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ABSTRACT 

A series of controlled laboratory experiments were performed (n=4) to determine the 

effects of Dreissena filtration and Daphnia grazing on phytoplankton abundance and water 

clarity. I,lreissena consumed significantly more phytoplankton than Oaphnia at 48 and 72 hours 

in vessels containing a single herbivore (Daphnia or I,lreissena). Dreissena reduced 

phytoplankton abundance by 39% overall, while Daphnii! reduced 19% of the phytoplankton. 

However, an additive effect was not observed in vessels containing both herbivores. Phosphorus 

cycling by Daphnia ahd cycling and retention by Oreissena changed the dynamics of the vessels 

significantly. Ultimately, it is likely that Oreissena will increase water clarity to a greater extent 

than Oaphnia due to the differences in phosphorus cycling exhibited by both herbivores. 
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INTRODUCTION 

! 

The introduction of Dreissena polymox;pha into North American freshwater ecosystems 

has resulted iri major impacts to industrial and municipal water systems (Clarke, 1952; Miller 

et al, 1992) as well as natural aquatic ecosystems (Nepszy, 1992; Stewart, 1993; Griffith, 1993). 

One impact frequently attributed to Pmissena is increased water clarity (Reeders, et al., 1089; 

O'Neill and MacNeill, ~989) due to Dreissena' s ability to filter large quantities of phytoplankton 

from the water column (Morton, 1971; Walz, 1978; Stancykowska, et al., 197 5). Indeed, research 

conducted in the western basin of Lake Erie in 1989 demonstrated a twofold increase in water 

clarity (O'Neill and MacNeill, 1989) since the introduction of Dreissena. 

However, research indicates that water clarity in Lake Erie was improving prior to the 

introduction of Dreissena and was generally attributed to the phosphorous abatement program 

and a shift in zooplankton composition from inefficient ( e.g. Bosmina) to efficient phytoplankton 

grazers (e.g. Dill)hnia pulicaria) (Makarewicz,1993; Bertram, 1993; Makarewicz and Bertram, 

1991). 

Thus, increased water clarity in the western basin of Lake Erie may result from several 

factors: 1) the red'uction in phosphorous loading and the resulting decrease in phytoplankton 

biomass; 2) the shift in.zooplankton community from inefficient to efficient grazers; 3) the 

introduction of Dreissena; and 4) a combination of the above. 

This study was done to answer the following questions: 1) Which herbivore population, 

Dreissena or Daphnia, causes the greatest reduction in phytoplankton biomass and subsequent 

increase in water clarity? and 2) When the two herbivores are present in the same ecosystem, 

does either herbivore have an 'effect on the other herbivore's ability to reduce phytoplankton 

quantities? To answer these questions, a series of controlled laboratory experiments were done 

to determine the relative importance of Daphnia grazing and Dreissena filtration on 

1 
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phytoplankton abundance and water clarity. The experiments were designed to mimic conditions 

observed in the western basin of Lake Erie relative to population densities of D�hnia and 

Dreissena (Appendix I). 

METHODS 

Cultures 

Phytoplankton: Separate batch cultures of Chlamydomonas reinhardtii and Chlorella 

vulgaris were maintained at 20°C in a 14:10 light:dark cycle fo Guillard's medium (Provasoli, 

1971). 

Daphnia magna: Daphnia were cultured in a 75.7 L aquarium of aerated distilled water 

augmented with 0.12 g of Natural Brewer's yeast as a food source. Aquarium temperatures 

ranged from.15°C to 22°C, while lighting was natural except from December to February when 

a 14: 10 light:dark cycle was maintained with a fluorescent light. 

Dreissena polymOJl?ha: Dreissena from Lake Ontario and the Erie Canal were maintained 

in an aerated aquarium (37 .8 L) filled with treated lake water. Treated Lake Ontario water was 

produced by addition of activated charcoal (2 g/L), aeration for one hour and filtration through 

a 0.45 µm Supor-450 142 mm rnembrane filter to remove zooplankton, phytoplankton and 

bacteria (Provasoli, 1957). Every two weeks feces, pseudofeces and one-half of the water in 

the aquarium was removed and replaced by freshly treated water. The temperature ranged from 

l7°C to 22°C. Dried finely ground Spirulina (1 g) was placed in the aquarium every other day 

as the food source. Four days prior to the start of an experiment Dreissena were isolated and 

fed Chlamydomonas and Chlorella. 
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Experimental Design 

General: The experimental plexi-glass vessels (n=S) were 152 cm in height and 1415 cm 

in diameter.with l1 sampling port depths (Figure 1). The duration of each experiment was 72 

hours dutjng whicµ a 12:12 light:dark cycle was maintained. E�ch ve�sel was.fi}\eq with 20L 

of treated Lake Ontario water and enough Chlanwiomonas reinhardtii and Chlorella vul�aris 

to optain a copceQ-tration of 80,000 phrtoplankton/ml. In addition, four of the five vessels 

contained various concentrations of Daphnia magna and Dreissena polymowha separately and 
-

. 

in combination (Table 1). 

