Predicting tissue concentrations‖ section 

in Results and Discussion), we predicted concentrations of selected chemicals in mink 

tissue with the equation 

tft BMF
g

g
C

g

g
C 
















 
.       (5) 
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Results and Discussion 

 

Stable Isotope Analysis 

 

Areas (AOC: in and out) and locations (lakeshore and inland) in which mink were 

captured had significant effects on δ
15

N values (Table 1).  Mink captured in the AOC had 

higher δ
15

N values than mink out of the AOC (P = 0.024) and mink captured near the 

lakeshore had higher δ
15

N values than inland mink (P = 0.001). The highest mean δ
15

N 

(13.2 + 0.5‰) was in the AOC-lakeshore region, as was the highest individual δ
15

N value 

(16.9‰). The lowest individual δ
15

N value (9.2 ‰) was found in the AOC-inland region. 

Areas and locations where mink were captured had no significant effect on the δ
13

C 

values (Table 2), indicating similar dietary compositions.  

 

Construction of the Bioaccumulation Model 

 

Calculation of trophic level. Using the δ
15

N value of 11.9 (grand mean of 40 mink 

in our study, Table 1) and the commonly accepted value of 3.4‰ δ
15

N per trophic level, 

the average trophic level of mink in our study was 3.50. If we use 3.5‰ δ
15

N per trophic 

level, as reported by Cabana and Rasmussen (1994) for the Lake Ontario food web, the 

trophic level of our mink averaged 3.40. The higher mean δ
15

N of 13.2 for mink in the 

lakeshore/AOC region resulted in higher values for the trophic level of those mink (3.87 

or 3.76 using 3.4‰ or 3.5‰ δ
15

N per trophic level, respectively). All of these values 

agree well with estimates found in the literature; USEPA (1995a) reported estimates for 

mink prey ranging from 2.5 to 2.9 which would imply a mink trophic level of 3.5 to 3.9. 

For modeling purposes, we chose 3.8 as the trophic level of mink for several 

reasons. As the ultimate purpose is to protect mink populations, we wanted to represent 

the mink in the AOC at greatest risk, those living near the lakeshore. We chose an 

intermediate value between the two estimates of trophic level for mink in the 

lakeshore/AOC region (3.76 and 3.87) because, although Cabana and Rasmussen (1994) 

studied Lake Ontario, they analyzed only the pelagic food web. Therefore, their estimate 

is not fully appropriate for the diet of mink that feed in the littoral zone of the lake, 

associated wetlands, or streams. 

The mean δ
15

N in mink from the lakeshore was 1.7‰ higher than the mean from 

inland areas (Table 1). This represents a one-half trophic level difference between 

lakeshore and inland mink. The mean δ
15

N for mink in the AOC was 1.1‰ higher than 

the mean out of the AOC (Table 1), about one-third of a trophic level. If the lakeshore 

minks’ diet includes a higher proportion of aquatic-based prey, then inferring a higher 

trophic level for lakeshore than inland mink may be confounded by the fact that aquatic 

primary producers typically have δ
15

N values up to 8‰ higher than terrestrial plants. 

(Peterson et al. 1985, Fry 1991). However, the hypothesis that lakeshore mink feed at a 

somewhat higher trophic level than inland mink is supported by analyses of persistent 

organic chemicals in mink tissues (Haynes et al. 2009). 
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Aquatic portion of the diet. Potential wetland sources of 
13

C include 

phytoplankton, C3 vascular plants (terrestrial, emergent, floating-leaved, submersed), and 

epiphytic and filamentous algae. Keough et al. (1996) used δ
13

C analysis to determine 

that the Lake Superior trophic web and that of an associated wetland were based on 

phytoplankton, but there was a 5-6‰ difference between the carbon signatures of the 

two, corresponding to the δ
13

C of the dissolved inorganic carbon in the respective waters. 

This difference was greater than the differences between the various classes of primary 

producers in the wetland, including terrestrial producers (Keough et al. 1996).  Also, 

Keough et al. (1996) considered only invertebrates and fish as consumers in the wetland, 

while we needed to include other mink prey such as the muskrat (Ondatra zibethicus) 

which consumes emergent vegetation as well as occasional terrestrial vegetation and 

small animals such as shellfish, fish, turtles, and frogs (Kurta 1995). Thus, having at least 

three probable carbon sources in our trophic web, insufficient information about their 

δ
13

C values, and probable overlap between them, we concluded that we could not use 

Doucett’s (1999) equation to calculate the proportion of aquatic foods in the diet of the 

mink in our study. 

