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Abstract 

The honey bee (Apis mellifera) is one of the few insects capable of 
thermoregulation. Heat regulation of an isolated individual under the low 
temperature conditions normally seen in a northern temperate winter are 
investigated in this thesis. The factors examined are twofold: the variation in 
thermal output with ambient temperature and the survival potential from a cold 
comatose state. 

Individual workers attempted to maintain their body temperature through active 
thermoregulation. Active heating was pronounced and continuous in the range 
of thoracic temperatures between 19.l-29.3°C. Oxygen consumption, and 
corresponding heat production, showed a linear increase with a decrease in 
ambient temperature in the range of Tambient from 35-12°C (Vo2 = -2.82 x Tambient 
+ 96.64, r2 = 0.94). Large increases in oxygen consumption were seen at 
temperature differences (Tthorax - Tambient) ~ 2.0°C (above the physiologic 
minimum.) At cabinet temperatures below 12.9°C, the oxygen consumption of 
individuals did not stabilize, but decreased continuously, representing an abrupt 
cut-off in metabolic capacity seen at the chill coma point. 

The survival potential of a comatose honey bee is high, with a 51 % survival rate 
seen over all tests. In general, the number of survivors decreased with exposure 
time and exposure temperature. For all bees over all tests, chill coma 
temperature was dependent on exposure time, but was not dependent on 
exposure temperature. Revival time was found to be dependent on both 
exposure temperature and exposure time. An individual was most likely to 
survive chill coma if it revived in less than 4 min and under l8°C with passive 
exogenous heating. 

Key words: Apis mellifera, honey bee, thermoregulation, low temperature, chill­
coma, indirect calorimetry, virtual instrumentation, Lab VIEW® 
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Introduction 

In general, individual insects adjust to low temperature situations in one of three 

ways: by passive tracking of environmental temperature, by active 

thermoregulation to maintain body temperature, or through heat conservation. 

Few insect taxa expend energy on internal temperature control. As ectotherms, 

their body temperature tends to follow that of the surrounding environment. 

Winter survival in north temperate climates usually depends on the ability to 

produce antifreeze, or diapause in a hardy stage during periods of extended 

cold. 

Thermoregulation is an endothermic response, in which the body temperature of 

an organism is maintained within set limits by internal heat production under 

varying external conditions. It is a dynamic, often energy expensive process 

accomplished through physiological and/ or behavioral adjustments of heat 

production and retention. Some large flying insects, such as bumblebees and 

sphinx moths, are capable of thermoregulation within limited temperature 

ranges (Pirsch 1923, Heinrich 1974, Bartholomew 1981, Heinrich 1993). The 

degree of control over body temperature in these animals is a function of their 

ability to balance heat production and heat retention capabilities with changing 

environmental conditions. 

Thermogenesis in winged insects is accomplished by low amplitude, high 

frequency contract~on of the thoracic flight muscles (Esch and Bastian 1968, Esch 

1988). The conversion efficiency of metabolic energy to mechanical work in this 

tissue is low, with approximately 80% of the energy expense lost as heat (Weis­

Fogh 1972). These thoracic muscles are among the most metabolically active 
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tissues known and their action can result in body temperatures of flying insects 

greater than 40°C, approaching and surpassing those of mammals and birds 

(Bartholomew 1981, Heinrich 1974). 

The mechanism of heat production in Hymenoptera takes one of two forms: the 

asynchronous stretch-activation response used to initiate and maintain flight, or 

the conventional twitch response used in non-flight conditions (Esch and Goller 

1991). Warming in non-flight conditions is termed 'shivering thermogenesis' and 

is a combination of neurogenic activation of thoracic flight muscles and the 

mechanical response of the thorax (Esch et al. 1991). Neurogenically, it involves 

tetanus of the dorsolongitudinal wing depressor and dorsoventral wing elevator 

thoracic muscles. Unequal excitation of these two muscle groups can force one of 

them against a skeletal stop, physically inhibiting the stretch-activation response 

that is used in flight (overview in Heinrich and Esch 1994). At low temperatures, 

most Hymenoptera attempt to continuously heat themselves by this mechanism 

(Goller and Esch 1990a). 

Individual honey bees (Apis mellifera) are capable of active thermoregulation 

through adjustments in their metabolic output in the range of ambient 

temperatures from 15°C-35°C (Pirsch 1923, Farrar 1931, Allen 1959, Cahill and 

Lustick 1976, Rothe and Nachtigall 1989, Southwick 1991). The heat generating 

capacity of the honey bee is broad and dependent on ambient temperature and 

activity level. Southwick (1991), for example, measured a variation in resting bee 

metabolic rate of 3.~-29.6 mL02·g-l•hr-l (17.8-175.5 mW •g-1) at ambient 

temperatures ranging from 35°C-15°C. Rothe and Nachtigall (1989) measured a 

heat output of 240 mW •g-1 (40.5 mL02•g-l•hrl) for flying bees. The fuel source 

for this heat production is the catabolism of carbohydrates (Farrar 1931, 
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Beenakkers 1969, Rothe and Nachtigall 1989). Heat production has been found 

to be dependent to some extent on age, caste, time of day, acclimation and air 

pressure (Woodworth 1936, Allen 1959, Free and Spencer-Booth 1960, Cahill and 

Lustick 1976, Withers 1981, Blanke and Lensing 1989, Goller and Esch 1990b, 

Fahrenholz et al. 1992). 

Under low temperature conditions, body temperature maintenance is possible 

only when the rate of internal heat production is equal to or greater than the rate 

of heat loss. A critical factor in heat retention is the size of an animal. The 

surface area through which internally generated heat is lost to the environment is 

proportional to two-thirds the power of the body volume (SAo<V2/3). The ratio of 

surface area-to-volume increases with decreasing animal size, effectively 

increasing the area available for internal heat loss to the surrounding 

environment. This results in a greater mass-specific rate of loss for smaller 

animals (reviewed by Schmidt-Nielsen 1990). 

In honey bees, most heat loss from the body is convective (May 1976). Specific 

passive adaptations have evolved to conserve heat within the thorax. The aorta 

of the honey bee makes 8-10 hairpin turns in the area of the petiole, as it passes to 

the thorax from the abdomen (Heinrich 1979a, Dyer and Seeley 1987). Counter­

current heat exchange with hemolymph returning to the abdomen is very 

effective in decreasing thoracic heat loss. By allowing the abdomen to cool, the 

effective surface area for conductive heat loss is significantly reduced. It has 

been found that, ev.en when thoracic temperature approaches upper lethal limits, 

the honey bee does not dump heat to the abdomen (Heinrich 1979a). 
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Because of low heat retention due to their small size, endothermy in individual 

insects is heavily dependent on heat production capabilities. With temperature 

decrease, the difference between thorax and ambient temperature increases, and 

the rate of heat loss to the environment increases. A point is reached where 

further increase in heat production cannot offset heat loss and the insect falls into 

a cold comatose state. Goller and Esch (1990a) have shown the ambient 

temperature at which this 'chill-coma' occurs (Tee) to be species-specific. For Apis 

mellifera, at ambient temperatures between 8-12°C, metabolic increases cannot 

maintain internal temperature and a worker bee succumbs to chill-coma (Free 

and Spencer-Booth 1960, Goller and Esch 1990a). In this state, endogenous heat 

production capability is lost; a honey bee becomes immobilized and is unable to 

revive itself. 

Free and Spencer-Booth (1960) defined the chill-coma temperature for honey 

bees as the minimum ambient temperature below which movement was not 

observed. This is an ambiguous definition because honey bees that are actively 

producing heat by shivering thermogenesis may appear to be at rest or not 

moving (Rothe and Nachtigall 1989, Goller and Esch 1990a). Goller and Esch 

(1990a, 1991) have put a physiological meaning to the term by defining Tee as the 

temperature at which the amplitude of thoracic muscle junctional potential 

decays to zero. Esch (1988) relates this decrease in potential amplitude, and a 

corresponding increase in muscle potential duration, to an interruption of the 

neuromuscular contraction mechanism in insect muscle that occurs with 

decreasing temper~ture. 

Agreement is good between values of T cc for Apis mellifera workers obtained by 

Goller & Esch (1990a), ll.2°C averaged over nine individuals, and Free and 
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Spencer-Booth (1960), 9-l2°C for group size between 10-200 bees. This is most 

likely because all muscles are similarly affected with decrease in temperature, 

even those not used for thermogenesis (Esch 1988, Goller and Esch 1991). Factors 

that may influence Tee and survival from chill-coma for a given species include 

acclimatization, acclimation, food stores (honey crop contents), cooling rate, 

warming rate and length of time in chill-coma (Mellanby 1939, Calhoun 1954, 

Free and Spencer-Booth 1958 & 1960, Calhoun 1960, Goller and Esch 1990b). 

Honey bees appear to be able to cycle into and out of chill-coma with no adverse 

effects (Robinson and Visscher 1984). In fact, individuals have been revived after 

enduring several days in chill-coma (Free and Spencer-Booth 1960, Esch 1988). 