Daphnia (0.5 to 2.5 mm in size) aod Dreissena (0.7 to 1.7 cm in size) were added to the 

experimental vessels \ 5 minutes prior tp the start of the experiment (0 hour reading). Dreissena, 

on their natural substrate (i.e., a rock), were placed in a fiber-glass mesh cylindrical cage 7.5 

cm in diameter and 11 cm in height and lowered to the bottom. The cage was secured 6 cm 

from the bottom between sampling ports 10 and the water outlet (Figure 1). Water samples 

for chemistry and phytoplankton abundance were taken every 24 hours. Number of zooplankton 

at eacli depth were visually counted every 24 hours. 

Phosphorus was added to each vessel, if necessary, to obtain an initial reading of at least 

10 µg P/L. Thus, phosphorus was not a limiting factor in phytoplankton growth at the start of 

the experiment. 

To simulate unstratified temperature conditions which exist in.lakes during spring and fall 

overturn, a series of experiments (n=4) were conducted where vessels were maintained at 20°± 

1 C. Initial sampling (0 hour) occurred when the phytoplankton were evenly distributed 

throughout the vessels as determined by direct phytoplankton counts and chlorophyll .a levels. 
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Water Chemistry and Physical Measurements 

Chlorophyll: Chlorophyll .a. was determined directly by the fluorometric method with a 

Turner Model 111 Fluorometer (Wetzel and Likens, 1979). 

Phytoplankton abundance: Abundance was measured using a Model Zr Coulter Counter. 

Polystyrene microsphe~s (3.14, 5.QQ.and 10.09 µm) were used to calibrate the counter. Each 

phytoplankton.abun9,Bnce value represents the average of five Coulter Counter readings. The 

precision of the Coulter Counter was measured by determining the standard deviation of the 

average readings (Appendix II). 

Soluble Reactive Phosphorus: SRP was determined by the ascorbic acid method 

(APHA, 1989) on a Techriicon autoanalyzer. 

' Temperature and turbidity were measured with YSI temperature probes and Turner 

Nephelometer '(APHA.,1989), respectively. 

Shell Analysis: Shen; were first rinsed in fresh Nanopure water several times to remove 

organic material, placed in a·l 00°C drying oven 'for one hour and then crushed in an acid washed 

mortar. The crushed material was digested in sulfuric-nitric acid (APHA, 1989) and analyzed 

for phosphorus on a Technicon autoanalyzer. 

RESULTS 

Phytoplankton Abundance (Table 2) 

All vessels, including the control, showed a decrease in phytoplankton abundance from the 

initial to the 72 hour readings. Since herbivores were not present in the control, the reduction 



5 

in phytoplankton in .the:.contro} was attributed to settling and natural mortality. Any additional 

reduction in phytoplankton in vessels containing herbivores was attributed to the herbivores 

present (Table 2). 

1. .QnlJParison ofDreissena Only and Daphnia OnlyYessels (Figure 2a) 

The vessel containing 54 ''Dreissena Only", showed a significant decrease in phytoplankton 

abundance and a progressive net decrease over the control. Although phytoplankton abundance 

decreased in the "Daphnia Only" vessel. there was not a progressive net qecrease in 

phytoplankton. Initially, the net decrease in phytoplankton was as high as the Dreissena vessel 

at 24 hours but then decreased and leveled off at approximately 19%. A significant difference 

(p < 0.05 level) between the "Dreissena Only" and "Daphnia Only" vessels occurred at 48 and 

72 hours (net and absolute )(Figure 2. Table 2). 

2. Comparisoq of Dreissena Only and Hi&h Dreissena Vessels (Figure 2b) 

At 48 hours. the "Dreissena Only" vessel reduced phytoplankton significantly more (p < 

0.05) than the "High ~w Daphnia" vessel. No significant difference was observed 

at 24 and 72 hours (Figure 2). 

The "Dreissena Only" vessel had a progressive net decrease in phytoplankton from Oto 72 

hours. The "High Dreissena/Low Daphnia" vessel showed a large reduction in phytoplankton 

at 24 and 72 hours with a slight net reduction at 48 hours (Figure 2, 'Table 2). 

3. Comparison of Daphnia Only and High Daphnia/Low Dreissena Vessels (Figure 2c) 

No significant difference (p < 0.05) in phytoplankton reduction occurred between the 

"Daphnia Only" and "High ~w Dreissena" vessels throughout the experiment 

(l:igure 2). 
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Soluble Reactive Phosphorus (SRP) (Table 3) 

Elevate<;t SRP values were observed in all vessels throughout the experiment. The largest 

SRP values were observed at.24llours in all experimental vessels. The "Daphnia Only" and 

"High Daphnia" vessels had higher ambient SRP values than the "Dreissena Only" v;essel 

throughout the experiment (Figure 3, Table 3). 

