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Introduction 

Models have been used for centuries in order to represent an idea, a thought, or an entity. For 

example, it would have been impossible to create a full-scale mock-up of the Space Shuttles used 

in the Constellation space program without some type of smaller scale model designed to show 

different aspects for study. We begin to teach children from a young age using models and multi-

modal approaches. By giving our youngest students toy cars, blocks and human-like figures we 

are getting them ready to make connections on a much larger, or much smaller, scale. 

Learning science is strongly connected with building knowledge through understanding and 

developing students’ long-term memory by interpreting multi-modal representations of science 

phenomena (Devetak, 1562, 2009). When we allow students to access their previously learned 

knowledge prior to being exposed to new information, we allow connections to be made 

naturally and incrementally. Prior knowledge in the science classroom is a key tenet of helping 

students understand a new concept or artifact. By helping a student construct knowledge in a way 

that is comfortable for them, we are preparing them to retain more information. We are learning 

that it takes substantial time for students to achieve conceptual understanding of chemistry, and 

that most students are able to significantly improve their thinking given the time and opportunity 

(Claesgens, 81, 2008). 

When it comes to bringing models into the chemistry classroom, it becomes more than just 

having a model represent a concept such as an atom or a molecule. The visualization process 

comes into play because without the ability to turn a conceptual idea into a visual thought, the 

chemistry student will be unable to transfer learned information into quality scientific thought 

over time. An algorithmic problem is one that can be solved using a memorized set of 

procedures; a conceptual problem requires the student to work from an understanding of a 
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concept to the solution of a problem, where no memorized procedure is likely to be known to the 

student. The findings across recent studies showed that a majority of students in high school and 

college chemistry courses rely almost exclusively on an algorithmic approach to quantitative 

problem solving (Cracolice, 873, 2008). If a shift can be made from a strictly quantitative 

problem solving approach to a more qualitative observation based model, it is expected that 

students will be able to craft their learning into something usable in their minds, and at a higher 

cognitive level. 

Mental Models 

According to mental model theory, mental models are a form of knowledge organization that 

represents objects, states of affairs, sequences of events, the way the world works, or social and 

psychological actions of daily life (Khan, 2007). For example, in the chemistry classroom, a 

student can have a mental model of molecular structure without seeing one for themselves. These 

mental models are fluid and ever-changing and can be partial or incomplete. Learning from 

models means that we can learn from building, critiquing and changing our mental models as we 

encounter new material.  

Traditional forms of chemistry instruction that employ textbooks as a major resource often fail to 

bring about engaging activities or to involve students in evaluating physical or mental models or 

in inquiry. Students who have received this type of instruction (standard lecture and textbook) 

often do not have an accurate mental image of molecular structures, pay little attention to 

bonding in their molecular models, and harbor alternative conceptions about substances at the 

molecular level. The mental models that students possess may not resemble the way nature holds 

to be true or how nature works.  
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Several model-based teaching strategies documented in the literature have involved students 

working with interactive multimedia and computer simulations. These types of modeling 

practices from model based teaching have reported significant gains in student understanding 

(Khan, 2007). According to Khan’s research, students, who were involved in classrooms with a 

learning environment constructed to be inquiry based, enriched their models of molecular 

structures and developed understanding of intermolecular forces through a simultaneous and 

ongoing process of generating, evaluating and modifying hypotheses. All of these processes are 

the fundamental building blocks of experimentation in the chemistry classroom. 

While students are studying science, they can gain a multitude of information from their 

instructor depending on the level of constructive, meaningful models used during instruction. 

Through an instructor’s teaching models presented to young science students, these students can 

now create mental models on their own in order to construct meaning for themselves. In science, 

mental models are used to describe a system and its component parts as well as its states, to 

explain its behavior when changing from one state to another and to predict future states of a 

system (Jansoon, 148). Mental models are used to produce simpler forms of concepts, to provide 

stimulation and support for the visualization, and to provide explanations for scientific 

phenomena. In science teaching, teachers use mental models in two distinct ways. First, they try 

to communicate the models of science (e.g., atomic structure) to their students. Second, they use 

certain types of models – particularly analogy, to explain scientific ideas to students (Jansoon, 

148).  

Jansoon described three types of mental models for use in the chemistry classroom, macroscopic, 

sub-microscopic and symbolic. At the macroscopic level, students are able to make observation 

concretely according to observable objects and phenomena (for example, their experiments in the 
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laboratory). The sub-microscopic level is more abstract than the macroscopic level and is 

characterized by theories about very small objects such as electrons, molecules and atoms. The 

symbolic level of models includes the use of chemical equations, graphs and model kits as these 

are used to represent chemical and macroscopic phenomena. Through the use of each different 

type of model, a chemistry instructor can provide knowledge to different types of learners while 

keeping the content uniform and allowing for differentiation at the same time. Students who 

recognized relationships between different representations demonstrated better conceptual 

understanding than students who lacked this ability (Devetak, 2010). 

Due to the nature of the different types of molecular models, the variety of students in a 

classroom and how they learn, instructors should allow for multi-modal learning in the classroom 

because as instruction changes so does the ability to model a concept appropriately. While using 

these models in the classroom, all students need to be able to not only use the models to describe 

a scientific process but be able to verbalize and use algorithmic problem solving involving the 

same concepts. 

Mental models are pictures or visualizations in the mind. Mental models can be of macroscopic 

objects that students have seen in the past (e.g., a beaker), or they can be of abstract things that 

cannot be seen (e.g., atoms or molecules). According to Williamson, our level of knowledge is 

dependent upon our ability to construct mental models from our conceptual frameworks, which 

we can then use to reason. 

 The mental models of experts usually include both sensory, macroscopic data from the physical 

world and formal abstract dimensions of the phenomena, while novices usually have in-complete 

or inaccurate models (Williamson, 2008). The idea that experts are capable of more abstract 
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thought, while novices are confined to thought about concrete objects is consistent with 

constructivist learning theory. 

 Visualization techniques to help students picture particles and enhance formation of their mental 

models can take a number of forms, including the use of physical models, role playing, fixed 

computer models that rotate, dynamic computer models or animations, student-generated 

drawings or animations, and interactive computer models (Williamson, 718, 2008). 

Visualizations 

Since the beginning of time, scientists have been using their five senses to make scientific 

discoveries. When the first farming began, people began realizing that if they threw rotting food 

in an area, they would create better crops, leading to the world’s first use of fertilizer. In a more 

“recent” example, Isaac Newton was enjoying his day before being struck in the head with an 

apple. This observation led to Newton’s laws of Motion and his theories on gravity. Over the 

centuries, these discoveries became more focused and formalized by people who were eventually 

called scientists. Visualization of scientific phenomena has been the key ability of several 

renowned scientists (Ganguly, 1995). Bohr’s development of the atomic model and Einstein’s 

abstract theories would not have existed in their current form if not for their ability to think 

visually.  

Effective science teaching practice calls for the infusion of skills such as visualization and 

extrapolation into daily science instruction. Mental models are built from personal interpretation 

of information based on these visualizations. Employing visual information to model a system’s 

structure and inherent casual relationships is vital to invoking systematic thinking in students 

(Ganguly, 1995). 
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Visual thinking is a key tenet of scientific thinking. Scientists “see” by gathering data, 

measuring, making assumptions and forming conclusions. In an effort to visualize something that 

is unseen, scientists and students have often resorted to metaphors to build up their thought 

processes, meaning, they have to create likenesses. In the context of chemistry, a metaphor 

would be a relationship to a real world connection a student can make. Metaphors are a means to 

anchor scientists thought processes in generating a pattern that would thematically bridge the gap 

between the seen and the unseen (Ganguly, 1995). Using analogy is another way to lead the 

student’s mind through an interpretive system. Once a student derives a clear idea of the base 

and target concepts, and their attributes, knowledge acquisition can proceed in a more systematic 

and meaningful pattern. 