There are, however, limits to survival in this state. Honeybees have not adapted 

methods of supercooling as have many nonsocial insects (Southwick 1987, Storey 

and Storey 1990). Therefore, their tissues are subject to the physical damage 

inherent in the freezing process (Diamond 1989, Storey and Storey 1990). There 

is a temperature below which they cannot survive, even when exogenously 

heated. This temperature, defined as the cold-death temperature, lies between -2 

to -6°C (Pirsch 1923, Free and Spencer-Booth 1959 & 1960), but has not been 

widely investigated. 

Honey bees are unique in that they are the only social insects to thermoregulate 

under continuous cold load, overwintering as adults in north temperate climates 

(Farrar 1952, Seeley and Visscher 1985, Southwick 1988). Survival potential as a 

group far exceeds ~hat of the individual, with incorporation of group 

physiological and behavioral modifications to maintain survival temperatures 

within the hive (Phillips and Demuth 1914, Free and Spencer-Booth 1959, 

Southwick 1982). In practice, honey bees always behave as a group to some 
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extent, thermoregulating over a wide range of ambient temperatures (-80°C to 

+70°C) (Corkins 1932, Lindauer 1954, Free and Spencer-Booth 1962, Southwick 

1987). The honey bee colony, therefore, exhibits thermoregulatory characteristics 

similar to those of homeotherms (Southwick and Mugaas 1971, Southwick 1983). 

Collectively, the grouped individuals function together as a single organism: a 

superorganism (Farrar 1952, Southwick 1983 & 1991, Wilson and Sober 1989, 

Seeley 1989 & 1997, Moritz and Southwick 1992). 

The survival of each individual worker is linked to the survival of the colony 

(Seeley 1997). A minimum cluster mass is required for winter survival of the 

group (Jeffree 1955, Harbo 1983, Southwick 1985). Temperature at the periphery 

of a cluster has been measured to be as low as 7-10°C during the winter months, 

forcing the bees within that layer to cycle into and out of chill-coma (Phillips and 

Demuth 1914, Owens 1971, Southwick and Mugaas 1971, Southwick 1985). 

Individual thermoregulatory behavior at low temperatures has, by necessity, 

evolved not only to favor honey bee survival when acting individually, but also 

to maximize group survival. 

Many studies have investigated the physiologic response of the A. mellifera 

worker to an induced cold stress (Farrar 1931, Free and Spencer-Booth 1958, 

Allen 1959, Cahill and Lustick 1976, Rothe and Nachtigall 1989, Southwick 1991, 

Goller and Esch 1991, Fahrenholz et al. 1992). Although the honey bee is one of 

the most thoroughly studied insects (Heinrich 1993), consistency among 

measured heat production values found in the literature is low (reviewed in 

Rothe and Nachtigall 1989, Farenholz et al. 1992). There are a number of reasons 

for these discrepancies: 
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1. There has been difficulty in establishing a true resting state for the honey bee. 

Endogenous heating through shivering of the thoracic muscles produces no 

visible movement of the thorax. Earlier researchers believed that a significant 

amount of heat was generated only with walking or wing movement (Farrar 

1931, Mellanby 1939, Free and Spencer Booth 1958, Rothe and Nachtigall 

1989). As a result, most studies do not contain accurate information on the 

thermoregulatory state of the bees tested. This issue was not completely 

resolved until Esch and Goller (1991) determined the mechanism of shivering 

thermogenesis. They proved that the active heating state of a honey bee is 

most correctly determined with simultaneous detection of thoracic muscle 

potential and heat production (Esch et al. 1991). 

2. Measured values for metabolic adjustments with changes in ambient 

temperature are widely reported in the literature on a per bee basis. Most of 

these studies, however, were not performed on isolated bees, but on small to 

relatively large groups (n = 3-1000 bees). The individual energy expense was 

then calculated by dividing the total output by the number of individuals 

contained within the test chamber. Honey bees caged in numbers greater 

than 6 have a tendency to decrease their activity and group close together into 

a cluster to some degree at ambient temperatures of less than 20°C (Free and 

Spencer-Booth 1958, Fahrenholz et al. 1992). Clustering effectively decreases 

conductive losses on a per bee basis (Heinrich 1981, Southwick 1985). Even 

small cluster studies would therefore tend to give artificially low individual 

metabolic values. 

3. Tests performe~ on isolated workers have typically measured only a small 

number of individuals, because it is generally not practical to measure large 

numbers of separated individuals at a time using traditional methods. 
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Statistically, though, the larger the sample size, the more accurately the data 

estimate the actual population values (Zar 1984). 

4. It historically has been difficult to accurately measure the metabolic rate of a 

single insect. The metabolic rate of a single bee is low and measurement 

equipment, until recently, has not contained the inherent sensitivity needed 

to reliably record such small values (Blanke and Lensing 1989). 

The use of sensitive infrared gas analysis recorders to indirectly measure heat 

output has made it possible to record oxygen consumption values at the low 

levels seen in insect physiology (Blanke and Lensing 1989, Southwick 1991). A 

gas analyzer can be used in an open system, comparing the percentage of oxygen 

and/ or carbon dioxide in two streams of air: the air entering and the air exiting 

through a chamber containing an insect. The flow rate can be adjusted in these 

systems to accommodate extremely low oxygen consumption levels. 

Furthermore, the sensitivity of gas analyzers can be combined with the speed of 

an on-line computer to record and greatly increase the accuracy of measurements 

(Farenholz et al. 1989, Goller and Esch 1990a, Southwick 1991). Southwick 

(personal communication) was the first to use a software interface program to 

control all test equipment and record all data through a virtual instrument panel 

in insect studies. Such a system has the versatility and input/ output capability 

to monitor the number of variables necessary to produce consistent and accurate 

data over a wide range of metabolic outputs. In this study, I further refined and 

analyzed this syste~ for its usefulness in individual honey bee studies. 

Using this system, I investigated the characteristics of individual worker honey 

bees (foragers) during cold stress that may be related to group physiologic and 
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behavioral responses. The range of test temperatures was chosen to include 

those measured in previous cluster runs in this lab. In this thesis I, address the 

following two characteristics: 

1. I investigated individual worker responses within the range of temperatures 

that naturally occurs in an overwintering hive in northern climates. 

My working null hypothesis (H0 1) is: Low exposure temperature does not affect 

the heat production of Apis mellifera. 

The questions I will address to evaluate this hypothesis are: 

How do isolated individual worker honey bees react to an externally applied 

cold load? 

At what ambient temperatures do individuals attempt to thermoregulate? 

Can individual behavior be related to the behavioral response of a group of 

bees under cold stress? 

2. I also investigated the response and survival potential of individuals at 

maximum cold stress. The differences between bees that survive chill-coma and 

those that do not are not well defined. I examined two of the factors that may 

influence the survival rates of worker honey bees: minimum exposure 

temperature and time at minimum exposure temperature. 
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My working null hypothesis (H0 2) is: Low exposure temperature and time do 

not affect survival of Apis mellifera from chill-coma. 

The question I will address to evaluate this hypothesis is: 

Do minimum exposure temperature and time of exposure affect the revival and 

survival rates of comatose honey bees? 
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Methods 

Testing was performed ,at the Bee Lab in Lennon-Smith Hall on SUNY College at 

Brockport campus (43° 12'N, 77° 58'W). Honey bees (Apis mellifera) were taken 

from three full-size colonies located near this building and maintained following 

standard management practices. All metabolic tests were run during May­

August 1994 using worker bees. Tests were run under constant dark conditions. 

Experimental set-up and design were based on previous tests run in this lab 

(Southwick 1982, 1991). Low-temperature chill-coma tests were run during the 

months of April and May 1993. 

Experimental Design 

Equipment 

A temperature cabinet (Forma freezer/incubator Model 3770, -20 to +60 ± 0.4°C) 

was used to set ambient temperature conditions during testing. 

Metabolism was measured indirectly as the rate of oxygen consumed (Vo2) and 

carbon dioxide given off. Compressed, dried and filtered outside air (20.93% 

oxygen, 0.03% carbon dioxide) served as the supply to the cabinet. Flow-through 

air exiting metabolic chambers was sampled, dried (with CaS04) and analyzed 

for CO2 and 02 content (Beckman Industrial Model 868 and Applied 

Electrochemistry S~3A, sensitivity 0.001 %). The oxygen analyzer, a dual channel 

instrument, was used as a comparator to measure the relative change in oxygen 

between the air entering and the air exiting each test chamber. Flow rate was 

monitored with a digital mass flow meter (Omega Engineering, Inc. FMA5607) to 
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assure consistency between chambers during multiple chamber tests. Carbon 

dioxide production was measured for use in calculating RQ, the ratio of oxygen 

consumed to carbon dioxide produced, and as a check on proper system 

performance (for carbohydrate metabolism, RQ ± 1). Heat output was 

determined from Vo2 with RQ = 1.0. Six channels with bees were monitored 

simultaneously; a seventh channel was used as a control. 

All weights were measured in the lab on a Mettler PH3000 balance. 

I. Metabolic Tests 

The range of temperatures at which individuals were tested included the range 

of temperatures known to exist in an overwintering cluster and to be above the 

chill-coma temperature: 12°c and 15-40°C in 5°C increments. 

