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Abstract 

 

In terms of reproductive and other adverse outcomes after exposure to 

polychlorinated biphenyls (PCBs), dioxins and furans, the mink (Mustela vison) is one of the 

most sensitive mammals. Our objective was to determine if there are differences in the 

concentrations of total mercury (Hg), total PCBs, and dioxin-furan toxic equivalents (TEQs) 

between mink living in and out of the Rochester Embayment of Lake Ontario (RELO) Area 

of Concern (AOC) and between mink living near the shore of Lake Ontario and inland. 

Concentrations of total Hg in brain, total PCB and dioxin-furan TEQ in adipose, and total 

PCB in liver were significantly higher for mink living near the shore of Lake Ontario than 

inland. For mink living in and out of the AOC, differences in total PCB and dioxin-furan 

TEQ in adipose and liver were substantial but not significant. Correlations between 

concentrations of total Hg, total PCB, and dioxin-furan TEQ in mink were high. Our results 

suggest that contamination of mink living near the southern shore of Lake Ontario primarily 

comes from contact with the Lake Ontario food web, not from sources in the RELO AOC. 

 

http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00244-009-9365-0&sa_campaign=Email/ACE/OF
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Introduction 

 

In the 1980s the binational (Canada, U. S.) International Joint Commission (IJC) 

began the process of creating and implementing remedial action plans (RAP) in 43 

contaminated areas of concern (AOC) throughout the Great Lakes Basin. The IJC established 

14 ―use impairments‖ that could cause a local area to be ―listed‖ as an AOC, including 

―degradation of fish and wildlife populations‖ and ―bird or animal deformities or 

reproductive problems.‖ In the Rochester Embayment of Lake Ontario (RELO) AOC, both 

uses were listed as impaired because ―very few‖ mink (Mustela vison), one of the most 

sensitive mammals to PCBs, dioxins and furans (Basu et al. 2007), were then being trapped 

or observed within 3 km of the Lake Ontario shoreline (RAP 1993, 1997).  

The RELO AOC includes the Rochester Embayment, a 94 km
2
 portion of Lake 

Ontario south of a line between Bogus Point in the town of Parma and Nine Mile Point in the 

town of Webster (both in Monroe County, New York), adjacent wetlands and bays, and the 

10 km reach of the Genesee River from the Lower Falls to Lake Ontario (Figure 1). 

We report on concentrations of total PCB, dioxin-furan TEQ, and total mercury in 

lakeshore and inland populations of mink in and out of the AOC. While total PCB and 

dioxin-furan TEQ have limitations as estimators of toxicity to wildlife (Giesy and Kannan 

2008, Blankenship et al. 2008), we wanted to develop a simple biomonitoring tool to answer 

the question of whether mink in the RELO AOC are potentially suffering from the ―bird or 

animal deformities or reproductive problems‖ or ―degradation of fish and wildlife 

populations‖ use impairments, and whether these impairments can be ―delisted‖ by the IJC. 

For detailed examination of potential toxicity to mink, congeners of PCBs, dioxins and 

furans also were analyzed (Pagano and Haynes, unpublished data).  

 

Methods 

 

Specimen Collection, Processing and Handling 

 

Collection. Forty mink carcasses were collected by trappers (90% during climatic 

winter in western New York, November through March) during 2004 and 2005 in five areas 

which we divided into four regions (Figure 1): Inland/AOC, Lakeshore/AOC, Inland/Out of 

AOC, and Lakeshore/Out of AOC.  Lakeshore/AOC was the Braddock Bay Wildlife 

Management Area (BBWMA—a large wetland complex), and Lakeshore/Out of AOC was 

along streams in uplands and small wetlands beginning 15 km west of the BBWMA. 

