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Introduction: 

The Great Lakes water system is the largest freshwater reservoir in the world.  Water from 

the Great lakes could cover North America, South America and Africa in 1 foot of water (Neff and 

Nicholas, 2005).  Fluctuations in these water levels has been documented and retroactively inferred 

to occur on cyclical patterns.  These trends occur naturally and can have a positive or negative 

impact on the environment and human populations.  This review will analyze the methods for 

determining historical, and future trends of lake levels with regards to natural and human effects 

on water levels and look at one plan for regulating water levels.  To review the trends of Great 

Lakes levels it is important to understand the geological history that has created them.  

Laurentian Ice Sheet: 

Fifteen Thousand years ago a glacier known as the Laurentian Ice Sheet covered the Great 

Lakes basin.  This ice sheet advanced and retreated multiple times over ten thousand years.  Figure 

1 (Larson and Schaetzl, 2001) shows the position of the ice sheet at different geological times. 

Each advance and retreat of the glacier effected the landscape below in three major ways.  Firstly, 

the abrasive ice scoured the land and down cut into the crust causing variations in topography.  

Secondly, topography was further disrupted by sedimentation.  Eskers and moraines from the 

glacier were formed from deposited sediment which was carried by water flowing under the ice to 

new locations.  Lastly, the entirety of the Great Lakes basin was depressed under the weight of the 

Laurentian Ice Sheet.  An ice sheet estimated to have been between 750 and 2,500 m in height 

which is based on glaciological theory estimates (Hughes et al. 1981, Boulton et al. 1985).  

Deformable and impermeable sediments which underlie parts of the glacier account for the range 

in estimated thickness lower values (Boulton et al. 1985). 
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Isostatic Rebound: 

Once the Laurentian Ice Sheet was removed the ground could decompress in a process 

known as isostatic rebound or adjustment.  The rates of rebound in relation to Port Huron outlet 

are depicted in figure 2.  Rates of isostatic rebound are not uniform; generally, rates of rebound 

around Lakes Superior and Ontario are greater than those around Lakes Michigan-Huron and Erie 

(Neff and Nicholas, 2005).  This is due to the thickest glacial ice having been located north of the 

Great Lakes Basin, pictured in figure 3.  Lack of uniformity causes segments of coastline 

rebounding more rapidly than the lake’s outlet to experience a long-term lake-level fall, whereas 

coastlines rebounding more slowly than the outlet experience a long-term lake-level rise (Wilcox 

et al. 2007).  Isostatic adjustment accounts for long term adjustment of the Lake levels that have 

been happening since the final glacial retreat, but to assess fluctuations on a smaller time frame, 

balances of inflow and outflow must be analyzed. 

Inflow: 

 Neff and Nicholas (2005) described inflow as over-lake precipitation, runoff, ground-water 

seepage into the Great Lakes, diversion of water into the Great Lakes, and flow from the 

connecting channels.  Contribution levels of inflow for each lake differ because lakes farther down 

on the hydrologic cycle receive much of their inflow from the previous lakes as shown in figure 4.  

Over-lake precipitation is often negligible in the hydrologic cycle.  However, due to the large 

surface area of the Great Lakes, approximately 94,250 mi2 or about one-third of the total area of 

the Great Lakes Basin (Coordinating Committee, 1977); over-water precipitation accounts for 

more inflow than runoff (Croley et al. 2001).  Runoff is a measure of all the water that flows into 

the lakes from the 200,000 mi2 area of land within the Great Lakes basin.  Groundwater discharge 

is sourced by precipitation that falls on land and soaks into the ground.  Most of this water flows 
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into tributaries which eventually connect with the lakes as runoff inflow, however a portion of 

groundwater enters the lakes directly though the ground accounting for groundwater discharge 

(Neff and Nicholas, 2005).  Two rather large diversions, the Ogoki and Long Lac, redirect water 

into the Lake Superior basin at a rate of 5580 ft3/s (Neff and Nicholas, 2005).  These two diversions 

alone contribute 60% more inflow to the Great Lakes basin than all outflow diversions 

(International Joint Commission, 1999). 