Collection 

Outgoing foragers were taken from the hive entrance during the mid-morning 

hours (0830-0930). A hand-held Hometrends™ vacuum with a modified opening 

was used to collect the bees one at a time (Figure 1). Individuals were 

immediately placed in preweighed 2cc syringes, modified for use as metabolic 

chambers. The chamber size allowed for limited walking movement, but bees 

were unable to spread their wings or tum around within these chambers. The 

needles had previo_usly been removed from the syringes and the plungers 

modified to allow for airflow through each and, in some cases, to accept a 

thermocouple lead. A food mixture of powdered sugar and corn syrup was 

provided ad libitum inside the syringes. 
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Oxygen Consumption 

After weighing, the syringes with bees were connected to six Tygon® (3/32" id) 

manifolds, each having the capacity to hold eight syringes. These manifolds, as 

well as a control, were connected to separate channels of the metabolic test 

equipment and monitored with an on-line computer system (Figure 2). Thus, 

forty-eight individuals were simultaneously tested in parallel circuits. Gas 

concentration readings for each channel gave an average over the eight bees in 

parallel with that channel. A small desiccant chamber was placed in line with 

each of the six channels. 

Airflow through the channels and the oxygen analyzer sample pump was 

adjusted to accommodate for the low rate of oxygen consumption of the 

individuals. These settings were obtained by using a Lab VIEW® real time 

stripchart that popped up on the computer screen during gas measurements and 

showed the arrival of the CO2 peak and corresponding 02 drop (resulting from 

the presence of the bees) on each channel. This resulted in a pump flow rate of 

80 ml/min, an oxygen sample pump setting of 0.5 and a channel cycle time of 

two minutes with a 105 second gas delay per channel. Therefore, each channel 

was sampled for two minutes at fourteen minute intervals. 

Two separate runs with forty-eight bees (six channels with eight bees each) were 

performed at each of the ambient test temperatures. Bees were allowed to 

accommodate to t~e cabinet set temperature for 45 minutes and then data were 

recorded during the following 30 minutes. A preliminary run that sequenced 

through these temperatures from high to low was used to check the method and 

as a basis for comparison during the tests that followed. 
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Temperatures 

Thermocouples (40 gauge T-type copper-constantan) were placed inside two 

syringes per channel during each test to monitor ambient temperature (Tarnbient). 

Cabinet temperature outside the syringes (T cabinet) was monitored using a 

separate thermocouple. After all metabolic runs were completed, a separate test 

was performed with thermocouples placed in syringes as noted above and 

additional thermocouples attached with a dot of beeswax to the thoraxes of 

randomly selected individuals. This was accomplished by first cooling the bees 

in a refrigerator until they fell into chill-coma and attaching the thermocouple 

while they were 'out cold' (as per Esch and Bastian 1968, Esch 1988, Goller and 

Esch 1990a). This allowed for statistical comparison of thoracic and ambient 

temperatures. 

Mass of Bees 

The syringe test chambers were weighed before and after the bees were collected 

so that the mean weight of individuals could be determined for each of the three 

supply hives. This information was used to determine the effect, if any, of body 

mass on results. 

Food Consumption 

The syringes were weighed at the completion of each test run both before and 

after the bees were released. The difference between the weights of the empty 

syringes before and after a run gave the amount of food (in mg) consumed per 
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bee. The amount of food metabolized was determined by the difference between 

the food consumed and the weight gain of the individual bee. 

Sample equipment and test set-up sheets for the individual metabolic 

experiments can be found in Appendices 1 and 2. 

II. Chill-coma 

Collection 

Experimental bees were mature workers removed from the periphery of colonies 

in groups of eight to twelve individuals using the vacuum device shown in 

Figure 1. 

Cage Design 

The test cage was a cardboard box with a 7 mm Styrofoam® insert placed in the 

bottom and over the top. Pieces of cardboard were used to divide the box into 

six separate chambers to avoid contact between bees and tangling of the fine 

thermocouple wires. Final cage dimensions were 4.5 x 6.5 x 2.0 cm with chamber 

dimensions of roughly 3.5 x 3.5 cm. This cage allowed for up to six bees to be 

tested simultaneously at each test condition. In most cases, five bees were 

monitored per test, one chamber being used for recording of ambient 

temperature. The ~est cage was placed in a foam box (packing foam) open at the 

top to allow for a more even cooling and warming of the bees under the test 

conditions. 
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Test Design 

A fine thermocouple was attached to the upper thorax of each test bee. Bees 

were cold anesthetized for this procedure as was done in the metabolic tests. 

Extra bees (two to six) were gathered for each test run to assure that this 

precooling did not affect the survival rates of the bees under test. After 

preparation, the bees were marked on the abdomen with paint for identification 

and placed in the test cage. 

Once the bees were set up in the cage, it was placed in a freezer (Hotpoint no­

frost 14) set at -16.2 ± 0.44°C and allowed to cool to this point. The cage was then 

transferred to the preset temperature cabinet and left for a specified amount of 

time. Exposure times and temperatures are given in the test matrix shown in 

Figure 3. Tests times were determined as an approximately geometric 

progression. Temperatures were determined by the minimum temperature seen 

at the periphery of an overwintering cluster (9°C), freezing temperature (0°C) 

and a midpoint between the two (4.5°C). Due to an error in the temperature 

cabinet setting, the actual measured low temperature was -2.5°C (not 0°C). 

At the end of the test period, the cage was removed from the temperature 

cabinet, placed on the lab bench at room temperature (ca 23°C), the Styrofoam® 

cover removed and warming rates monitored. Thermocouple output 

temperatures were recorded simultaneously and stored to disk throughout the 

testing period. 
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Chill Coma Temperature and Time 

Temperature at, and time to, first movement of each bee (leg, antenna, abdomen 

or wing movement) after removal from the temperature cabinet were recorded as 

the chill-coma temperature (T cc) and chill-coma time (tee) for these tests. 

Although this does not necessarily yield exact chill-coma temperatures, as 

measured by extinction of thoracic muscle potential, Goller and Esch (1990b) 

have shown this method to give a valid first approximation. Bees were 

monitored for 15 minutes after removal from the incubator for determination of 

Tee and tee· This value was chosen because the bees that I monitored in 

preliminary tests revived within 15 minutes at room temperature if at all. Bees 

that survived were tested through two cooling and warming cycles, weighed and 

returned to the hive (after a 24 hour monitoring period). Food was not provided 

to the bees during the tests or until after measurement of Tee and tee was 

completed. 

An individual was considered a survivor only if able to walk or fly 24 hours after 

end of test. A bee that was unable to walk upright or revived and died within 24 

hours was treated as a non survivor. A bee that could not recover from chill­

coma beyond this state would most likely not be able to survive in nature (i.e., 

not be able to fly back to the hive or crawl up the comb to the cluster). All bees 

were allowed to warm at approximately the same room temperature (ca 23°C). 

Possible compounding effects of using bees for more than one test were not taken 

into account in this. study. In future tests, bees should be used only once to 

separate possible cumulative effects. 
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Computer Interface and Data Acquisition 

I. Equipment 

Experimental control of the test apparatus, coordination of data acquisition and 

data storage were automated using National Instruments® LabVIEW®2.2 

hardware and software interfaced through Macintosh® microcomputers. 

Temperature, oxygen consumption, carbon dioxide production, air flow rate and 

barometric pressure values were recorded and saved to disk as they were 

measured (Figure 2). Some data processing (e.g. calculation of RQ and correction 

of oxygen consumption values to STP) was integrated into the program structure 

and performed on-line. 

Lab VIEW® is a software package that utilizes a graphical program language to 

create virtual instruments (VIs). These instruments serve as an interface between 

signal inputs/ outputs and the user. VIs can be obtained from a Lab VIEW VI 

library, customized or created by the user to perform specific control, timing, 

input, output, data analysis and storage functions. Each virtual instrument 

consists of two basic parts: a control panel and a corresponding circuit diagram. 

The control panel is designed to mimic a standard hardware instrument panel 

and utilizes icons that represent a variety of digital and analog switches, 

indicators and displays (Figure 4). The circuit diagram shows the order of 

execution of the instrument, using canned Lab VIEW® components or customized 

sub VIs which are '~ired' together by the user (Figure 5). The wiring represents 

data flow paths between the different software components, sub VIs and signal 

outputs to and inputs from external hardwired breadboards. The subVIs act as 

subroutines that can be called through the main VI control panel when its input 
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wires are 'activated.' A large number of subroutines can be nested within a VI in 

this manner (Figure 6). 

The National Instruments®NB-MI0-16L, NB-MI0-16XL and NB-DI0-24 data 

acquisition boards served to interface between the Lab VIEW®2.2 software and 

the general purpose termination breadboards used for data collection in my 

experiments. The MIOs, or multifunction input/ output boards, contain digital 

and analog input and output ports as well as counter and timing functions. The 

16XL can process an analog input more accurately (using 16-bit analog to digital 

conversion) than the 16L board (12-bit conversion). The DIO, or digital 

input/ output board, is a 24-bit parallel digital input/ output interface. Two 

general purpose termination breadboards were used to feed externally measured 

signals to the MIOs: the AMUX-64TR multiplexer and the SC-2070R. These 

boards can be configured to accept inputs in either a single-ended or differential 

mode. The differential inputs provided for thermocouple readings that were 

referenced to a cold junction terminal through an integrated circuit temperature 

sensor mounted on each board (accurate to ±1 °C). 

The NB-MI0-16LR board, driven by a Macintosh®IIsi, was used in the low 

temperature chill coma experiments. Thoracic temperatures of individual bees 

were monitored using thermocouple (TC) outputs passed through the SC-2070R. 