Inland/AOC included animals taken in the AOC watershed more than 5 km from the 

lakeshore (primarily from near the Bergen Swamp, 34 km south of the BBWMA), and 

Inland/Out of AOC included animals taken ~180 km east of the BBWMA in the Tug Hill 

Plateau beyond the eastern end of Lake Ontario and from the Iroquois National Wildlife 

Refuge 50 km southwest of the BBWMA (we used five mink from each of these two inland 

regions). Skinned carcasses were put in labeled plastic bags and frozen by the trappers who 

also completed log sheets indicating the date and location of capture for each animal. 

Chemical concentrations were determined for ten mink from each region.  

 

Processing. We thawed the frozen mink carcasses before recording tail-less and pelt-

less body weight and length and the weight of each tissue sample. We placed carcasses in 
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hexane-rinsed aluminum containers for resection, and all utensils used were rinsed with 

hexane between uses. Tissues collected for analyses were adipose and liver (total PCB, 

dioxin-furan TEQ) and brain (total mercury). Adipose was scarce (<6 g) on most (29/40) 

carcasses, so it was collected wherever it was found. Teeth were collected and aged but aging 

proved unreliable, similar to the results of Tansy et al. (2003). 

 

Analytical Procedures 

 

Dioxins, Furans and Mercury. Liver and adipose were shipped frozen on dry ice to 

Columbia Analytical Services (CAS), Inc.’s laboratory in Houston, TX for dioxin/furan 

analyses (Method 8290A, USEPA 1998), and to the Environmental Research Center (ERC) 

at SUNY Oswego for PCB analysis. Brains for total mercury analysis (Method 7471A, 

USEPA 1994) were shipped to CAS’s laboratory in Kelso, WA. Methyl mercury accounts 

for >90% of total mercury in mink brain (Evans et al. 2000). Depending on the sample and 

congener, method detection limits (MDL) for dioxins/furans and mercury were 1.0-5.0 ng/kg 

and 0.001-0.019 mg/kg, respectively. Toxic equivalency factors (TEF) used to calculate toxic 

equivalents (TEQ) came from USEPA (1989). 

 

Total PCB Sample Extraction and Clean-up. All tissue samples were extracted for gas 

chromatographic analysis after methods developed at The College at Oswego ERC (Pagano 

et al. 1999, Stewart et al. 2008). Each sample was extracted three times with 50 mL hexane 

using a Brinkman Polytron homogenizer. Lipid analysis was conducted by gravimetric 

procedures utilizing a subsample of the extracted sample. Sample cleanup utilized automated 

Gel Permeation Chromatography (USEPA 1997, Method 3640A) followed by a silica gel for 

separation of PCBs from other interferences. In general, silica gel adsorption column cleanup 

utilized 5.5 grams of 4% deactivated silica gel (100-200 mesh) placed in a 10.5 x 250 mm 

chromatography column with an upper layer of anhydrous sodium sulfate. The sample 

extract was added to the silica gel column and sequentially eluted with hexane which was 

concentrated to 1 mL with a Kuderna-Danish apparatus using a three ball Snyder Column on 

a steam bath before gas chromatographic analysis. 

 

Total PCB Chemical Analysis. Dual-column congener-specific PCB analyses were 

based on capillary column procedures developed by Frame et al. (1996) and described 

previously (Pagano et al. 1999, Chiarenzelli et al. 2001, Stewart et al. 2008). Briefly, 

analytical instruments were recalibrated every five samples, with a system blank, instrument 

blank, and mid-level calibration check solution analyzed during each analytical run. A 

Hewlett-Packard (HP) Model 5890II GC with an electron capture detector (ECD - Ni
63

) and 

autosampler was used for primary data acquisition. The capillary column utilized was a HP 

Ultra II, 25 meter with 0.22 mm id and 0.33 um film thickness. The calibration standard was 

a 1:1:1:1 mixture of Aroclors 1221, 1016, 1254 and 1260 each at 200 pg/uL, 

hexachlorobenzene (HCB) at 5 pg/uL, and p-p' DDE and Mirex each at 10 pg/uL (Custom 

Mix - AccuStandard, Inc., New Haven, CT), which allowed for the analysis of 99 

chromatographic zones of 132 congeners/co-eluters.  

