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Occasional shifts in the influenza virus generates a new variant, posing potential threat of a deadly 
epidemic. This type of shift occurred with the 1918-19 flu with devastating consequences in the U.S. and 
worldwide. Using newly developed data from 18 U.S. military establishments during the 1918-19 flu 
epidemic, we estimate parameters of the Susceptible-Exposed-Infectious-Asymptomatic-Removed 
epidemic model. Our estimates show considerable variation in the value of the infectivity parameter 
across bases. This variation is uncorrelated with base size or beginning date of the epidemic. Results 
indicate that the epidemic on U.S. military bases was more infectious than those of in England and Wales.  
 
INTRODUCTION 
 

Occasional shifts in the flu virus generates a new variant.  As individuals have little immunity to this 
new variant or the new strain is vaccine resistant, there is potential for a deadly pandemic. In 1918-1919, 
a new flu subtype killed at least 675,000 people in the United States and perhaps 40 million people 
worldwide (Brainerd and Siegler, 2003).  

Formal epidemic models help to identify the factors influencing the pace of epidemics and the 
proportion of the population to be infected without intervention. They also provide tools for analyzing the 
effects of strategies to combat disease, including identification of disease outbreaks, evaluating 
treatments, and estimating the impacts of quarantines and vaccination programs. There are several studies 
using these models to investigate strategies for responding to pandemic influenza (Meltzer, et al. 1999; 
Patel, et al. 2005; Longini, et al. 2005; Gani, et al. 2005; Ferguson, et al. 2007; Medlock and Galvani, 
2009). In this study, we use new data from 18 U.S. military establishments during the 1918-1919 flu 
epidemic to estimate parameters of the Susceptible-Exposed-Infectious-Asymptomatic-Removed 
(SEIAR) epidemic model.  

There have been a number of recent attempts to estimate parameters of the 1918-1919 influenza 
epidemic. Unfortunately, historical data generally do not provide the richness of contemporary 
notification systems.  The studies (Gani, et al., 2005; Ferguson, et al., 2006; Viboud, et al., 2006; and 
Chowell, et al., 2008) rely on weekly rather than daily data. The data represents  counts of deaths rather 
than cases of influenza. So, one must make very strong assumptions about the case fatality rate and the 
lag between the onset of the disease and subsequent mortality to identify the time patterns of influenza 
cases needed for estimating epidemic model parameters.    
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MATERIALS AND METHODS 
 
Epidemic (SEIAR) Model 

The authors use Susceptible-Exposed-Infectious-Asymptomatic-Removed (SEIAR) epidemic model 
for the estimation following Chowell, et al. (2006a, b). In the model, the population is divided into the 
following groups: the susceptibles, the infectives, the exposed, and the removed. Susceptibles (S) are 
individuals who are at risk of catching the disease. Exposed (E) are individuals who have been infected 
but are not yet infectious. Infectives have the disease and can transmit it. The infectives include two 
groups: the fully infectious (I) and asymptomatics (A). Removed (R) are individuals who had the disease, 
but have recovered and can no longer transmit it. Deceased (D) represents the number of individuals who 
have died.  

The total size of the population at time t equals the sum of these groups: 
 

N(t)= S(t) + E(t) + I(t) + A(t) + R(t) + D(t). (1) 
 

In SEIAR model, the number of infections among the susceptible population in a period of time 
depends on the rate at which the susceptibles contact the infectious (δ) and the transmissibility of the 
disease given contact (τ). After contact, some proportion of the susceptibles becomes exposed and there is 
an incubation period before the exposed become infectious. A compartmental SEIAR model diagram of 
influenza transmission is presented in Figure 1.   
 

FIGURE 1  
COMPARTMENTAL SEIAR MODEL DIAGRAM OF INFLUENZA TRANSMISSION 
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Assuming the probability that an asymptomatic individual transmits the disease is a fraction (q) of the 
probability that a fully infectious individual transmits the disease, and contacts among members of the 
population are random, the reduction in the number of the susceptibles due to infection per period is given 
by:  

,
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where β is called the infectivity parameter.    

The number of exposed is augmented by the decrease in the number of susceptibles from (2) and is 
reduced by the number who become fully infectious or asymptomatic:   

 

),()]()()[( tE
N

tqAtItS
dt
dE αβ −

+
=  (3) 

 
where α is the rate at which the exposed become infectious.   

