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ABSTRACT 

Mitochondria are essential organelles in eukaryotic organisms that synthesize the energy-

providing molecule, ATP, through the process of oxidative phosphorylation. As explained by the 

endosymbiotic theory, mitochondria contain mitochondrial DNA (mtDNA), distinct from nuclear 

DNA (nDNA). When mitochondrial function is impaired, and mtDNA stability is compromised, 

detrimental neuromuscular and neurodegenerative disorders such as Mitochondrial 

Encephalomyopathy, Lactic acidosis and Stroke-like episodes (MELAS) and Leber’s Hereditary 

Optic Neuropathy (LHON) have the potential to occur. The purpose of this study was to 

determine the role of the nuclear gene RAD54 in maintaining mtDNA stability in the budding 

yeast, Saccharomyces cerevisiae.   

 Although the role of Rad54p in maintaining nDNA stability is understood, its impact on 

mtDNA stability is relatively unknown. RAD54 is a member of the RAD52 epistasis group, 

coding for a protein vital to the initial steps of homologous recombination and double-stranded 

break (DSB) repair. Given that members of the RAD52 epistasis group have been shown to 

contribute to homologous recombination and DSB repair in mtDNA of S. cerevisiae, we 

hypothesized that loss-of-function RAD54 would decrease the rate at which homologous 

recombination in mtDNA occurred (Stein, Kalifa & Sia, 2015). A phenotypic respiration loss 

assay was performed in a rad54∆ strain to determine the frequency of spontaneous mutations in 

mtDNA that blocked the oxidative phosphorylation process. The mutant strain demonstrated a 

1.56-fold decrease in spontaneous respiration loss when compared to wild type (p-value = 

0.0574). Interestingly, previous research has demonstrated that the nature of these spontaneous 

mutations is due to large deletions in the mtDNA. To investigate the role of Rad54p in 

preventing these deletions from occurring, a direct repeat-mediated deletion (DRMD) assay was 

performed. The DRMD assay demonstrated a significant 3.23-fold increase in nDNA 

homologous recombination events (p-value = 0.0158) and a statistically insignificant 1.08-fold 

increase in mtDNA homologous recombination events (p-value = 0.8741) between rad54∆ and 

wild type strains. Given the present findings of this study, it appears the nuclear gene RAD54 

does not play a significant role in maintaining mtDNA stability in respiration loss or DRMD 

assays.   
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INTRODUCTION 

Saccharomyces cerevisiae  

 Commonly known as baker’s yeast, Saccharomyces cerevisiae is a ubiquitous eukaryotic 

organism that inhabits plants, mammalian gastrointestinal tracts, and aquatic environments 

(Martini, 1993). The versatile fungus is a facultative anaerobe, capable of surviving in both 

aerobic and anaerobic conditions by utilizing glucose as its primary carbon source. In the 

presence of oxygen and diminished glucose levels, S. cerevisiae prefers aerobic respiration, 

efficiently catabolizing one molecule of glucose to sixteen molecules of the energy providing 

molecule, adenosine-triphosphate (ATP) (Rodrigues, 2006). Conversely, when oxygen is absent 

and glucose levels are high, S. cerevisiae utilizes fermentation, yielding two molecules of ATP 

from a single glucose molecule. S. cerevisiae’s ability to alternate between aerobic and anaerobic 

pathways is a result of the organism’s ability to regulate gene expression. Research has 

demonstrated that in the presence of excess glucose, nuclear genes associated with fermentation, 

such as ADH, are upregulated, while mitochondrial COX genes, associated with aerobic 

respiration, are repressed (Duenas-Sanchez, 2012). Such findings are significant because they 

enable researchers to study mitochondrial function by altering carbon availability.   

The Mitochondrial Genome of S. cerevisiae  

Mitochondria are essential organelles responsible for synthesizing ATP through oxidative 

phosphorylation. According to the endosymbiotic theory, mitochondria are evolutionarily 

derived from bacterial endosymbionts related to α-proteobacteria (Sanders & Bowman, 2012). 