We did, however, find several estimates in the literature for the aquatic portion of 

mink diets. Although most diet studies only report frequencies of occurrence of diet items 

in scats, digestive tracts, or dens (USEPA 1993 summarizes the results of 19 such 

studies), USEPA (1995a) points out that this is not a good representation of biomass 

assimilated by mink. However, USEPA (1995b) cites a study by Alexander (1977) 

reporting that the aquatic portion of minks’ diets was 75% to 90%, based on wet mass of 

stomach contents year-round. Sample and Suter (1999) averaged the results of five 

studies to conclude that the aquatic portion of minks’ diets is 54.6%. (The standard 

deviation for that average was reported as  0.21%, which seems very low, as it included 

Alexander’s 1977 study; it is much more likely that the standard deviation was actually 

21%). USEPA (1995b) used both 90% and 50% to calculate Wildlife Values for DDT, 

Hg, 2,3,7,8-TCDD, and PCB; therefore, we chose the same bounds on the aquatic portion 

of the diet of our mink. 

 

Modeling exposure of mink in the AOC to persistent organic chemicals. Other 

values needed for the model are the body mass of the animal (g), daily consumption rates 

of food (g/day) and water (L/day), the bioaccumulation factor (BAF) of the chemical of 

concern (which also requires knowing the kow of the compound), and the concentration of 

the chemical in the water. The mean body mass (pelt-less, tail-less) of females in our 

study was 457  42 g while males averaged 782  27 g. Because we had six females and 

35 males, we averaged the male and female means for a representative (pelt-less, tail-

less) average body mass of 620 g. We then had to correct for the absence of tails and 

pelts on the mink received from trappers since we presumed that the body mass in the 

model would have included these. The tails that we removed from mink (n=16) averaged 

1% of the body mass of those mink, and Aulerich et al. (1999) give the mass of a mink 

pelt (excluding the tail) as 17% of whole body mass. Subtracting the contributions of the 

pelt and tail (18%) from the whole body mass (100%) and taking the inverse of 82% gave 

a multiplying factor of 1.22 to convert from our average tail-less, pelt-less carcass mass 

to an estimated average whole body mass of about 760g. 
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Several sources give daily food and water consumption rates along with body 

masses of mink. Sample and Suter (1999) cited Bleavin’s and Aulerich’s (1981) value of 

137 g of food per day and estimated daily intakes of 0.099 L of water, using a model by 

Calder and Brown (1983), for mink averaging 970 g body mass. USEPA (1995b) 

estimated intakes of 177 g of food (using an allometric model by Nagy 1987) and 0.081 L 

water per day (using Calder’s and Brown’s 1983 model) for mink with a body mass of 

800 g. For captive adult males averaging 2200 g, Aulerich et al. (1999) reported that they 

drank 0.127 L/day and daily food consumption ranged from 147 g to 275 g depending 

upon the caloric content of the food and the season. The extrapolated whole body mass 

for our largest mink was only 1350 g, based on the estimated pelt and tail mass for a 

carcass of 1110 g. Since we wanted to make our model conservative (protective of mink 

at the highest trophic level) but not unrealistic, we discounted Aulerich’s laboratory 

consumption rates as too high, and chose the larger of the remaining two values for daily 

food and water intakes. Thus, for our model, the daily food and water consumption rates 

were 177 g and 0.1 L (= 100 g), respectively.  

The kow and BAF values used in the model were taken from Sample et al. (1996), 

who assumed that all fish consumed by mink are trophic level 3 (small fish). However, 

Melquist et al. (1981) reported that mink feed on kokanee (land-locked Oncorhyncus 

nerka) after spawning; therefore, it is probable that mink near the Lake Ontario shore 

feed on the abundant dying and dead piscivorous salmonines available every fall. Still, 

the average trophic level of 3.8 for mink in Braddock Bay Wildlife Management Area 

(Figure 1) indicates that if salmonines (trophic level 4) do contribute a significant portion 

of the minks’ diet, they are balanced by a comparable portion of level 2 aquatic prey such 

as aquatic invertebrates. The BAF factor we used for Hg was for methyl mercury chloride 

(Sample et al. 1996), whereas we used measured concentrations of total Hg for both lake 

water and mink brain. Because >90% of mercury in mink brain is methyl-Hg (Evans et 

al. 2000) and because of the success of the model (see below), it appears that the BAF 

provided by Sample et al. is appropriate. Therefore, we used the BAF factors provided by 

Sample et al. (1996) for prey of trophic level 3, which is slightly higher and thus more 

protective than the prey from a trophic level of 2.8 implied by our results.  

When our results and assumptions (summarized in Table 3) are incorporated into 

the equation for exposure, the equation becomes 

g

BAFPggC
Exp

aqw

760

)]177(100[ 
 . 