This board was set up in the differential mode, simultaneously monitoring seven 

input signals (TCs) and the on-board temperature sensor. 

The NB-MI0-16XLR board, driven by a Macintosh® Ilfx, was used in the 

individual metabolic experiments. Data gathered during these experiments were 

read through the AMUX-64TR. This board is used as an expansion board for 
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data acquisition and can sequence through up to 64 single-ended or 32 differential inputs. 

It was set up to read the differential-mode thermocouple inputs and one single-ended 

input each from a pressure transducer, mass flow meter, oxygen analyzer and carbon 

dioxide analyzer. The NB-DI0-24R was used to control channel switching during 

program execution. Control signals were read by an electromechanical relay digital 

output board (SC-2062R). This board contains eight single-pole, dual-throw (SPDT) 

relays that switched on the air pump to one channel at a time. System design allowed for 

up to seven channels to be monitored sequentially during any test run (six test channels 

and one control channel). 

Care was taken to protect the reference temperature sensors from external temperature 

fluctuations. Thermocouple measurement accuracy, based on errors associated with the 

sensors, linearization of the thermocouple outputs, temperature differences across the 

breadboards and gain errors related to the MIO boards can be as high as ±l.9°C (T-type 

thermocouple) for the configuration used in these experiments (National Instruments 

AMUX-64T User Manual 1991, SC-207X Series User Manual 1992). 

A flow diagram showing the executi9n sequence of the Lab VIEW® programs used in the 

chill coma and metabolic experiments is given in Figure 7. A summary of the 

breadboards used in these experiments in given in Appendix 3. 
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II. Experimental Setup 

Prior to each metabolic test run, the gas analyzers were calibrated with a 

calibration gas referenced to a 'zero' gas of dried, compressed outside air. 

Required adjustments were monitored using the Lab VIEW® BeePat6 program 

and made using the front panel controls located on the analyzers. An outline of 

test initialization procedures is given in Appendix 3. 

Data Treatment 

Statistical analyses were performed using analysis tools provided by Microsoft 

Excel® 3.0, MYSTAT®, FASTAT® and LabVIEW®2.2 (Wilkinson 1992). Charts 

were prepared using Excel® 3.0 and Cricket Graph III® 1.0 was used for graphing 

of experimental results. 

Statistical pooling of data was possible between some of the individual metabolic 

test runs. In some instances, no significant difference was found between the 

mean oxygen consumption measured during two different same temperature 

runs, as determined by Student's t-Test P~0.05. For these runs, data were pooled 

and treated as one data set. 

Data taken at 40°C in the metabolic tests was not used in the statistical analyses. 

The temperature preference of A. mellifera has been shown to lie in the range of 

31.5-36.5°C (Heron·1952, Heinrich 1993). It is unlikely, then, that the bees would 

have been actively thermoregulating at 40°C ambient temperature. 
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Figure 1. Vacuum apparatus used to collect bees from the hive for chill-coma 
experiments. Bees were drawn into the cage through the cylinder by the suction 
of the hand-held vacuum. The whole apparatus is assembled and disassembled 
quickly and easily. A cork covered the cylinder entrance hole after collection 
was complete. In metabolic experiments, the cage was replaced with the original 
vacuum casing. The opening of the casing was modified with a piece of Tygon® 
tubing so that individuals could be sucked up one at a time at the hive entrance. 

23 



dried outside air 

temperature cabinet 

metabolic 
chambers 

air flow ..... 
02 sensor 

dryers air pump I CO2 sensor ! 
thermocouple 

outputs 

on-line 
data storage 

control panel 

! 
~ ..... _6J 

=id 
microprocessor 

Figure 2. Experimental setup for the measurement of oxygen consumption of 
individual honey bees at low ambient temperatures. Six separate air flow paths 
(channels) were connected between the temperature cabinet and gas analyzers at 
the control panel (only one is shown for clarity). This allowed for up to six 
metabolic chambers to be monitored independently. Each metabolic chamber 
consisted of a Tygon® manifold that held eight bees in separate 2cc cages. 
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TLow(°C) 
9 4.5 -2.5 total n 

1 minute 5 5 5 15 

10 minutes 3 4 3 10 

100 minutes 5 5 5 15 

600 minutes 5 5 5 15 

total n 18 19 18 

Figure 3. Test matrix for low temperature chill-coma experiments. Numbers 
within the cells represent the number of individuals tested (n). Time increments 
were chosen to show the effects of an approximate geometric increase. Test 
temperatures were chosen to monitor the response of individuals at the 
minimum temperature seen at a cluster periphery (9°C), at the freezing point 
(0°C) and midway between the two (4.5°C). The actual measured low 
temperature (-2.5°C) was below that intended due to an error in the temperature 
cabinet zero dial setting. 
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Figure 4. Lab VIEW® control panels for individual metabolic experiments. The top 
panel (front controlsp6 Panel) was used to input test parameters: test channel(s), test 
length, gas sample cycle time and power switch to begin the test run. The bottom panel 
(the control Vlp6 Panel) was used to display the status of all thermocouple outputs, 
current gas readings, RQ, system airflow, barometric pressure, time, date and animal id. 
The stripchart at the bottom of this panel was able to display approximately the last 
one-hundred oxygen consumption measurements. Measurements previous to these 
could be accessed using the scroll bar at the base of the chart. 
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Figure 5. A sequence panel from the Lab VIEW® program used to monitor the low 
temperature chill-coma experiments. Four inputs from the front control panel feed into 
this sequence: start test (power), number of loop executions (loop count), number of 
seconds per thermocouple reading (no sec/read) and the cold junction correction 
temperature (CJ). Two sub Vls are called: Read Temp and Store Data. Read Temp reads 
the output voltage of seven thermocouples simultaneously, converts them to 
temperatures and feeds them sequentially to seven arrays. Store Data saves the mean 
temperature (over 'loop count' seconds) per channel to a file on disk. Thermocouple 
outputs are sent to the computer monitor as a strip chart output similar to the one shown 
in Figure 4. 
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Figure 6. The hierarchy of the BeePat6 program sub Vls used to control the 
individual metabolic experiments. Interactions between, and nesting of, 
subroutines are indicated by the lines that connect the different panels. 
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Figure 7. Execution sequence of Lab VIEW® program designed to measure and 
record data in individual metabolic runs. The chill-coma experiments followed 
the same sequence with the deletion of the gas analysis portion of the program. 
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Results 

I. Metabolic Rate 

Mean oxygen consumption, ambient (syringe) air temperature, food consumed 

and thoracic temperature for all test runs are summarized in Table 1. Cabinet 

temperature was maintained within 1.1-4.4 percent of the mean cabinet 

temperature over all test runs. This is equivalent to a maximum deviation of 0.5-

1.1 °Cat± two standard deviations. Metabolic and food consumption data from 

any channel were not included if at least one bee or more connected to that 

channel's manifold ran out of food, succumbed to chill-coma or died during a 

test run. This occurred to some extent at most test temperatures. In these 

instances, data could not reliably be averaged over the eight bees connected to 

that channel. Heat production (mW•g-1) was determined from the metabolism 

of sugar at 5.09 calories burned per mL of oxygen consumed. 

Oxygen Consumption 

Individual workers attempted to maintain their body temperature through active 

thermoregulation. Oxygen consumption, and corresponding heat production, of 

individual honey bees increased with a decrease in ambient temperature (Figure 

8). This increase is essentially linear and shows a high dependence of oxygen 

consumption on ambient temperature: 

Vo2 = -2.82•Tarnbient + 96.64 r2 = 0.94 n=58 P < 0.001. 
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Because of the physiologic limit placed on the ability of A. mellifera to 

thermoregulate below its chill-coma point and above its upper lethal limit, this 

regression would not be valid outside of the range of test temperatures 

investigated here (12-35°C). Data at test temperatures 20°C and 35 °C were 

pooled, according to the criteria outlined in the Methods section of this thesis 

(Student's t-Test P :s; 0.05; values given in Table 2). 

Oxygen consumption at 35°C represented a minimum consumption rate of 5.74 ± 

0.82 mL•g-l•hr-1 for these individual worker bees. This value cannot be 

considered as a basal or resting rate because observation showed that at least 

some individuals on each channel were moving throughout the measurement 

period. This corresponds to the well known tendency of individual honey bees 

to move constantly when separated from other bees. The maximum observed 

rate of oxygen consumption was 74.0 mL•g-l•hr-1 at 12.9°C. 

The variance in oxygen consumption increased with a decrease in cabinet 

temperature. This is to be expected with heat production increases. Heat 

production differences due to differences in thoracic muscle mass and food 

consumption become more pronounced with increased output levels. The 

increase in variance could also partially be due to the averaging of the data over 

the eight bees on one channel. The rate of change in thoracic muscle potential 

may have occurred at slightly different temperatures for the individuals 

connected to any one channel. 