Evidence suggests that these bacterial endosymbionts were integrated into larger cells, 

establishing a permanent mutual relationship between eukaryote and mitochondrion. As 

explained by this theory, mitochondria contain mitochondrial DNA (mtDNA), distinct from 
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nuclear DNA (nDNA). Mitochondrial DNA is found throughout the eukaryotic domain, varying 

in size and composition between species. As shown in Figure 1, the human mitochondrial 

genome is approximately 16.6 kilobases (kb) long and encodes two ribosomal RNAs (rRNA), 22 

transfer RNAs (tRNA), and 13 polypeptides involved in the electron transport chain (Alexeyev, 

Shokolenko, Wilson, & LeDoux, 2013). In comparison, yeast mtDNA is approximately 85.8 kb 

long and encodes three subunits of the ATP synthase complex, three subunits of cytochrome c 

oxidase, and a single ribosomal protein (Wolters, Chiu, & Fiumera, 2015). In S. cerevisiae, genes 

encoding various rRNAs are separated by AT-rich intergenic regions. These regions are marked 

by numerous introns with interspersed palindromic GC-rich regions (Wolters et al., 2015). 

Interestingly, these GC-rich regions demonstrate preference for intramolecular recombination, 

and aid in the maintenance of mtDNA structure and stability (Dieckmann & Gandy, 1987).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The image above demonstrates the similarities and differences 

between human and yeast mtDNA. Both yeast and human sequences are 

circular and lack histone proteins. However, yeast mtDNA contains several 

origins of replication and possesses noncoding intergenic material in 

comparison to human mtDNA.   
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S. cerevisiae as a Model Organism in Mitochondrial Research  

 Model organisms represent a larger class of organisms sharing related biological 

processes. Model organisms are useful because they permit ethical experimentation, provide a 

framework for standardized analysis, and reliably resemble other organisms of interest (Karathia, 

Vilaprinyo, Sorribas, & Alves, 2011). S. cerevisiae has orthologs corresponding to 

approximately 30% of the genes implicated in human disease, making it an invaluable model 

organism for studying human biological processes (Karathia et al., 2011). These genetic 

similarities enable researchers to study various DNA repair mechanisms in genetically damaged 

S. cerevisiae and apply their acquired understanding to DNA repair mechanisms in humans. 

While nuclear DNA repair mechanisms have been researched extensively, experimentation 

regarding mitochondrial DNA repair is less prevalent (Bohr, Stevnsner, de Souza-Pinto, 2001). 

By utilizing S. cerevisiae as a model organism in the study of mtDNA repair, understanding the 

etiology of human mitochondrial dysfunctions such as Mitochondrial Encephalomyopathy, 

Lactic acidosis and Stroke-like episodes (MELAS) and Leber’s Hereditary Optic Neuropathy 

(LHON) might be augmented.  

Possible Mitochondrial DNA Repair Pathways in S. cerevisiae  

Both nuclear and mitochondrial DNA are vulnerable to endogenous and exogenous 

damaging agents. Reactive oxidative species (ROS) are formed at high levels as by-products of 

cellular metabolism, and result in the formation of DNA lesions and oxidized bases (Bohr et al., 

2001). Although enzymes in the cytosol such as oxygenases, peroxidases, and oxidases generate 

small amounts of ROS, more than 95% of ROS superoxide anions (O2
ꓸ-) are generated by the 

mitochondria (Bohr et al., 2001). As a result of mtDNA’s proximity to ROS anions, 

mitochondrial DNA is highly susceptible to genetic mutation and damage.   
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Due to the previous misconception that the mitochondria did not possess DNA repair 

capabilities, investigation regarding mtDNA repair mechanisms was largely neglected. While 

controversy regarding repair mechanisms in mtDNA still exists, evidence suggests that mtDNA 

repair pathways likely include homologous recombination, base excision repair (BER), mismatch 

repair, and direct reversal (Bohr et al. 2001). Most notably, HR has been indicated in yeast, plant, 

and mammalian mtDNA; however, specific proteins involved in this process remain largely 

unknown (Stein, Kalifa, & Sia, 2015).   

Homologous Recombination  

Homologous recombination (HR) is the exchange of genetic information between 

homologous DNA sequences, and is critical for maintaining genomic stability by repairing DNA 

double stranded breaks (DSB). In homologous recombination, the heterotrimeric protein, MRX, 

binds on either side of the DSB. Sections of DNA around the damaged 5’ ends are then resected 

by the Sae2 protein (Mimitou, Symington, 2008). The resulting 3’ overhang invades an intact 

homologous DNA segment, forming a D-loop, and stimulating either the double-strand break 

repair (DSBR) pathway or the synthesis-dependent strand annealing (SDSA) pathway.  

