The College at Brockport: State University of New York Digital Commons @Brockport

Kinesiology, Sport Studies, and Physical Education Synthesis Projects

Kinesiology, Sport Studies and Physical Education

Summer 8-9-2017

What are the ergogenic effects of music during exercise?

Brianne Corigliano The College at Brockport, bcori1@u.brockport.edu

Follow this and additional works at: https://digitalcommons.brockport.edu/pes_synthesis Part of the <u>Health and Physical Education Commons</u>, <u>Kinesiology Commons</u>, and the <u>Sports</u> <u>Sciences Commons</u>

Repository Citation

Corigliano, Brianne, "What are the ergogenic effects of music during exercise?" (2017). *Kinesiology, Sport Studies, and Physical Education Synthesis Projects.* 26. https://digitalcommons.brockport.edu/pes_synthesis/26

This Synthesis is brought to you for free and open access by the Kinesiology, Sport Studies and Physical Education at Digital Commons @Brockport. It has been accepted for inclusion in Kinesiology, Sport Studies, and Physical Education Synthesis Projects by an authorized administrator of Digital Commons @Brockport. For more information, please contact kmyers@brockport.edu.

What are the ergogenic effects of music during exercise?

A Synthesis of the Research Literature

A Synthesis Project

Presented to the

Department of Kinesiology, Sport Studies, and Physical Education

The College at Brockport

State University of New York

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Education

(Physical Education)

by

Brianne Corigliano

8/2/17

THE COLLEGE AT BROCKPORT STATE UNIVERSITY OF NEW YORK BROCKPORT, NEW YORK

Department of Kinesiology, Sport Studies, and Physical Education

Title of Synthesis Project: What are the ergogenic effects of music during exercise?

A Synthesis of the Research Literature.

Read and Approved by: <u>Melanie Perreault</u> Melanie Perreault, Ph.D.

Date: <u>August 9, 2017</u>

Accepted by the Department of Kinesiology, Sport Studies, and Physical Education, The College at Brockport, State University of New York, in partial fulfillment of the requirements for the degree Master of Science in Education (Physical Education).

Carthy Houston-Wilson

8/17/17 Date:

Dr. Cathy Houston-Wilson Chairperson, Department of Kinesiology, Sport Studies, and Physical Education

Acknowledgements:

I would like to thank the Department of Kinesiology, Sports Studies, and Physical Education at the College of Brockport for all of the efforts by the staff to guide me in my process of finishing my graduate studies and developing my synthesis project. I would also like to thank my family and friends for supporting me through all of my studies and providing encouragement through tough and stressful times throughout my graduate studies.

Abstract

This synthesis demonstrates the positive effects of music on exercise. It focuses on the potential benefits of listening to music during exercise. It uses a theoretical framework focusing on the dissociative effect of music resulting in reduced perceived exertion, accompanied by greater output, enhanced performance, improved skill and improved mood. It also looks at the effects of variable intermediaries of the tempo and the volume of the music being used. It uses twelve, peer-reviewed, quantitative research journal articles published within the past forty years as the "critical mass." Using the theoretical framework the synthesis demonstrates that the dissociative effect of music enhances exercise and achieves the potential benefits. It recommends future research over a wider age range and varied exercises.

Acknowledgements:
Abstract
Introduction
Theoretical Framework
Background Information
Scope of Synthesis
Operational Definitions
Summary9
Methods
Selection of Studies
Results of the Search
Coding Variables
Results
Intermediary Valuables
Music tempo
Music volume
Dissociation15
Perceived Exertion
Greater Output
Cardiovascular endurance
Muscular endurance
Summary
Discussion
Limitations
Future Research
References
Appendix A

Table of Contents

Introduction

Music has been widely used to positively affect exercise performance. Today, many exercisers consider music a very important component in their workout routines. Personal music includes compact disc recordings and various personal audio systems. It has been observed that music is often used to accompany exercise and athletic activity.

The belief that music enhances exercise, is a topic of interest to all who participate in any athletic endeavor – from the professional athlete who is training to someone who simply exercises to maintain health or fitness. While the term "ergogenic effect" may not be a common one, the results of a synthesis exploring the ergogenic effects of music on exercise would be of interest to all who exercise.

Theoretical Framework

It has long been thought that music may enhance exercise. The common belief is that it does this by altering the psychological state of the participants. It also may establish an effective mindset to sustain motivation and to resist emotional fatigue. It may even enhance physical and athletic performance (Mohammadzadeh, Tartibiyan & Ahmadi, 2008).

Users report that music puts their minds at ease, thus helping them exercise at a greater intensity level. It is possible that they may be utilizing the distracting and emotional qualities of music to avoid focusing attention on internal feelings associated with discomfort. (Boutcher and Trenske, 1990).

These commonly held beliefs will be examined in the synthesis to explore whether or not there is data to demonstrate the validity of these beliefs that music does indeed enhance

performance in exercise. Also to be examined are some of the qualities of the music that is used

on various forms of exercise.