Given Cw (the concentration of a chemical in the water), Paq (the aquatic proportion of the 

diet), and BAF (the bioaccumulation factor of the chemical of concern at trophic level 3), 

the results of this equation are the estimated concentrations of the chemical to which a 

mink at the highest trophic level among the four regions of study would be exposed daily.  

 

Predicting tissue concentrations. Multiplying the exposure concentrations by diet-

to-tissue biomagnifications factors (BMF) from the literature yielded predicted tissue 

concentrations of a chemical. Table 4 shows biomagnification factors (BMFt) calculated 

from the literature (see below) and resulting estimated concentrations of total PCB, 

dioxin-furan TEQ, and total Hg in mink tissue. The low predicted values were calculated 

using the lowest Cw  found in either Luckey and Litten (2005) or in Environment 

Canada’s 2004 survey of Lake Ontario (J. Vincent, personal communication), assuming 
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50% aquatic diet, and using the lowest diet-to-tissue BMF calculated from the literature 

(Hg: Wobeser et al. 1976; TEQ: Heaton et al. 1995, Tillitt et al. 1996; PCB: Bursian et al. 

2006a, b). The high predicted values were calculated using the highest Cw, 90% aquatic 

diet, and highest BMF calculated from the literature (Hg: Wobeser et al. 1976; TEQ: 

Heaton et al. 1995, Tillitt et al. 1996; PCB: Halbrook et al. 1999). The measured 

concentrations in these tissues were reported by Haynes et al. (2009). 

 

Comparison of Estimated and Actual Chemical Concentrations 

 

Table 4 compares estimated low and high values of total PCB, dioxin-furan TEQ, 

and total Hg to the lowest and highest tissue concentrations found in liver (PCB, TEQ) 

and brain (Hg) of lakeshore mink (Haynes et al. 2009). The model worked well; the 

estimated low and high values bounded measured values with two minor exceptions. The 

predicted low bound for total PCB (19.2 ng/g) was 5.6 ng/g or 29% higher than the 

lowest measured concentration for a lakeshore mink (mink 53, 13.6 ng/g; see Haynes et 

al. 2009). Mink 17 (1.55 mg/kg Hg; see Haynes et al. 2009) exceeded the predicted high 

bound for total Hg (1.34 mg/kg) by 0.21 mg/kg (14%) but it also had the highest N of all 

mink in the study (16.9‰), an entire trophic level higher than the other mink in the 

lakeshore/AOC region which had the highest mean N (13.2‰) among the four regions 

in the study area (Table 1). Mink 17 also had exceptionally high concentrations of total 

PCB and dioxin-furan TEQ in liver and adipose (Haynes et al. 2009).  

 

Conclusion 

 

We used stable isotope analysis to evaluate mink diets in terms of trophic levels 

and terrestrial and aquatic food sources. Analysis of δ
15

N showed that mink in the study 

area feed on prey at an average trophic level of 2.5 (with the highest level, 2.8, along the 

lakeshore in the AOC). The percent aquatic diet could not be determined for lack of δ
13

C 

values for carbon sources in the wetland areas inhabited by mink. Using the δ
15

N stable 

isotope results we constructed a food web/bioaccumulation model for mink in the 

Rochester Embayment AOC which gave good estimates of actual tissue concentrations of 

dioxin-furan TEQ and total PCB in mink liver and of total Hg in mink brain.  

There are uncertainties associated with each of the assumptions we made in 

constructing the model. For example, we used averages for the trophic level and body 

mass of the mink, and chose from among literature values for food and water 

consumption, percent aquatic diet, and diet-to-tissue biomagnification factors. In each 

case, our aim was to use realistically conservative values that would be protective of 

mink in the study area. Nevertheless, using an average trophic level means that some 

mink feed at a higher trophic level than that calculated by the model (average prey level = 

2.8) and are more at risk than the model implies. (This was certainly the case for 2-3 

mink in our study; see Haynes et al. 2009.) However, this possibility is mitigated by the 

fact that Sample et al. (1996) provided BAF factors only for integer trophic levels, 

requiring us to use prey BAF factors for trophic level 3, thus making the model more 

protective.  
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The bioaccumulation model developed in this study can be used to estimate 

bounds for concentrations of dioxin-furan TEQ, total PCB, and total Hg in mink tissues 

as new data on the concentrations of these chemicals in Lake Ontario water become 

available. Comparing results of the model to NOAELs or LOAELs for these compounds 

in mink, as the initial step in a biomonitoring program, is preferable to sacrificing mink 

that would not otherwise be caught by trappers. 
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Table 1.  δ
15

N values for mink in four areas, inland and near the shore of Lake Ontario 

and in and out of the Rochester Embayment Area of Concern (AOC), and the results of 

the General Linear Model for AOC: in vs. out and lakeshore vs. inland. See Haynes et al. 