Results from Ganguly’s study questioned factors that would make a student more competent in 

making the visual connections required in an effort of analogy transfer. Students should be able 

to make learned visual structures to new information. Without direction and training, students 

were not likely to use any of the methods of visualization, such as analogies, concept maps or 

illustrations (Ganguly, 1995). Perhaps most importantly, without direct instruction designed to 

increase a student’s ability to visualize, they will be unable to use the skills of visualization, 

constructing analogies and designing concept maps. If a student is unable to “see” or visualize 

what the concept is about or how to get closer to it by making connections with prior knowledge, 

the curriculum, problem solving and assessment strategies will be useless. Being able to 

visualize something also becomes more and more difficult when the objects you are trying to see 

become smaller than what the strongest microscopes can pick up. 
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Seeing the Unseen 

The concept of an aqueous solution in chemistry is difficult for many students to understand 

based on the sheer nature of the process. The fact that a substance can ‘disappear’ in water is 

impossible to describe without significant background knowledge. In an attempt to improve the 

learning of molecular structures and dynamics, animations and simulations of molecular level 

and macroscopic chemistry processes have been developed to supplement instruction (Kelly, 

413, 2007). This visualization of the dissolution process can be very effective in showing 

students exactly what is happening. 

When using visualizations in the classroom, it allows for students to watch a process that might 

not be visible to the human eye and also be able to watch the process over and over to allow for 

maximum absorption.  

In Kelly’s research (2007), the animations of salt dissolution appeared to have a positive 

influence on students’ explanations in the two main areas of structure and function. The 

visualizations of the microscopic structure of the sodium chloride lattice can help students to 

recognize that solid salt consists of a network of alternating charges rather than isolated pairs or 

molecules. Some students also noticed that the chloride ion was shown as significantly larger 

than the sodium ion. Not only do students need to be able to draw these processes, but they also 

need to be able to communicate the process through written word and/or verbally. In his research 

of having students use these animations, Kelly (2007) wrote that most students gained ability to 

communicate the functional process of dissolution, in which the water attracted and surrounded 

the ions, and pulled the ions away from the lattice. 
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Through my experience in the classroom, I have found that students generally enjoy animations 

but then often struggle to connect them to concepts after the fact even if a discussion of the 

animations follow. In Kelly’s 2008 study, the wide variety in what students reported is consistent 

with the distinctive way people construct their unique mental models when they are from diverse 

backgrounds and have different prior knowledge into which to fit their understanding. Students 

tend to struggle to transfer their understanding of salt dissolution to drawing the aqueous reactant 

solution of sodium chloride in the chemical reaction without guidance to consider how the 

solution was made. In the classroom, it is important to not only show animations of processes, 

but also to show the processes themselves so that students will be able to construct better 

knowledge in this manner, especially if the task is completed autonomously. Steps must be taken 

to deconstruct the process co complete and accurate visualization can occur. 

Students also need to be able to recognize similar processes in order to connect what they know 

to what they are currently learning. For example, a discussion of a trip to the beach may be 

feasible to illustrate salt dissolved in water. Students can then use their experiences to describe 

differences in separate bodies of water. Another example could include the making of a 

powdered drink, such as Kool-Aid. Students would be able to not only see the substance 

dissolve, but they will be able to see that the more solute that is added, the darker and more 

intense the color becomes. This is a good experiment because students can also taste the 

difference between amount added and taste. 

It is possible that students in this study (Kelly, 2008) did not immediately connect the aqueous 

sodium chloride solution with the salt dissolution activity because the clear, colorless sodium 

chloride solution in a test tube depicted in the video looked like many solutions the students 

experienced in the laboratory course. In order to help students realize that all clear solutions are 
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not necessarily all water or just salt and water, water molecules should be included in particulate-

level diagrams of solutions to help students understand the formation of aqueous solutions and 

how precipitates are able to form in the presence of the solvent. Often textbooks and instructor 

diagrams represent the solvent as a continuous fluid in which the solute molecules float. 

Consequently, students are unaware of the importance of interactions between solute and solvent 

molecules during the dissolution process. 

Cartoons 

As animations are visual to the human eye, so are cartoons and humorous drawings. Humor has 

long been a part of many societies as it tries to attempt to bring at least a measure of levity to a 

population. Over the years, numerous studies have examined and attempted to define the role of 

humor with respect to both student motivation and learning. At the university level, humor has 

been positively attributed to various aspects of learning including increasing the rate of learning, 

improving problem solving skills, increasing retention, reducing nervousness (especially in test 

situations), and increasing perceptions of teacher credibility. Cartoons have been used for 

different reasons by educators including enhancing motivation, developing good laboratory 

technique, improving writing and thinking skills, teaching laboratory safety, and augmenting 

reading skills (Roesky, 2008).   

Cartoons are also not necessarily humorous, but cartoon-style drawings can present characters 

with differing viewpoints around a particular situation. They can be eye catching, meaningful 

and allow for a sense of interpretation to give voice to the differing points of view of individual 

students. Teaching and learning have long been an excellent springboard for humor and 

chemistry is no exception. Many first-rate teachers instinctively incorporate a touch of humor 

into their lectures without explicitly realizing the exact benefits. Cartoons have the power to both 
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draw attention quickly and come to the point. The art, of course, is in getting your message 

across once you have student attention. 

In visualizing through cartoons, students not only have the opportunity to express themselves 

through a medium other than what they are used to in a science class, but they can also construct 

their understanding so they can find scientific meaning. Students can use their imaginations to 

make analogies and interpretations about chemistry facts and concepts. The link between humor 

and learning can be helpful to a teacher looking to give students another way to make learning 

connections in the classroom. 

Scientific Models 

Scientific models evolve through the processes of scientific inquiry and discourse, and may be 

sophisticated and highly abstract (Adbo, 2009). Often, in the chemistry classroom, information is 

presented in a manner that shows students particles in chemistry as definite and known species in 

nature and as scientists, we know that these species are just models of what we think are correct. 

Often, the limitations or roles of these models are not presented to learners and cause some 

alternative conceptions about the material. Students are forming their own mental models, as all 

students do when learning new information in order to construct their own learning, and can 

create comprehension problems in their mind. The visualizations they form can be backed by 

solid scientific knowledge, but students may be unable to describe the situation as the model is 

somewhat confusing to them. 

It has been found that even with opportunities for applying and consolidating learning, most 

students need a number of years to overcome the counterintuitive aspects of the basic (i.e. 

undifferentiated into atoms, molecules etc.) particle model (Adbo, 2009). If teachers were able to 
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design a more specified curriculum that allowed for creation of essential questions based on 

visualizations and turning generalizations into more concrete evidence for students to use while 

creating mental models. 

Only when this level of understanding is well established, can it be considered robust enough to 

act as foundations for further learning about particles models (Adbo, 2009). Only then will the 

introduction of molecules and ions, and subatomic particles, provide a coherent differentiation of 

the basic particle model, and allow meaningful learning about the Bohr model of the atom. This 

process can in turn provide the basis for understanding chemical change, and how this involves 

different types of particle interactions compared to physical changes such as changes of state 

(Adbo, 2009). Emphasis on the connections between the different models presented and the 

different contexts in which they are used, would support developing understanding over time and 

so contribute to preparing these students for further learning, and making sense of the more 

intellectually challenging models to come. 

Analogies 

When students construct new knowledge, it is conveyed and blends with what they already 

know. A key feature of constructivist ideals points to the importance of learners’ prior 

knowledge when developing teaching activities or approaches. That is, the learner tries to relate 

new knowledge with what he or she already knows; this forms the basis of analogies (Calik, 

2009). Calik states that that key features of teaching with analogies are to ensure the analogy is 

familiar to the students, map as many shared attributes as possible, and identifies where the 

analogy breaks down. 
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In classroom activities involving solubility, analogies can be an effective approach because, like 

other particle based chemistry concepts, it is difficult to visualize a substance dissolving. An 

analogy of people getting on a bus over the course of a route can portray solutions and 

concentration accurately because eventually, people may need to begin to stand if the bus is too 

full. Another analogy to be made could be connecting solution concentration to the appearance 

of a Kool-Aid beverage. The lighter the drink looks, the more dilute it is. Students often have 

prior knowledge of these types of powdered beverages and can connect these chemistry concepts 

to these ideas. 