The number of individuals who are fully infectious depends upon the rate at which the exposed 
become infectious (α) and the fraction who become fully infectious (ρ) and decreases by those who 
recover or die:   

 

),()()( tItE
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where γ  is the recovery rate and π is the death rate among the fully infectious.   

Asymptomatics are the remainder of individuals who convert from exposed to infectious.   
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The change in the size of the removed population is given by: 
 

)].()([ tAtI
dt
dR

+= γ  (6) 

 
The change in the number of those who have D(t) is given by: 
 

),(tI
dt
dD π=  (7) 

 
where the mortality rate π is given by π = γ[CFR/(1 – CFR)] and CFR is the average case fatality rate.   

For epidemics of new strains of pandemic influenza, it is assumed that the population is wholly 
susceptible. In this case, the parameters of the model can be summarized by the basic reproductive ratio 
(R0), which equals the average number of secondary cases arising from the introduction of a single 
infective when the population is wholly susceptible. If R0 > 1 in a deterministic epidemic model, then the 
introduction of an infective into a population will generate an epidemic, whereas if R0 < 1, it will not. The 
basic reproductive ratio in our model is given by 
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Data 

There were at least two waves of the influenza in 1918. The first began in March of 1918 and spread 
sporadically across the US and Europe. The first and second waves were believed to be similar strains, 
but the relative mildness of the illness and the length of time the first wave took to spread suggest that it 
was not yet as perfectly adapted to humans as it would later become (Reid, et al. 2001). The first case of 
the second wave appeared on September 8 at Camp Devens, MA. It then spread to other military bases 
along the East coast and among civilians from Maine to Virginia, paralleling the pattern in military 
establishments (Crosby, 1976). 
 

TABLE 1 
DESCRIPTIVE STATISTICS OF THE 1918-19 FLU EPIDEMIC AT U.S. MILITARY BASES 

 

Station 
Average 

Base 
Population 

No. of 
Infl. cases 

No. of 
Deaths 

Epidemic Infl. 
attack rate /1000 

Epidemic death 
rate /1000 

Case 
fatality/100 

Duration and 
Epidemic in days 

Cape May, NJ (N) 1,720 150 14 87.20 8.13 9.33 12 (9/23-10/4) 

Gulfport, MS (N) 1,772 822 18 463.88 10.15 2.18 27 (9/28-10/24) 

New Orleans, LA (N) 2,542 952 33 374.50 12.98 3.46 29 (9/26-10/24) 

Seattle, WA (N) 4,158 724 34 174.12 8.17 4.69 15 (9/25-10/8) 

Charleston, SC (N) 4,167 1,118 26 265.89 6.23 2.23 67 (9/11-11/16) 

Boston, MA (N) 4,454 804 52 180.46 11.67 6.46 35 (8/28-10/1) 

San Diego, CA (N) 4,932 628 19 127.34 3.85 3.02 23 (9/8-9/30) 

Pensacola, FL (N) 5,418 1,393 24 257.10 4.42 1.72 31 (9/15-10/15) 

Puget Sd., WA (N) 6,370 568 60 89.16 9.41 10.55 24 (9/17-10/10) 

Philadelphia, PA (N) 6,434 1,246 78 193.96 12.12 6.26 29 (9/11-10/9) 

Norfolk, VA (N) 7,994 991 69 123.96 8.63 6.96 21 (9/16-10/6) 

Quantico, VA (N) 8,244 3,056 117 370.69 14.19 3.82 75 (9/9-11/22) 

Newport, RI (N) 9,493 1,449 113 152.63 11.9 7.79 15 (9/10-9/24) 

Hampton Rd., VA(N) 11,104 3,005 175 270.62 15.76 5.82 25 (9/15-10/9) 

Lewis, WA (A) 13,031 5,033 177 386.23 13.58 3.52 61 (9/16-11/15) 

Pelham, NY (N) 14,200 2,399 145 168.94 10.21 6.04 29 (9/23-10/21) 

Upton, NY (A) 44,000 6,947 438 157.87 9.95 6.30 79 (9/13-11/30) 

Great Lakes, IL (N) 44,605 9,623 924 215.73 20.71 9.60 30 (9/12-10/11) 

Combined Total (Avg) 194,638 40,908 2,516 (210.18) (12.93) (6.15) (34) 

(N): Naval base 
(A): Army base 
Average populations (complements) of Army bases during the epidemic are derived from the best approximation 
of remaining historical records. 