The same trend was seen with eight individuals stepped through a sequential 

test run from 40°C to l0°C (Figure 9a). This curve has the same characteristics as 
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that of Figure 8: minimum oxygen consumption between 35-40°C, a steady 

linear increase in consumption with decreasing ambient temperature in the range 

of 12-35°C, and an increase in the variability of the data with temperature 

decrease. At cabinet temperatures below 12°C, the oxygen consumption of 

individuals did not stabilize, but decreased continuously. The sharp decrease in 

consumption at ambient temperatures below 12.9°C, in this case, represents an 

abrupt cut-off in metabolic capacity seen at the chill-coma point. These bees 

were unable to actively warm themselves. Fifty-eight percent of these 

individuals were comatose at the completion of this run. 

Oxygen consumption varied with thoracic temperature in a manner similar to its 

variation with ambient temperature (Figure 9b). The thoracic curve, however, is 

shifted to the right along the temperature axis, indicating maintenance of 

thoracic temperature over that of ambient. The temperature differential (T thorax -

Tambient) is a useful indicator of metabolic output. Increases in oxygen 

consumption were seen at differences greater than 2°C (Figure 9c). Oxygen 

consumption for a typical individual rises with active heating of the thoracic 

musculature and falls with its cessation. This bee behaved as an ectotherm, 

allowing body temperature to follow ambient, at thoracic temperatures above 

29.3°C and below 14.6°C. Between these two limits, behavior was endothermic, 

with maintenance of body temperature higher than ambient (on the average 4.74 

± l.0°C; minimum = 3.0°C; maximum = 6.2°C; n = 16). The peaks in the thoracic 

temperature curve represent periods of active heating by the honey bee, the 

valleys periods of rest or feeding. The peaks occurred at the onset of each 

downward cycle in cabinet temperature and increased in frequency with 

decreasing ambient temperature until the onset of chill-coma (Figure 9d). This 
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was the point at which the junctional potential amplitude of the thoracic 

musculature decreased to zero as a result of the imposed cold load. 

Temperature 

On the average, individual bees were able to warm the air in their syringes at test 

temperatures below 30.1 °C. The relationship between ambient and cabinet 

temperature over all individual runs was described by the linear regression 

(Figure 10): 

Tambient = 0.889•Tcabinet + 3.34 r2 = 0.99 n = 1907 P < 0.001. 

Comparison of this equation with the equation of equal temperatures (T ambient = 

Tcabinet) shows that they are not the same (elevations are significantly different; 

ANCOV A F=S.345, P=0.038). Simultaneous solution of these two equations 

shows their intersection point to be 30.1 °C. Below this temperature, Tambient is 

greater than Tcabinet and above this temperature, Tambient is less than Tcabinet. 

The cooling seen above this temperature is partially an artifact of the test design. 

Heating seen in the first 24 minutes is passive (Figure 9d) and due to the fact that 

the cabinet temperature at the start of the test (40°C) was higher than lab ambient 

(ca 23°C). 

The thoracic temperature is seen to always be greater than ambient temperature 

(Figure 9d). This would not normally be expected during periods of ectothermy. 

The small size (2cc) of the metabolic chambers and low flow rates may have 

acted as a buffer for conductive heat loss in this experimental set-up. This is 
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further substantiated by the fact that the ambient temperature is consistently 

greater than the cabinet set temperature. The effect increases with an increase in 

heat production (Figure 11). These three temperatures (cabinet, ambient and 

thoracic) tend to equilibrate before active thermoregulation begins and after the 

chill-coma point is reached and heat production ceases. 

Mass of Bees 

The mean weights of individuals from the three test hives differed significantly 

(ANOVA F=l2.705, P<0.0005, df=2, 686) (Table 3). Multiple comparison using 

Tukey's Honestly Significant Difference Test showed that the mean weight of 

individuals from hives Band C were the same, but were different than the mean 

weight of individuals from hive A (q=3.058, O.OS<P<0.10, df=686). The bees from 

hive A were obtained from a different source than those of hives B and C, and 

this may account for the weight difference. Practically speaking, this difference 

is small and no mass-specific differences in metabolic output were seen in 

individuals from different hives. 

Food Consumption 

Individual workers consumed more food on the average at cabinet temperatures 

ranging from 10-25°C than at cabinet temperatures 30-40°C (30.9 ± 9.1mg, n=319 

vs. 20.6 ± 6.4mg, n=257) (Figure 12). This corresponded to the increase in caloric 

requirements necessary with a shift from passive to active heating. This change 

in thermoregulatory behavior below 30°C was seen previously. Averages within 

these two temperature ranges were significantly different from each other 
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(ANOV A F=35.45, P<0.0001, df=586). Multiple comparison using Tukey's 

Honestly Significant Difference Test showed that mean food consumption was 

the same at test temperatures between 30-40°C (q=0.547, P>0.50, k=8) and 11-

250C (q=4.253, 0.05<P<0.10, k=8), but that consumption was different between 

these two temperature ranges. 

All bees consumed food during all test runs. This was expected because I 

gathered outgoing foragers with empty honey crops. Bees tested at higher 

temperatures (30-40°C), when thoracic temperature followed ambient 

temperature, did not require large amounts of food. The high cost of 

thermoregulation below these temperatures required a corresponding increase in 

food consumption. Since active heating is constant when thoracic temperature 

falls below 27-30°C (Goller and Esch 1991), a difference in food consumption 

with decrease in temperature below this ambient is not expected. 

A significant contributing factor to the large standard deviations seen in these 

data is probably the time that it took to weigh the syringes both before and after 

each test. Collection and weighing of the bees prior to a test run took 

approximately one hour and weighing after a test run took approximately 35 

min. Consequently, there was a large variation in the amount of time that 

individuals fed on the sugar candy in their separate syringes before weighing. 

Therefore, food consumption was not used in further analyses. These time spans 

could also have contributed to the large standard deviations seen in the mean 

weights of individuals. 
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II. Chill-coma 

Survival 

The survival potential of a comatose honey bee is high. A percentage of bees 

showed at least some temporary movement with heating after all exposure 

conditions. Fifty-two bees (95%) showed some movement (leg, wing, antenna or 

abdomen) after initial removal from the temperature cabinet, with thirty-nine 

bees (71 %) showing at least some movement 24 hours after revival. A 51 % 

survival rate was seen across all chill-coma tests (n=55). At least one bee from 

each test cell showed movement after 24 hours. Walking survivors after 24 hours 

were seen at all test conditions except two: 100 and 600 minutes at an exposure 

temperature of -2.scc. 

As expected, the percentage of survivors tended to decrease with a decrease in 

exposure temperature below ace (Table 4). Survival rates of bees exposed to a 

temperature of 4.5cc tended to be as high, or higher, than those exposed to 9.0 

and -2.5 cc, although not significantly so. Over all exposure times, the number 

of survivors, compared to number of non-survivors, was not different between 

the 4.5cc and 9.occ exposure temperatures (chi2=0.218, df=l, P=0.64, n=37), but 

was different than bees exposed to -2.scc (chi2=4.435, df=l, P=0.035, n=55). This 

is reflected in the fact that the majority of bees tested above ace survived while 

the majority of bees tested below ace did not. 

In general, survival rates decreased with an increase in the amount of time a bee 

remained comatose (Table 4). Survival of bees at 1 and 10 min was high (80% for 
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each of these exposure times), but fell by a factor of 2 at 100 min and a factor of 4 

at 600 min. Over all exposure temperatures, there was a very significant 

difference between the numbers of survivors and non survivors with exposure 

time (chi2=17.654, df=3, P=0.001, n=55). Combining the 1 and 10 minute and the 

100 and 600 minute groups, there was a very significant difference between these 

two groups (chi2=13.460, df=l, P<0.0005, n=55). This alludes to cumulative 

physiologic and/ or structural changes at the cellular level that are damaging to 

the honey bee (exposure times at or greater than 100 min in this study) (Storey 

and Storey 1990). 

The interactive effects of exposure time and temperature on survival rate could 

not be tested statistically due to small and unequal sample sizes. However, 

exposure time at low temperatures appears to have more of an effect on survival 

rate than the actual exposure temperature. 

Chill-coma Temperature 

There was a wide range of thoracic temperatures at which first movement out of 

chill-coma was observed (7.5 - 25.7°C). Some bees survived even when 

movement was not seen until their thorax was essentially at room temperature. 

Thirteen bees, or 23.6% of those sampled, showed movement at Tthorax less than 

ll.2°C. This is below the limit (11.2 ± 0.7°C) observed by Goller and Esch (1990a) 

for possible heating using thoracic flight muscles. However, their value was 

obtained during the cooling of bees and what I may have observed is the 

hysteresis effect known to occur between cooling and warming rates. 
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For all bees over all tests, chill-coma temperature was not dependent on 

exposure temperature (ANOVA F=l.67, df=2, 47, P=0.20, n=50), but was 

dependent on exposure time (ANOVA F=16.26, df=3, 46, P<0.0005, n=50). For 

survivors, 59% of the variation in T cc was due to the variation in exposure time 

(Table 5, Figure 13). Since bees cannot feed themselves while comatose, it is 

possible that some of them may die of starvation at these longer exposure times. 

Revival Time 

Exposure time is also more predictive of tee than is exposure temperature. Time 

to first movement out of chill-coma varied from 0.3 to 14.6 minutes. Revival time 

was found to be dependent on both exposure temperature (ANOV A F=4.34, 

df=2, 49, P=0.02, n=52) and exposure time (ANOVA F=l0.48, df=3, 48, P<0.0005, 

n=52). Coefficients of determination were low, especially for non survivors 

(Table 5, Figure 13). 