1. Comparison of Drcissena Only and Daphnia Only Vessels (Figure 3a) 

The "Daphnia Only" vessel had significantly (p < 0.05) higher SRP values than the 

"Dreissena OnJy" vessel thro,JJghpyt the experiment (24 to 72 hours). Although both vessels 

had elevated SRP levels, the "Dreissena Only" vessel showed only a· slight SRP increase 

throughout the experiment while the "Da.phnia Only" vessel had a net average increase of 439% 

over 72 hours. For b9th ves.s.el.s, the largest SRP increase pccurred at 24 hours (Fjgure 3a, Table 

3). 

2. Comparison of Dreissena Only and High Dreissena/Low Daphnia Vessels (Figure 3b) 

The "High Dreissena/Low Da.phnia" vessel had significantly (p <,0.05) higher.SRP values 

than the "Dreiss~na Only" vessel at 24 and 72 how:s. In both vessels, the greatest amount .of 

SRP was generated within the first 24 hours. In.the "High Dteissena/Low Daphnia" vessel, the 

lowest SRP increase occurred at 48 hours (5%) followed by elevated levels at 72 hours 

(66%)(Figure 3b, Table 3). 

3. Comparison ofDaphnia Only and Hiih Daphnia/Low Dreissena Vessels (Figure 3c) 

There was a significant difference between the ''Daphnia Only" and "High .D.ru2h.ni.wLow 

Dreissena" vessel throughout the experiment (24 - 72 hours). At 24 and 48 hours, the "High 

P.apb,nia/Low Dreissena" vessel had higher SRP values. At 72 hours, the "Daphnia Only" vessel 

had higher ambient SRP levels. The 1'High Daphnia/Low Dreissena" vessel had the highest net, 

percent increase in SRP (816%) found in any experimental vessel (Figure 3c, Table 3). 
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Chlorophyll a (Table 4) 

Chlorophyll g levels decreased uniformly in each vessel throughout the experiment. 

Although a net percent decrease in chlorophyll .a occurred at each time interval, the largest 

decrease was observed at 4& hours (Figure 4, Table 4). Although chlorophyll .a and 

phytoplankton abundance values did not mimic each other at all time intervals, there was a 

correlation between these values. Generally, as phytoplankton abundance decreased, 

chlorophyll ,il values also decreased. 

1. Conmanson ofDreissena Only and Daphnia Only Vessels (Figure 4a) 

The "Dreissena Only" vessel' had significantly (p < 0.05) less chlorophyll .a than the 

"Daphnia Only" vessel at 48 and 72 hours (Figure 4a, Table 4). 

2. Comparison of Dreissena Only and Hi~ Drei'ssena/1;,ow Daphnia Vessels (Figure 4b) 

There was -no significant difference betwetn these vessel at any time interval throughout 

the experiment (Figure 4b1.:rable 4). 

3. ~mparison ofDaphnia OnJy·and Hiim Daphnia/Low Dreissena Vessels (Figure 4c) 

The "High Daphnia/Low Dreissena" vessel had significantly (P < 0.05) less chlorophyll a 

than was observ~ in the "Daphnia Only" vessel at 48 and 72 hours (Figure 4c, Table 4). 

Turbidity (Table 5) 

Turbidity values,fluctuated throughout the experiment. The vessels containing 54 Dreissena 

both had a progressive net decrease in turbidity throughout the experiment while the vessels 

containing 540 Daphnia had net turbidity increases at 24 and 72 hours. 

·Epiphytic growth was observed in the vessels containing·two herbivores and the "Daphnia 

Only" vessel during two of the four experiments. Epiphytic growth could be readily seen on 

the inside surface of the vessels as well as on each of the plugs, probably as a result of the high 

SRP values. Epiphytic growth resulted in increased cloudiness and increased turbidity in the 

"Daphnia Only" and "High ~w Dreissena" vessels. 



8 

1. Comparison of Dreissena Only and Daphnia Only Vessels (Figure 5a) 

The "Dreissena Only" vessel had significantly (p < 0.05) reduced turbidity levels in 

comparison to the "Daphnia Only" vessel at 24 and 72 hours. Although turbidity values 

decreased throughout "the experiment in the "Dreissena Only" vessel, the "Daphnia Only" vessel 

actually had increased turbidity values at 24 and 72 hours (Figure 5a, Table 5). 

2. ComparisQD of Dreissena Only and High llieissena/Low Daphnia Vessels (Figure Sb) 

The "Dreissena Only" vessel had significantly lower (p < 0.05)' turbidity values at 48 and 

72 hours in relation to- the "High Dreissena/Low Pa.vbnia" vessel. Both vessels exhibited a 

progressive net decrease in turbidity from O to 72 hours (Figure Sb, Table 5). 

3. Comparison of Daphnia Only and Hiim Daphnia/Low Dreissena Vessels (Figure Sc) 

The "Da;phnia On1y" vessel had significantly (p < 0.05) less turbidity at 48 hours than the 

"HighDaphnia/Low Dreissena" vessel. A similar turbidity pattern was observed in these vessels: 

a slight increase in turbidtty at 24 hours, decreased levels at 48 hours followed by increased 

turbidity at 72 hours (Figure Sc, Table 5). 