 
The pandemic seemed to have reached its peak among US civilians roughly two or more months after 

the virus started to infect the encampments along the coast. There only exist some incomplete records of 
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the spread of the disease in the civilian population. Military records are much more detailed and 
comprehensive.    

The data used in this study come from two different sources. First, actual daily influenza case 
numbers and complement size information from two army bases, Upton and Fort Lewis, were gathered 
from the National Archives at College Park MD. Second, Chart 6 of the Annual Report of the Navy 
Department (1920) for the fiscal year 1919 presents a graph of the daily case incidence per 1000 station 
complement on 16 larger naval stations (p.2426).   

Table 1 identifies the bases and provides summary statistics. The incidence data along with estimates 
of daily complements at the naval bases were used to determine the reported daily number of new cases. 
For most bases in the dataset, weekly average complement figures were reported in the Annual Report of 
the Navy Department (1920, Table No. 1, p.2430). The base populations and the number of susceptibles 
were adjusted to reflect inflows of additional susceptibles during the epidemic or outflows of troops using 
available information.  

We used the daily number of cases to estimate the components of SEIAR model given in equation 1. 
Following Longini, et al. (2004, 2005), we assumed a mean incubation period of 1.2 days and an average 
infectious period of 4.1 days (30% for 3 days, 40% for 4 days, 20% for 5 days, and 10% for 6 days’ 
infectious period). As in Longini, et al.(2004), we also assumed 67% of infected people developed 
symptoms, 33% remained asymptomatic, and that symptomatic people were half as infectious as those 
with influenza symptoms.  Finally, equation 2 was used to estimate daily values of the infectivity 
parameter β. 
 
RESULTS 
 

Table 2 presents average values of the daily estimates of β. Four bases (e.g., Boston, Charleston, 
Gulfport, and Quantico) had substantial secondary peaks in the later stages of the epidemic.    
 
Variation of β over Time and Across Bases 

SEIAR model assumes that β is constant over time. Philipson argues that people may change their 
behavior during an epidemic (Philipson, 1996). They may reduce the rate at which they contact potential 
carriers of disease or engage in preventive measures to reduce transmissibility. However, it does not 
appear that preventive measures were particularly effective during the Spanish flu epidemic, since 78% of 
nurses at the San Francisco Hospital still became infected (Chowell, et al., 2006a). 

Transmissibility given contact may vary with the duration of the epidemic. The effective infectious 
period is likely to be longer for the initial case than for cases arising after the announcement and 
recognition by public (health) officials about the presence of the serious disease (Becker, 1989). 
Infectivity may vary also with the duration of the epidemic due to the error-prone influenza virus (RNA 
virus) replication process (Domingo and Holland, 1997).   
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FIGURE 2 
THE PEAK AND AVERAGE VALUES OF β FOR EACH OF THE 18 BASES 

 

 
 
 

The data presented in Figure 2 and Table 2 indicate that β declines during the course of the epidemic. 
Table 3 reports a regression of the natural logarithm of β on the day of the epidemic at each base and a set 
of base dummy variables. The logarithmic specification is based on Becker’s suggestion that β declines 
exponentially with time: 

 
β(t) = β0 exp{θ+ut}, (9) 

 
where θ  < 0 and ut is a normally distributed error term with mean 0 (Becker, 1989).   
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TABLE 2  
AVERAGE VALUE OF INFECTIVITY PARAMETER (β) 

 

Station Average β  
(All days) 

Average  β  
(Week 1) 

Average β  
(Week 2) 

Average β  
(Week 3) 

Median  β  
(All days)  