The framework this synthesis will use to examine the available literature is as follows (adapted from C.I. Karageorghis and D.-L. Priest, 2012, p. 48)

Antecedents	Intermediaries	Potential Benefits
Personal Factors (pre-existing)	Effects of Tempo	Dissociation
Situational factors (surroundings)	Effects of Volume	Reduced perceived exertion
		Greater output
		Enhanced performance
		Improved skill
		Improved mood

We will examine the two antecedents of personal factors, which we note are pre-existing, and situational factors. The personal factors include examining who is being studied – the makeup of the cohort or people included in the study. The situational factors include the type of exercise being used as well as the type of music being used.

There are also intermediaries to be considered – these are variable. These include how the tempo and volume of music effect exercise.

The synthesis will ultimately look toward the potential benefits of listening to music while exercising. These potential benefits have wide ranging significance for anyone who exercises. This synthesis therefore is meant for anyone who exercises from the professional athlete training for his or her sport or upcoming important game to the person who exercises occasionally. It is also important for coaches and trainers, who armed with the information on the potential benefits of using music to enhance exercise. The ultimate goal would be for all who exercise to understand what music, with all the variable taking into consideration, is the best choice to enhance their exercise regimen. These potential benefits include the effects cited in the table above.

Looking at these individually demonstrates how significant these can be to exercise. Dissociation means that the one who is exercising is distracted by the music he or she is listening to and is able to exercise through small aches and pains, or how tired one is while exercising. In other words, it allows one to concentrate on the music and not on the exercise. Reduced perceived exertion is coupled with dissociation to a certain extent, but it is different in that the one who is exercising is able to dissociate through the use of music that he or she perceives that he or she is not working as hard as without music. For example, it is this reduced perceived exertion that allows one listening to music to run faster or to run farther without the feeling of being exhausted or even delaying the point of feeling tired or exhausted. This results in the next potential benefit of greater output – running farther or faster. This results in the potential benefit of enhanced performance and the possibility of achieving a greater skill level. Finally, an improved mood while exercising is a great benefit to carry away from the regimen.

In many ways these flow from dissociation – the ability to concentrate on the music rather on the difficulty or the intensity of the exercise to enhance overall performance, results and the personal benefits of achieving a higher skill level and an improved mood.

Background Information

Several researchers have addressed the question of whether music positively affects exercise performance. Some believe that listening to music during an exercise workout increases performance by allowing the exerciser to maintain a steady pace; and deflects attention away from feelings of discomfort (Boutcher and Trenske, 1990).There are two assumptions for this: (1) specific music tempos, as well as (2) the volume of the music increase work output. This

assumption is expressed in this way: it is expected that loud music at a faster tempo will also have an effect on increased heart rate and possibly exercise performance (Edworthy and Waring, 2006).

On the other hand, some researchers are far from convinced that listening to music has a positive influence on exercise performance (Schwartz, Fernhall and Plowman, 1990). Some exercise enthusiasts do not use any type of music to enhance their workouts. Their motivation to exert maximum effort comes from within.

Scope of Synthesis

The purpose of this synthesis is to examine the research available to determine if there is sufficient evidence to support the claim that music enhances the performance of an exercise. This synthesis will examine the available literature that is used to demonstrate the claim that music enhances performance. It will then draw conclusion as to whether the literature sufficiently demonstrates the claim.

Operational Definitions

Ergogenic. This term is used to show anything that is used to enhance physical performance or stamina (*American heritage dictionary of the English language*, 1976).

Exercise Performance. This means carrying out specific physical routines or procedures by anyone who is performing an exercise (*American heritage dictionary of the English language*, 1976).

Summary

The practice of using music to enhance performance is so widespread that many athletes accept it as a foregone conclusion: that music works – in other words it does enhance performance. This synthesis will examine the actual research that backs up this claim. It will

critically examine the studies on which it bases its claims. It will examine any opposing opinions. It will ultimately offer suggestions or recommendations regarding the use of music to enhance performance in exercise.

Methods

The purpose of the section was to describe the ways in which a "critical mass" of peerreviewed research articles was identified and selected for the synthesis. The section is organized according to *selection of studies*, *results of the search*, and *coding*.

Selection of Studies

Online databases were searched at Drake Memorial Library located on The College at Brockport campus. They included *SPORT Discus with Full Text, Academic Search Complete,* and *The Physical Education Index*. These three databases were selected because they reference many physical activity, exercise and physical education journals. The following advanced search terms were entered, singly and in combination, into the databases: "music and exercise", "music and motivation and exercise", "music and exercise performance", "music and exercise and perceived exertion."

To help in the selection process, three screening criteria were employed. Specifically, each article chosen had to: (1) focus on how music impacts exercise performance; (2) be published in a peer-reviewed research journal; and (3) be published within the past 40 years.

Results of the Search

The first descriptor phrase, *music and exercise*, was entered into each of the above databases. This procedure yielded a total of 2,756 articles: *Academic Search Complete* (1,755), *SPORT Discus with Full Text* (508), and *Physical Education Index* (493).

Next, the second descriptor, *music and exercise performance* was entered into the databases and yielded 605 articles: *Academic Search Complete* (364), *SPORT Discus with Full Text* (102), and *Physical Education Index* (139).

The phrase *music and motivation and exercise* was then entered and yielded 175 articles: *Academic Search Complete* (88), *SPORT Discus with Full Text* (43), and *Physical Education Index* (44).