Outflow: 

 Outflow, according to Neff and Nicholas (2005), is a measure of water exiting the lakes by 

evaporation, flow through connecting channels, diversion of water away from the Great Lakes, 

and consumptive use.  Evaporation is water lost to the atmosphere through vapor, data presented 

by Croley et al. (2001) show evaporation exceeding the total amount of runoff entering the Great 

Lakes basin (figure 4).  Levels of evaporation are highest in the fall and winter, and conversely 

lowest in the spring and summer.  This is due to cold dry air moving over the lakes during the two 

former seasons.  Heat from the water increases the temperature of the air moving above, allowing 

it to hold more moisture and leach water from the lake (Neff and Nicholas, 2005).  Ice covering 

the lakes reduces the amount of moisture lost due to evaporation (Eichenlaub, 1979) and amounts 

lost are conditional to both the surface area and depth of the lake.  Flow through connecting 

channels accounts for the greatest loss of water from the Great Lakes system.  Each subsequent 

lake loses an increasing amount of water as shown in figure 4.  Diversions of water account for a 

portion of water lost, particularly at the Chicago canal system which ultimately flows into the 

upper Mississippi river basin (Neff and Nicholas, 2005).  According to the International Joint 

Commission (1985) the Chicago diversion has lowered the water level of Lakes Michigan-Huron 

by 6.35cm and of Lake Erie by 4.32 cm.  The two other major diversions, New York State Barge 
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Canal and the Welland Canal, divert large amount of water out of Lake Erie but it is eventually 

returned to the system at Lake Ontario.  Consumptive use, as described by Neff and Nicholas 

(2005), refers to any water that is withdrawn from the system and either lost to evapotranspiration 

or incorporated into products that does not return to the water system. Consumptive use is a 

negligible loss compared to evaporation, connecting channels and diversions.  Inflow and outflow 

are the major contributors to seasonal trends in water levels but these trends may be changing due 

to anthropogenic causes. 

Seasonal Trends: 

 Seasonal water level trends are governed by inflow outflow factors associated with the 

Great Lakes.  Low lake levels generally occur during winter, when precipitation is both lower and 

tied up on the land as snow.  Lake levels are then highest in July, after the addition of summer 

precipitation, and spring snowmelt (Larson and Schaetzl, 2001).  Quinn (2002) looks at the 

changing trends of seasonal lake fluctuations over the past 140 years and concludes that all the 

Great Lakes as well as Lake St. Clair have experienced changes.  These changes are often due to 

anthropogenic factors which cause a decrease in the robustness of seasonal changes.  Factors 

include diversion of water from the basin, consumptive use of water by municipalities, 

construction of control structures, and land use alteration (Larson and Schaetzl, 2001).  

Quinn (2002) stresses the importance of ice accumulation during winter months. Ice often 

jams the flow of connecting tributaries and retards the flow of water to lower lakes in the 

hydrologic cycle.  During spring months, the ice melts, increasing flow rates. Melting ice paired 

with higher levels of precipitation in spring and summer causes lake levels to increase.  However, 

current trends show ice retardation in Lake Michigan-Huron have decreased.  This causes a lower 

summer maximum for subsequent lakes as the flow of water is spread over a longer time frame at 
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a more constant rate.  A possible cause of decreased ice retardation at channels is by human 

terraforming of channels.  Dredging and widening of channels allows for increased levels of 

transportation for vessels, but also effects the natural water flow.  Documented water levels for the 

past 150 years show exact fluctuations, but to analyze Great Lakes water level trends on a large 

temporal scale, historical water levels must be derived. 

Reconstructing Historical Water Levels: 

 Lake level data has been documented since 1860, but trends from before that can be 

inferred using several techniques.  Shoreline features including wave-cut terraces, mainland 

attached beaches, barrier beaches, spits, dunes, deltas, and riverine, palustrine, and lacustrine 

sediments are formed from specific interactions. Depending on the elevation at which they occur, 

a water level and date of creation may be determined (Wilcox et al. 2007).  Additionally, Beach 

ridges from previous shorelines were assessed to determine lake levels at different time periods. 