Number of 
Days to the 

Peak 

Average β  
up to the Peak 

Boston 0.6472 1.7598 0.1467 0.5899 0.3164 7 1.7598 

Cape May 0.4102 0.8446 0.1094 † 0.1821 5 1.1273 

Charleston 0.4697 1.0142 0.2645 0.3722 0.3578 8 0.9749 

Great Lakes 0.6235 1.7359 0.3513 0.1898 0.3352 11 1.2784 

Gulfport 0.7318 0.6683 0.4848 0.4421 0.5218 10 0.6559 

Hampton Roads 0.7083 1.7042 0.4490 0.3050 0.3746 11 1.2749 

Lewis 0.4915 0.3649 0.3010 0.5047 0.4260 29 0.4570 

New Orleans 0.8307 2.2668 0.4232 0.3878 0.3791 11 1.6457 

Newport, RI 0.6535 1.4354 0.2105 0.2444 0.2961 6 1.6541 

Norfolk 0.5359 1.1831 0.3744 0.2094 0.3247 9 1.0861 

Pelham 0.9479 3.6237 0.5429 0.2383 0.3385 11 2.5621 

Pensacola 0.4133 0.5729 0.5479 0.4615 0.4016 20 0.5380 

Philadelphia 0.7521 2.7904 0.2666 0.3472 0.3236 5 3.7824 

Puget Sound 0.5334 1.2392 0.5594 0.2717 0.2599 11 1.0957 

Quantico 0.6345 1.7458 0.5981 0.3171 0.4208 15 1.1252 

San Diego 0.4869 0.6342 0.4810 0.4436 0.3749 25 0.5505 

Seattle 0.3503 0.4343 0.2404 0.3230 0.2453 5 0.5363 

Upton 0.4276 0.9818 0.4241 0.4176 0.3183 22 0.5905 

Average 0 5916 1.3889 0.3764 0.3568 0.3442 12.3 1.2608 

Median 0.5797 1.2111 0.3988 0.3472 0.3369 11.0 1.1105 

†Epidemic ended before week 3 
 
 

In Table 3, the coefficient of the day of the epidemic is negative and statistically different from zero 
at the 0.01 level, providing evidence that the value of β declines during the course of the epidemic. We 
also estimated the Becker specification separately for each base. The estimated value of β was negative 
for 16 of 18 bases and statistically significant at the 0.10 level or better (two-tail test) for 10 of these 
bases. The estimated value of β was positive for two bases but only statistically significantly different 
from zero at conventional levels for one base, Lewis. In some of the bases, there are secondary peaks 
(e.g., Gulfport and Charleston) which lead to a rejection of the hypothesis of a decline in β.   
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TABLE 3 
VARIATION IN β OVER TIME AND ACROSS BASES 

 
Column: (1) (2) 

Dependent Variable: Log(β) 
 

Independent Variable Coefficient* Standard Error 

Constant -0.8766c 0.1412 

Day of Epidemic -0.0070a 0.0026 

Dummy Variables for Bases** 

Boston -0.2510 0.1822 

Cape May -0.4932 0.2500 

Charleston -0.0229 0.1556 

Great Lakes 0.0247 0.1988 

Gulfport 0.2826 0.2124 

Hampton Roads 0.2014 0.2156 

Lewis 0.2426 0.1578 

New Orleans 0.1555 0.1941 

Newport, RI -0.0841 0.2497 

Norfolk -0.0980 0.2124 

Pelham 0.0476 0.1844 

Pensacola -0.2979 0.2305 

Philadelphia -0.4467b 0.2260 

Puget Sound -0.8314c 0.2503 

Quantico 0.0284 0.1543 

San Diego 0.0566 0.2038 

Seattle -0.3888 0.2705 

R2
 0.0684  

Number of Observations 610  
*Levels of statistical significance: a = 0.01, b = 0.05, c = 0.10. 
** Upton is the excluded base. 

 
 

Table 3 examines variations in the daily value of log(β) across bases, holding day of the epidemic 
constant. The set of coefficients of the dummy variables for bases are statistically significant at the 0.01 
level, leading to the conclusion that the level of β differed across bases.   
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Finally, we examined whether the average value of β varied with base size or whether bases that 
experienced their epidemics at later dates might have reduced the transmission of influenza through the 
adoption of public health or quarantine measures (Merkel, et al., 2006). The first reported case was at a 
receiving ship in Boston on August 28, 1918, which we designated as Day 1. We found a positive relation 
of β  with complement size and starting date for the whole of the epidemic, although neither coefficient 
was statistically significant at conventional levels.   
 
Sensitivity Analysis  

In their analysis of influenza type A, Longini, et al. (2005) assume that there are both asymptomatic 
and symptomatic cases. Chowell, et al. (2006a, b) also assume there are asymptomatic cases during 
the1918-19 flu. Mills, et al. (2004) do not consider asymptomatic influenza cases in their estimation. 
 