Lastly, the phrase *music and exercise and perceived exertion* was entered into the databases, and yielded 114 articles: *Academic Search Complete* (17), *SPORT Discus with Full Text* (31), and *Physical Education Index* (66).

To summarize, a total of 3,650 articles were initially identified for the synthesis. Following application of the three screening criteria, 18 articles were retained for further evaluation. Subsequently, 14 articles were deemed appropriate and included in the "critical mass." By placing the articles into an article grid and looking for commonalities in cardiovascular endurance, muscular endurance, and perceived exertion. Two additional articles were selected for the synthesis as a result of the ancestry method. The latter involved carefully perusing the reference lists of each of the articles previously selected for additional studies. Thus, a total of 14, peer-reviewed, quantitative research journal articles published within the past 40 years formed the "critical mass" for the synthesis.

Coding Variables

Critical information from each of the fourteen articles was extracted and categorized as follows: (1) author's name(s); (2) publication date; (3) subjects; (4) independent and dependent variable(s) measured; (5) method of data collection; and; (6) major findings (see Appendix A).

The author's name was considered because of other research studies the author may have published as well. Publication dates are significant because they raise the concern about which research is more reliable? Is the most recent study necessarily "the best," or is an older study more exhaustive and therefore more reliable? The participants are important because of demographic data – such as the number of participants as well as their gender and age. A larger number of participants with both genders and a wide range of ages would be preferred over a small number of participants within a single age range who are all of one gender.

An examination of how independent and dependent variables is measured is very significant. In looking for solid objective research, it is important to take this into consideration. How data is collected is among the most significant for this synthesis. This raises the concern with objective vs. subjective collection of data. The preferred is objective which are more reliable, but many of the studies consulted appear to be more subjective leaving questions about the reliability of these studies when arriving at a general conclusion.

Finally taken into account are the major findings of each of the studies. This raises questions not only about whether or not the conclusion is valid for the study, but also about whether or not the study can be applied to only the specific area of the study, or if it can be applied to a general conclusion for everyone. This is important to this synthesis because the goal is to find an answer that would be valuable to many people and not just a group limited by age or gender.

These studies were then coded into themes based on the independent and dependent variables. The first theme looks at the effects of music on perceived exertion. The second theme looks at the effects of music on cardiovascular endurance. The third theme is muscular

endurance and groups the studies that look at this. The final grouping or theme is the mediating variables which look at the tempo and the volume of the music.

Results

After a careful review of the relevant literature, a total of 14 peer-reviewed research studies were chosen for the synthesis. The dates of publication ranged from 1978 to 2012. Presentation of the major findings is organized in line with the theoretical framework found the in the chart in the previous section titled Theoretical Framework with the exception of the personal factors and situational factors which are factored into the context of the studies that demonstrate the two right columns of the chart.

Intermediary Valuables

There are two mediating variables considered in this synthesis: (1) music tempo (2) music volume. Each of these is a variable because music can have a fast or slow tempo and soft or loud volume. The literature examined in the critical mass for these examines whether tempo and volume have an effect on perceived performance.

Music tempo. Three studies included in the critical mass investigated the effects of music tempo on exercise performance. The effects of both fast and slow tempo music were compared in terms of their influence on exercise performance. Fast tempo music is defined as music that has a steady fast beat, while slow tempo music is much more calming to the ear. The general hypothesis is that music with a faster tempo will prove to enhance exercise because it is more motivational than music at a slower tempo.

Edworthy and Waring (2006) had 30 adult male and female volunteers run at their own continuous comfortable pace on a treadmill for 10 minutes while listening to music that was fast on some trials and slow on others. Participants who ran while listening to faster tempo music

covered more distance on the treadmill than participants who ran to slower tempo music. Karageorghis, Jones and Low (2006) found similar results. The study began with a survey of 128 undergraduate students to establish their three favorite musical artists. Then a separate group of 29 undergraduate participants selected the music of a single artist from the three highest-rated artists from the earlier survey. They reported their preference for slow, medium and fast tempo selections from each artist for three treadmill conditions of 40, 60, and 75 percent of their maximum heart rate. The music that accompanied their walking was 80, 120, and/or 140 beats per minute. The results showed that faster music, medium and fast tempos (120 and 140 beats per minute), resulted in better treadmill performance than slower beat music (80 beats per minute). The results of this study demonstrate that faster tempo increases exercise performance. This demonstrates this mediating variables have a positive effect on performance.

In a somewhat related study, Birnbaum, Boone and Huschle (2009) reported that their participants burned more calories during an exercise routine done to faster tempo music. While jogging on a treadmill, participants listened to four fast-paced and four slow-paced songs. Jogging performance as determined by a heart rate monitor was far better when accompanied by faster- paced music (140 beats per minute).

Music volume. Just one study included in the critical mass investigated the effects of music loudness on exercise performance. This was conducted by. Edworthy and Waring (2006) and the objective of discovering if an increased volume of the music demonstrated a parallel increase in performance. This study had 30 adult male and female volunteers run at a comfortable pace on a treadmill for 10 minutes while listening to music through a set of headphones. The loudness of the music varied from 60 to 80 decibels. The participants noted their perceived exertion as the volume of the music was increased. They further noted that as

the volume of the music was increased their perceived exertion decreased. That as the loudness of the music increased in volume participants felt their output in the workout decreased.