Chill-coma Temperature and Revival Time 

As thoracic temperature and time of warming increase, the likelihood of recovery 

from a comatose state decreases. It is reasonable to expect that a bee that is 

capable of shivering will begin doing so at the lowest temperature at which this 

process is physiologically possible. The best fit regression of revival time and 

chill-coma temperature is described by a logarithmic function (Figure 14). The 

logarithmic shape of this curve is expected because, as time at room temperature 

increases, (T room - Tthorax) decreases, with a corresponding decrease in passive 

warming rate. The correlation between revival time and chill-coma temperature 
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at warm-up for all bees is 0.92 (survivors: r=0.89, n=27; non survivors: r=0.90, 

n=23). 

The higher the thoracic temperature or longer the time out of the temperature 

cabinet at first movement, however, the less likely the individual was to survive. 

All bees that were able to fly 24 hours after testing revived in less than ten 

minutes and at thoracic temperatures below 25°C, with 89% of these showing 

movement in less than four minutes and at thoracic temperatures below l8°C. 

Correlation coefficient between these two variables below these values (4 min, 

18°C) was 0.88 for survivors (n=21) and 0.43 for non survivors (n=8). Thus, an 

individual was twice as likely to survive if it revived in less than 4 min and 

under l8°C. 

These results indicate that exposure time is a more useful indicator of survival 

potential than exposure temperature. There are no strong predictive indicators 

of inability to survive after recovery from a comatose state that were examined in 

these tests. 
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Cabinet Set Tambient Oxygen Consumption Food Consumed 

Point (QC) (QC) n (mL/g/hr) n (mg) bees 

40 39.1 ± 0.67 10 5.5 ± 0.59 5 16.3 ± 6.5 46 

39.6 ± 0.55 12 5.0 ± 0.47 6 23.5 ±5.00 48 

35 34.3 ± 0.26 12 5.2 ± 0.94 6 22.8 ± 5.3 48 

33.4 ± 0.31 12 4.4 ± 0.84 6 18.2 ± 5.9 48 

30 30.2 ± 2.31 10 14.8 ± 2.31 5 22.6 ± 7.2 40 

29.4 ± 0.29 12 8.5 ± 3.00 6 19.2 ± 5.3 48 

25 25.1 ± 0.47 10 19.9 ± 2.77 5 NA 0 

25.0 ±0.42 12 23.7 ± 3.34 6 30.0 ± 5.8 47 

20 21.4 ± 0.63 10 40.0 ± 4.71 5 29.4 ± 7.5 40 

21.1 ± 0.71 8 36.8 ± 3.49 4 29.2 ± 9.5 46 

15 16.7 ± 0.70 8 54.0 ± 2.31 4 27.5 ± 8.8 38 

16.0 ± 0.37 10 44.9 ± 5.71 5 30.8 ± 8.5 40 

12 14.2 ± 0.98 12 62.2 ± 5.23 6 38.8 ± 7.9 48 

13.3 ± 1.40 12 I 0 27.5 ± 9.4 48 

± error represents ± one standard deviation 

/Oxygen consumption of these bees did not stabilize (dropped continuously) during test run 

*Average thoracic temperature of one bee that was sequenced through test 

temperatures (for comparison purposes only) 

n is the number of channels with eight individuals per channel 

Tthorax * 

(QC) bees 

39.6 ± 0.84 1 

36.2 ± 0.44 1 

31.6 ± 0.69 1 

29.0 ± 0.27 1 

26.3 ± 0.60 1 

22.4 ± 0.18 1 

19.4 ± 0.70 1 



Table 2. Student's t-Test results for individual oxygen 
consumption tests. Differences between trials at 20°C, 
35°C and 40°C were not significant. Trials at these 
temperatures were pooled in data analyses. 

Tcabinet (°C) df p t 
15 12.4 0.0006 2.179 
20 18 0.23 1.261 
25 20 0.02 2.481 
30 20 0.0003 5.409 
35 22 0.08 1.864 
40 20 0.05 2.121 

Table 3. Summary of weights of individual honey 
bees collected from test hives for individual metabolic 
test runs. 

Hive mean weight sd n 
(grams) 

A 94.4 12.16 191 
B 101.3 13.93 188 
C 98.6 14.03 310 

41 



Table 4. Percent survival of Apis mellifera workers for all chill-coma tests. Table 
a. gives the percentage of bees that were able to walk and/ or fly 24 hrs after 
removal from the test chamber (survivors). Table b. includes bees that were alive 
after 24 hr, but unable to walk upright. Number in parentheses is the total 
number of bees tested per cell. 

a. Survivors that were able to walk or fly after 24 hrs: 
exposure 

exposure time temperature (QC) 
(minutes) -2.5 4.5 9 

1 60 (5) 100 (5) 80 (5) 
10 67 (3) 100 (4) 67 (3) 
100 0 (5) 60 (5) 60 (5) 
600 0 (5) 20 (5) 20 (5) 

b. Total bees that showed some movement after 24 hrs: 
exposure 

exposure time temperature (QC) 
(minutes) -2.5 4.5 9 

1 100 (5) 100 (5) 80 (5) 
10 100 (3) 100 (4) 67 (3) 
100 40 (5) 80 (5) 80 (5) 
600 40 (5) 60 (5) 20 (5) 

Table 5. Coefficients of determination (r2) relating revival time (tee) and 
temperature (Tee) from chill-coma to dependent test variables. Survivors (24 hr) 
are listed separately from non survivors. 

survivors: non survivors: 
Texposure texposure Texposure texposure 

(QC) (minutes) (QC) (minutes) 
Chill-coma 0 0.59 0.03 0.2 

Temperature 
Chill-coma 0 0.32 0.23 0.08 

Time 
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Figure 8. Oxygen consumption and heat production as a function of ambient 
exposure temperature. Mean consumption and standard deviation of recorded 
values are shown. Data are pooled where appropriate (refer to Table 2). The 
linear regression of these data give: Vo2 = -2.82•Tambient+ 96.64 (r2 = 0.94, 
P < 0.001). Number of trials (at eight bees per trial) at each test temperature is 
shown above symbols. 
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Figure 9a. Oxygen consumption as a function of ambient temperature for a 
sequential run with cabinet temperature dropped from 40°C to l0°C over a 4 hr 
period. Oxygen consumption values are averages of eight isolated individuals 
monitored on one channel. 
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Figure 9b. Oxygen consumption as a function of the thoracic temperature of one 
individual. Active thermoregulation, defined as (Tthorax-Tambient) > 2°C, 
corresponds with a sharp increase in oxygen consumption below thoracic 
temperature of 29.3°C. 
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Figure 9c. The variation of oxygen consumption (diamonds) and thoracic 
(squares) and ambient (circles) temperatures with time for a sequential run with 
cabinet temperature dropped from 40°C to 10°C over a 4 hr period. Oxygen 
consumption values are averages of eight isolated individuals monitored on one 
channel. Thoracic temperature is that of one of these isolated individuals. Active 
thermoregulation takes place at thoracic temperatures between 29.3-19.1 °C. This 
corresponds with an increase in oxygen consumption in this temperature range. 
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Figure 9d. Thoracic temperature (squares) with decreasing cabinet temperature 
(dashed line) and ambient (circles) temperatures over a 4 hr period for one 
individual during a sequential test run. Variation in thoracic temperature 
represents heating and cooling cycles of thoracic musculature. 
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Figure 10. Mean ambient temperature given as a function of cabinet set 
temperature for all constant temperature individual test runs (squares). Linear 
regression of these data gives Tambient = 0.889•Tcabinet + 3.34 (r2 = 0.99, 
P < 0.001). The line of equal temperatures (Tambient = Tcabinet) is also shown. 
Error bars represent the standard error of the mean. 
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Figure 11. Ambient (circles) and thoracic (squares) temperatures as a function of 
cabinet temperature for one bee in a sequential test run. Linear regression of air 
temperature measurements yields Tambient = 0.93 .. Tcabinet + 2.68 (r2 = 0.99, 
P < 0.01) and thorax temperature Tthorax = O.SO•Tcabinet + 8.80 (r2 = 0.94, 
P < 0.01). The line of equal temperatures (Tambient = Tcabinet) is also given. 
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Figure 12. Average food consumed per bee for all test conditions as a function of 
cabinet temperature (error bars represent the standard error of the mean). 
ANOV A and Tukey HSD Test show that the food consumed at cabinet 
temperatures ll-25°C is significantly different than that consumed at cabinet 
temperatures 30-40°C. 
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Figure 13. Change in temperature at (Tee squares, solid line) and time to (tee 
circles, dashed line) first movement with exposure time in low temperature 
chill-coma experiments for 24 hr survivors. For these bees, T cc and tee were both 
found to be significantly dependent on exposure time at the 5% level (ANCOV A, 
P < 0.0005 in both cases). 
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Figure 14. The relationship between chill-coma temperature and revival time for 
individual workers that revived from test exposure conditions. Survivors 
(squares, solid line) were defined as bees that were able to walk or fly after 24 
hours (r=0.89, n=27). Non survivors (circles, dashed line) indicate bees that 
either died or could not walk after 24 hours (r=0.90, n=23). Correlation for data 
below tcc=4 min and Tcc=l8°C was 0.88 for survivors and 0.43 for non survivors. 
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Discussion 

Oxygen Consumption 

Honey bees have evolved in a high temperature group environment. As social 

insects, they have not developed adaptive mechanisms to survive singly at low 

temperatures. Heat retention is not possible for the individual separated from 

the group. The temperature preference of a worker lies between 31.5-36.5°C 

(Heran 1952 as noted by Heinrich 1993 and Cahill and Lustick 1976). For 

individual bees, at temperatures below at least 31.5°C, active temperature 

regulation is required to maintain body temperature. 