Daphnia Distribution (Figures 6-9) 

Daphnia distribution was measured once every 24 hours during daylight conditions. Since 

distribution measurements were made only once, ev~ry. 24 hours, vertic~ migration was not 

obseryed. However, vertical migration by Daphnia has been observed in natural aquatic 

ecosystems (Lampert, 1989) as_ well as in laboratory experiments (Orcutt et al.,l 983). Although 

a consistent pattern of Daphnia distribution was not found, Daphnia were generally observed 

within the top 72 cm of the experimental vessels (Figures 6-9). 
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DISCUSSION 

Phytoplankton Abundance 

In the experiments that measured the effects of a single herbivore on phytoplankton density 

and water clarity, Dreissena filtered significantly more phytoplankton than Daphnia at 48 and 

72 hours. Over a 72 hour period, Dreissena filtered 39% of the phytoplankton available compared 

to 19% filtered by Daphnia. This result was generally supported by the chlorophyll .a (Figure 

4) and turbidity data (Figure 5) and suggest that Dreissena is a more significant contributor in 

increasing water clarity than Daphnia. That D.reissena is a more significant contributor in 

increasing water -clarify than I2whnia is also suggested in the literature (Morton, 1971; 

Stanczykowska et al, 1976; Walz, 1979; Shevtsova and Kharchenko, 1981; Piesik, 1983; 

Stanczykowska and PJanter, 1985). 

Based on the amount of phytoplankton removed by each herbivore in the "Dreissena Only" 

and "Daphnia Only" expe{iments, vessels containing both herbivores were expected to ~emove 

considerably more phytoplankton than vessels contajning a single herbiyore. However~ in 

expefiments in which Dreissena and Dapqnia were combined in a single vessel (Figure 10) to 

determine their joint effect pn a phytoplankton community. an additive effect did n9t occur. In 

fact, the "Dreissena Only" ~es5C?l filtered more phyt~plankton than vessels containing both 

Dreissena and Daphnia and "Daphnia Only"., How did. the two herbivore vessels differ from 

the vessels containing a single herbivore? Did the presence of one herbivore have an inhibiting 

effect on the other herbivore's ability to filter phytoplankton, or did either herbivore affect the 

environment in such a way that less phytoplankton was filtered by one or both of the herbivores? 

In compatjng ,the sin,gle and two herbivore vessels, one parameter clearly separated the 

"Dreissen.a Only" vessel from the combinedDreissena/Daphni~ vessels and the "Daphnia Only" 

vessel. Although all v.essels showed an increase in soluble reactive phosphorous (SRP) 
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throughout the experiment, significantly larger quantities of SRP were found, in· vessels 

containingDaphnia (Table:3). The~"Dreissena Only" vessel had significantly less SRP than the 

"Daphnia Only" and "High Daphnia" vessels at all time intervals (24-72 hours) and had 

significantly less SRP tharl the- "High Dreissena" vessel at 24 and 72 hours (Figure 3). 

Consequently, these experiments may not adequately reflect Daphnia' s filtration rate due 
l ~ ~ 

to the confounaing variable of phosphorous. Likewise, the filtration rates of botli herbivores 

in the· combined vessels may be underestimated because the large quantities of SRP found in 

these vessels could have oeen utilized by phytoplankton for growth and reproduction. 

Soluble Reactive Phosphorus (SRP) 

The importance pf J?hosphorous ip reljitionship to phytoplankton conSUJilption in these 

experiments is .significant for two reasons: a) phosphorous cycling by Daphnia and b) 

phosphorous cycling and retention by Dreissena. . , 

The role .of Daphnia in cycling phosphorous, a I}4trient n~ed for priplarr produs;:tivity it;i, 

aquatic ecosystems,. is well document~ (Dodds, .et al. 1991; McCarthy & Goldman, 1979; 

Ejsmont-Karabin, 1990). Tqe l!;lrge amoqnt of,SRP l,lndoubtedly recycled in vt?ssel13 containing 

Daphnia was available for uptake, growJ:Jl and reprpduction by J?hytoplanktQn. The 

phytoplankton used in the experiments could have reproduced between the 24-hour interval 

readings and the increased numbers would not have been measured. 

Figure 11 shows.the relationship between SRP anp, phytoplankton values for the "Piwhnia 

Only" and "Dreissena Only" vessels. In the "Dreissentl Only" vessel, as tpe amount of 

phytoplankton that was filtered increased, the SRP values increased, on average, by 15,~ O';~r 

a 72 hour period. For Daphnia, the SRP increased on average 439% over the same period. 

Clearly, the dynamics of the vessels were changed appreciably by the way in which phosphorous 

was utilized by the herbivores. At 24 hours, all experimental vessels had appT0ximately the 
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same phytoplankton reduction (Table 2), however, greatly elevated SRP values (Tuble 3) were 

observed in vessels containing·Daphnia and not in the "Dreissena, On~y'' ves~el. At· 48 hours, 

the '~Dreissena Only" vessel continued to show a net progressive decrease in, phytoplankton 

(Table 2) while the vessels containing Daphnia showed slight decreases or .no change in the 

amount-of phytoplankton consumed (Figure 2). The ele.vated phosphorous levels observed at 

24 hours in :Di\l}hnia vessels could p."'ve been utilized. by phytoplankton fpr reproduction 

(Lehman, 1980; Ejs,mont-Karabin and.Spodhiewska, 1990)l Both herbivores may have been 

decreasing phytoplankton at a constant rate but the amount of phytoplankton generated by the 

large ~RP available was masking the tr,end. 