Dissociation

As noted above this is a critical part of the use of music in exercise. To a certain extent all that follows flows through this. It has the effect of distracting the one who listens to music to perform at a more intense level and allow for greater output resulting in greater performance. This is most especially found in perceived exertion and cardiovascular endurance.

Perceived Exertion

A few of the studies included in the critical mass investigated the effects of music on perceived exertion, which is how hard the exerciser feels his or her body is working. This is customarily measured on the Borg Rating. The Borg Rating is a scale from one to ten that relates to the phases of how easy or difficult a participant finds the activity. Mixed findings were noted across the studies.

In one study, Mohammadzadeh, Tartibiyan, and Ahmadi (2008) observed the effects of music on perceived exertion and performance during a running exercise. A total of 24 participants, 12 untrained and 12 trained healthy female college students performed the *Bruce Test* until exhaustion. The test requires the subject to run on a treadmill in two different sessions where the speed and incline increased every three minutes. Participants were randomly chosen to listen to music during the first session and then switched for the second session. After each three minute period, participants indicate their perceived exertion. The results showed that those participants who exercised to music had a lower perceived exertion on the Borg Scale than those who did not.

There were three cycling tests, these were done in 1990, 2005 and 2009.

The first cycling study used a bicycle ergometer. It was done by Boutcher and Trenske (1990) and observed the effects of music on perceived exertion. A total of 24 female undergraduates cycled at 60, 75, and 85 percent of their maximum heart rate. These volunteer participants performed three eighteen minute sessions at light, moderate and heavy workload, during which perceived exertion and heartrate were monitored. Each participant also experienced a control condition of depravation of music and music included. The results showed that music positively and significantly affected the participants' rate of perceived exertion. That is, those participants who listened to music indicated less physical stress while cycling.

The second cycling study, this one done by Elliott, Carr and Orme (2005) pre-tested 18 male and female undergraduate college students in order to assess their workload level, a popular measure of fitness. Specifically, the participants peddled a bicycle ergometer at their own comfort level for 20 minutes. During each of three 20 minute sessions, they were required to partake of three experimental conditions: no music, music and motivational music. During each trial, they indicated their state of perceived exertion. The results showed that bicycling to music increased the distance participants were able to cycle and lowered the participant's perceived exertion. No significant differences were observed between the two music conditions and increased exercise intensity associated with the musical accompaniment. Both music conditions elicited increased impact effect and generated equally positive attitudes toward the exercise experiment.

The third and somewhat more detailed cycling study by Lim, Atkinson, Karageorghis, and Eubank (2009) observed the effects of music introduced and removed during a cycling time trial. Eleven physically active males completed a 10 kilometer (km) time trial on a bicycle ergometer. There were three different conditions: (1) No music was played at all, (2) Music was

played initially and then removed between five and ten kilometers, and (3) music played between five and ten kilometers only. After every kilometer, the subject's time to completion, cadence, and speed were calculated. At 2.5 km, 5.0 km, 7.5 km, and 10.0 km each subject's rate of perceived exertion was assessed. The results showed that the introduction of music was unrelated to the amount of time needed to complete the task.

In summary we are looking to see how music effects perceived exertion with an eye toward the ability of music to allow us to dissociate from the intensity level we are experiencing. The studies cited above demonstrate this effect. The participants have a lower perceived exertion while at the same time achieving a higher level of performance.

Greater Output

This is a significant benefit of using music to dissociate the stress of exercise and showing greater performance benefits. Here we will review cardiovascular endurance and muscular endurance.

Cardiovascular endurance

A small number of studies included in the critical mass investigated the effects of general music on cardiovascular endurance. In these studies it was generally found that music had a positive influence on the dependent variable. For example, Anshel and Marisi (1978) investigated the effects of general music on the physical performance of 32 male and female undergraduate college students ranging from 19-22 years of age using a bicycle ergometer. All participants were pre- and post-tested to determine level of physical fitness. All participants who listened to music while bicycling demonstrated greater aerobic endurance than a control group that didn't listen to music. This was calculated by a physical work capacity test and used as the criterion for exercise intensity on repeated conditions: participants were assigned in each of the

three conditions synchronous movement to music, asynchronous movement to music, and a control condition. The study indicated that music, particularly if synchronized to physical movement, had a positive effect on the ability to endure the task and that males participants endured longer than female participants.

Another cycling study done by Elliott, Carr and Savage (2004) had18 participants listen to music through a set of headphones while riding a bicycle ergometer. Each participated in three separate 12 minute trials: no music, non-motivational music and motivational music. Motivational music has a high tempo and volume. Non-motivation music is slower with a softer volume. Participants were instructed to perform at a pre-determined rate of exertion throughout the exercise bout. The results showed that music positively affected the subject's work output; that is, participants who listened to music while pedaling were able to endure longer and perform at a higher intensity level.

Karageorghis, and colleagues (2009) observed the effects of general music on cardiovascular endurance using a walking test. A total of 100 volunteers all between the ages of 19 and 21 participated in two experimental conditions. In the first condition, participants walked at a pace that was 75 percent of their maximum heart rate while listening to music provided through a set of headphones. In the second condition, participants walked without the assistance of music. The results showed that participants who walked with music performed longer before becoming exhausted.