In the DSBR pathway, the 3’ overhang that was not involved in strand invasion forms a 

cross-stranded Holliday junction with a homologous DNA segment. The resulting Holliday 

junction is then converted into a recombination product via nicking endonucleases, establishing 

crossover products. Conversely, in the SDSA pathway the invading 3’ overhang strand is 

extended along the recipient DNA duplex by DNA polymerase. SDSA branch migration forms a 

Holliday junction between donor and recipient DNA molecules. Through this junction, the 

synthesized 3’ strand anneals to the 3’ overhang via complementary base pairing, producing non-

crossover recombinants.   
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Nuclear Gene RAD54  

The RAD52 epistasis group plays an essential role in homologous recombination, and 

consists of genes: RAD50, RAD51, RAD52, RAD54, RAD55, RAD57, RAD59, MRE11, and XRS2 

(Symington, 2002). Epistasis group member, RAD54, codes for a motor protein involved in 

double-stranded break repair through synthesis-dependent strand annealing. The DNA-dependent 

ATPase, Rad54p, is highly conserved in eukaryotic organisms, implicating its functional 

significance in maintaining genomic stability (Mazin, Mazina, Bugreev, Rossi, 2010). Current 

studies suggest there is a 66% similarity between S. cerevisiae Rad54p and its human homolog, 

hRAD54 (Mazin et al., 2010).   

Rad54p is a member of Superfamily (SF) 2 and possesses seven signature motifs: I, Ia, II, 

III, IV, V, and VI which constitute the “motor” responsible for Rad54p translocation abilities 

(Mazin et al., 2010). Within SF2, Rad54p belongs to the SWI2/SNF2 protein family; 

specifically, this family is involved in chromatin remodeling, DNA topology alterations, and 

protein displacement (Mazin et al., 2010). Interestingly, overexpression of RAD52 epistasis 

group members RAD51 and RAD54 results in augmented frequencies of gene repair (Liu, Cheng, 

van Brabant, & Kmiec, 2002). Such findings indicate that loss of Rad54p function would have 

significant consequences in DNA repair.   

Nuclear Gene RAD54 in Homologous Recombination  

Rad54p is a multifunctional and versatile protein involved in nearly every step of nuclear 

homologous recombination. Expression of Rad54p is critical for effective displacement loop (D-

loop) formation, Holliday junction binding, and D-loop dissociation by branch migration (Mazin 

et al., 2010). Interestingly, loss of Rad54p function does not inhibit the success of other DNA 
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repair mechanisms such as single-strand annealing, break-induced replication, and on-

homologous end joining (Dudas & Chovanec, 2004). 

By interacting both physically and functionally with Rad51p, Rad54p stimulates D-loop 

formation and aids in the successful creation of heteroduplex DNA (hDNA). While the exact 

mechanism remains unknown, it is believed Rad54p stimulates D-loop formation by acting as a 

heteroduplex DNA “pump” (Wright & Heyer, 2014). Research suggests Rad54p supports D-loop 

formation through the following mechanisms: first, Rad54p associates with, and stabilizes, 

Rad51p, single-stranded DNA (ssDNA), and chromatin; this process enables Rad54p to 

translocate along heteroduplex DNA via ATPase activity and remodel nucleosomes (Mazin et 

al., 2010). This translocation induces conformational change through the generation of positive 

and negative supercoiled domains, enabling DNA polymerase to access the invading 3’ hydroxyl 

end upon the dissociation of Rad51p from hDNA (Wright & Heyer, 2014).   