If large SRP yalues resulted in higher abundance of phytoplankton, Daphnia could have 

been grazing not only the existing phytbplankton but also the newly-formed algae. Therefore, 

results of phytoplankton consumption by Daphnia in these experiments are underestimated and 

vessels containing both herbivores may not adequately reflect the total amount of phytoplankton 

consumed. 

Although Daphnia grazed down the phytQpl3flkton population, they also cycl~ qack into 

the water column a large amount of phosphorous thus providing ~necessary nutrient for further 

phytoplankton growth. Dreissena, however, filtered large amounts of phytoplankton out of the 

water column while releasin~ a relativel,y small amount of phosphorous (St,nczykowska and ., 

Planter, 1985). 

Increased SRP values, were observed in the "Dreiss«na Only" vessels (Table 3, 

Figure 3). However, the net increase was significantly less than that recorded for vessels 

containing Daphnia (Table 3, Figure 3). Research by Stanczykowska -and Planter (·1985) 

indicates that Dreissena cycles phosphorous through a~ an accumulation in mussel shells and 

tissues and b) feces and pseudofeces. 
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Any accumulation of phosphorous in shells and tissue is locked up and unavailable to the 

aquatic ecosystem fot. several ~ears. Tissue matt~r would be removed from cycling for the life 

of the mussel (4-6 y:ears); while phosphorous deposited in shells m~y be unavailable for up to 

20 years (S~n"zykowska, 1984) .. Analysis of a small nu~ber of DreissQpa shells, indica~ed 

that approxima~ly 0.13% of shell mass was phosphorous. '{hese _results are similar to those 

obtained by Kuenzler (1961) for Modiolus, a marine mussel similar to Dreissena in physical 

appearance (Stanczykowska, 1984). Also, Stanczykowska (1984) indicates that there is more 

phosphorous in mussel tissue than that found in shell material. 

Stanczykowska and Planter ( 1985) estimate that approximately 40% of the phosphorous 

taken in by I)rei~sena through filtration is released in the form of feces and pseudofeces. These 

material& settle to the bottom but could enter the water column due to wat~r currents and may 

account for the .small ipcrea$e in SRP observed in the "Dreissena Only" vessel in my short term 

experiments. 

Dreissena filtered large amounts of phytoplankton out of the water column while releasing 

a relatively small amount of phosphorous. Dreissena may inhibit additional phytoplankton 

growth by limiting available phosphorous. As a result, breissena may have a more significant 

long-term role in increasing water clarity in natural ecosystems than Daphnia. 

The manner in which phosphorus was utiltzed by the zooplankton in these experiments 

significantly changed the composition of ~y vessel containing Daphnia (alone or in 

combination) in relation to the control or "Dreissena Only" vessels. Phosphorus cycling by 

Daphnia appears to be the major influence in the vessels containing both herbivores in relation 

to the amount of phytoplankton that was consumed. However, other factors that could have an 

influence on the filtration process in suspension feeders must also be consideretl for all the 

experimental vessels. These factors include: temperature, phytoplankton quantity' and 

phytoplankton quality. 
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Temperature 

For Ore~ssena, an increase ih temperature corresponds with an increase in filtration rate up 

to 30°C (Morton, 1971; Winter, 1978). Walz (1978) found the optimal temperature in terms of 

growth rate 'for Dreissena to be 1'5°C. The experimental vessels were maintained at 2()°C, slightly 

above the optimal temperature for growth but within the range found acceptable for normal 

physiological proces'ses. Consequently, the temperature in these experiments would not appear 

io'limit Dreissena's ability to filter phytoplarildon. 

Daphnia demonstrate an optimum filtering rate at 22°C (Kersting and van der Leeuw, 197 6) 

which is just slightly above the temperature used in these experiments. Although neither 

herbivore was maintained ·at their optimal temperature, neither wer~ they hiridered by the 
' . 

experimental temperatures. It is unlikely that temperature had a negative effect on either 

herbivore in relati~n to their J6ility to filter phytoplankton and increase water clarity. 

PbvtopJ¥1kt2n Abun~ce 

A phytoplankton abundance of 80,000 organisms/ml was used in each"Cxperimental vessel. 

Shnilar quantities are frequently 11sedin filtration sturues for Dreissena (Morton, 1971; Sprung 

and Rose, 1988)and Daphnia (McMahon and Rigleit, 1965) when small phytoplankton, such as 

Cblamydomonas reinhardtii and Chlorella vuliaris, are used. Morton (1971) suggested these 

quantities may better reflect true filtration,rates because lower algal concentrations may not be 

enough -to stimulate all tactile receptors while larger concentrations may stimulate tactile 

receptors too much, thus irritating the.herbivore resulting in a decreased filtering rate. 