Conceptual Change 

In school science teaching, ideas need to be presented in ways that are both authentic 

representations of the scientific concepts, and yet simple enough to be meaningfully understood 

by the learners. (Nahum, 2010). As students become more facile with using a technique, the 

more sophisticated the work can become. In student learning, it’s the process of scaffolding or 

spiraling. Yet, chemical bonding is inherently an abstract and complex concept that students 

often struggle with. Even though conceptual understanding is a major objective in science 

courses, most students of all ages have difficulty in understanding scientific concepts and possess 

some intuitive and fragmented knowledge (Noh, 199, 1997). Another example is that a major 

problem occurs when teachers attempt to teach the concept of bonding. There are many different 

ways to explain the concept of bonding and no person explains it the exact same way. People 

have a wide range of views on many topics and each person’s experiences and interactions shape 

and construct their learning. It is also one of the areas in the physical sciences where 

understanding is developed through diverse models – which are in turn built upon a range of 

physical principles – and where learners are expected to interpret a disparate range of symbolic 
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representations of chemical bonds (Nahum, 180, 2010). Research into the relationship between 

students’ ability to solve numerical problems and conceptual knowledge indicates that students 

who can produce the correct answer in an algorithmic problem may not be able to provide 

appropriate answers in conceptual questions dealing with the same topic (Dahsah, 228, 2007). 

The difficulty in teaching bonding at the secondary level hinges between what we actually know 

about bonding and what our curriculum guides us to teach. Professional development in the area 

of modifying curriculum as well as connecting what we know to effective teaching practice 

through research will allow for stronger classroom experiences for our students.  

Assessment and Instruction 

The goal for a science teacher is to not only impart knowledge to their students, but to be able to 

insure measureable learning results from the educational process. If the source of assessment is 

only the instructor and there is not enough collaboration between the students and the instructor 

in assessment, then the instructor exerts a stranglehold that deters the development of 

collaboration with regard to all other processes (Kaya, 91, 2008). In New York State, the 

assessment piece is decided for all teachers who are required to give a regents exam. Within a 

district, a teacher is potentially bound by a curriculum as well as an assessment measure. In this 

process, students hold no power and do not participate in decision-making about their learning 

progression at all (Kaya, 2008). 

Student involvement in assessment typically takes the form of self-assessment or peer-

assessment. In both of these activities, students engage with assessment criteria and standards, 

and apply them to make judgments. In self-assessment, students judge their own work, while in 

peer assessment they judge the work of their peers. A concept map can bring visualizations into 



16 
 

the assessment process by allowing students to map out their understanding through drawing and 

connecting various ideas and thoughts. While assessing these works, the instructor can now 

perceive what the student is seeing and allows for the potential changing of the curriculum and 

instruction. 

With respect to science education during the past decade, assessment tools often used by science 

educators (e.g., multiple-choice and open-ended questions) have been challenged because of the 

lack of students’ active participation in the assessment process, reflecting lower-order thinking 

skills (Kaya, 92, 2008). Kaya states that a shift from the prevailing lower-order cognitive skills to 

higher-order cognitive skills in science classrooms and laboratories requires a radical change not 

only in teaching and learning but also in assessment strategies compatible with the goal of 

student application of higher order thinking skills. Using visualizations in this manner can help 

assist with the radical change spoken of in literature. 

The traditional lecture process is often considered to be the best way to convey a large amount of 

information in the smallest amount of time. One factor in the failure of students to retain the 

Lewis structure concept may be the lack of effectiveness of the traditional lecture format relative 

to a more active learning process (Bell, 450, 2009). Using visualizations and manipulatives can 

give students the background they need to not only learn, but retain the material related to such 

an abstract concept. Games and puzzles represent an enjoyable method of requiring a student to 

actively participate in the learning process.  

The Ionic Puzzle Pieces Lab completed by students allows them to see the number of bonding 

opportunities an ion can have and then transfer that information to be able to visualize the 

number of positive ions required to bond with a specific number of negative ions. This lab also 

allows students to create chemical equations for compounds through these activities. 
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A number of researchers have reported that students hold alternate conceptions concerning the 

particulate nature of matter. These alternate conceptions of the particulate nature of matter 

conflict with the theoretical, particulate explanations that are given by chemists for most 

experimental chemistry data. Williamson (2008) described three components of chemistry: the 

macroscopic (what can be seen with the eyes); the symbolic (equations and mathematics); and 

the submicroscopic (particulate) levels. Conceptual understanding of chemistry often involves 

understanding particulate behavior but without understanding all three levels of chemistry, 

students will struggle with the basics of chemistry. In the process of science learning, the teacher 

should therefore incorporate students’ “rich pool of representational competence” (Devetak, 

2010) when creating lessons so that they are motivating for students and also points out that the 

quality of the representation ought to be evaluated according to its purpose. 

Evidence suggests that viewing particulate animations increases conceptual understanding. 

Particulate animations come in a number of types: some are driven by mathematical equations 

(computational animations); some are artistic representations of phenomena (representational 

animations); others can allow or require student input or control (interactive animations) 

(Williamson, 718, 2008).   

Conclusion 

Research in the area of visualization must be conducted with different audiences and in different 

contexts, including use of a more sensitive content instrument. Research with student populations 

should be conducted to discover whether the same results are observed as with the chemistry 

instructors in this study. The implications may be that it is not so dismal for those students who 

have low scores in spatial abilities. With practice, these abilities may increase, as they did in the 

context of this study. Instructors of chemistry need to understand that students with low spatial 
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ability should not be dismissed as unable to learn spatial relationships like molecular geometry, 

stereochemistry, and so forth. Rather, teachers must deliberately design lessons so that students 

learn visualization and modeling in an incremental, scaffolded fashion. 

It is important that teachers evaluate students’ understanding of these chemical concepts related 

to the concepts to be upgraded in the future lessons. If teachers conclude that students’ 

understanding of specific concepts is not sufficient, they have to provide enough time to 

consolidate the knowledge to prepare the basis for further concepts development in students’ 

mental model of specific science phenomena (Devetak, 2009). 

Visualizations and models are a key way to connect difficult concepts in chemistry to the real 

world so students can better understand and correctly apply the information given to them. 

Throughout this project, it will be shown that using these types of learning strategies in the 

classroom will allow students to better construct their knowledge and gain deeper insight into the 

chemical world. 
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Analysis of Lessons 

Solubility Computer Simulation 

Visual observations and scientific thinking have been interconnected since the first scientific 

claim was made (Ganguly, 1995). From the development of the first fertilizer to the discovery of 

gravity due to the descent of an apple, people have been making observations and turning those 

observations into working models and theories. In the classroom, students use their vision first to 

make observations, turn those observations into assumptions and eventually a conclusion.  

Prior to the use of models in the classroom for solubility, one would discuss dissociation and 

write out equations for students to copy down. For example: NaCl(s)  Na+
(aq) + Cl-(aq) would be 

discussed by saying “the sodium chloride (NaCl) is dissociated in water by breaking up into its 

ions.”  As chemistry teachers, we could even put them in a lab setting and using simple table salt 

and water, allow them to dissolve salt in the water. But, as experience has shown us, simply 

putting salt in water doesn’t allow for the observer to see the dissociation, which is an important 

component of the NYS Chemistry curriculum. According to NYS Learning Standards, students 

need to be able to connect the dissolving process to electrolytes and conducting an electrical 

current in solution. Students still struggle with the understanding and in order to increase student 

learning, teachers can introduce a model.  

By using a visual model, students can use their own electronic devices and interact with a model. 

Visual models are often used when there is something microscopic or too small to see in an 

actual experiment. The model shown below is giving the student multiple pieces of information.  

First, the “salt shaker” releases solid NaCl to the water and as the salt hits the water, it 

dissociates, or breaks apart. The dissociation is something you would not be able to see or 
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experience in the laboratory setting as personal experience tells us, once you put in the salt into 

the water, it is no longer visible. Another aspect not experienced by the student in the natural 

world would be the size of the ions in the solution. Although not shown by the salt shaker model, 

the sodium loses an electron and decreases in size while the chloride ion does the opposite giving 

the students something to consider while exploring the model.  

 

Figure 1. Computer Model of Solubility  

Also shown in the model that won't be seen at the bottom of your cup of salt water will be the 

exchange of ions. A saturated solution is created when more ions are in solution than can be 

supported by the solvent. When the solution is saturated, ions are exchanged at the surface of the 

salt at the bottom of the container and an equilibrium is formed. Being able to experience the 
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exchange of ions through the computer model is an important step as the 

recrystallization/dissolution process is a difficult one to process as a student. 