Muscular endurance

Muscular endurance is also a potential benefit from using music in exercise. This also ties into the dissociation that comes from listening to music – music allows the listener to concentrate on the music which allows greater intensity and duration.

Muscular endurance is an important aspect of exercise. Two articles included in the critical mass investigated the effects of general music on this aspect. Razon, Basevitch, Land, Thompson and Tenenbaum (2009) randomly assigned 60 participants, 33 male and 27 female, into four groups of fifteen. The exercise is performed using hand grips that are squeezed. After establishing the maximal squeezing value they performed 30% max squeezing task under one of four assigned conditions: (1) full vision and preferred music, (2) full vision and no music, (3) blindfolded and preferred music, and (4) blindfolded and no music. The blindfold was used to eliminate outside distractions while listening to music or not. The test was to see if outside environmental distractions were removed does music have the effect of dissociation and enhance muscular endurance as it does for the perceived exertion. Each participant was asked to hold the grips until volitional fatigue while listening to a music selection of their own choosing. The rate of perceived exertion and attention strategies were administered at 30 second intervals. Results from a repeated measures analysis showed that participants who held the squeeze while not blindfolded and were listening to music were able to do so for a longer time than when no music, or music while blindfolded. This indicates that the dissociate effect of music does have the effect of increasing muscular endurance.

In another study, the findings were similar, but the exercise was different. Crust and Clough (2006) had 58 physically active participants hold a 1.1 kg dumbbell for as long as possible while listening to music provided through a set of headphones. Participants who listened to music were able to hold the weight for a significantly longer time than when no music was involved.

This section on greater output demonstrates that music does enhance output. The dissociated effect of music allows the participants to experience greater output accompanied by the reduced perceived exertion cited in the section above.

Summary

The studies in the critical mass reach a conclusion that music enhances exercise performance. Music provides a dissociative distraction that allows the one performing the exercise to concentrate on the music rather than the intensity or duration of the exercise.

The preponderance of evidence found in the literature examined allows this synthesis to reach this conclusion. It is significant that even though various exercises were used with a wide variety of participants the conclusion remains consistent. Although there is not a longitudinal study found in the literature, there is a span of years between the various studies that shows the same conclusion. Whether on a bicycle, a treadmill, a handgrip or dumb bells, it was found that music enhanced cardiovascular endurance and perceived exertion.

The studies examining the mediating values of tempo and volume demonstrated a positive effect for each: respectively faster tempo and louder volume were found to enhance the perceived performance.

The general overall conclusion is that music does indeed enhance performance. The dissociative value of music allows the one who is exercising to either be distracted by the music or concentrate on the music rather than the exercise. This dissociation from the exercise and toward the music results in music enhancing exercise performance.

Discussion

The purpose of the research synthesis was to determine the ergogenic effects of music on exercise performance. Given the popular trend of people exercising while listening to music, the

results of a synthesis of the most relevant research literature available could prove very informative for anyone who exercises. This would range from the person who does casual or regular exercise to those who are professional athletes or coaches.

The synthesis was based on 14 peer-reviewed research journal articles. The discussion below will review and comment on the major results of the synthesis, identify and discuss some of the limitations of the research reviewed, identify some of the weaknesses associated with this research endeavor, and offer some recommendations for researchers interested in the subject of the synthesis.

The majority of the research articles included in the synthesis reported that music had a positive effect on exercise performance. This demonstrates that music does reward the exerciser with the potential benefits outlined in the theoretical framework.

Focusing first on the potential benefit of dissociation the literature demonstrates that other potential benefits flow from this first one. Once again, dissociation is seen as a distraction from the difficulty or intensity of the exercise. This occurs when the person who is exercising is concentrating on the music more than the exercise. The other potential benefits can be seen to flow through this first one.

The literature demonstrates that music had a positive and significant effect on perceived exertion. It's quite possible that the distraction of the music put the subject at ease during exercise; music deflects the subject's concentration away from pain that was experienced during the exercise performance. Untrained participants showed effects due to the fact that they focused on the external stimulus (music).

The literature also shows that has a positive influence on both cardiovascular and muscular endurance. This is parallel with the widely held belief among those who exercise that

music selections increased such physiological factors as heart rate and perspiration which, in turn, contributed to better exercise performance. Participants were able to focus their attention on a positive auditory stimulus (music) rather the grueling physical task at hand which allowed them to exercise for longer amounts of time.

This dissociation value of music also demonstrates positive and significant effects of music on sub-maximal exercise in the research literature that was reviewed. In two studies involving cycling performance, traveled further and faster on an ergometer while listening to music (Boutcher and Trenski, 1990; Elliott, Carr, and Savage, 2004). Again, the argument can be made that motivational music distracts the participant's from paying attention to the physical challenge they were confronted with.

Turning to the mediating values of music tempo and volume we again see that music has a positive effect. These also show the potential benefits of the dissociative value of music to be significant.