PCB analyses were confirmed with a HP Model 5890 II gas chromatograph with an 

electron capture detector (Ni
63

) and autosampler using a 60 meter DB-XLB capillary column 

with 0.25 mm id and 0.25 um film thickness. The calibration standard was a 1:1:1:1:1 
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mixture of congener mixtures C-CSQ-SETS 1-5 at 10pg/uL per individual congener (C-

CSQ-SET; AccuStandard, Inc.) based on the work of Frame et al. (1996), allowing for the 

analysis of 122 chromatographic zones of 155 congeners/co-eluters. Total PCBs were 

determined by summation of all congeners/co-eluters. Method detection limits for total PCBs 

(by summation of congeners) were determined for adipose (87.7 ng/g, N=7) and liver (5.4 

ng/g, N=6) by using the average method blank (MB) + STDEV of (MB) * student's t-statistic 

(t 0.99, n-1 DF). 

 

Total PCB Quality Documentation.  Laboratory quality assurance at The College at 

Oswego ERC is based on a quality management program developed from USEPA protocols 

(USEPA 1997, Pagano 2005, Holsen et al. 2008). The program consists of measurement 

quality objective acceptance criteria for replicate analyses, surrogate analyte recoveries, 

matrix spikes/matrix spike duplicates, and method, reagent and system blanks. Surrogate 

recoveries (SR, mean + std. dev.) for the various mink tissues analyzed in this project 

averaged: SR PCB_014 = 86.9 + 14.3%, SR PCB_065 = 86.4 + 17.6%, SR PCB_166 = 90.1 

+ 21.6% and SR PCT_003 = 83.1 + 20.4% (polychlorinated triphenyl). During the project, 

general laboratory quality assurance and silica gel method validation were determined by 

analysis (N=16) of National Institute of Standards and Technology (NIST) Standard 

Reference Material 1946 (Lake Superior Fish Tissue). Average recoveries + standard 

deviations of certified concentration values for PCBs were 92.9 + 5.9%. 

 

Data Analysis 

 

We used Microsoft ® Excel 2000 for data management and non-statistical 

calculations and SPSS® 16.0 (SPSS Inc., Chicago, IL) for statistical analyses. We used 

General Linear Models (ANCOVA with two fixed factors: Area—AOC in vs. AOC out and 

Location—near lakeshore vs. inland, using the covariates sex, body weight, and percent lipid 

in adipose and liver, as appropriate) to analyze relationships between chemical 

concentrations and capture areas and locations in the study area. Bonferroni corrections for ά 

= 0.05 associated with multiple F-tests were employed. To meet the assumptions of ANOVA 

regarding normality and homoscedasticity, extreme but valid outliers in the chemical data 

(mink 17, 22 and 49 in Appendix 1) were reduced in magnitude compared to the rest of the 

data in their area-location groups (Tabachnick and Fidell 2007) and all chemical data were 

log10 (n+1)-transformed. Covariates percent lipid in adipose and liver were arcsine-

transformed while body mass and sex were not transformed. After transformation, data for 

each of the five chemicals and three of the covariates (body mass and percent lipid in adipose 

and liver; sex has a binomial distribution) met the assumption of homogeneous variance 

(Levene’s test, P = 0.138-0.996), and 30/32 chemical-area-location combinations, as well as 

the covariates of body mass and percent lipids in adipose and liver, met the assumption of 

normality (Shapiro-Wilk test; the two combinations that were not normally distributed were 

acceptably close; P > 0.035, Tabachnick and Fidell 2007). Zero values for chemical results 

below detection limits (BDL) were excluded to avoid skewing general trends low (BDL ≠ no 

chemical present). Correlation analysis was used to evaluate relationships between 

concentrations of total PCB, dioxin-furan TEQ, and total Hg. 
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Results 

 

Excluding one mink not analyzed and three BDL, 36 of 40 mink had mercury in brain 

(Appendix 1). Total Hg concentrations did not differ in and out of the AOC but 

concentrations in mink from near the Lake Ontario shore were significantly higher than those 

of inland mink (P = 0.026, Table 1). The sex and mass covariates were not significant. 