Upon the formation of Holliday junctions, Rad54p binds DNA to form a multimeric 

active complex (Mazin et al., 2010). Rad54p subsequently drives branch migration at the 

Holliday junction by interacting with the structure-specific endonuclease Mus81-Eme1(Mms4) 

(Mazin et al., 2010). The interactions between these two proteins stimulates DNA cleavage 

activity, resulting in D-loop dissociation and homologous recombination termination (Mazin et 

al., 2010). Given the variety of functional roles Rad54p plays in nDNA homologous 

recombination, understanding its function in mtDNA is of interest.  
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The Role of RAD54 in Mitochondrial DNA Repair in S. cerevisiae  

 The role of RAD54 in maintaining nuclear DNA stability is understood; however, its 

impact on mitochondrial DNA integrity remains relatively unknown. The purpose of this 

experiment was to determine if the nuclear gene RAD54 played a role in maintaining mtDNA 

stability in S. cerevisiae. By replacing functional RAD54 with heterologous DNA coding for the 

Kanamycin resistance gene, production of the wild type protein, Rad54p, was eliminated, 

creating a recessive loss-of-function allele, rad54∆. Quantification of mtDNA homologous 

recombination rates in wild type and mutant strains provided an augmented understanding of the 

role of RAD54 in maintaining mtDNA integrity. In order to accomplish this experiment, 

respiration loss assays and direct repeat-mediated deletion assays were performed. The 

respiration loss assay phenotypically determined the frequency of spontaneous mutations that 

detrimentally impacted mitochondrial function, while the direct repeat-mediated deletion assay 

Figure 2. Rad54p is involved in homologous 

recombination through double-stranded break 

(DSB) repair and synthesis-dependent strand 

annealing (SDSA). Initial steps of homologous 

recombination result in the formation of joint 

molecules, or D-loops, that are extended by 

DNA polymerase and processed through one of 

two major pathways: SDSA or DSB repair. 

SDSA repair results in non-crossover 

recombinants, whereas DSB repair results in 

crossover recombinants. This image was 

obtained from Mazin et al., 2010.  
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determined the functional role of RAD54 in stabilizing the mitochondrial genome following 

mutation. Given members of RAD52 epistasis group contribute to mitochondrial homologous 

recombination and DSB repair in S. cerevisiae, it was hypothesized that loss-of-function RAD54 

would decrease the rate at which homologous recombination in mtDNA occurred (Stein, Kalifa 

& Sia, 2015).   

MATERIALS AND METHODS 

S. cerevisiae Growth Media  

 For this experiment several types of growth media were used. YPG media agar consisted 

of: 10.0 g/L yeast extract, 20.0 g/L peptone, 25.0 g/L agar, and 2% glycerol. YPD media agar 

was composed of: 10.0 g/L yeast extract, 20.0 g/L peptone, 25.0 g/L agar, and 20.0 g/L dextrose. 

YPD + 0.2% dextrose consisted of: 10.0 g/L yeast extract, 20.0 g/L peptone, 25.0 g/L agar, 2% 

glycerol, and 2 g/L dextrose. The synthetic agar media SD-Ura-Arg contained: 0.72 g/L CSM-

Ura-Arg, 1.7 g/L yeast nitrogen base, 5.0 g/L ammonium sulfate, 20.0 g/L dextrose, and 25.0 g/L 

agar. Finally, SD-Trp agar media consisted of: 0.74 g/L CSM-Trp, 1.7 g/L yeast nitrogen base, 

5.0 g/L ammonium sulfate, 20.0 g/L dextrose, and 25.0 g/L agar.  

S. cerevisiae Strains  

As illustrated in Table 1, four different S. cerevisiae strains were involved in the 

completion of this experiment. The wild type strains, DFS188 and LKY196, were used in the 

respiration loss and DRMD assays, respectively. The rad54∆ mutant strains, NRY155 and 

LKY950, were utilized in the respiration loss and DRMD assays, respectively. All strains were 

suspended in 250 μL of 20% glycerol and stored at -72⁰C.   
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Table 1. S. cerevisiae Strains and Their Corresponding Genotypes 

The table below provides the S. cerevisiae strains used in this experiment and their 

corresponding genotypes. The S. cerevisiae strains used were provided by the laboratory of Dr. 

Rey Sia at The College at Brockport. 

Strain Genotype 

DFS188 MATa ura3-52 leu2-3, 112 ly2 his3 arg8::hisG 

NRY117 DFS188 with rad54∆::KanMX 

LKY196 MATa Rep96::ARG8m::cox2 Rep96::URA3::trp1 ura3-52 leu2-3, 

112 lys2 his3 arg8::hisG 

LKY950 LKY196 with rad54∆::KanMX 

 

Respiration Loss Assay  

 Both the wild type, DFS188, and rad54∆ mutant, NRY117, were patched on YPG agar 

media and incubated for approximately 24 hours at 30⁰C. Cells from the incubated YPG plate 

were then streaked for individual colonies on YPD media agar and incubated for three days at 

30⁰C.   