Taking the first mediating value, music tempo was positively related to exercise performance. Faster tempos were beneficial, while slower tempos were not. Participants were able to endure longer and with less reported discomfort when they listened to faster tempo music. Faster tempo music may have been motivating than slower tempo music. Secondly, if the fast tempo music had a lyrical statement relating to motivation such as "move your body," it reported higher exercise performance.

The second mediating variable, music volume was also positively related to exercise performance. The louder the music, the greater it's positive effect on exercise performance. It may well be the case that louder music increases your heart rate which in turn allows the exerciser to perform at a higher intensity level.

When looking at these in the framework of the potential benefits of music it is concluded that tempo and volume have this effect on exercise performance – faster tempos and louder volumes have a greater effect than their opposites. The dissociate value of music in this case become not only a distraction from the intensity or endurance of the exercise being performed, but may become a motivating factor as well.

Limitations

A number of limitations were noted in the research literature that was reviewed for the synthesis. Researchers noted in their studies that a limitation was that they focused a very narrow age range. Participants were typically between the ages of 18 and 30. Since this synthesis is meant to be used by everyone, it would be very beneficial if older adults were included in future studies. The premise would be that we do not stop exercising at the age of thirty. A study to demonstrate that the potential benefits of music on exercise at every age would be an added incentive to continue exercising no matter a person's age.

A second limitation is there is no consistent type of task over all the studies. Each used a different kind of exercise. The critical mass cites these: handgrip, treadmill and bicycle. The synthesis would be stronger if there were more literature involving only one kind of exercise. This allows us to know the effects of music for the studied exercises, it allows us only to draw general conclusions by assuming if other exercises were studied, and the results would be similar. At the present moment we do not have the literature to determine this.

Another limitation is that most of the studies included in the synthesis used small sample sizes. The average sample size was 30 with only three studies using sample sizes larger than 30. This raises issues about the generalizability of the research, and does not allow for the

calculation of non-parametric statistics (effect size). In turn, reliability and validity of the synthesis is weakened.

Lastly, in several studies, the researcher did not specify the music the subject was asked to listen to. Did the subject listen to classical, hip-hop, or country music? Different music genres may have differential effects on exercise performance unless specific music styles are compared and contrasted to other genres of music.

Future Research

With respect to future areas of inquiry, more attention should be given to potential gender differences. This is, some music might be better suited for female exercisers than male exercisers, and vice versa. Males and females may respond differently to different music tempos and styles. This is an area that may be looked at in future research.

The same can be said of more attention to different ages. As stated above it would be very helpful to have studies of older people. We sometimes see anecdotal stories of the benefits of exercising across the age range, or even studies of this. It would be beneficial to have evidence that music enhances exercise no matter the age of the one who is performing the exercise.

Researchers should also consider extending their studies over a longer time interval. Too many of the studies included in the synthesis were of short duration (e.g. 1-day, 1-week, 1-month). Would a 6-month study produce different results? We might see more dramatic changes in endurance if the participants exercised to music for a longer period of time.

Lastly, researchers should investigate the effects of a greater variety of music styles rather than "generic music" that several researchers tested. What about, hip-hop, country and

western or classical music? It may well be the case that every exerciser has a favorite genre of music to perform to. The choice may vary by age, sex, race or social class.

Based on an exhaustive search of several online databases, and a careful analysis of 14 peer-reviewed quantitative research studies, the evidence strongly suggests music positively affects exercise performance. Specifically, individuals who exercise while listening to music are likely to experience positive benefits with respect to cardiovascular endurance, muscular endurance, and sub-maximal exercise. Moreover, exercising to music is also associated with the perception of motivation. Future research may look to studies that include more participants and that may be divided by age and gender. This could result in a more personalized exercise regimen based on age and gender as well as the music style, tempo, and volume. One could imagine an individualized exercise performance enhancement based on listening to a music program that is tailored for each person and for each style of exercise.

References

- *Anshel, M. H. & Marisi, D. Q. (1978). Effect of music and rhythm on physical performance. *Research Quarterly, 49,* 109-113.
- *Birnbaum, L., Boone, T. & Huschle, B. (2009). Cardiovascular responses to music tempo during steady state exercise. *Journal of Exercise Physiology Online*, *12*, 50-56.
- *Boutcher, S. H. & Tenske, M. (1990). The effects of sensory deprivation and music on perceived exertion and affect during exercise. *Journal of Sport and Exercise Psychology*, *12*, 167-176.
- *Costas I. Karageorghis & David-Lee Priest. (2012). Music in the exercise domain: a review and synthesis (Part I). *International Review of Sport and Exercise Psychology*, 44-66, DOI: 10.1080/1750984X.2011.631026
- *Crust, L. & Clough, P. J. (2006). The influence of rhythm and personality in the endurance response to motivational asynchronous music. *Journal of Sports Sciences*, *24*, 187-195.
- *Edworthy, J. & Waring, H. (2006). The effects of music tempo and loudness level on treadmill exercise. *Ergonomics*, *49*, 1597-1610.
- *Elliott, D., Carr, S. & Orme, D. (2005). The effect of motivational music on sub-maximal exercise. *European Journal of Sport Science*, *5*, 97-106.
- *Elliott, D., Carr, S. & Savage, D. (2004). Effects of motivational music on work output and affective responses during sub-maximal cycling of a standardized perceived intensity. *Journal of Sport Behavior*, 27, 134-147.
- *Karageorghis, C. I., Jones, L. & Low, C. (2006) Relationship between exercise heart rate and music tempo preference. *Research Quarterly*, 77, 240-250.