Thirty-eight of 40 mink had sufficient adipose for total PCB analysis and 40 livers 

were analyzed for total PCB. Total PCB concentrations in adipose and liver did not differ in 

and out of the AOC but there were significant differences for total PCB between lakeshore 

and inland mink for adipose (P = 0.001) and liver (P = 0.031). Among the covariates used to 

analyze total PCB in adipose—sex, mass, and percent lipid in adipose—none were 

significant. Among the covariates used to analyze total PCB in liver—sex, mass, and percent 

lipid in liver—percent lipid (P < 0.001) was significant and sex (P = 0.070) and mass (P = 

0.081) approached significance (Table 1). 

Thirty-two and 18 of 40 mink had total dioxin-furan TEQ above detection limits in 

adipose and liver, respectively. Dioxin-furan TEQ in adipose and liver did not differ in and 

out of the AOC. Between lakeshore and inland mink there was a significant (P = 0.016) 

difference for dioxin-furan TEQ in adipose but not for liver (P = 0.171). Among the 

covariates used to analyze dioxin-furan TEQ in adipose and liver—sex, mass, and percent 

lipid in the respective tissue—none were significant (Table 1). 

Correlations between concentrations of total Hg, total PCB, and dioxin-furan TEQ in 

brain, adipose and liver were high (r = 0.591-0.878) and significant (P < 0.0001-0.016, Table 

2). Furthermore, within laboratory correlations for adipose and liver were very high and 

significant for total PCB (ERC, r = 0.982, P < 0.0001) and dioxin-furan TEQ (CAS, r = 

0.748, P = 0.0009).  

 

Discussion 

 

Except for dioxin-furan TEQ in liver (lowest concentrations and sample sizes), total 

Hg in brain, total PCB in adipose and liver, and dioxin-furan TEQ in adipose were 

significantly higher in mink captured near the shore of Lake Ontario than in those captured 

inland. There were no significant differences in total PCB, dioxin-furan TEQ, and total Hg 

concentrations in and out of the Rochester Embayment AOC, although mean concentrations 

for total PCB and dioxin-furan TEQ were higher in the AOC than out of the AOC by factors 

of 2-4 (Table 1). High variations in concentrations among animals resulted in low statistical 

power to distinguish quite different mean concentrations despite sample sizes of 10-20 mink 

per chemical both in and out of the AOC (Table 1). Total Hg concentrations differed little in 

and out of the AOC. 

Concentrations of total PCB and dioxin-furan TEQ in liver in our study (n = 40 mink) 

ranged from 7-5,871 ng/g-ww (mean = 327) and BDL-47.6 ng/kg-ww (mean = 6.4), 

respectively (Appendix 1). For South Carolina (n = 6) and Louisiana (n = 6) mink, Tansy et 

al. (2003) reported total PCB of 133-413 (mean = 263) and 65-238 (mean = 139) ng/g-ww, 

respectively. Mean dioxin-furan TEQ in South Carolina and Louisiana were 21.0 and 13.8 

ng/kg-ww (reported as pg/g-ww by Tansy et al. 2003), respectively. In our study two mink 

had very high total PCB and three had very high dioxin-furan TEQ in liver (see below). 

Excluding these data, total PCB and dioxin-furan TEQ in our study ranged from 7-755 ng/g-
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ww (mean = 127) and BDL-4.2 ng/kg (mean = 1.0), respectively. Overall, excluding the 

mink with exceptionally high concentrations, total PCB concentrations in mink in our study 

area are similar to or lower than those in Louisiana and South Carolina, respectively, while 

dioxin-furan TEQ in our study was far below that reported by Tansy et al. (2003). 