 A serial dilution was performed by transferring individual colonies from the YPD agar 

media to distinct Eppendorf tubes containing 100 μL sterile water. The solutions were vortexed, 

and 5 μL of each suspension was transferred to a corresponding Eppendorf tube containing 500 

μL sterile water. 5 μL from the resulting solution was then vortexed and transferred to a third 

Eppendorf tube containing 500 μL sterile water. 100 μL of the resulting 10-5 dilution was plated 

on YPD + 0.2% dextrose and incubated at 30⁰C for three days. Figure 4 illustrates this procedure. 
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The resulting colonies on YPG + 0.2% dextrose were differentiated based on phenotype. 

Non-respiring, rho- colonies had a petite appearance, while respiring rho+ colonies had a larger 

appearance. Percent respiration loss was calculated by dividing petite colony formation by the 

total cell count. In addition, median respiration loss frequencies for the wild type and mutant 

strains were calculated.  

Direct Repeat Mediated Deletion Assay 

 Both the wild type, LKY196, and rad54∆ mutant, LKY950, were patched onto SD-Ura-

Arg agar media and incubated at 30⁰C for 24 hours. Cells from the incubated SD-Ura-Arg plate 

were then streaked onto YPD for individual colonies and incubated at 30⁰C for three days.   

 A serial dilution was performed by transferring individual colonies from the YPD agar 

media to distinct Eppendorf tubes containing 100 μL sterile water. The solution was vortexed, 

and 5 μL of the suspension was transferred to corresponding Eppendorf tubes containing 500 μL 

sterile water. 5 μL of the resulting solution was then vortexed and transferred to a third 

Eppendorf tube containing 500 μL sterile water. 95 μL of the original solution was plated on SD-

Figure 4. The image to the left illustrates 

the respiration loss assay procedure. S. 

cerevisiae was patched onto YPG media 

and incubated at 30⁰C for 24 hours. Cells 

were then streaked and incubated on YPD at 

30⁰C for three days. A 10-5 serial dilution 

was performed and cells were plated onto 

YPG + 0.2% dextrose. The YPG + 0.2% 

dextrose plates were incubated at 30⁰C for 

three days.     
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Trp agar media, 100 μL of the 10-2 dilution was plated on YPG media, and 50 μL of the final 10-4 

dilution was plated on YPD with 50 μL sterile water. SD-Trp, YPG, and YPD plates were 

incubated at 30⁰C for three days. Figure 5 illustrates this procedure.   

 

 

 The resulting colonies were quantified based on the media used. Colonies on SD-Trp and 

YPD were counted regardless of size, whereas colonies formed on YPG plates were counted 

based on an individually determined size threshold. In order to determine spontaneous direct 

repeat mediated deletion events, an initial mean was calculated from the YPD plates. This initial 

mean was multiplied and divided by two to give upper and lower limits, respectively. Data 

falling outside of the upper and lower limits was omitted from the remainder of the analysis, and 

a new mean was calculated accordingly. The new mean was multiplied by the dilution factor, 

20,000, to approximate the number of cell divisions on YPD. The medians for SD-Trp and YPG 

were also calculated based on the upper and lower limit parameters.   

Using the SD-Trp and YPG medians, the Lea-Coulson method was applied to determine 

the rate of mutation in nuclear and mitochondrial DNA (Lea & Coulson, 1949). The nuclear 

revertant frequency (r0) was determined using the median number of colonies on SD-Trp; the 

Figure 5. The figure to the left illustrates the 

DRMD procedure. S. cerevisiae was 

incubated at 30⁰C for 24 hours on SD-Ura-

Arg media. Resulting cells were streaked 

and incubated on YPD at 30⁰C for three 

days. A serial dilution was performed, and 

cells were plated and incubated on SD-Trp, 

YPD, and YPD for three days at 30⁰C.     
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mitochondrial revertant frequency was determined by multiplying the median number of 

colonies on YPG by the dilution factor, 100. Using the Lea-Coulson Table, individual r0 range 

values were determined, and the smaller range value was subtracted from the experimentally 

determined r0. The resulting r0 value was multiplied by the difference between r0/m, 0.1, and 

added to the corresponding r0/m value provided by the Lea-Coulson Table to determine the 

experimental r0/m value. In order to determine the number of mutations (m) that occurred, the 

determined r0 value was divided by r0/m. The number of mutations per cell division was then 

found by dividing m by the total cell count of the given agar plate.   