- *Karageorghis, C. I., Mouzourides, D. A., Priest, D. L., Sasso, T. A., Morrish & Walley, C. L. (2009). Psychophysical and ergogenic effects of synchronous music during treadmill walking. *Journal of Sport and Exercise Psychology*, 31, 18-36.
- *Lim, H. B., Atkinson, G., Karageorghis, C. I. & Eubank, M. R. (2009). Effects of differentiated music on cycling time trial. *Journal of Sports Medicine*, *30*, 435-442.
- *Mohammadzadeh, H., Tartibiyan, B. & Ahmadi, A. (2008). The effects of music on the perceived exertion rate and performance of trained and untrained individuals during progressive exercise. *Physical Education and Sport*, *6*, 67-74.
- *Razon, S., Basevitch, I., Land, W., Thompson, B. & Tenenbaum, G. (2009). Perception of exertion and attention allocation as a function of visual and auditory conditions. *Psychology of Sport and Exercise*, 10, 636-643.
- *Schwartz, S. E., Fernhall, B., & Plowman S. A. (1990). Effects of music on exercise performance. *Journal of Cardiopulmonary Rehabilitation*, 10, 312-316.
- *The American Heritage Dictionary of the English Language*. Boston, MA: Houghton Mifflin Company,1976.
- * Included in the critical mass

Appendix A

Author	Title	Source	Purpose	Methods	Analysi	Finding	Recommendati
				&	s	S	ons
				Procedur			
				es			
Anshel &	Effects of	Research	То	32	PWC	Improve	That music had a
Marisi	music	Quarterly	investig	participan	1/0 test	d	positive
(1978)	and		ate the	ts 16 male	(Physic	enduran	effect on the
	rnythm		effects	and 16	al work	ce	ability to
	on		01	remale			endure the task
	physical		generic	undergrad	y, 170		at hand
	performa		music	uate	beats		
	nce		on	physical	per		
			cardiova	education	minute)		
			onduran	students			
			ce	wele			
Birnbaum,	Cardiova	Journal	То	16 males	Oxygen	Improve	These findings
Boone &	scular	of	determin	and 16	consum	d	suggest that
Huschle	responses	Exercise	e if	females	ption	physiol	listening to fast
(2009)	to music	Physiolo	general	undergrad	(VO2),	ogical	music during
	tempo	gy Online	music	uate	expired	measure	steady-state
	during a		would	physical	carbon	S	treadmill
	steady		improve	education	dioxide		exercise
	state		physical	students	(VCO2		produces
	exercise		perform	completed),		cardiovascular
			ance	three 15	frequen		and respiratory
				minute	cy of		responses that
				steady	breaths		are significantly
				exercise	(Fb),		different from
				Jogging	minute		how the body
				sessions	ventilat		responds to the
				at 5.5	10n		same exercise
				mpn	(VE)		intensity when
							instening to slow
Boutcher	The	Iournal	To study	24	Cycle	Lower	It was concluded
& Trencke	effects of	of Sport	the	24 volunteer	ergome	nerceive	that the
(1990)	sensory	and	effects	female	ter	d	influence of
	denrivati	Exercise	of	undergrad		exertion	music and
	on and	Psycholo	sensorv	uate		UNOTION 1	deprivation on
	music on	gy	deprivati	college			perceived

	perceived exertion and affect during exercise		on and music on perceive d exertion and affect	students performed three 18 minute sessions on a cycle ergometer at light, moderate, and heavy workloads			exertion and affect was load dependent
Costas I. Karageorg his & David-Lee Priest (2012)	Music in the exercise domain: a review and synthesis (Part I),	Internatio nal Review of Sport and Exercise Psycholo gy	To synthesi s the prior study to determin e if music does enhance exercise	Reviewed all previous studies on ergogenic effects on exercise and musical variables	Varied from each study	The effects of music appear to be at their most potent when it is used to accomp any self- paced exercise or in external ly valid conditio ns.	When selected according to its motivational qualities, the positive impact of music on both psychological state and performance is magnified. Guidelines are provided for future research and exercise practitioners
Crust & Clough	The influence	Journal of Sports	To determin	41 males and 17	1.1 kg dumbbe	Improve d	These results suggest that
(2006)	of rhythm	Sciences	e if	females	11	muscula	responses to
	and		asynchr	performed		r	motivational
	personalit		onous	isometric		enduran	music are subtle
	y in the		music	weight		ce	in nature and are
			improve	task on			both musical
	response		muscula	three			factors and
	to		r	occasions			individual
	motivatio		enduran	while			characteristics.
	nal		ce	being			and potentially
	asynchro			randomly			an interaction