TABLE 4  
COMPARISON OF β ESTIMATES FOR ASYMPTOMATIC AND SYMPTONATIC CASES 

 
Station Asymptomatic Cases Symptomatic Cases 

Boston 0.6472 0.5194 
Cape May 0.4102 0.3586 
Charleston 0.4697 0.3731 
Great Lakes 0.6235 0.5064 
Gulfport 0.7318 0.4666 
Hampton Roads 0.7083 0.5874 
Lewis 0.4915 0.3497 
New Orleans 0.8307 0.6421 
Newport, RI 0.6535 0.4541 
Norfolk 0.5359 0.4450 
Pelham 0.9479 0.7913 
Pensacola 0.4133 0.3200 
Philadelphia 0.7521 0.6114 
Puget Sound 0.5334 0.4434 
Quantico 0.6345 0.4533 
San Diego 0.4869 0.4013 
Seattle 0.3503 0.2648 
Upton 0.4276 0.3371 

Average 0 5916 0.4625 
Median 0.5797 0.4492 

 
 

Table 4 compares our estimates of β with and without including asymptomatic cases. For each base, 
the estimated value of β when asymptomatic cases are included exceeds the estimated value for the 
procedures including only symptomatic cases. Across bases, the average value of β dropped from 0.59 to 
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0.46 and the median from 0.58 to 0.45 when only symptomatic (observed) cases were included for the 
parameter estimation.   
 
DISCUSSION 
 

Some investigators report the contact number (σ) or the “reproductive number R”, as in Mills, et al. 
(2004). More commonly, investigators report the basic reproductive ratio (R0). R0 shows the average 
number of secondary cases arising from the introduction of a single infective if all individuals are 
susceptible to the disease. The magnitude of this parameter is particularly important. In a simple 
deterministic epidemic model, if all individuals are susceptible, then R0 equals the contact number, but if 
not all individuals are susceptible, R0 is the fraction of the population initially susceptible multiplied by 
the contact number. Values of the case fatality rate and of β are specific to each base and are taken from 
Tables 1 and 3, respectively. 

Table 5 compares our findings with those reported in seven other studies. Since we found that β over 
the course of the epidemic, estimates of R0 based on the early stages of an epidemic are larger than those 
that include all days of the epidemic. For example, in our data set using asymptomatic cases, the average 
value of R0 for days up to the peak is 3.92 while the average is only 1.84 when all epidemic days are 
included.    

Two studies by Chowell, et al. for San Francisco and Geneva, Switzerland include asymptomatic 
cases and use daily data (2006a, b) and  all other estimates are based on weekly data. For San Francisco, 
the Chowell, et al. (2006a) estimated value of R0 for the first five days of the epidemic is 3.72 (with a very 
large standard error) and 2.38 for the first 17 days. In San Francisco, the peak number of daily influenza 
cases was around 30 days after the onset of the epidemic, so that their 17 day does not include all of the 
period prior to the peak. Our estimate of the pre-peak period for all bases taken together (3.92) is slightly 
above the Chowell, et al. 5 day estimate and considerably in excess of their pre-peak (17-day estimate). 
We conclude that the epidemic was much more infectious on military bases (on average) than in San 
Francisco.   

The Second Wave of the Geneva epidemic (October-November, 1918) appears to be more infectious 
than the epidemic on our military bases. The Chowell, et al. (2006b) estimate of R0 for the whole of the 
epidemic for Geneva (3.75) is higher than our estimate (1.84). 

The only other estimates for the U.S. are those by Mills, et al. (2004) for 45 cities. Their basic model 
and method of estimation are similar to ours, but they include only symptomatic cases. They first 
construct a daily simulation model of the influenza epidemic, which is changed to a tenth of day 
increments of when more than 10% of the population is infectious. Their SEIR model assumes the same 
relative level of infectiousness by day of infection as we. These relative values are presented in a 
histogram (Mills et al., Supplementary Figure 1) and are attributed to Longini, et al. (2004). They further 
assume that 2% of those infected die with a mean survival time of two weeks (Supplementary Figure 2). 
This case fatality rate is far smaller than the 6.2% figure reported for our military bases. This difference 
may illustrate the extremely high mortality rate of the 1918-1919 flu for young adults, characteristic of 
the population of military bases. Higher fatality rates among the infected raise R0 since the rate of 
infection among survivors must be higher to generate the same number of subsequent cases. 