RESULTS  

In order to verify the hypothesis that loss-of-function RAD54 would decrease the rate at 

which homologous recombination in mtDNA occurred, respiration loss assays and DRMD 

assays were conducted.   

Respiration Loss Assay 

 By quantifying petite colony formation on YPG + 0.2% dextrose, the rate of spontaneous 

mutations in S. cerevisiae mtDNA was determined. As shown in Figure 6, YPD plates contain 

the fermentable carbon source dextrose, while YPG and YPG + 0.2% dextrose plates contain the 

non-fermentable carbon source, glycerol. YPD plates ensure only respiring cells grow, while 

YPG and YPG + 0.2% dextrose plates permit the growth of both respiring and non-respiring 

cells. Because dextrose is fermentable, YPD plates enable spontaneous mutations to occur in 

both rho+ and rho- cells without largely impacting colony growth. YPG + 0.2% dextrose media 

permits growth of both rho+ and rho- cells, however, it arrests rho- cell growth once dextrose is 

depleted, creating petite rho- colonies. YPG permits only the growth of rho+ cells, which are 

capable of metabolizing glycerol through oxidative phosphorylation.   
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By comparing the number of petite colonies to the total cell count on YPG + 0.2% 

dextrose, the effect loss-of-function RAD54 had on the frequency of spontaneous mutations in 

mtDNA was calculated. As shown in Figure 7, the rate of spontaneous mutations in mtDNA was 

compared between wild type, DFS188, and rad54∆ mutant, NRY117, strains. The rad54∆ 

mutants had a 1.95% (SD = 0.492) average spontaneous respiration loss frequency, while the 

wild type demonstrated a respiration loss frequency of 3.04% (SD = 0.883). Overall, rad54∆ 

resulted in a 1.56-fold decrease in respiration loss. A t-Test Paired Two Sample for Means was 

performed producing a statistically insignificant p-value of 0.0574.   

 

Figure 6. The image above represents the quantitative determination of spontaneous 

respiration loss in S. cerevisiae. YPD plates permit growth of rho+ and rho- colonies, while 

YPG plates permit only rho+ growth. YPG + 0.2% dextrose permits rho+ and rho- colonies, 

arresting rho- growth upon depletion of dextrose. By quantifying cell growth on YPG + 0.2% 

dextrose media a total cell count was obtained. The percentage of petite colonies represent 

the frequency of spontaneous loss of mtDNA stability.  
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Direct Repeat Mediated Deletion Assay   

 The direct repeat mediated deletion (DRMD) assay was used to measure the rate of 

homologous recombination in S. cerevisiae. Specific nuclear and mitochondrial reporters were 

used to quantify the rate at which DRMD events occurred in both mtDNA and nDNA. The rate 

of deletion events in nDNA was determined by using the nuclear gene, TRP1, interrupted with 

URA3. By interrupting the expression of TRP1, tryptophan synthesis was inhibited and uracil 

production was permitted through expression of URA3. By patching on SD-Arg-Ura media, only 

cells with a functional URA3 reporter gene were able to successfully grow in the absence of 

uracil. As shown in Figure 8, URA3 is flanked by direct repeat regions of DNA, prone to nearly 

two-thirds of mtDNA direct repeat mediated deletions (Phadnis, Sia & Sia, 2005). When these 
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Figure 7.  The graph above depicts the average frequency of respiration loss for rad54∆ and 

the wild type. The mutant strain demonstrated a 1.56-fold decrease to 1.95% in spontaneous 

respiration loss compared to the 3.04% observed in wild type strains. A t-Test Paired Two 

Sample for Means was performed producing a statistically insignificant p-value of 0.0574.   



18 
 

deletions occur, URA3 is excised and TRP1 function is restored, permitting the synthesis of 

tryptophan. Cells plated on SD-Trp media enabled the determination of the rate at which the 

interrupting URA3 gene was deleted in the nuclear genome restoring TRP1 expression. 