Once the student spends some time with the model; adding more salt, adding more water, 

draining the water from the bottom of the container and exploring the changes occurring during 

the process, it is important to have conversations with or ask for a product from the students to 

ensure understanding. In the case of the salt shaker model, a teacher could ask the students to 

take what they learned and expand upon it to describe might be happening at the bottom of a 

glass of Kool Aid that has too much sugar in it. The explanation could be done either informally 

through a conversation, or with some other type of formative assessment.   

Even though the model is a good representation of the process that occurred, instruction is still 

necessary to discuss the process and turn it into the language associated with chemistry, the 

chemical equations. The concept of multi-modal instruction is important to remember as models 

are not the end all be all of instructional possibilities. 

Subatomic Particles Chemthink Tutorial 

Computer models do not always need to discuss a complicated concept. At the beginning of any 

chemistry course, high school or college, students learn the basics of atoms and how they are put 

together. Because atoms are so small, students often struggle with the connection of particles that 

are too small to be seen to the concepts in the classroom (Jansoon 2009).  
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Figure 2. Example problem from Subatomic Particle simulation 

As shown in Figure 2, students can use a computer model while learning about subatomic 

particles and the visualization often gives students the opportunity to make the connections 

necessary to be successful in the chemistry classroom. This animation allows students to have 

some input control (as evidenced by the empty boxes in the picture above). Students will look at 

the model and decide what the symbol would look like using the given information. By using an 

animation in this way, students will increase their conceptual understanding because using a 

representational animation that requires input by the students (Williamson, 2008). 

Balancing Chemical Equations 

Another visual model could be used to represent the concept of balancing chemical equations. 

There are many ways for students to practice balancing equations. One can begin by giving 

students a simple equation and using a method that starts by balancing metals, moving on to 

nonmetals and saving hydrogen and oxygen for last. The instructor can write out the numbers of 

each element as the process continues and students can practice by emulating the teacher. Direct 

instruction and the number method can work for some students, but others need a more 

interactive method to understand the balancing of equations.  
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If students are able to “see” and gather data, balancing equations becomes more interactive and 

the understanding of the why the equation needs to be balanced comes to the forefront. By using 

a computer model students are able to see the imbalance and connect that imbalance to the 

coefficients in the equation. As shown in Figures 3 and 4, the PhET model uses a seesaw to show 

when a student has an equation that is not balanced. 

 

Figure 3. Unbalanced Equation 

If a student notices part of the equation is not balanced, they can use the arrows to change the 

coefficients and balance that atom in the equation. 

 

Figure 4. Unbalanced Equation 
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By increasing the number of ammonia (NH3) molecules, the student balances the number of 

nitrogens (the triangle with the N) so that there are two on each side of the equation. The student 

should also recognize that there are too few nitrogens on the left side of the equation and they 

should increase the coefficient on the hydrogen to balance the equation. 

 

Figure 5. Successfully Balanced Equation 

As students practice using this model, the instructor should have a similar example ready for 

each time they complete one using the model. By having students practice with the model and 

then complete a similar example, the instructor is building confidence in the students as well as 

their skills. As the teacher circles the room and checks in with students, the teacher is able to spot 

check student work and ensure students are understanding the model and balancing equations 

correctly prior to ending the activity. 

Particle Behavior of Matter Chemthink 

In another activity used to demonstrate the different types of matter, students get to explore and 

experience solids, liquids, and gases at the atomic level, something one would only be able to do 
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with multi-million-dollar equipment. Seen below in Figure 6, it is shown that if you could get 

down to the atomic level you would be able to see the types of atoms within the sample.   

 

Figure 6. Example of particles at the atomic level 

Students can be asked "What do you observe in terms of the behavior of the particles?" Whether 

the sample is a solid, a liquid or a gas, students would give observations and begin to construct 

their understanding of something they cannot see. At the conclusion of the computer model, 

students could answer these questions in groups:  

 In the depiction of a gas, the animation shows a lot of empty space between the 

molecules. What do you think is in this space? 

 Why do you think the particles of a gas move so much more rapidly than the particles of 

a solid? 

By asking these open ended questions, not only can the instructor hear what the student mentally 

constructed in their completion of the activity, but also hear how the student is extending their 

knowledge beyond the scope of the activity, The teacher could then connect this lesson to others 

in the future as prior knowledge. 
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Dynamic representations of chemical processes that have been developed for the chemistry 

classroom help increase the visualization for students (Kelly, 2007) and by bringing 

visualizations into the picture, students can increase their understanding (Kelly, 2008). 

Ionic Bonding Chemthink 

Computer simulations exist to allow students to work with interactive media and introducing this 

computer based modeling instruction allows significant gains in student understanding (Khan, 

2007). Another example of computer based learning that allows students to visualize something 

that is considered too small to see is one that models ionic bonding. Shown below in Figure 7 is a 

snapshot from the model that shows how the lattice structure comes together. This difficult to 

visualize concept being brought to a visual simulation allows students to understand something 

they would not have been able to see without the model. 

 

Figure 7. Example of an Ionic Crystal 

This interactive model allows students to rotate this structure and experience the bonding that 

exists between the two atoms. The students begin to understand the concept of the ionic formula 

here as a ratio of 1:1 rather than 6 atoms combined with 6 atoms. The students complete an 
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online question set after the online model is finished that has them apply this knowledge to other 

situations. By looking at different structures and formulas, students are able to demonstrate their 

understanding by applying their knowledge about ionic formulas and the ratios that exist. 

Students that are able to recognize the relationship between structure and formula demonstrate 

better conceptual understanding than students who did not make these connections (Devetak, 

2010). 

Covalent Bonding Chemthink 

In another computer model, covalent bonding is introduced to the students. At the point in the 

course where teachers would bring this to the students’ attention, students would have a general 

understanding of the atom, its nucleus, and the electron(s) that circle the nucleus. By using this 

model, students are able to interact with the nuclei and explore the covalent bond in terms of the 

potential energy and the interaction of the valence electrons.  

 

Figure 8. Graphical Representation of Covalent Bond Energy 
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In the picture above, students have the opportunity to move the nuclei closer to and further away 

from each other and observe the changes that occur. Students will recognize two phenomena 

while manipulating the slide shown. First, they will see the graph being drawn as they move the 

nuclei. Second, they will realize that instead of the electrons orbiting the nuclei, they are “stuck” 

in between the nuclei as the bond is formed. A question that could be asked to ensure the 

students are on the right track is: “What do you notice about the electrons as the graph hits the 

minimum point?  Why do you think this happens?”  By asking these questions, the teacher is not 

only checking for understanding, but guiding students that may have not picked up on the main 

idea of this part of the computer model. Claesgens said in 2008 that by giving the students the 

time to understand a model, the instructor gives the students the opportunity to improve their 

thinking and possibly achieve a conceptual understanding in chemistry. 

Bare Essentials of Polarity 

Cartoons are valuable aids that instigate and foster genuine student engagement in the classroom 

(Gafoor, 2013). By using a cartoon in the classroom, the cartoon can grab attention and generate 

participation. If a teacher is able to use humor in the classroom, it often gives students an 

opportunity to connect to the material and provoke the reader to a better understanding of a 

difficult concept (Gafoor, 2013). 

Polarity of bonds is a difficult concept for students to understand in the chemistry classroom as it 

involves electrons that are the smallest part of an atom as well as introducing a value that is 

arbitrary and new to the student, electronegativity. When discussing polarity of bonds in the 

classroom, talking about using an electronegativity difference number line to differentiate 

between non-polar, polar and ionic bonds used to be the accepted way to teach these concepts. 



29 
 

Students had difficulty understanding the difference between the bonds and how each was 

different. 

Using the cartoon “Bare Essentials of Polarity,” students are able to use a tool that is not only 

eye-catching, but humorous in order to increase their learning. The cartoon uses penguins and 

polar bears and their ice cream to represent atoms and their electrons and how they interact. The 

first thing students usually ask has something to do with the fact that polar bears live at the north 

pole and penguins at the south pole. After their initial shock at a polar bear and penguin 

coexisting, they are able to start using their imagination and can visualize the difference between 

the interactions among different atoms in the molecules. In the cartoon, the penguin and polar 

bear interact in different combinations to show different elements and how they bond (or do not 

bond). By reading and answering guided questions about the polarity cartoon, students are able 

to visualize and see the physical world expressed in a novel way that they may not be used to and 

construct their learning in a way that is conducive to long term retention.  