Filtration rate is defined as the volume of water filtered completely free of particles, per 

unit of time·(Winters, 1978; Sprung ~d Rose, 1988). The relationship between filtration rate 

and phytoplankton concentration has been demonstrated for several species of lamellibranchiate 

bivalves (Winter, 1978). Similar results were obtained by Morton (1971) in analyzing the 
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filtration rates oE Dreissena in particular. In general, filtration rate increases with increasing 

phytoplankton quantities up to a maximum filtration. Thereafter, filtration rate decreases with 

increasing phytoplankton co:qcentration. The average filtration rate of Dreissena after 24 hours 

in my experiments was found to be 11.6 ml/hr. These results correspond with Stanczykow~ka 

et al (1976) (10-100 ml/hr); Morton !1971 A)(S-180 ml/hr); and Mikheev (1967) (2-50 ml/hr) . 
(Appendix III). The phytoplankton quantities l·used did not seem to hinder Dreissena' s filtration 

ability nor did they appear to stimulate a high filtration ra~. In all experiments (n=3), Dreissena' s 

filtration rates were always found to be at the low end of those cited in the literature. 
l 

The average filtration rate for Daphnia in these experiments was found to be 0.47 ml/hr 
' . 

after 24 hours. These results are considerably lower than those found by Kersting and van der 

Leeuw (1976): 3.f ml/hr; McMahon and Rigler (1965): 2.7 - 3.4 ml/hr.or Ryther (1954): 3.3 

ml/hr. (Appendix III). The low filtration rates observed in my experiments may be due to the 

amount of time between sampling periods (24 hours) and also due to the large phosphorus 

quantities bei~g used by phytoplankton for growth. Generally, Daphnia filtration rates are ,. 

analyzed every lQ - 30 minutes. By using small sampling periods, the confounding variable of 

phosphorus is minimized (Lehman, 1980). By 24 hours, extremely high SRP values were 

observed in all vessels containing Daphnia (Table 3). Because this phosphorus was available 

to phytoplankton for growth and reproduction, phrtoplankton abundance could have increased 

within this time period but would not have been measured. Consequently, observed Daphnia 

filtration rates are very low and do not truly reflect Daphnia's ability to reduce phytoplankton 

numbers. 

The concentrations of phytoplankton used in these experiments should not have inhibited 

the filtration rate of either herbivore The fact that Daphnia's filtration rates do not coincide 

with those in the literature is most likely due to the high phosphorus values and not the quantity 

of phytoplankton. 
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Phytoplankton Oualitx 

Although food selection by bivalves is mainly considered a quantitative rather than 

qualitative process, Morton ( 1971) has shown that the culture medium in which algae are grown 

can eithel' increase or decrease Dreissena' s filtration rate. He suggests that this could be due to 

chemical products released by algal cells into the medium. Other researchers have also suggested 

that the metabolic products of algae may also affect the feeding habits of bivalves (Davids, 

1964; W alne .195 6). This indicates that"both quantity and quality of food shoulti be considered 

when the filtration rates of herbivores are studied. 

In many studie~ .on the filtration rates of Dreissena and Daphnia, Chlamydomonas 

reinhardtii 'and Chlorella yulii)ris ate frequently. used as food sources ,tMorton, 1971; Sprung 

and Rose, 1988; Arnold, 1971;' Kersting.and van der Leeuw, 1976; Sarnell, 1986; McMahon 

and Rigler, 1965). TheY. are considered important nutrient sources for herbivores due to their 

size (5 - 15 µm).(Gliwicz;,l977), shape (Spherical), and lack ofa gelatinous Slieath,(Sarnell, 

1986; Porter andi)rcutt, 1980). Studiesjndicqte that neither algae is toxic to the herbivores~ 

consequently th~y ~e µsed often to deternri~e filtration rates. 

Although neither alga is considered toxic. the use of monocultures pf these organisms may 

not provide the best nutrient source for the herbivores. Walz (1978) found that Dreissena fed 

on mixed phytoplankton diets (natural lake algal assemblages) had better growth rates than 

those fed on monoculture. Since Dreissena were fed on a Spi~lina monoculture between 

experiments, it is possible that they were not in optimum condition which could have affected 

their ability to filter phytoplankton. 

In this study, it is likely that the difference in phosphorus recycling by Daphnia and 

Dreissena had the most significant effect on the herbivore's ability to increase water clarity. 
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The Effects of Dreissena Filtration on,an Aguatic·Ecosystem 

Dreissena' s ability to reduce phytoplankton and increase water clarity may have profound 

effects on aquatic ecojystems. By significantly reducing phytoplankton quantities, the primary 

productivity of a system inay decline. Reductions irt productivity could ultimately f ead to 

reduced zooplankton, planktivores and top carnivores. An entire ecosystem shift could occur. 

Since Dreisserla not only reduces phytoplankton but also removes nutrients from the pelagic to 

the benthic zone, it is possible that a primarily pelagic-based ecosystem could be replaced by 

a benthic system. 