 

 

  

Through the nuclear DRMD reporter the average number of nuclear direct repeat 

mediated deletions events were determined for rad54∆ and the wild type. As shown in Figure 9 

the loss of RAD54 function resulted in a 3.23-fold increase in nuclear DRMD events. The 

average rate of nuclear deletion events per cell division was found to be 4.01 x 10-6 (SD = 1.88 x 

10-6) for the rad54∆ mutant and 1.24 x 10-6 (SD = 1.44 x 10-7) for the wild type. A t-Test Two 

Sample Assuming Unequal Variances was performed producing a statistically significant p-value 

of 0.0158.     

 

 

 

 

 

Figure 8.  The figure to the left 

illustrates the nuclear DRMD reporter. 

When URA3 is present, TRP1 is inactive 

and tryptophan is not synthesized. When 

recombination occurs, URA3 is lost and 

TRP1 function is restored. This 

phenomenon is observed by plating on 

selective media lacking tryptophan.  
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 In order to determine the rate of deletion events in the mitochondria, a DRMD 

mitochondrial reporter was used. As illustrated in Figure 10, the reporter consisted of the 

mitochondrial respiratory COX2 gene interrupted by the gene responsible for synthesizing 

arginine, ARG8m. By patching on SD-Arg-Ura media, only cells containing a functional ARG8m 

reporter gene were able to successfully grow in the absence of arginine. As shown in Figure 10, 

ARG8m is flanked by direct repeat regions of DNA, prone to mtDNA direct repeat mediated 

deletions. When these deletions occur, ARG8m is excised and COX2 function is no longer 

interrupted, permitting cellular respiration. Cells with restored COX2 function were able to 

successfully grow on YPG media, enabling the determination of the rate at which the 

interrupting ARG8m gene was deleted in the mitochondrial genome. 
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Figure 9. The graph above depicts the average number of nuclear deletion events for 

rad54∆ and the wild type. The mutant strain demonstrated a 3.23-fold increase to 4.01 x 

10-6 in homologous recombination events compared to the observed 1.24 x 10-6 in wild 

type strains. A t-Test Two Sample Assuming Unequal Variances was performed 

producing a statistically significant p-value of 0.0158.     
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Through the mitochondrial DRMD reporter, the average number of mitochondrial direct 

repeat mediated deletions events were determined for rad54∆ and the wild type. As shown in 

Figure 11, the loss of RAD54 function resulted in a 1.08 fold increase in mitochondrial DRMD 

events. The average rate of mitochondrial deletion events per cell division was found to be 2.57 x 

10-4 (SD = 1.39 x 10-4) for the rad54∆ mutant and 2.39 x 10-4 (SD = 1.47 x 10-4) for the wild 

type. A t-Test Two Sample Assuming Unequal Variances was performed producing a 

statistically insignificant p-value of 0.8741.     

 

Figure 10.  The figure to the left illustrates the 

mitochondrial DRMD reporter. When ARG8m 

is present, COX2 is inactive and cellular 

respiration is inhibited. When recombination 

occurs, ARG8m is lost and COX2 function is 

restored. This is observed by plating on 

selective media lacking a fermentable carbon 

source such as glycerol.  
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DISCUSSION 

Extensive nuclear research suggests Rad54p plays a versatile role in nuclear homologous 

recombination, aiding in D-loop formation, binding Holliday junctions, and promoting branch 

migration. However, the functional role RAD54 plays in maintaining mitochondrial DNA 

stability remains relatively unknown. Data from the respiration loss and DRMD assays indicates 

that the hypothesis loss-of-function RAD54 would decrease the rate at which homologous 

recombination in mtDNA occurred should be rejected.   
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Figure 11.  The graph above depicts the average number of mitochondrial deletion 

events for rad54∆ and the wild type. The mutant strain demonstrated a 1.08-fold 

increase to 2.57 x 10-4 in homologous recombination events compared to the observed 

2.39 x 10-4 in wild type strains. A t-Test Two Sample Assuming Unequal Variances was 

performed producing a statistically insignificant p-value of 0.8741.     



22 
 

Respiration Loss Assay 

rad54∆ strains did not demonstrate a significant difference in respiration loss  

 Spontaneous respiration loss occurs when mutations eliminate S. cerevisiae’s ability to 

perform oxidative phosphorylation. The purpose of the respiration loss assay was to 

phenotypically determine the rate at which these spontaneous mutations occurred in S. cerevisiae 

mtDNA. The findings of this study indicate that rad54∆ strains did not play a statistically 

significant role in altering the frequency of mtDNA spontaneous mutations (p-value = 0.0574).   