In part one (Figure 9) of the "Bare Essentials Cartoon," there is a clear introduction to the 

concept of polarity which demonstrates the difference in electronegativity which can result in an 

uneven sharing of electrons (ice cream). Page one also connects the size of the animals in the 

cartoon to the value of the electronegativity (the bigger the animal, the bigger the 

electronegativity.)  Connecting the size of the animals to the relative electronegativity allows the 

student to better understand the cartoon and in turn, hopefully understand the concept. 
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Figure 9. Bare Essentials of Polarity part 1 

Part two (figure 10) discusses the charges involved and how sharing can be equal or unequal. 

The symbolic representation of the stalemate in the arm wrestling match between the animals 

represents an equal "struggle" for electrons and the opposite in the crushing defeat of the 

penguin. Using cartoons and symbolism in the classroom allows students to not only describe a 

scientific process, but verbalize the concepts related within that topic. Through page two of the 

cartoon, the notion of polarity has been introduced, but the true meaning behind the concept and 

the actual name of the bonds have not been established. Building the concept behind the cartoon 

allows students to construct their understanding during the initial stages of the cartoon and gives 
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an opportunity for the student to construct their idea of polarity before the main focus comes into 

the picture. 

 

Figure 10. Bare Essentials of Polarity part 2 

Part 3 (Figure 11) illustrates the types of bonds between the atoms and resurfaces the ideas from 

previous frames. The reader has had an opportunity to absorb the content and interpret the 

information and now they are able to make connections to the idea while beginning to 

understand the three types of bonding associated with polarity. The visual and textual 

information given within the model gives the student the opportunity to build those relationships 

and turn the relationship into a systematic understanding of the content. 
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Figure 11. Bare Essentials of Polarity part 3 

Throughout the polarity activity, students could be working together, discussing their ideas and 

forming their knowledge by listening, contributing and connecting to the groups’ discussion. At 

the culmination of the activity, a teacher would want to know what the students gained and if 

they are understanding the concept. By asking the students a series of questions, it is possible for 

the teacher to assess student comprehension and correct any potential misunderstandings. Here is 

a series of questions that could be used: 

1. How does the comic strip define a polar molecule? 
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2. Define electronegativity as you understand it, after reading the first two pages of the 

comic strip. 

3. What is the artist trying to represent by two polar bears arm wrestling or two 

penguins arm wrestling? 

4. What three types of bonds are represented on the third page of the comic strip? What 

happens to the bonding electrons in each type of bond? 

5. Why there are four scoops of ice cream in the illustration of O2 on the third page? 

By having students discuss these questions, either in a group or with the instructor, one would be 

able to assess the student understanding and see if the students are putting information together 

correctly. 

Electrostatic Attractions 

The concept of electrostatic attractions can be as simple as opposite charges attract, like charges 

repel. The simplistic statement about attractions can be learned as early as one understands the 

concept of positive and negative charges and how they may interact. In chemistry, the concept of 

positive and negative charges is often applied to the ions formed when electrons are lost and 

gained. Being able to use the elements on the periodic table and recognize which elements will 

form positive ions and which will form negative ions allows students to take this simple concept 

of electrostatic attractions further. 
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Figure 12. Electrostatic Attraction Cartoon 

Cartoons are eye catching, meaningful and allow for a sense of interpretation to encourage the 

voice of the student to come to fruition (Roesky, 2008). The cartoon shown above in Figure 12 

gives students an opportunity to explore a simple concept with a basic picture of positive ions 

being attracted to the negative ions outside the window. During the activity, students are asked 

questions about their observations of the cartoon. Expected responses include, the opposite 

charges are attracting as well as comments on the types of ions being shown in the cartoon. The 

follow-up question that should be proposed to the group of students is: what do the positive 

particles have in common? and what do the negative particles have in common? Students should 

be able to identify the metals versus the nonmetals. It is the intention of the activity to connect 

student thinking to the types of elements shown with the charges of the ions they produce. With 

the information gathered by the students during the activity, they should be able to pick two 

elements from the periodic table and describe whether or not they would attract one another as 

ions. Using cartoons for a simple task can help create interest for the student as well as make the 
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students think about a concept in a different way and helps in their discussion with other 

students. 

Ionic Puzzle Pieces 

Using a scientific model in the classroom gives students an opportunity to connect an abstract 

scientific idea to something tangible. As this knowledge evolves, students begin to be able to 

explain and expand upon the target concepts in the activity and show their understanding to 

others (Adbo, 2009). After students use visualization and create their own mental models, they 

are able to use the information gleaned to show their understanding is backed by actual scientific 

knowledge. 

When students begin to look at ionic and covalent compounds as formulas, they start by drawing 

Lewis diagrams that show connections of electrons to form bonds. Lewis diagrams can be 

difficult to comprehend as it is almost like a puzzle in order to fit these elements together. Shown 

below is an example of a Lewis electron dot diagram for calcium chloride. Students will often 

forget the second chlorine atom because one was already “satisfied” with its eighth valence 

electron. If students are able to connect the oxidation numbers of these elements to the structures, 

the picture can be completed much easier. 

 

Figure 13. Lewis Structures of Ionic Compounds 
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The formulas of ionic compounds can be determined by making sure their oxidation states 

(charges) add up to zero (neutral) and can be more easily visualized with puzzle pieces (Figures 

14 and 15).  

 

Figure 14. Ionic Puzzle Pieces Illustration 1 

An element with an oxidation state of +1 is represented by a puzzle piece with one tab jutting out 

(representing the electron it wants to lose). An element with an oxidation state of +2 is 

represented by a puzzle piece with two tabs jutting out, and so forth. On the other hand, elements 

with negative oxidation states have indentations representing the electron(s) they want to gain. 

An element with an oxidation state of -1 has one indentation, -2 has 2 indentations, and so on.  

 

Figure 15. Ionic Puzzle Pieces Illustration 2 
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In order to get the correct formula for a compound, the puzzle pieces for the ions need to be fit 

together so there are no tabs or indentations left over (see diagram above). Putting the pieces 

together appropriately (Figure 15) makes the positive charge equal and opposite to the negative 

charge, giving the compound a total charge of zero. Students can be given any combination of 

metals within the scope of the activity in order to test their understanding. During the activity, 

students will be given pairs of metals that have corresponding puzzles pieces. Their job would be 

to assemble the puzzle pieces so there are no empty indentations or leftover tabs in order to 

figure out the formula to the compound. They would then draw their model that was created, 

write out the ionic compound’s formula correctly and the draw a suitable Lewis structure for the 

compound. As shown in the calcium chloride example above, students would draw the individual 

elements with their valence electrons, draw arrows to represent electrons that are involved in the 

bond (the tabs and indentations) and figure out the charges for each ion. The students would 

know the correct formula by looking at the number of puzzle pieces used from each element and 

writing the ratio of those elements. 

Constructing Molecular Models 

On the covalent compound side of things, students should now have a basic understanding of the 

role electrons play in chemical bonds, but in the case of covalent bonds, instead of charges being 

formed because the electrons move, there is a sharing of electrons that takes place. In order to 

recognize the differences and build this understanding, a different model must be used. By using 

molecular model kits, students will build compounds and use those built models to create a 

chemical compound. Students will be given a selection of covalent compounds and be expected 

to build those compounds with the models. Because of the different nature of covalent 

compounds, they must be given the formula, but by using the model as a guide, they can easily 



38 
 

create the Lewis structure. To begin constructing a model, students will select the spheres needed 

to represent each of the atoms shown by the formula. The sticks which will hold the spheres 

together represent bonds (shared pairs of electrons). The holes in the spheres represent bonding 

sites (unpaired electrons that are looking for another electron to bond with). In order to complete 

the model, students will attach the spheres together in such a way that all holes are filled. If all 

the holes are not filled when all the spheres are in place, they use the longer sticks to make 

double or triple bonds. Once the model is created, students can then take the information given 

by the model and weave that information into a Lewis structure. The element balls become the 

element symbols and the sticks become pairs of electrons shared by the atoms. 

When checking for understanding, one can use the same assessment technique for the ionic 

compounds as the covalent compounds. By giving the students a list of unfamiliar, yet common 

compounds, they should be able to draw out the Lewis structures for either an ionic or a covalent 

compound. While in their groups, students can check with one another to see what other 

students’ drawings look like and discuss their similarities and differences to check their work. In 

order to be successful, students should be able to draw a Lewis structure correctly from the 

elements given. 