Due to expense, no co-planar PCB data were collected for this project; therefore, the 

dioxin-furan TEQ values reported here are lower than total TEQ. Co-planar PCBs accounted 

for 20-25% of total TEQ in wild adult male mink in Louisiana and South Carolina, 

respectively (Tansy et al. 2003), and for 43% in kits and juveniles in a laboratory study 

(Martin et al. 2006). Therefore, multiplying the dioxin-furan TEQ values we report by factors 

of 1.25 and 2.0 gives the likely range of total TEQ in mink in our study.  

The highest mean dioxin-furan TEQ concentration in mink liver was 14.8 ng/kg-ww 

near the lakeshore in the AOC, and the lowest mean concentration was 0.3 ng/kg-ww inland 

out of the AOC (Table 1). Multiplying these lowest and highest mean dioxin-furan TEQ 

concentrations by factors of 1.25 and 2.0, respectively, predicts the range of mean total TEQ 

in mink liver across the entire study area: 0.4-29.6 ng/kg-ww. The lowest LOAEL (lowest 

observable adverse effect levels) for total TEQ in liver known for mink (cancerous jaw 

lesions) is 40.2 ng/kg-ww (Bursian et al. 2006 a-c). Therefore, most mink in the entire study 

area are unlikely to be adversely affected by total TEQ.  

Two mink (17, 22), captured in the AOC near the shore of Lake Ontario, had 

exceptionally high concentrations of total PCB in liver: 5,871 and 2,389 ng/g-ww, 

respectively (Appendix 1). The lowest LOAEL (lowest observable adverse effect level) for 

total PCB in liver known for mink (cancerous jaw lesions) is 1,698 ng/g-ww (Bursian et al. 

2006 a-c). The same two mink also had high dioxin-furan TEQ in liver: 21.3 and 47.6 ng/kg-

ww, respectively. Mink 49, caught near the lakeshore out of the AOC, also had high dioxin-

furan TEQ in liver (31.8 ng/kg-ww). Again using the factors 1.25 and 2.0, low and high total 

TEQ in liver for these mink likely ranged from 26.6-95.2 ng/kg-ww. Therefore, the most 

highly exposed mink along the lakeshore in the study area potentially may suffer from 

cancerous jaw lesions from either total PCB or total TEQ (see Haynes et al. 2009). 

Several factors may account for the high levels of total PCB and dioxin-furan TEQ in 

mink 17 and 22. First, these mink were caught in the Braddock Bay Wildlife Management 

Area (Figure 1) that has a broad connection to Lake Ontario water and its food web, 

including the carcasses of migrating salmonines with high contaminant concentrations 

(O’Toole et al. 2006, Carlson and Swackhamer 2006) each fall. Second, there may be small 

toxic hot spots in the BBWMA to which mink are exposed through their food web. Haynes et 

al. (2004) reported that one sediment sample from a creek near where mink 17 was captured 

had a concentration of 1.5 ppm total PCB.  Mink 22 was captured near another area of the 

BBWMA that was a munitions factory during and after World War II. In contrast, lakeshore 

mink out of the AOC were captured in a much smaller watershed that has fewer migrating 

salmonines and no suspected toxic hotspots. Third, stable isotope analysis (see Wellman et 

al. 2009) showed that mink 17 (N = 16.9) fed one trophic level higher than other lakeshore 

mink (N = 12.7) but mink 22 (N = 11.09) and 49 (N = 11.63) fed below the average 

trophic level of lakeshore mink, again suggesting that fish migrating from Lake Ontario may 

have comprised a high proportion of the diet of mink 17.  
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Conclusion 

 

Mink captured near the shore of Lake Ontario (i.e., potentially in contact with the 

lake’s food web) had significantly higher concentrations of total Hg in brain, total PCB and 

dioxin-furan TEQ in adipose, and total PCB in liver than inland mink. Concentrations of 

dioxin-furan TEQ in liver did not differ between mink caught near the lakeshore and inland. 

Although concentrations in mink in the inland portion of the Rochester Embayment AOC 

were generally higher than those in inland mink outside of the AOC, highest concentrations 

did not exceed LOAEL concentrations for total PCB and estimated total TEQ (Bursian et al. 