While the respiration loss assay indicated diminished mtDNA stability in rad54∆ strains, it did 

not indicate specific mutations responsible for mitochondrial dysfunction. A possible reason for 

these statistically insignificant findings is that a loss of Rad54p may have been caused by a 

subtle mutation not detectable in such a general mitochondrial function loss assay. Consequently, 

further investigation into the role of RAD54 in maintaining mtDNA stability was warranted.    

Direct Repeat Mediated Deletion Assay  

rad54∆ strains demonstrated a significant increase in nuclear DRMD events  

The nuclear DRMD assay measured the rate at which URA3 was excised, restoring 

transcription of TRP1 in S. cerevisiae. The findings of this study indicate that rad54∆ strains 

resulted in a statistically significant increase in nuclear DRMD events (p-value = 0.0158). 

Interestingly, the absence of functional Rad54p lead to a 3.23-fold increase in nuclear hyper-

recombination events. Given Rad54p is involved in nuclear DSB repair through synthesis-

dependent strand annealing, it was expected that rad54∆ strains would demonstrate decreased 

nuclear DRMD events. However, current data suggests that loss of Rad54p function might 

actually augment nuclear recombination events (Schmuckli-Maurer et al., 2003). In a study 

conducted by Schmuckli-Maurer and colleagues, chromosome loss rates in haploid S. cerevisiae 
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colonies were phenotypically analyzed using the nuclear reporter ade2-1 interrupted by SUP11 

(Schmuckli-Maurer et al., 2013). Similar to the findings of this study, Schmuckli-Maurer et al. 

found that wild type strains exhibited a 5.9 x 10-7 mutation rate compared to an increased 

mutation rate of 13.3 x 10-7 in rad54 cells (Schmuckli-Maurer et al., 2013). While findings of 

Schmuckli-Maurer and colleges were statistically insignificant, they do provide insight into the 

role Rad54p plays in nuclear recombination events.  

One plausible explanation for an increase in nuclear recombination events is that 

homologous recombination was initiated but not properly terminated in the absence of functional 

Rad54p (Schmuckli-Maurer et al., 2003). Conversely, genomic stability in loss of function 

rad54∆ mutants may not be caused by inadequate termination of homologous recombination, but 

might instead be caused by misrepair, resulting in augmented mutation rates (Schmuckli-Maurer, 

et al., 2003). Given the present findings of this study, it can be concluded that loss of Rad54p 

function results in increased nuclear mutation rates. Such findings suggest that RAD54 exerts a 

negative regulatory control on recombination, and that intergenic recombination is not hindered 

by loss of Rad54p.   

rad54∆ strains did not demonstrate a significant difference in mitochondrial DRMD events  

 The mitochondrial DRMD assay measured the rate at which ARG8m was excised, 

restoring COX2 function. While extensive research has been conducted regarding the role 

Rad54p plays in nuclear homologous recombination, very little has been conducted investigating 

the gene’s role in mitochondrial genome stability (Bohr et al. 2001). The findings of this study 

indicate that rad54∆ strains did not result in a statistically significant difference in mitochondrial 

mutation events (p-value = 0.8741). This finding could be explained by the presence of the 

mitochondrial endonuclease, Cce1, or by the notion that homologous recombination is not used 
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as a specific repair pathway for double stranded mtDNA breaks (Larsen, Rasmussen & 

Rasmussen, 2005). Analogous to the function of Rad54p in the nucleus, Cce1 is believed to play 

a supporting role in maintaining mtDNA stability by resolving Holiday junctions in DSB repair 

(Larsen et al., 2005). In the presence of the mitochondrial endonuclease Cce1 suggests mtDNA 

is repaired through HR; however, it is possible that HR is not utilized as a specific repair 

pathway for double-stranded mtDNA breaks. Further verification for either of these findings 

would aid in explaining the statistically insignificant difference in rad54∆ mitochondrial DRMD 

events.  

Conclusion 

 Based on the respiration loss and DRMD assay findings, it can be concluded the nuclear 

gene RAD54 does not play a significant role in maintaining mtDNA stability.  However, further 

study is needed to definitively support or refute these findings.    
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