Fisher (1992, unpublished) suggests that such a shift may be occurring in Lake Erie as a 

result of the Dreissena invasion. The increased populations of Gammarus observed in Lake 

Erie are generally attributed to Dreissena because Gammarus readily consume Preissena feces 

and thus benefits directly from benthic depositions by Dreissena. Stewart (1993) also found 

that native macroinvertebrate species diversity increased in benthic areas (cobble and.reef) in 

Lake Ontario since the introduction of Preissena. 

If such an ecosystem shift occurs. the effects may be far-reaching. Mackie (1991) suggests 

that severe socio-economic impacts, especially for the fishing industry, are likely to follow a 

pelagic to benthic ecosystem change. 

Future Research 

This study examined the relative importance of Preissena and Daphnia filtration on an 

ecosystem when the temperature of the water was uniform. Because of this, phytoplankton 

were found throughout the experimental vessels and were readily available as a food source for 

either Dreissena or Daphnia. Consequently, Preissena consumed significantly more 

phytoplankton than Daphnia. However, different results may be observed if these experiments 
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were done under thermally stratified conditions. In a thermally stratified experiment, Daphnia 

would be expected to affect phytoplankton more in the epilimnion, while Dreissena would do 

the same in the hypolimnioIJ.. If Daphnia were also able to remove phytoplankton from the 

metalimnion, Daphnia would then be more important in reducing phytoplankton than Dreissena. 

A thermally stratified experiment would complement this study and add to our knowledge of 

Dreissena's affects on a lake during summer and winter stratification. 

Both thermally stratified and non-stratifed experiments could also be done using various 

phytoplankton assemblages, especially diatoms that are typically found in lake ecosystems. 

SUMMARY 

Dreissena reduced phytoplankton abundance significantly more than Daphnia at 48 and 72 

hours, following their introduction into an aquatic ecosystem. However, the differences in the 

amount of phytoplankton reduced by each herbivore may have more to do with the way in which 

phosphorous is utilized and cycled by the herbivores rather than their filtration ability. 

Phosphorous cycling also had an effect on the amount of phytoplankton that could be 

reduced by the herbivores when they were both placed in the same vessel. Consequently, an 

additive grazing effect was masked by increased SRP production in the two herbivore vessels. 

Therefore, ultimately it is likely that Dreissena will increase water clarity more thoroughly 

than Daphnia due to the differences in phosphorous cycling exhibited by both herbivores. While 

Daphnia reduced phytoplankton numbers by grazing, it also supplied the necessary nutrient 
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phosphorous into the water column so that additional phytoplankton growth could occur. 

Dreissena, however, while grazing heavily on phytoplankton, only cycled small amounts of 

phosphorou.s back into the aquatic ecosystem. 
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Table 1. Abundance of Dapboia ma&na and Dreissena polymorpha in control and 
experimental vessels. Abundance in vessels corresponds to 1989 abundance in the western 
basin of Lake Erle (MacNeill, 1989). 

. -
Vessel 1: Control ,. ~bytoplankton only 

J 

Vessel 2: Phytoplankton and 54 Dreissena polyrnor,gha 

Vessel 3: Phytoplankton with 54 Dreissena polymox;pha 
and 209 Daphnia maiJla 

Vessel 4: Phytoplankton and 540 Daphnia magna 

Vessel 5: Phytoplankton with 540 Daphnia magna 
and 25 Dreissena polymoi:pha 

22 
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Table 2. Values represent the average.(X ± S.E.) net decrease (%)in phytoplankton (n=3). 
Net values. were obtained by subtracting any reduction in phytopl~on that occup-ed in the 
controLfrom each of the experimental vessels. Temperature was uniform throughout the 
vessels at 2o±l °C. 

- -· -
Time Interval Dreiss~na High.t)reissena Daphnia Only High DaJ.lhnia 

Only ... LowDaphnia Low Dreiss,na 
Mean±s:E. Mean"±S.E. Meart±S.E. Mean±S.E. 

24 25±5.0 27 ±4.5 24±4.5 25±3.9 

48 29±3.6 18±2.2 20±2.9 26±3.9 

72 39 ±2.1 36±3.5 19 ±3.6 23 ±8.1 
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Table 3. Values (%) represent the average (X ± S.E.) net percent increase in soluble reaGtive 
phosphorus (SRP) (n=2). Net Yalues :were obtained by subtracting any SRP changes that 
occurred in the control from the experimental vessels. 

Time Interval Dreiss~na High Dreissena Daphnia Only High D1U2bnia 
Only LowDaphnia Low Dreiss~a 

Mean±S.E. Mean±S.E. Mean±S.E. Mean±S.E. 

24 31 ±15.0 311 ±75.6 1044±149.0 2144±348.8 

48 9±4.7 5±6.4 124±27.3 221 ±45.2 

72 4±3.0 66±23.2 148 ±23.3 84±8.0 



Table 4. Values(%) represent the average (X ± S.E.) net percent decrease in chlorophyll a 
levels for the unstratified experiments (n=4). Net values were.obtained.by subtracting any 
chlorophyll a changes that·occurred in the control from the-experimental vessels., . 
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Time Intenral Dreiss~a High Dreissena. Daphnia.Only Bigh Dapbnia 
O.nly bow Daphnia LQw.~iimmii\ 

Mean±S.E. Mean±S.E. Mean±S.E. Mean±S.E. 