Edworthy & Waring (2006)	nous music The effects of music tempo and loudness level on treadmill exercise	Ergonom ics	To see if music of varying tempos improve d the perform ance	exposed to no music, rhythm, and motivatio nal music 15 males and 15 females running on treadmills with different tempos of music	Perceiv ed Exertio n Scale	Improve d perform ance	between the two That fast, loud music played can enhance optimal exercising, and show how loudness and tempo interact
Elliott, Carr & Savage (2004)	Effects of motivatio nal music on work output and affective responses during sub- maximal cycling of a standardi zed perceived intensity	Journal of Sport Behavior	To determin e if motivati onal music improve d perform ance (sub- maximal) while cycling	8 males and 10 females undergrad uate students subjected to three 12 minute exercise trials in conditions of no music, oudeterou s music, and motivatio nal music	Perceiv ed Exertio n Scale, cycle ergome ter	Improve d perform ance	Music increased not only performance but also showed higher motivational levels than no music
Elliott, Carr & Orme (2005)	The effect of motivatio nal music on sub- maximal exercise	European Journal of Sport Science	To determin e if motivati onal music improve d perform ance	8 males and 10 females untrained undergrad uate students participate d in a 20 minute	Perceiv ed Exertio n Scale, cycle ergome ter	Improve d perform ance	Motivational music can significantly increase the distance traveled and increase in- task affect and generate positive post-task attitude towards exercise

			(sub- maximal) while exercisi ng	sub- maximal cycle task			
Karageorg his, Jones, & Low (2006)	Relations hip between exercise heart rate and music tempo preferenc e	Research Quarterly for Exercise & Sport	To determin e participa nts heart rates during exercise while varying the tempos of music	67 women and 61 men walked on a treadmill while different varies of tempos played at different walking conditions	Brunel Music Rating Invento ry	Improve d perform ance	Use a low/moderate tempo music for low moderate exercise intensities and a fast tempo music for high intensity
Karageorg his et al. (2009)	Psychoph ysical and ergogenic effects of synchron ous music during treadmill walking	Journal of Sport and Exercise Psycholo gy	To determin e if synchro nous music will increase exercise perform ance while walking on a treadmil 1	50 men and 50 women selected either pop or rock tracks and walked to exhaustio n starting at 75% maximal heart rate	Treadm ill (GXC2 00; powerj og) ANOV A MANO VA Record ed at 2 min interval s (RPE)	Improve d perform ance	The present results indicate that motivational synchronous music can elicit an ergogenic effect and enhance in-task affect during an exhaustive endurance task
Lim, Atkinson, Karageorg his, & Eubank (2009)	Effects of differenti ated music on cycling time trial	Internatio nal Journal of Sports Medicine	This study was determin ing the effects of music introduc ed and removed during	11 physically active males Differenti ated music	Compu - Trainer ergome ter	No change in perform ance	This study results are saying that behavioral influences the exercise and not the music

r							
			cycling				
Mohamm	The	Series	То	24 healthy	Perceiv	Improve	The results
adzadeh,	effects of	Physical	determin	students,	ed	d	suggest that
Tartibiyan	music on	Educatio	e the	18 males	Exertio	perform	using music in
. &	the	n & Sport	effects	and 6	n Scale	ance,	progressive
Ahmadi	perceived	1	of	females		lower	exercise would
(2008)	exertion		listening	voluntary		exertion	have a positive
(rate and		to music	participate		level	effect in terms of
	performa		during	d while		10 / 01	performance
	nce of		nrogress	during			periormanee
	trained		ive	one			
	and		evercise	session			
	untrained		cachelse	listoning			
	individuo		s on	to music			
	la durin a		perceive	to music			
	is during		a	and the			
	progressi		exertion	next			
	ve .		rate and	session			
	exercise		perform	not			
			ance	listening			
				to music			
Razon,	Perceptio	Psycholo	To study	60 young	Perceiv	Improve	Participants who
Basevitch,	n of	gy of	the role	adults, 33	ed	d	had both forms
Land,	exertion	Sport &	of	males and	Exertio	perform	of sensory held
Thompson	and	Exercise	auditory	27	n Scale	ance	for a longer
, &	attention		(music)	females			duration than
Tenenbau	allocation		and	were			participants in
m (2009)	as a		visual	recruited			other conditions.
	function		sensory	to			External stimuli
	of visual		on	perform a			may serve as
	and		perceive	hand grip			mediating agents
	auditory		d levels	squeezing			in diverting
	condition		of	task 4			attention away
	s		exertion	groups			from internal
			and	1. Full			and painful
			attention	vision and			stimuli
				preferred			
				music			
				2. full			
				vision no			
				music			
				3.			
				blindfolde			
				d and			
				preferred			
				music			
				4			
1	1	1	1	т.	1	1	

				1.1. 16.11.			
				biinafolde			
				d and no			
				music			
Schwartz,	Effects of	Journal	То	10	Cycle	No	This data shows
Fernhall,	music on	of	determin	untrained	ergome	change	that music does
&	exercise	Cardiopu	e the	males and	ter	in	not alter the sub
Plowman	performa	lmonary	influenc	10		perform	maximal
(1990)	nce	rehabilita	e of	untrained		ance	exercise
		tion	music	females			performance or
			on sub	performed			physiological
			maximal	a maximal			response for
			exercise	bicycle			either men or
			perform	ergometer			women
			ance	test 2			
				trails one			
				with fast			
				tempo			
				music and			
				one			
				without			
				music			