(2009) for locations of study areas. 

 

 

Area N Mean δ
15

N (SE) (‰) Min δN (‰) Max δN (‰) P 

      

Entire Study 40 11.9 (0.26) 9.2 16.9  

AOC: In 20 12.4 (0.40) 9.2 16.9  

     Inland 10 11.6 (0.49) 9.2 14.6  

     Lakeshore 10 13.2 (0.54) 11.1 16.9  

AOC: Out 20 11.3 (0.31) 9.4 14.3 0.024 

     Inland 10   10.5 (0.25) 9.4 11.6  

     Lakeshore 10 12.2 (0.42) 10.5 14.3  

Inland 20 11.0 (0.30) 9.2 14.6  

Lakeshore 20 12.7 (0.35) 10.4 16.9 0.001 

 

Table 2.  δ
13

C values for mink in four areas, inland and near the shore of Lake Ontario 

and in and out of the Rochester Embayment Area of Concern, and the results of the 

General Linear Model for AOC: in vs. out and lakeshore vs. inland. See Haynes et al. 

(2009) for locations of study areas.  

 

 

Area 

 

N 

 

Mean δ
13

C (SE) (‰) 

 

Min δC (‰) 

 

Max δC (‰) 

 

P 

 

Entire Study 

 

40 

 

-25.4 (0.24) 

 

-28.3 

 

-19.9 
 

AOC: In 20 -25.1 (0.36) -28.1 -19.9  

    Inland 10 –25.3 (0.24) –26.6 –24.4  

    Lakeshore 10 -25.0 (0.70) -28.1 –19.9  

AOC: Out 20 -25.6 (0.31) -28.3 -23.1 0.315 

    Inland 10 -26.0 (0.49) –27.0 –23.1  

    Lakeshore 10 -25.3 (0.39) -27.0 -23.2  

Inland 20 –25.6 (0.28) -28.3 -23.1  

Lakeshore 20 –25.6 (0. 39) -28.1 -19.9 0.319 
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Table 3. Critical data used in construction of the bioaccumulation model. Kow is the 

octanol-water constant, TEQ is dioxin-furan toxic equivalents, PCB is polychlorinated 

biphenyls, Me-Hg is methyl-mercury, and BAF is the bioaccumulation factor for prey at 

trophic level 3 (Sample et al. 1996; Kow for Me-Hg was not given). 

________________________________________________________________________ 

Trophic level of mink prey 3 

Aquatic portion of mink diet 50-90% 

Body weight of mink 760 g 

Daily food intake  177 g 

Daily water intake 0.1 L 

Kow TEQ 6.53 

Kow PCB 6.5 

Kow Me-Hg N/A 

BAF TEQ 172,100 

BAF PCB 1,850,000 

BAF Me-Hg 27,900 

________________________________________________________________________ 

 

 

Table 4. Lowest and highest values for predicted and measured concentrations of dioxin-

furan toxic equivalents (TEQs), total polychlorinated biphenyls (PCBs), and total 

mercury (Hg) in Lake Ontario shoreline mink. Predicted values are based on Lake 

Ontario water concentrations (Cw: Luckey and Litten 2005; J. Vincent, Environment 

Canada, personal communication) and diet-to-tissue biomagnification factors (BMF; 

Wobeser et al. 1976, Heaton et al. 1995, Tillitt et al. 1996, Halbrook et al. 1999, Bursian 

et al. 2006a, b). Measured values were reported by Haynes et al. (2009). 

 

 

Chemical   

(tissue) 

 

Bound 

 

Cw  

(pg/kg) 

 

BMF 

 

Tissue Level 

Predicted   Measured 

 

 

TEQ (liver) 
       ng/kg ng/kg 

 Low 0.00006 10.7 0.06 0.2 

 High 0.024 16.7 62.1 47.6 

PCB (liver)    ng/g ng/g 

 Low 26.0 0.8 19.2 14.7 

 High 915 15.5 23602 5871 

Total Hg (brain)    mg/kg mg/kg 

 Low 440 1.0 0.006 0.090 

 High 5130 10.4 1.340 1.550 
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 Figure 1. Box plots of δ
15

N values for mink in four areas, inland and near the shore of 

Lake Ontario and in and out of the Rochester Embayment Area of Concern (AOC). 
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Figure 2. Box plots of δ
13

C values for mink in four areas, inland and near the shore of 

Lake Ontario and in and out of the Rochester Embayment Area of Concern (AOC). 
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