Low exposure temperature does affect heat production by A. mellifera. The 

steady increase in oxygen consumption that I measured within an ambient 

temperature range of 35-12°C is in agreement with similar studies found in the 

literature for mature workers (Allen 1959, Cahill and Lustick 1976, Southwick 

1991). This defines the range of endothermy for these individuals. The high 

temperature limit is determined by the preferred body temperature of the bee, 

the low limit by physiologic constraints. The high temperature starting point for 

increased metabolic output is fairly consistent between studies (32-35°C). In this 

temperature range, a minimum sustained average rate has been measured within 

the range of 2.2-6.0 mL02•g-l•hr-l. The measured low temperature cut-off for 

thermoregulation in the literature is more variable (5-l7°C) (Allen 1959, Cahill 

and Lustick 1976, Southwick 1991, Goller and Esch 1991). This large spread is 

partly a result of the confusion in determining the active state of the thoracic 

musculature. Some of the discrepancy is due to test design artifact in cases 

where the ambient temperature points are spaced too far apart near the chill-
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coma point. The average maximum sustained rate measured in this experiment 

(62.2 mL02•g-l•hrl at 12.9°C) is higher than that found in other studies (50.5 

mL02•g-l•hrl at 5°C Cahill and Lustick 1976; 29.6 mL02•g-l•hrl at 15°C 

Southwick 1991). 

Variation in individual heat production is much lower at higher ambient 

temperatures than at lower temperatures. Specifically, standard deviations 

noticeably increase when ambient temperature approaches 20°C. The increase in 

oxygen consumption is steady and consistent to 21.9°C ambient; below 21.9°C, 

the increase in consumption is sporadic and more variable. This is the 

approximate temperature at which Esch and Goller (1990a) observed 

interruption of neurological function at the motor end plate of the honey bee's 

thoracic musculature. The duration of the muscle endplate potential increases 

exponentially with muscle temperature below 18°C and the amplitude decreases 

by 50% between 25°C and l5°C. This results in a significant decrease in muscle 

contractile force and power output (Rothe and Nachtigall 1989). Presumably, the 

respiratory musculature are similarly affected. This would coincidentally 

decrease the fuel supply for aerobic conversion and inhibit the muscles used for 

active heat production. 

Increased movement of an individual separated from the group under 

experimental conditions artificially inflates oxygen consumption values. 

Fahrenholz et al. (1992) showed that groups with as few as three bees had 

significantly decreased per bee heat production levels compared with isolated 

individuals. It is well known that a honey bee separated from its sisters will not 

settle down, even in cases of extreme energy loss (Heinrich 1993). This tendency 

is contrary to expected survival behavior and implies that a completely natural 
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test setting is impossible to achieve with individuals. Still, this type of study has 

value in that the thermoregulatory cues for the individual may be assumed to 

play a role in group behavioral dynamics. 

Thoracic Temperature 

The only mechanism available for active heat production in the honey bee is 

shivering thermogenesis (Heinrich and Esch 1994). Physiologic maintenance of 

thoracic temperature is the driving force that links ambient temperature and 

oxygen consumption. The dependence of oxygen consumption on thoracic 

temperature is similar to its dependence on ambient temperature (see Figures 9a 

and 9c). As the temperature differential between thoracic musculature and 

ambient increases (Tthorax - Tambient), conductive heat loss increases rapidly. 

This increased loss requires a higher power output and a greater oxygen 

consumption for aerobic heat conversion in the muscle. However, power output 

decreases proportionally with temperature due to the disturbance of junctional 

potential impulses with cold stress. The interplay of these factors determines a 

low temperature limit for thoracic heating. 

This experiment showed maintenance of thoracic temperature over ambient 

temperature in the thoracic temperature range of 31-12.9°C. This corresponds 

closely with that found by Esch (1988): 30-11 °C. However, thoracic temperature 

dropped continuously with successive readings below 19°C, implying that the 

cut off for effective thermoregulation was, more accurately, 19°C (see Figure 9c). 

Heat production capability was severely limited at thoracic temperatures below 

19°C, which is 6°C above the measured chill-coma point in these experiments. 
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The heat production capability of the honey bee is significantly restricted even 

before it is immobilized. 

Heinrich (1996) proposed that the control set point for shivering thermogenesis is 

located in the thorax of the honey bee. This would partially explain differences 

in the literature regarding specific values of heat production related to 

environmental temperature. Slight differences in experimental conditions could 

alter the relationship between ambient and thoracic temperature, thus changing 

the resultant measured relationship between heat production and temperature. 

This suggests that either Tthorax or the differential (Tthorax - Tambient) would be a 

better indicator of metabolic output than ambient temperature alone. 

Food Consumption 

Food consumption has been used qualitatively as an indicator of metabolic 

activity; Free and Spencer-Booth (1958) saw an increase in feeding with a 

decrease in environmental temperature. Food consumption, however, is rarely 

used as the sole indicator of heat production. It is difficult to determine the 

proportion of metabolized energy that is given off as heat without direct 

measurement. This is illustrated in Figure 12, which shows only two average 

values of consumption over the entire test range. The steady increase in 

metabolism with increased cold load is lost in this analysis. 

Bees exposed to ambient temperatures at and above 30°C clearly had a lower 

total energy expense than those exposed to ambient temperatures below 30°C. 

This delineation is interesting and indicates the continuous nature of heating 

below 30°C ambient. Esch and Goller (1991) observed this effect in workers at a 
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30°C thoracic temperature. A clear division would not have showed up in Free 

and Spencer-Booth's (1958) study because groups, not individuals, were tested. 

At any given time, not all bees within a group are necessarily producing heat, 

even when group output is increasing. 

Survival 

The ability to survive low temperature exposure has practical applications in the 

natural environment. The temperature at the outer layer of an overwintering 

cluster (mantle) may drop to chill-coma levels at low ambient temperatures 

(Southwick 1985). Bees within this layer must be able to endure cycling into and 

out of chill-coma in order to move with the cluster to honey stores. Separation 

from the cluster in cold conditions can be fatal to the i.ndividual comatose 

worker. Honey bees also have been observed foraging at ambient temperatures 

near l0°C (Heinrich 1979b). A worker foraging at or near this temperature may 

be unable to maintain the high thoracic temperature necessary for flight (-27°C 

minimum) and return to the hive. Robinson and Morse (1982) showed that 

honey bees do get stranded away from the hive at night, returning during the 

warmer mid-morning hours. 

Considering that a honey bee lives through its entire life cycle in a highly 

socialized and tightly regulated thermal environment, the survival potential of a 

worker separated from the group is surprising. I saw movement in bees after all 

exposure conditions (most notably-2.5°C for 10 hours), although not all were 

alive after the twenty-four hour defined period for survival. Individuals have 

survived test conditions of 0°C for 80 hours, -2 to -5°C for 0.5-3 hours (Free and 

Spencer-Booth 1960) and 5°C for several days (Esch 1988). 
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I found that low exposure temperature and time do affect the survival of A. 

mellifera from chill-coma. Honey bee survival rates were most influenced by the 

amount of time that an individual was in chill-coma. Colhoun (1960) saw a 

similar effect of exposure time on survival in the cockroach (Blattella gemanica L.). 

This effect was compounded by the minimum temperature to which the bee was 

exposed. Although not statistically significant, more bees survived the exposure 

temperature of 4.5°C than at either 9°C or -2.5°C (this pattern would have to be 

further investigated by retesting with a larger number of bees). Free and 

Spencer-Booth (1960) found survival rates to be highest at 5°C (temperatures 

tested: 0, 5, 10°C). This effect may simply be related to the Q10 effect of 

temperature on metabolic rate. A bee becomes immobilized when muscle 

potential amplitude drops to zero, but, to survive, metabolic processes must 

continue on some level. Given equal food availability, the bee with the lower 

metabolism (comatose at the lower temperature) will survive the longest. There 

will be a critical temperature, below which tissue and cell damage will interfere 

with metabolic processes and survival will not be possible. The critical 

temperature is most likely related to the freezing point of the bee's tissue, which 

is at or near the freezing point of water. This is substantiated by the fact that 

cold-death temperatures quoted in the literature for honey bees have all been 

below 0°C (-1 °C Pirsch 1923, -2 to -5°C Free and Spencer-Booth 1960, -2.5°C this 

paper). Future studies that take into account body weight and honey crop 

content are needed to clarify these factors. 