2006 a-c). It appears that sources of PCB and TEQ originating in the AOC, if any, are not 

contributing to the ―degradation of fish and wildlife populations‖ and ―bird or animal 

deformities or reproductive problems‖ use impairments identified in the RAP (1993, 1997). 

The major source of these chemicals appears to be contact with the Lake Ontario food web.  

Correlations among concentrations of total PCB and dioxin-furan TEQ in adipose and 

liver and total Hg in brain were high and highly significant. This finding suggests that fewer 

tissues and, possibly, fewer chemicals need to be monitored in the future in the Rochester 

Embayment of Lake Ontario to assess the status of chemicals of concern in mink and other 

sentinel species. Liver is the best tissue to sample for PCB and TEQ because detectable 

levels of these chemicals concentrate there and concentrations in liver associated with a 

variety of adverse impacts are known (Bursian et al. 2006 a-c). However, chemicals of 

emerging concern (e.g., polybrominated diethyl ethers, PBDE) should not be ignored in 

future sampling to evaluate chemical contamination in the AOC. 

For biomonitoring and remediation purposes in the RELO AOC and other locations 

with mink, before engaging in costly, detailed, congener-specific analyses, we recommend a 

four-step approach assess the potential for toxicity to mink. 1) Use the latest USEPA data to 

determine the concentrations of PCB and TEQ in mink water supplies and use the modeling 

approach described in Wellman et al. (2009) to determine if estimated concentrations in mink 

are likely to cause jaw lesions. 2) If concentrations sufficient to cause jaw lesions are 

predicted by modeling, capture mink and evaluate the prevalence of jaw lesions (Haynes et 

al. 2009). 3) If jaw lesions are found, find and remediate sources of PCB and TEQ 

contaminating water in the area of concern. 4) Repeat steps 1-3 every 5-10 years until no 

evidence of jaw lesions is found, at which time the ―bird or animal deformities or 

reproductive problems‖ or ―degradation of fish and wildlife populations‖ use impairments 

can be ―delisted‖ by the IJC. 
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Table 1. Concentrations of total mercury, total PCBs, and dioxin-furan TEQs in mink from the four study areas: In AOC/Lakeshore, In 

AOC/Inland, Out of AOC/Lakeshore, and Out of AOC/Inland. Means and standard deviations are actual values but statistics were 

calculated using log10-transformed data for all chemicals and arcsine-transformed percent lipid in adipose and liver. N/A = not 

applicable. 

 

    Lakeshore/ In AOC/    

Chemical Area/Location N Mean (SD) Inland P 

Out AOC 

P 

Interaction 

P 

Covariate 

P 

Power 

         

         

Mercury (brain) In AOC/Lakeshore 9 0.42 (0.44)      

(mg/kg-wet wt) In AOC/Inland 9 0.16 (0.16)      

 Out AOC/Lakeshore 9 0.30 (0.16) 0.026    0.620 

 Out AOC/Inland 9 0.19 (0.15)  0.853   0.054 

 Interaction     0.920  0.051 

 Sex covariate      0.838 0.055 

 Mass covariate      0.661 0.071 

 % lipid covariate      N/A N/A 

Total PCB (adipose) In AOC/Lakeshore 10 13610 (31129)      

(ng/g-wet wt) In AOC/Inland 10 1680 (2502)      

 Out AOC/Lakeshore 10 3970 (3281) 0.001    0.954 

 Out AOC/Inland 8 387 (226)  0.492   0.103 

 Interaction     0.316  0.167 

 Sex covariate      0.345 0.154 

 Mass covariate      0.210 0.237 

 % lipid covariate      0.208 0.238 

Total PCB (liver) In AOC/Lakeshore 10 957 (1873)      

(ng/g-wet wt) In AOC/Inland 10 101 (175)      

 Out AOC/Lakeshore 10 231 (227) 0.017    0.688 

 Out AOC/Inland 10 30 (13)  0.429   0.122 
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 Interaction     0.035  0.571 