Organic Chemistry Models 

Another adaptation of the molecular model kits relates to organic chemistry. Once the use of the 

molecular models has been mastered, and students begin to understand the bonds between atoms 

and the subsequent compounds that are created, the extension to organic chemistry is not that far 

off. In the beginning of organic chemistry, students can start learning about the compounds 

themselves and use their background knowledge to connect to the chemistry. Introducing 

mixtures like crude oil or compounds like octane allows students to make a connection to the 
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material prior to diving into the minutia of the content. The introductory material in organic 

chemistry often yield conversations about structure and naming. Models can be helpful with the 

visualization of these molecules, but the real help can come when discussing the concept of 

isomers and that these organic compounds can have the same molecular formula but a 

completely different structure and chemical name. Without using molecular model kits, students 

are forced to try and draw different chains of molecules on their papers in different orientations 

that will most times end in students frustrated and confused because they believe they have 

drawn something different, when in reality they have just kinked, bent or reoriented the same 

molecule they started with.  

As students begin using the molecular model kits, they start taking the model apart to try and 

rearrange the atoms within the compound. Once they rearrange the models, they can begin to 

draw their new compounds from their models. The ability to physically take apart the atoms and 

reconnect them in different places gives students the vision needed to create all of the isomers for 

that molecular formula. The idea is to start small with an organic molecule with the minimum 

number of isomers, butane for example with just 4 carbons and two isomers. Once the students 

are able to draw and name both isomers, they can move on to the 5-carbon isomers of which 

there are three. Sometimes, students are just as frustrated because impatience sets in and finding 

the isomers is difficult. It is important for the instructor to give the students attention during the 

lesson as some students have difficulty thinking in three dimensions and creating the different 

isomers is hard for them. 

Using models for the isomer activity is not imperative for the task to be completed as some 

students can very easily use a different part of their brain and write out the different isomers 
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without help. In the activity, the models allow certain students the ability to have a hands-on 

visual approach that a single mode of teaching would not have provided. 

Bag O’Atoms 

Another physical model that can be used in the classroom represents the parts of an atom. When 

students are attempting to recognize and understand the parts of an atom, they can look at 

pictures and study from a textbook; however, these students often do not have an accurate mental 

image of the atom and its parts. Using a model can be a way to assist students in building their 

knowledge and understanding of the atom. 

The activity Bag O’ Atoms is a three-part activity wherein students are given a sample of four 

“atoms” and then are asked guiding questions in order to understand the atom and its 

components. The four bags they receive have different numbers of red and white stones in the 

bag (representing protons and neutrons) as well as a collection of black dots on the outside of the 

bag (representing the number of electrons. In part one, students are at first only exploring the 

components and they do not know what the dots on the bag and beads in the bag mean. 

 1. How are all of your “atom” bags the same? 

2. What do you think the two colored stones inside the bag represent? 

3. What does the inside of the bag represent? 

4. What do you notice on the outside of the bag? 

a. What do you think they represent? 

b. Why are they on the outside of the bag? 

5. How are your “atom” bags different from each other? 
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6. What quantitative data about each bag could you record and use to tell the bags apart? 

These questions represent the introduction to the understanding that atoms can be identified by 

the number of particles in and around the atom. The guiding questions would continue by asking 

the students to compare the number of stones in each bag and eventually, the students would be 

told what the stones and dots mean so they can finish constructing their underlying thought 

process. After completing part one of the activity, students would then work together to use their 

periodic table and identify the number of particles in select elements. As the students are 

working together, the instructor circles the classroom and asks students different questions to 

gauge their understanding such as: “What would the bag for Carbon have looked like if we had 

used that model in the activity?” or “How would you have changed bag number three in order for 

it to be the element Boron?” By answering these questions, students are be using the information 

learned in the activity as well as connecting that learning to what they already know about the 

periodic table. Questions can be differentiated to recognize different levels of student 

understanding. 

In part two of the Bag O’ Atoms activity, the students use the same bags as before but explore 

them in a different way. Instead of just identifying parts of the atom, students focus on the 

electrons. On the bags, the electrons are drawn in the same configuration as shown on the 

students’ periodic tables. Students use this information to draw Lewis structures and Bohr 

diagrams of each of the four bags to make the connection between the electron configuration and 

the structure of the atom. The teacher can check student work to ensure understanding as well as 

ask questions such as: “How do you know the structure will look as you’ve drawn it?”  The 

student should be able to explain why and how his or her drawing represents the element selected 

as well as the connection to the model. 
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The third and final installment of the Bag O' Atoms activity involves a new set of bags with 

different colored stones (blue for protons and clear for neutrons). The bags still represent atoms 

with the inside of the bag (and the stones) representing the nucleus and the electrons being 

represented by dots on the outside of the bag, but there is one major change. The number of 

electrons no longer equal the number of protons, which means the atom is no longer neutral, and 

is an ion. 

First, the students are asked to identify the elements based on the number of protons in the bag 

and using their periodic table only, write down the information identifying the element: symbol, 

electron configuration and group number. Asking students to complete this task first is important 

because the desired result will be the students comparing the information on the periodic table to 

the information given on the bag. Their exploration of the differences will turn into the students 

constructing their understanding of ions and their structures.  

Once the students have found the information on the periodic table, they record the information 

given about the electron configurations according to the model. The next piece is the comparison 

to the periodic table. They discuss with their group whether the information about the electron 

configuration given by the model has more or less electrons than the periodic table. They are 

then asked: "Why are the electron configurations on your bags different from the electron 

configurations from the periodic table? What do you think happened?" By giving the students a 

thinking question, they are trying to connect the what happened with the "why." Students can 

then be led through a series of questions designed to connect the element’s position on the 

periodic table with the fact that electrons were either lost or gained. In order to discern whether 

or not students are understanding, the instructor can give each group of students a list of 

elements and have them predict what type of ion they would make, positive or negative. The 
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students would need to both identify the type of ion as well as the reason for the charge in order 

to successfully complete this activity. After the connection between the position of the elements 

and the gain or loss of electrons is made, students are then ready to continue exploring the 

concept of ions as well as begin extending their thinking deeper into bonding. 

Rate of Decay – A Simulation of Half-life 

When an instructor begins to construct a lesson that deals with half-life, they must consider the 

microscopic processes that occur during radioactivity that students will not be able to grasp. In 

order to improve instruction, one must consider creating macroscopic processes to simulate a 

concept that cannot be seen with the naked eye (Kelly, 2007.) Kelly stated in 2007 that if 

students were able to experience these processes, they would be able to communicate the 

functional process better. 

In “A Simulation of Half-Life,” students use candies with lettering on one side and nothing on 

the other (M&Ms) in order to simulate the process of half-life. At the start, they count their 

nuclei and write their data in their notebooks in the table they have created. As they work 

through the activity, they discover that if the ‘M’ side is down after they shake and pour their 

‘nuclei’ the nuclei are still considered radioactive and they have not decayed yet. They continue 

to take data and consider only their radioactive nuclei for inclusion to their data table. When the 

last radioactive nucleus has decayed, they use their data table to create a graph (an example is 

shown below) and they spend time analyzing the graph. 
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Figure 16. Graphical Representation of Half Life Activity 

The instructor can also have each student group enter data into a shared document that would 

display the classes’ data for all groups to examine. This pooled data would give students an 

opportunity to compare results with other groups. The student groups would then answer a series 

of questions deigned to test understanding an expand thinking. 

1. What does each toss represent? 

2. Why didn’t each group get the same results? 

3. How accurate is our assumption that half of our parent atoms decay in each half-life? 

4. If you started with a sample of 600 radioactive atoms, how many would remain 

undecayed after three half-lives?  (Show the math) 

5. If 175 undecayed atoms remained from a sample of 2800 atoms, how many half-lives 

have passed? (Show the math) 

6.  Why did we pool the class data?   
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7. Is there a way to predict when a specific piece of candy will land marked side up or 

“decayed?”  How do you know? 

8. If you could follow the fate of an individual atom in a sample of radioactive material, 

could you predict when it would decay?  Why do you think that? 

9. Strontium-90 has a half-life of 28.8 years. If you start with a 10-gram sample of 

strontium-90, how much will be left after 115.2 years?  (Show the math). 

10. What is meant by half-life?   

11. What kinds of materials do we use with the term half-life? 

 

"What's the Matter?" 