Swash zones, or beach faces, deposit a specific grain size of particles that is much coarser than 

underlying or overlying sediments.  Studying the coarse sediment in the soil sample can determine 

the elevation of the lake when each beach ridge was originally formed.  An age of the formation 

can be determined by dating sand grains in the ridges using a technique known as optically 

stimulated luminescence or, by radiocarbon-dating the base of the wetlands deposits between the 

ridges (Thompson and Baedke, 1997; Argyilan et al. 2005).  Juxtaposing age and elevation data 

creates a hydrograph for the historical elevations of a certain lake; generally, the more beach ridges 

present, the more accurate the hydrograph (Wilcox et al. 2007).  With historical documentation of 

water fluctuations, patterns can be derived and thus prediction models utilized. 
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Analyzing Spectral Patterns: 

 A historical view of Great Lakes water fluctuations allows for mathematical analysis of 

spectral patterns in the data. Cohn and Robinson (1976) extrapolated cyclical patterns from 115 

years of water level trends.  The results showed patterns of 1, 11, 22, and 36 year periods of highs 

and lows in the form of sine waves.  When multiple peaks or troughs coincide with one another, 

lake levels were at an irregular high or an irregular low.  Cohn and Robinson (1976) hoped to use 

this data to predict future water levels to prepare for extreme conditions.  Similarly, Walton (1989) 

used historical models of annual lake level fluctuations to predict future erosional patterns.  This 

study looks at monthly changes and attempts to separate out white noise from lake patterns.  

Walton (1989) claims that human influence on lake levels is minor in comparison to natural cycles.  

Sine waves are derived through mathematical equations of known data and projected on additional 

time frames. In both Cohn and Robinson (1976) and Walton (1989) models could accurately 

predict patterns for other documented years. However, while their models matched well with 

documented data, Findings from Wilcox et al.  (2007) disagree with the pattern times and their 

models failed to consider changing climatology.  It is unlikely that fluctuating lake patterns can be 

extrapolated from 150 years of data, especially with current climate change trends.  When 

historical data is overlaid with climatological records patterns with both appear to coincide giving 

a more encompassing picture of lake level fluctuations. 

Climatology:  

 Tree rings, dune soils, and the sediments of small lakes and wetlands are used as proxy 

records of past climate variability (Wilcox et al. 2007).  Peatlands, or bogs, are a valuable source 

of data on changes in water balance; the sediments of peatlands receive moisture almost 

exclusively from precipitation and therefore contain particularly sensitive records of moisture 
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variability.  Testate amoebae are a moisture sensitive protozoa that live on the surface of peatlands. 

These amoebae produce decay resistant shells and are one of the proxies used to infer bog surface 

moisture conditions (Wilcox et al. 2007).  A clear link between Great Lakes water level fluctuation 

and climate variability is suggested by the moisture content studies of peatlands (figure 5; Booth 

and Jackson, 2003).  Because past trends of climate variability align with lake level fluctuations, 

predictions of future climate change can be used to infer lake level changes. 

Prediction Methods with Climatology: 

Angel and Kunkel (2009) composed three predictive models of carbon dioxide emissions 

concentrations out to year 2100.  The models ranged from moderately high, intermediate, and low 

predictions (figure 6).  Increases in greenhouse gasses cause the atmosphere to hold in greater 

amounts of radiation from the sun.  The models consider that this will likely increase average 

temperatures and change levels of precipitation, though the latter could increase or decrease. With 

precipitation remaining constant, increasing temperature should lead to decreases in future lake 

levels (Croley and Lewis, 2006). As such, decreases in precipitation would then lead to substantial 

decline in lake levels; whereas, increases in precipitation would counteract rising temperatures and 

lead to smaller declines, or possibly increase, lake levels (Angel and Kunkel, 2009). Figure 7 

represents lake level deviation from the 1970-1990 averages for all lakes using the highest 

emission models. Lake Superior showed the least amount of variation likely due to its extreme 

depth in relation to surface area. Less surface area to depth ratio means there is less evaporation 

from the water body. In totality, Angel and Kunkel (2009) used 565 model simulations from 23 

global climate models (GCM) and three emission scenarios (figure 6) as input into the advanced 

hydrologic prediction system Great Lakes hydrology model developed by Great Lakes 

environmental research laboratory (GLERL). The GLERL model is formulated such that 



8 | P a g e  
 

temperature and precipitation are the primary drivers (Croley, 2006) in determining water levels. 

However, due to the broad range of input factors, results from the study were extremely diverse 

and because the relative certainty of each GCM is unknown, each result is equally as likely as any 

other. Table 1 depicts simulated changes of Lake Michigan-Huron out to 2080 with the three 

emission concentrations predicted. Most model results predicted reductions in lake levels due to 

increases in greenhouse gases. This should be of direct concern to populations living on the lakes 

as it will affect their lives in numerous ways. 