 Sex covariate      0.070 0.442 

 Mass covariate      0.081 0.416 

 % lipid covariate      <0.001 0.998 

TEQ (adipose) In AOC/Lakeshore 8 51.4 (116.4)      

(ng/kg-wet wt) In AOC/Inland 9 4.8 (4.4)      

 Out AOC/Lakeshore 9 15.4 (12.2) 0.016    0.698 

 Out AOC/Inland 6 5.0 (5.3)  0.471   0.108 

 Interaction     0.957  0.050 

 Sex covariate      0.319 0.164 

 Mass covariate      0.523 0.095 

 % lipid covariate      0.269 0.192 

TEQ (liver) In AOC/Lakeshore 5 14.8 (20.3)      

(ng/kg-wet wt) In AOC/Inland 5 1.0 (1.8)      

 Out AOC/Lakeshore 5 7.2 (13.8) 0.171    0.268 

 Out AOC/Inland 3 0.3 (0.4)  0.642   0.072 

 Interaction     0.931  0.051 

 Sex covariate      0.287 0.176 

 Mass covariate      0.556 0.086 

 % lipid covariate      0.220 0.221 
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Table 2. Correlations of concentrations of total PCB and dioxin-furan TEQ in adipose and 

liver and total mercury (Hg) in the brain of mink.  

 

     

 Adipose  Liver  

 Dioxin-furan TEQ Total PCB Dioxin-furan TEQ Total PCB 

     

Total Hg 

          r =  

          P =  

          n = 

 

0.796 

0.0002 

31 

 

0.733 

0.0012 

34 

 

0.591 

0.0160 

32 

 

0.713 

0.0019 

35 

Total PCB 

          r =  

          P =  

          n = 

(adipose) 

0.878 

<0.0001 

30 

 

---- 

---- 

---- 

 

0.855 

<0.0001 

31 

 

0.959 

<0.0001 

38 

 

 

 

Figure 1. Map showing the four regions of mink capture. AOC/Lakeshore is the Braddock 

Bay Wildlife Management Area (BBWMA), AOC/Inland is mostly near the Bergen Swamp 

~34 km south of the BBWMA, and Out of AOC/Lakeshore began 15 km west of the 

BBWMA. Out of AOC/Inland is the Iroquois National Wildlife Refuge ~50 km southwest of 

the BBWMA and beyond the eastern end of Lake Ontario ~180 km east of the BBWMA (not 

shown on the map).  
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Appendix 1. Geographical, biological and chemical data for the 40 mink in this study. 

         TPCB TPCB TEQ TEQ Mercury 

   Capture Age
a
  Weight

b
 % Lipid

c
 

% 

Lipid Adipose Liver Adipose
d,e

 Liver Brain
f
 

Specimen Area Location Season (years) Gender (g) Adipose Liver (ng/g-ww) (ng/g-ww) (ng/kg-ww) (ng/kg-ww) (mg/kg-ww) 