 In the beginnings of understanding and classifying different types of matter, students can be told 

and given examples of elements, compounds and mixtures through background knowledge and 

prior experience. As teachers, we can show them pictures of different common items and ask 

them, "Does this picture represent a mixture?" We can sit back and listen to them guess about 

why a package of ground beef, a jar of peanut butter or a glass of milk is a mixture or not. In the 

same lesson, students could explore other items, water, salt, copper and try and decipher whether 

or not they are elements or compounds. 

All of these activities, with accompanied explanations and teacher driven lectures would 

probably do the trick for most learners, and the others would eventually "figure it out." Many 

students would still be in the mindset of "Why are these the way they are?"  By using a model 

(Figure 17) giving the students the opportunity to see these elements, compounds, and mixtures 
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at a submicroscopic level, they can begin to understand why with a scientific explanation 

through the formulas and "chemical code" that accompanies the samples. 

 

Figure 17. Models of Elements, Compounds and Mixtures 

The model of different shapes with their chemical code is something the students explore with a 

series of questions that end with students looking at actual chemical symbols to connect their 

learning in the activity to the chemistry behind it. 

1.    Circle a molecule of RSq in Model 1. How many atoms are in a molecule of RSq? 

2.    Circle a molecule of TSq2R in Model 1. 
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a)    How many different types of atoms are found in a molecule of TSq2R? 

b)    How many Sq atoms are in a molecule of TSq2R? 

3.  a. How many different types of atoms are found in a sample of SqR3 & TSq? 

b. How many different types of molecules are found in a sample of SqR3 & TSq?  

4.    When two atoms are touching in the drawings of Model 1, what is holding the atoms 

together? 

5.  a.  Can a particle be a single atom? 

b. Can a particle be a molecule? 

c. How many particles are in the drawing representing T, RSq, & R in Model 1? 

d. As a group, agree on a definition of the word “particle” as it is used in chemistry. 

6.    Compare the codes listed at the top of each drawing in Model 1 with the shapes in that 

box. 

a.   What do the letters R, Sq, and T in the codes represent?  

b.   What do the small numbers (subscripts) in the codes represent? 

c.    When atoms are touching, how is that communicated in the code? 

d.   When atoms or molecules are not touching, how is that communicated in the code? 

e.   In Model 1 there are three drawings that are labeled “?”. Write codes to properly label 

these drawings. 

7.   Matter is classified as a pure substance when all of the particles are identical. Matter is 

classified as a mixture if there are different particles present. Identify which set of 
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drawings from #7 are pure substances and which set are mixtures. List the codes for each 

set here. 

                           Pure Substances                                                      Mixtures 

            ___________            ___________                                    ___________ 

            ___________            ___________                                    ___________ 

            ___________            ___________                                    ___________ 

8.    How are the codes (chemical formulas) for pure substances different from those of 

mixtures? 

9. As a team, take the set of pure substance drawings from #8 and sort them into those 

containing only one type of atom and those containing more than one type of atom. 

10. Elements are defined as pure substances made from only one type of atom. Compounds 

are defined as pure substances made from two or more types of atoms. Identify which set 

of drawings from #10 are elements and which set are compounds. List the codes for each 

set here. 

     Elements                                        Compounds 

____________                                    __________ 

____________                                    __________ 

____________                                    __________ 

11. How are the codes (chemical formulas) for elements different from those for compounds?  

12. Use what you have just learned about chemical formulas to identify the following as 

element, compound or mixture. 

a.   Br2     b. NaHCO3      c. C6H12O6  &  H2O    d. Cu  &  Zn     e. CO2      f. Al 
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The series of questions gives the students an opportunity to build their understanding slowly with 

scaffolded questions designed for them to first identify different particles, then deciphering the 

difference between particles, atoms and molecules, analyze the different chemical codes and 

what they may mean and finally start breaking them into groups. Once they reach the last step, 

they become able to begin their look at different actual chemical symbols and identify real 

elements, compounds and mixtures. As shown in question number 12, students can use their 

ability gained from the model in the activity to identify a selection of chemical symbols. Students 

should check for understanding with their instructor to assure successful completion of the task. 

The Black Box 

When discussing the beginnings of the atom, students often glaze over with disbelief and have 

little to no connection with the difficulties early scientists had. The earliest philosophers gave 

little to no detail of the structure of the atom, they just theorized that something was there, and it 

was really small (Adbo, 2009). Science instruction, before considering using models to help 

students understand the difficulties of scientist, would often be teacher directed and students 

would still have no concept of the scientific methods used by scientists to discover early models 

of the atom. Without being able to see these sub-microscopic atoms, Thomson used a cathode-

ray tube to discover the electron and Rutherford used the Gold Foil experiment to discover the 

nucleus. Giving the information to students in a lecture setting doesn’t allow them the 

opportunity to experience struggle on the scientific level that these scientists did. 

An activity designed to force students from their comfort zone of being able to see the whole 

picture while experimenting was created and students must make observations without using 

their most useful sense, sight (Jansoon, 2009). Prior to the lesson, the instructor would wrap an 

innocuous item or items in a small box and seal it, so there would be no way a student could see 
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or get inside. These items could range from a rock or a small block to some rice or spare change. 

The idea being that they have a chance to identify it. Students are given the box with one 

instruction:  Figure out what is inside, without opening it. Some structure is provided as they are 

told to complete at least five "tests" on the box to decipher what is inside and write down what 

they observed following those tests. After the students complete their five tests and write their 

observations, one final instruction is given to draw a picture of what they believe is inside the 

box based on their observations. After students make their guesses based on observations, the 

most often asked question is: "When do we find out what was inside the box?" Of course, the 

answer is never. Questions can be posed to the students to inspire thinking as to why they cannot 

learn what is inside the box. For example, they can be asked: "When did the scientists learn what 

was really inside the atom?"  To further probe their understanding a series of questions could be 

asked to see if they figured out the point of the activity: 

1. Atoms are too small to see. How is the Black Box activity similar to what early chemists 

had to do when they were trying to learn about atoms?  

2. What other tests might you be able to perform (without opening the box) to gather more 

information about the contents of your box?  

3. How confident are you that your conclusion is right? If you were a scientist, would you 

be confident enough to share your results with other scientists? What if your career 

depended on your results?  

4. If you had to defend your conclusions to the rest of the scientific community, like famous 

scientists did, what would you say to convince others that your conclusions are right? 

Write the words you would use to defend yourself and your conclusions here:  
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What is an orbital? 

Although there are many types of visual models, it is often true in chemistry that a model is 

created for students and they attempt to use it appropriately to the best of their ability. As one 

begins to work more with children, it becomes evident that when a student takes part in the 

creation of anything, models included, they are able to connect with the learning more and will 

frequently retain the information better.  

The model of the atom has evolved over a long period of time. There have been many scientists 

that have contributed to the current model of the atom. For instance, the Bohr model was based 

on a solar system idea of electrons in fixed orbits. After many experiments, we now know that 

the “electron cloud model” is the most accurate representation of the atom.  

The electron cloud is a difficult concept for students to grasp as the speed of the electron is 

unparalleled and the concept of probability is often lost on students. Traditional chemistry 

instruction on orbitals would involve a discussion about Schrödinger and his famous equation on 

the path of an electron. One could even show different pictures of what the "cloud" could look 

like and allow students to explore what the different pictures could mean. Even though showing 

these pictures is considered by many to be sound instruction, students often leave the lesson with 

confusion about how the model was created and have not experienced what is necessary to fully 

understand the basics behind the electron cloud model and the probability of locating the 

electron. A student-created model becomes a valuable tool in the chemistry classroom when a 

student does not fully understand the basics of a chemistry concept. 
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Students can create the model of the electron cloud using nothing more than a piece of paper and 

a writing utensil. As the students complete the activity, they drop a pen or pencil over a target 

100 times and then count how many "electrons" were in each section of the target. 

 

Figure 18. Example of Target from “What is an Orbital?” 

Students and teacher are then able to have a conversation about the meaning of their model.  

If we were able to take a snapshot of an electron in motion the resulting picture 

might resemble a dot suspended in midair. As the electron moves about randomly 

we could then take another snapshot of the electron that would end up in another 

location around the nucleus. Now, let’s say you took hundreds of snapshots of the 

electron. You would end up with hundreds of pictures of the electron in all 

different locations around the nucleus. If you were to overlay all these snapshots 

into one picture, you would end up with a picture of the nucleus with hundreds of 

dots around it.  