Human Impact: 

 The Great Lakes are a major part of the North American ecosystem and changes in the lake 

levels will affect everything around them.  Humans rely on the Lakes for transportation of goods. 

If water levels decrease dramatically, ships will be unable to navigate through the shallower waters 

and water budget of major industrial and agricultural locations will be adversely effected (Cohn 

and Robinson, 1976).  Dredging can be implemented to deepen waterways but this causes 

degradation of adjacent shorelines by removing sediment that would be used to replenish the shore.  

The use of the Great Lakes and addition of locks and hydroelectric power plants have increased 

the desire to have the lakes at a consistent water level. While regulations on water levels appears 

to have beneficial effects, it disrupts natural systems and increases rates of erosion. 

Erosion: 

 Regulations on water levels have changed both erosion and aggradation levels at various 

shorelines in the Great Lakes, particularly on Superior and Ontario.  Increasing levels of erosion 

are detrimental to coastal populations as they cause expensive property damage (Cohn and 

Robinson, 1976).  Sandy shorelines are effected most prominently when large storms sweep 
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sediment out into deeper water (Larson and Schaetzl, 2001).  In addition to storms, human 

intervention has further reduced the supply of sand to the shore zone.  Jetties and other engineering 

structures at river mouths prevent aggradation of sediment to shoreline zones and instead allow for 

sediment to directly move to deeper areas of the lakes.  Dams located on tributaries to the Great 

Lakes reduce water flow rates causing deposition of sediment at dam sites prior to entering the 

main water body (Larson and Schaetzl, 2001).  

 To prevent erosion near populated areas, humans often implement defensive structures 

such as break walls, armoring shoreline, or groins.  Break walls are thought to propel wave action 

back out to open waters, however, they often have detrimental effects that are not taken into 

consideration.  Complicated flow patterns are developed through wave interaction and a greater 

level of erosion is concentrated on the lake floor below the structure parallel to the wall (Wilcox 

and Whillans, 1999).  Groins are walls constructed perpendicular to coastlines that reach out 

approximately to the distance of breaking waves.  The updrift side of the groin collects sediment 

and creates shoreline; this sediment is supposed to collect around the end of the groin and create 

more shoreline downdrift.   However, rip tides often pull this sediment out into open water creating 

an erosional shadow zone (Silvester and Hsu, 1991).  Beyond erosion, anthropogenic consistency 

of water levels can also be detrimental to shoreline wetland communities. 

Wetlands: 

 Shoreline wetlands are a unique ecosystem that acts as a bond between terrestrial and 

aquatic life. Some unique species of plants and animals are specific to wetlands but a far greater 

amount use wetland as a refuge for portions of their life. The dense marriage of plant and water in 

a wetland offers for a great habitat for young macroinvertebrates, fish, and even birds and 

mammals. A diverse community supports the most diverse amounts of wildlife, but unfortunately 
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human impact can reduce this diversity. When water levels are strictly maintained plant, 

communities become a monoculture.  This happens when a strong competitor such as cattails or 

phragmittes outcompetes the other plant species. Normally, fluctuating water levels would cause 

conditions to dry out or flood more often, preventing the strong competitors from dominating the 

landscape. When intermediate disturbance is applied, the species which may be worse competitors 

but are stronger reproducers can maintain a balance. According to Wilcox and Whillans (1999) the 

best method for restoring diversity of shoreline plant communities and returning erosion to past 

levels is to let the Great Lakes maintain as close a trend as possible to that which natural conditions 

create. 

Plan 2014: 

 Fortunately, the International Joint Commission (IJC) has adopted Plan 2014 which 

updates the control on water levels for Lake Ontario. The goals of which are multiple; 

• Maintain more natural seasonal level and flow hydrographs on the lake and river. 

• Provide stable lake releases. 

• Maintain benefits to coastal interests as much as possible while enhancing 
environmental conditions. 

• Maintain benefits to recreational boating as much as possible while enhancing 
environmental conditions. 

• Obtain inter-annual highs and lows required for healthy vegetation habitats. 

• Enhance diversity, productivity, and sustainability of species sensitive to water level 
fluctuations. 