1 In AOC Inland Winter 0.7 M 830 81.5 0.6 197 9 0.03 0.1 0.07 

3 Out AOC Inland Winter 0.7 M 862 72.8 1.5 212 12 4.8 BDL 0.04 

5 Out AOC Inland Winter 0.7 M 846 48.1 0.7 224 10 BDL BDL 0.12 

10 Out AOC Inland Winter ND M 652 53.2 0.9 233 8 0.4 0.01 0.40 

11 Out AOC Inland Winter 0.7 M 879 63.0 1.1 652 28 BDL BDL 0.07 

14 Out AOC Inland Winter 0.7 M 642 75.0 1.4 104 7 AE 0.03 0.01 

17 In AOC Lakeshore Winter ND M 815 52.5 4.4 100838 5871 339 21.3 1.55 

20 In AOC Lakeshore Winter ND M 996 83.2 2.8 864 86 BDL BDL BDL 

21 In AOC Lakeshore Winter 2.7 F 453 41.8 5.5 2918 682 AE 3.5 0.37 

22 In AOC Lakeshore Winter 0.7 M 967 76.3 2.5 18659 2389 22.4 47.6 0.37 

23 In AOC Inland Summer ND M 673 68.1 1.1 508 18 BDL BDL BDL 

24 In AOC Inland Winter 0.6 M 734 53.5 1.6 300 27 3.0 0.6 0.05 

30 Out AOC Inland Winter ND M 587 IT 1.6 IT 45 IT BDL NA 

31 Out AOC Inland Winter 1.6 M 642 76.9 2.5 543 31 2.7 BDL 0.27 

32 Out AOC Inland Winter 3.6 M 575 68.8 0.9 705 14 5.8 BDL 0.19 

33 Out AOC Inland Winter 0.6 F 351 IT 0.6 IT 19 1.6 BDL 0.25 

34 Out AOC Inland Winter 0.6 F 485 69.9 1.3 424 32 14.9 0.8 0.39 

38 In AOC Lakeshore Winter 1.7 F 635 79.7 1.3 4593 214 10.8 0.3 0.25 

39 In AOC Lakeshore Winter ND M 681 68.8 2.2 515 35 1.2 1.2 0.09 

41 In AOC Lakeshore Winter ND M 578 32.6 2.7 378 32 3.6 BDL 0.11 

43 In AOC Inland Winter 3.7 M 930 79.8 1.5 469 30 1.6 0.1 0.04 

44 In AOC Inland Winter 3.7 M 879 51.8 1.0 415 13 0.3 0.01 0.03 

45 In AOC Inland Winter 3.7 M 555 48.8 2.0 505 29 3.2 BDL 0.30 

46 Out AOC Lakeshore Spring 4.0 M 694 68.1 2.8 6071 230 19.6 2.1 0.50 
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47 Out AOC Lakeshore Winter 2.7 M 742 84.6 1.2 1238 43 9.4 1.0 0.12 

48 Out AOC Lakeshore Winter ND M 651 42.9 2.2 2360 185 BDL BDL BDL 

49 Out AOC Lakeshore Winter ND M 704 40.0 1.2 11653 755 38.3 31.8 0.30 

50 Out AOC Lakeshore Winter ND M 1013 60.0 1.3 4373 171 9.2 0.2 0.13 

51 Out AOC Lakeshore Winter 3.8 M 1111 68.6 1.4 4778 411 30.1 BDL 0.29 

52 Out AOC Lakeshore Winter 1.7 M 916 70.2 1.4 1419 69 5.4 BDL 0.28 

53 Out AOC Lakeshore Winter 0.6 M 619 56.6 0.9 232 14 5.3 0.9 0.12 

54 Out AOC Lakeshore Spring 3.0 M 995 77.1 0.7 2783 67 3.5 BDL 0.50 

55 Out AOC Lakeshore Winter ND M 1039 71.6 2.0 4797 360 18.0 BDL 0.43 

56 In AOC Lakeshore Winter 1.0 F 456 69.6 0.8 525 15 7.7 BDL 0.21 

57 In AOC Lakeshore Winter 2.7 F 361 64.3 1.7 4642 153 10.2 BDL 0.35 

58 In AOC Lakeshore Winter 0.9 M 766 79.5 2.3 2170 96 16.1 BDL 0.50 

59 In AOC Inland Winter 3.7 M 983 60.5 0.5 316 11 3.4 BDL 0.06 

61 In AOC Inland Winter 4.8 M 695 64.3 2.5 1615 64 9.0 BDL 0.13 

62 In AOC Inland Spring ND M 560 53.1 1.7 5010 250 12.6 4.2 0.46 

63 In AOC Inland Spring 1.0 M 863 38.2 2.7 7465 554 9.1 BDL 0.34 

 
a
 ND = no data            

 
b
body weight without tail and skin which add an average of 18% to body weight     

 
c
IT = insufficient adipose tissue for analysis         

 
d
BDL = below detection limit           

 
e
AE = analytical error            

 
f
NA = not analyzed            
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