As the learning continues, students can be asked questions so that they are able to connect the 

model of the electron cloud to other models of the atom as well as create meaning for their model 

in order to understand the concept of the "electron snapshot." 
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1. How is the Electron Cloud Model similar to the Bohr model of the atom, AND how is it 

different?  

2. How many electrons are modeled in the exercise? Describe how you know. 

3. How does the lab demonstrate the mathematical probability of finding an electron?  

 

By answering these questions about the lab in a small group discussion setting it allows students 

who are still constructing knowledge and are still working on the complexity of the model to sit, 

listen and absorb, hopefully feeling confident enough to jump in to the setting, knowing that it is 

a small group. The small group setting also allows students to take risks and give an answer that 

may not be right knowing that the entire class will not be focused on their response. Through the 

creation of their own model, students are able to not only make meaning of their own work, but 

connect that work to something meaningful within the classroom. 

Empirical and Molecular Formulas 

When using a scientific model to represent a mathematical concept, the idea needs to be 

presented in such a way that it is both an authentic representation of the concept and yet simple 

enough to be understood by the learner (Nahum, 2010). Calculating for empirical and molecular 

formula is a process that involves both mathematics and science and can be difficult to 

understand for students when they jump right into the science piece.  

In this activity, students are given a sample of a “compound” which consists of a bag of beads of 

different sizes and shapes. For the first part of the activity, they are lead through some simple 

measurements and calculations involving their sample. Students measure the masses of their 

elements (beads) and figure out the ratio of each element in the compound. Connecting this ratio 

of elements within their sample compound to the ratio of elements within an actual compound is 

what helps to transfer their knowledge from the activity to the concept in the classroom. The 
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teacher is moving between groups at this point checking ratios and asking questions such as: 

“What would this ratio mean if it were an actual compound?” The students would then be given 

one last piece of information the “grams per mouse” value (a play on the grams/mole that is 

common in chemistry). Using this value, students will be able to take their ratios and turn it into 

an actual formula for their compound. At this point, students will have simulated the entire 

process of finding an empirical and molecular formula. The post lab activity would involve using 

skills they practiced with their model of a compound and translating them into working with an 

actual compound. According to Dahsah (2007), students who achieve the conceptual 

understanding prior to understanding the algorithmic process often produce the correct responses 

faster than those who attempt to learn the algorithmic process first. 

Dynamic Equilibrium 

Students are always trying to relate new knowledge to what they already know (Calik, 2009.) By 

using prior knowledge for student understanding, the instructor can often tap into a resource that 

will help construct new knowledge. In an activity designed for students to begin understanding 

equilibrium, the students don’t even discuss the chemistry. By exploring a model of a “check-

in/check-out” process at a manufacturing facility, they will be able to begin to connect the 

process of entering and leaving a building to equilibrium. They will be shown a picture (Figure 

19) with instructions for the building’s break process and then asked questions about the process. 
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Figure 19. Picture from Dynamic Equilibrium Lesson 

1. How many employees move in and out of the factory building during each hour?  

2. Are the employees who move in and out of the building each hour the same people? How do 

you know? 

3. Does the number of employees in the building change from hour to hour? What evidence do 

you have to prove your answer? 

4. Over the course of a day, the employees in the Acme Manufacturing Plant are said to be in a 

"dynamic equilibrium", Based on your understanding of how the staff move in and out of the 

plant, what is meant by the term "dynamic equilibrium"? 

5. A new, faster and simpler check-in/check-out process has been proposed for workers at the 

Acme Manufacturing Plant. Some workers have said that this new process acts like a catalyst. (A 

catalyst is a substance that speeds up a chemical reaction without changing the outcome of the 

reaction and without being used up in the process.) Would this new check-in/check-out process 

change the number of people in the building at any given time? Why or why not? 
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6. What would be the effect of the new check-in/check-out process on the workers at the factory? 

Support or refute the idea that the new check-in/check-out process is like a catalyst. 

After the students answer these questions and discuss their ideas, the teacher would introduce 

them to a chemical model and have them try and connect the factory model to the chemical 

reaction. The following instructions and questions would be given to students and eventually 

their results are reported out to the entire class. 

Instructions: Like the Acme Manufacturing Plant, chemical reactions can also reach 

equilibrium. Answer the following questions about the chemical equation in the factory model by 

applying the insight you gained from the Acme Manufacturing Plant questions. Connect each 

answer back to the factory model. 

When the reaction between hydrogen and oxygen reaches equilibrium: 

a. Does the number of molecules in the reaction vessel change? 

b. Is the reaction still proceeding in the forward direction?  

c. Is the reaction still proceeding in the reverse direction?  

d. Are the concentrations of the products and reactants changing?  

e. Are the rates of the forward and reverse reactions the same?  

By having students connect each answer back to the model, they are using their prior knowledge 

of how people enter and leave a building each day and using their newly constructed 

understanding to begin to understand how equilibrium works. 
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Discussion 

When reflection occurs after completing this project, questions come to mind about how the 

content of the project impact instruction, learning for all students, and crossing the curriculum 

lines.  The written question prompts look at extending this project beyond what it is (a collection 

of lessons and classroom interactions), and try to predict what it could be. 

What do the contents of this project mean for me in the classroom? By applying new methods in 

the classroom, I can use continuous improvement to attempt to increase student achievement and 

understanding.  Through the use and evaluation of these models, I can begin to reflect upon 

previous lessons in an attempt to improve upon these lessons and in turn, improve upon 

instruction as a whole. 

What can this project mean for other chemistry teachers? It is my intention to share pieces of 

solid, tested and proven chemistry instruction to all teachers that may be looking for a change to 

their curriculum as a whole, or looking for a specific lesson to help with one difficult concept.  

Sharing of information is so important in our field and if just one teacher is able to use pieces of 

this project, I consider it a success. 

What impact can this project have on students? Chemistry is a difficult subject where learning 

often takes place in the brain.  Small, submicroscopic pieces being discussed and trying to apply 

those thoughts to the physical world often turn into confusion and frustration.  By using models, 

teachers can give students the opportunity to experience these concepts in a larger scale and 

allow the interaction piece that is often missing in the chemistry classroom.  Sure, the exciting 

laboratory experiments give students a chance to see a chemical change or experience 

combustion, but the meticulous inner-workings of chemistry are often not shown in these 
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experiments.  By showcasing these individual concepts through the use of a model or models, 

students can gain a conceptual awareness of an idea they otherwise may not have understood. 

How could the use of models be applied to other content areas? Although this project focused on 

the use of models as a representation of something very small and made it able to be seen, not all 

models need to be used in such a way.  A model can be something you are trying to represent in 

the real world.  For example, you can use a mathematical model to figure out the volume inside 

of a cardboard box (Length x Width x Height).  Like the models in the chemistry classroom, this 

model would also be limited.as the space inside the box does not account for the thickness of the 

box and would need to be accounted for.  Using models in other areas in math and science is a 

way for teachers to represent something that potentially cannot be physically held in the real 

world and can give an opportunity for students to share an experience they may not have had 

before. 

How can teachers develop lessons if they do not have an existing model to launch from? As an 

experienced teacher, one spends many hours, days, and years honing their craft.  By always 

looking for ways to improve, teachers can continue to improve instruction for all students. 

Deciding one needs a model often comes from the reflection upon a lesson you have taught 

several times.  A teacher would often recognize students having difficulty connecting to the 

material and being able to explain its function. After identifying the need for a model, the most 

difficult part is to create the model that the students could use.  Teachers should begin by 

focusing on common items that may be comparable to the concept.  The difficult part is if the 

concept doesn’t lend itself to being compared to an item.  Continued improvement and 

professional development will help teachers create ideas for model and advance their lessons. 
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How did the completion of this project improve my instruction? Although using models in the 

chemistry classroom seems like a no-brainer, the evaluation of the models is what affected me 

the most.  By thinking about how students are understanding and interacting with the material 

and the models, I was able to assess the effectiveness of both the instruction and the model. Also, 

by forcing myself to look at many different models, I was able to improve upon many models 

currently taught in my classroom as well as add to my repertoire so my students can benefit from 

the use of the models. 
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