Chill-coma temperature at warm up for twenty-four hour survivors was 13.27 ± 

4.5°C, with 87.5% seen between 7.5-18°C (11.75 ± 2.7°C). This value is in 

agreement with chill-coma cool down values found in the literature, ranging 
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from 7-l2°C (Allen 1959, Free and Spencer-Booth 1960, Esch 1988, Southwick 

1991). The spread in my data compared with these others is due to at least two 

factors. One is the known hysteresis effect that occurs between cool down and 

warm up in the honey bee (Fahrenholz et al. 1989). The other was noted by Esch 

(1988), that most bees require mechanical stimulation to recover if not moving by 

the time they are warmed up to 16°C. No mechanical stimulation was provided 

in my experiments. This would not be a factor in the honey bees' natural 

environment or in group experiments, where stimulation by fellow workers is 

constant. 

Lab VIEW® Interface and Data Acquisition 

There have historically been problems with consistency between published data 

on the thermoregulatory characteristics of an individual worker bee. The 

discrepancies arise mainly from two sources: a lack of knowledge on the 

mechanism of heat production in the honey bee and the need for highly sensitive 

measurement equipment to monitor single insect output levels. These problems 

have begun to be resolved within the last decade (Esch et al. 1991, Blanke and 

Lensing 1989). The Lab VIEW® data acquisition and software interface possess 

the capability and versatility to provide further solutions to these problems. 

It is critical that a large number of variables be considered with indirect 

calorimetry studies: oxygen consumption, carbon dioxide production, thoracic 

temperature, ambient temperature, air pressure and air flow rate along with 

system equipment parameters. For statistical comparison, it is best to monitor all 

parameters simultaneously. The Lab VIEW® hardware used in these experiments 

accepted a minimum of thirty-two output signals from the test chamber. 
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Sampling of these signals was controlled by a timer on the circuit board and was 

accomplished virtually simultaneously (i.e. it took a number of milliseconds to 

sequence through all of the signals). Additional output boards could increase the 

number of parameters monitored if needed. 

It is desirable that the consistency of test conditions between trials be high in any 

given study. Computer control assures that experimental conditions are 

essentially the same for each test trial. Flow rates (sample pump and oxygen 

analyzer) through chamber(s) and cabinet temperature, for example, can be 

adjusted on-line at the beginning of a test and set to within a few percent from 

trial to trial. Checks for proper system operation can be built into the software. 

In my experiments, the RQ was displayed and updated every two minutes as a 

check on total system performance. Once the test is begun, parameters can be 

adjusted without disturbing the insects or interrupting the test. 

The system used in this study was set up to monitor six channels per test trial 

with a manifold containing eight individuals per channel. Actually, any number 

of individuals can be connected in parallel per channel and still be kept separate. 

Using these manifolds, a relatively large quantity of individuals can be tested 

simultaneously in a relatively short period of time. In many cases, it took longer 

to collect and weigh the bees than it did to run my trials. 

Data acquisition, evaluation and graphing of test results can be accomplished on­

line. These functions can be integrated into the test program or can be performed 

as the test is running. The Lab VIEW® interface does not have to be pulled up on 

the monitor; data can be stored to a file and analyzed using any spreadsheet or 
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statistical program contained on the hard drive of the control computer as the 

test is running. 

The versatility of this system is impressive. Once the hardware is set up, 

variations in test design and parameters usually require adjustment only to the 

software interface subroutines. For instance, an additional variable, such as 

thoracic muscle potential, could easily be monitored with the existing equipment. 

The same equipment rack was used in this laboratory to perform tests on single 

individuals, small groups of approximately 200 bees and complete supers, with 

only minor adjustments to the software and system flow rates. 

Individual Behavior Related to Group Response 

The distribution of an insect species is influenced by external temperature. 

Minimum and maximum tolerable heat and cold loads (lethal limits) are 

important determinants of adaptation and dispersal potential. Groups of Apis 

have developed an unusually wide climatic dispersion for an insect species, 

through adaptation of a typical homeothermic response (Southwick 1991). 

The value of assessing an individual honey bees' 'normal' thermoregulatory 

performance has been questioned because of the social nature of these insects. 

Isolated bees react more strongly to experimental temperature fluctuations than 

do groups of bees, with individual measured values much higher than per bee 

cluster estimates (Free and Spencer-Booth 1958 & 1960, Harrison 1987, Southwick 

1991, Fahrenholz et al. 1992). Fahrenholz et al. (1992) have shown a decrease in 

metabolism at low temperatures with group sizes as small as 3-6 bees. However, 

the importance of the response of an individual to shifts in its thermal 
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environment cannot be discounted. The ability of a bee colony to produce heat is 

fundamentally dependent on the ability of an individual bee to thermoregulate 

(Dyer and Seeley 1987). It is the cumulative response of all individuals in a 

colony reacting to the thermal conditions in their immediate environment that 

provide for group thermoregulatory characteristics. A. mellifera workers 

thermoregulate in the range of temperatures found within a hive throughout the 

course of a normal northern winter. It is group behavioral factors that are 

responsible for the ability to stay warm at low temperatures through the 

retention of heat generated by individuals. 

The driving force for colonial thermoregulation is unclear. It is not known 

exactly how physiological and behavioral thermoregulatory mechanisms are 

coordinated in the performance of temperature control. The question then 

becomes, to what extent do honey bees behave as individuals within the context 

of the group? This remains an unanswered question in honey bee biology. 
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Appendix 1: Equipment Set-up Procedure for Metabolic Experiments 

To do before test start: 

set temperature cabinet to start temperature 

check desiccant on all channels and on input line 

tum on outside air to cabinet and oxygen sample pump 

calibrate gas analyzers* 

tum on appropriate channel pumps 

During setup: 

place bee manifolds in cabinet 

connect manifolds to the channel air (pump) lines 

place thermocouples in syringes 

To start test: 

open, enter start up data and parameters, start Lab VIEW® program 

BeePat6** 

BeePat6 is set to display the output from six channels with three to five 

thermocouples per channel 

*gas analyzer calibration 

use a calibration gas and a 'zero' gas of dried, compressed outside air 

turn on oxygen sample pump and adjust left ball float to 0.5 

tum on zero gas and feed it into temperature cabinet 

connect calibration gas to channel one of BeeSniffer (leave channel one 

relay switch turned off) 
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Appendix 1 

adjust control pump gas flow rate to 80 mL/min 

open BeePat6 to monitor the flow status and RQ of the calibration gas 

(BeePat6 is located on the AppleSkin HD, in the PatThesis folder) 

turn on channel switches 1 and 7 

run calibration gas until the following readings are obtained on the gas 

analyzers: 

•CO2 with Range switch on 1: 0.3 with zero gas flowing (adjust 

with Zero pot) and 23.0 with calibration gas flowing (adjust with 

Span pot). 

•CO2 and 02 with Range switch on 3: 

Zero gas: 0.6-2.0 20.80-20.92 

Calibration gas: 93-98 16.08-16.48 

RQ 

any value 

0.92-0.99 

(use Reference Adjust on the oxygen analyzer front panel to lower 02 

reading, if necessary) 

**program (BeePat6) start up: 

open the frontcontrols panel in the BeePat6 folder 

click on the arrow in the upper left corner of the display 

enter bee weights per channel, filename, date; click DONE button 

switch on front control channels that correspond to the test 

choose test length, gas delay and chamber cycle time per channel; 
click START button 
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Appendix 2: Test Set-up Checklist for Metabolic Experiments 

Set-up Checklist 

_____ Date Filename ---------' 

-----Time bees collected Animal I.D. ---------' 
Test start time ----- ________ Toutside 

_____ Test stop time 

___ l. Set cabinet starting temperature: · time __ _ 
___ .2. Open the outside control gas (ZERO gas) and adjust to about 5 

L/min. Calibrate gas analyzers; check all tubing connections; check 
desiccant for all chambers and the big canister inside the temperature 
cabinet-change if necessary. 

___ 3. Weigh syringes (with food)/ get bees/weigh syringes with bees. 
___ 8. Connect two Tambient TCs and one Tthorax TC to each channel. 

9. Enter test data into BeePat6: ---
Filename Animal I.D. ---------bee weights _______________________ _ 
gas delay time cycle time ________ _ 
test length. ________ _ 
turn on chamber switches ------

___ 10. Start BeePat6. 
___ 11. Check flow to all channels: . Check flow to oxygen 

sample pump ____ _ 
10. Overflow on all channels? 7 1 2 3 4 5 6 ---

NOTES: 
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pre-test post-test 

yringe # w/o bee w/ bee Wbee w/o bee w/ bee Wbee 
1 

2 

3 

4 

5 

6 

7 

8 

9 

IO 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 
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Appendix 3: Summary of Lab VIEW® Circuit Boards 

Board Number Type 

NB-MI0-16L 12 bit digital->analog converter 

multifunction 1/0 

NB-MI0-16XL 16 bit D->A converter 

multifunction 1/0 

NB-MI0-16LR* multifunction I/ 0 

NB-MI0-16XLR# multifunction 1/0 

NB-DI0-24R 24 bit digital I/ 0 

NB-DI0-24 24 bit digital I/0 

AMUX-64TR# 1/0 with single-ended and 

differential mode options 

SC-2070R* I/ 0 with differential mode 

SC-2062R 8 SPDT digital output 

*used in chill-coma experiments only 
#used in metabolic experiments only 
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Use 

data acquisition interface 

data acquisition interface 

data acquisition interface 

data acquisition interface 

channel switching control 

data acquisition control 

thermocouple, pressure, flow 

rate, 02, CO2 readings 

thermocouple reading 

channel switching relays 
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