24 20±4.4 26±4.4 14 ±4.0 20±3.6 

48 27 ±3.6 28 ±2.2 23 ±2.7 31 ±2.5 

72 23 ±2.9 24±3.3 16 ±2.1 24±3.0 



Table 5. Values(%) represent the average (X + S.E.) net percent change in turbidity levels 
(n=4). Net values were obtained by subtracting any turbidity changes that occurred in the 
control from the experimental vessels. Negative values represent decreases in turbidity 
levels, positive values represent increases. 
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Time Interval Dreiss~a High Dreissena Daphnia Only High Dapbnia 
Only Low Da:phnia Low Dreisssma 

Mean±S.E. Meau. :t.S .E. Mean±S.E. Mean±S.E. 

24 -~7±6.4 -19 ±6.8 6±7.9 13 +8.7 

48 -93 ±12.4 -38 ±10.8 -76±13.0 -4 ±10.8 

72 -105 ±10.1 -72 ±15.2 46±35.7 16±42.3 
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APPENDIX I 

The following criterion were used to determine the amount of paphnia and Dreissena that 

each experimental vessel would contain. 

Daphnia Only and Dreissena Only Vessels 

To determine what effect Paphnia grazing and 1)reissena filtration have on water clarity, 

a series of experimental vessels; which mimicked the western basin of Lake Erie Daphnia 

(30,000/m3
} (EPA, 1984) anti Dreissena (30,000/m2

) (MacNeill, 1989) populations densitites, 

were established. 

Both Dreissena and Daphnia are herbivores which utilize phytoplankton in the WCiter 

column as their food source. The depth of the western basin of Lake Erie is approximately 10 

m. An assumption was made that any phytoplankton found throughout the 10 m depth could 

be considered a food source for the herbivores. Therefore, 30,000 Dreissena and 300,000 

Daphnia are supported (obtain nutrients) from 10 m3 (10,000 L) of water. To simulate these 

conditions in the experimental vessels which contained 18 L of water, 54 Dreissena and 540 

Daphnia were used. 

Vessels Containing Both Dreissena and Daphnia 

Vessels containing both herbivores were established to determine: 1) if one herbivore 

had an effect on the other herbivore's ability to reduce phytoplankton numbers and increase 

water clarity; 2) which type of population (High Dreissena/Low Daphnia or High Daphnia/Low 

Dreissena) would most effectively reduce phytoplankton numbers and 3) the effects of a small 

population of an exotic species on an established zooplankton population (High Daphnia/Low 

Dreissena). 
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APPENDIX II 

To determine the precision of the Coulter Counter each phytoplankton sample was 

analyzed three to five times. The ayerage of the replicates was used in all further calculations. 

The samples below are typical Coulter Counter readings. The precision of the instrument was 

measured by determining the standard deviation and standard error. 

Reading Sa!Dple 1 Sample2 Sample 3 Sample4 Sample 5 

1 17784 16958 17468 17878 18431 
2 17961 16810 17467 17635 18444 
3 p~17 16464 17488 17984 18417 
4 17991 16866 17408 17949 18441 
5 17882 16679 17414 17974 18382 

Average 17886 16755 17449 17884 18423 
Standard Deviation 80.68 171.47 31.97 130.03 22.57 
Staqdard Error 36.08 76.68 14.31 58.15 10.09 



APPENDIX ill 

The following equation from Coughlan (1969) was used to calculate the filtration rates of 

Dreissena. and Dii12hnia: 

m --- ln-- - ln--M [ ( conc0
) ( conc0, )] 

where 

m = filtering rate (mls/hr) 

M = volume of suspension 

n = number of animals 

t = time (hours) 

n • t cone, cone,. 

conc0 = initial concentration - experimental 

conc0 , = initial concentration - control 

conct = concentration at time t - experimental 

cone,. = concentration at time t - control 

Dreissena Filtration Rate 

Experiment 24Hours 48 Hours 

1 8.2 mls/hr 7.2 

2 1.8 3.2 

3 25.2 18.0 

72Hours 

* 
11.8 

16.4 

All Dreissena filtration rates were multiplied by 2 in accordance with Morton's ( 1971) 

research on the filtration rate of Dreissena. Morton found that Dreissena filtered 

discontinuously. Over a 24 hour period, they filtered only 12 hours, therefore Morton 

adjusted his filtration rates accordingly. 

* The first experiment was done for 48 hours, not 72 hours. 
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Daphnia Filtration Rate 

Experiment 24Hours 

1 

2 

3 

0.56 mls/hr 
0.38 

0.46 

48 Hours 

0.20 

0.20 

0.43 

* The first experiment was done for 48 hours, not 72 hours. 

72Hours 

* 
0.20 

0.30 
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