• Provide flood and low water protection to the lower St. Lawrence River comparable to 
Plan 1958- D with Deviations. 

• Maintain benefits as much as possible for municipal water intakes, commercial 
navigation and hydropower interests while taking other interests into account. 

(International Joint Commission, 2016). 

These goals aim to maximize the benefits for the environment while striking a balance with private 

residents and companies. Plant community should experience greater fluctuation of water levels 
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and as such maintain a more extensive species diversity. This effect will be radiate to animal 

populations utilizing shoreline zones as habitat. Additionally, the plan should maintain recreational 

uses of the Lake and, given time, promote coastline that will be more resistant to erosion. Lastly, 

the plan intends to maximize water for municipal sources and hydropower. Unfortunately, the 

spring and summer following implementation of plan 2014 the Lake Ontario watershed 

experienced an excessive amount of precipitation. This lead to an unwarranted amount of criticism 

by lake shore property owners, who blamed their property damage on the new regulations. 

However, regardless of regulation changes, the amount of precipitation in early 2017 would have 

cause dangerous water levels. Though the initial response to Plan 2014 has been negative with 

time it will lead to healthier lake levels and benefit the environment as well as surrounding 

communities.  

Conclusion: 

 To understand Great Lakes Water level trends, it is important to understand the formation 

of the Great Lakes basin.  The Laurentian Ice Sheet advanced and retreated over thousands of years 

carving out the landscape and developing features through deposition.  The terrain in the Great 

Lakes region is continually rising due to isostatic rebound after the removal of the heavy glacier. 

This causes water levels to rise where the land increases elevation at a slower rate and water levels 

decrease in places where the land rebounds faster.  Inflow and outflow patterns are particularly 

important to assess short term trends and the impact of humans on the lake systems. Historical 

patterns of water levels can be derived through the study of sediment and shoreline features paired 

with carbon dating, and other dating techniques. Once historical models are developed, 

Mathematical calculations of wave patterns of the data can create forecast models of wave heights. 

These prediction models are moderately useful but, with changing climate their accuracy is not 
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concrete. Historic climatology studies using bogs and the organisms that resided there can infer 

back dated moisture content. Climate data overlaid with lake levels shows correlations between 

data climatology and can then be used as a proxy for lake levels before documented data. Climate 

can be considered to develop more accurate models of future lake levels. These studies are 

important because lake levels directly affect populations residing on shoreline and industries that 

use the water or waterways to ship goods. In response, regulatory water procedures imposed by 

human changes dynamics of lake levels and decreases diversity while increasing erosional factors. 

Artificial methods to deal with erosion often only add to the problem and natural processes need 

to be restored to create a balanced stable environment.  
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Figure 1. Larson and Schaetzl Locations and general extent of the major proglacial 
lakes associated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Map of the upper Great Lakes showing contoured rates of glacial 
isostatic adjustment in relation to the rates of Port Huron outlet. Scale is in 
centimeters per century (Wilcox et al. 2007). 

Figure 1. Great Lakes watershed (Angel and Kunkel, 2009) 
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Figure 4. Inflow and outflow rates for each Great Lake, positive values 
denote an inflow, while negative values denote an outflow (Modified from 
Great Lakes Commission, 2003.) 

Figure 5. Late Holocene lake level interpreted from beach-ridge studies in relation 
to surface moisture interpreted from testate amoeba studies in peatlands 
(modified from Booth et al. 2006). 

Figure 6. Time series of CO2 concentration for 1990–2100 for the three CO2 emission 
scenarios used in this study. The emission scenarios are as follows: A2=moderately high, 
A1B=intermediate, and B1=low. (Angel and Kunkel, 2009) 
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Table 1. Summary of the GCM/GLERL model simulated changes of Lake 
Michigan–Huron water levels in meters at 5th, 25th, 50th, 75th, and 95th 
percentiles (Angel and Kunkel, 2009). 

Figure 7. Lake-level departure (m) for the A2 high emissions scenario for (a) 
2020–2034, (b) 2050– 2064, and (c) 2080–2094. The line in the box represents 
the median (50th percentile) of all cases. The top and bottom of each box 
represent the 25th and 75th percentile values. The plus signs represent 
outliers. Lake-level departures are departures from the 1970–1999 average 
lake level. 
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