Because they do not have daily cases, Mills, et al. (2004) match deaths from the simulation models 
with weekly data on excess deaths from influenza and pneumonia reported by the Bureau of the Census 
(1919). Mills, et al. report estimates of the “reproductive number R” for each city. The 45 city data set 
yields “initial” values of the contact number ranging from less than 1.0 to more than 6.0 (Figure 2, p. 905) 
with a median of 2.0 (interquartile range 1.7 to 2.3). Mills, et al. also report what they refer to as 
“extreme” estimates of the contact number obtained by matching the excess deaths in the two epidemic 
weeks with the greatest exponential growth rate. The extreme values range from above 1.0 to 6.5 with a 
median of 2.7 (interquartile range 2.3 to 3.4). 

Our estimate of the average value of R0 for the whole of the epidemic using only symptomatic cases 
is 1.46 is below the median of 2.0 reported in Mills, et al.. However, it is probably more reasonable to 
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compare our estimate using data up to the peak of the epidemic with their initial estimate. In this case, our 
median estimate (2.94) is slightly higher than their median estimate of 2.7.   
 

TABLE 5 
ESTIMATED VALUES OF BASIC REPRODUCTIVE RATIO (R0) FOR 1918-19 INFLUENZA 

 
Military Bases Time Period Mean Median Minimum Maximum Inter-quartile 

range 

Asymptomatic cases 
included 

Up to peak 3.92 3.16 1.42 10.86 1.77– 5.02 

All days 1.84 1.64 1.05 2.74 1.36 – 2.16 

Symptomatic cases only 
Up to peak 3.99 2.94 1.34 10.86 1.97 – 4.01 

All days 1.84 1.46 0.92 7.10 1.24 – 1.94 

45 U.S. Cities       

Mills, et al. (2004) 

All Days  2.0 Less than 1.0 6.3 1.7 – 2.3 
Period of 
Highest 
Growth Rate 

 2.7 1.0 6.5 2.3 – 3.4 

San Francisco       
Chowell, et al., (2006a), 

Asymptomatic cases 
included 

 

 Method:  Initial 
Growth Rate Simple SEIR Complex 

SEIR Stochastic SIR 

 First 5 Days 
(95% CI)  5.78 

(3.80-8.15) 
3.72 

(2.01-5.44) n.a. 1.96 
(0.83-3.09) 

 First 17 Days 
(95% CI)  2.98  

(2.73-3.25) 
2.38  

(2.16-2.60) 

2.20  
(1.55-               
2.84) 

2.10 
(1.21-2.95) 

Geneva, Switzerland   First Wave* 
 

Second 
Wave* 

 
  

Chowell, et al. (2006b), 
asymptomatic cases 

included 
(95% CI)  1.49  

(1.45-1.53) 
3.75  

(3.57-3.93)   

England and Wales   First Wave* Second 
Wave* 

Third 
Wave*  

Gani, et al. (2005) All Days    1.55 1.70  

Ferguson, et al. (2006) 
Period of 
highest growth 
rate 

 1.5-1.7    

           

Viboud, et al. (2006) First Three 
Weeks  2.1    

  Assumed     

Chowell, et al. (2008), 
England and Wales 

Period of 
Exponential 
Growth  
(95% CI) 

3-day 
generation 

interval 
 1.39 

 (1.36-1.43) 
1.39 

(1.29-1.49)  

 

Period of 
Exponential 
Growth  
(95% CI) 

6-day 
generation 

interval 
 1.84 

(1.75-1.92) 
1.82 

(1.61-2.05)  

*Geneva: First Wave (July 1918) and Second Wave (Oct.-Nov., 1918); England and Wales: First Wave 
(6/29/18-8/3/18), Second Wave (10/12/18-12/28/18), and Third Wave (2/18/19-4/5/19) 

 
 

All estimates for England and Wales are based on weekly data and include only symptomatic cases. 
Gani, et al. (2005) provide estimates of R0 using all days of the epidemic for the second wave (1.55) and 
third wave (1.70). These estimates are below our mean of 1.84 for all bases combined. However, the Gani 
estimates are inconsistent with Chowell, et al. (2008), who report much lower estimates of R0 (1.39) based 
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on the very early days of the epidemic for these two waves. Since we assume an incubation period of 1.2 
days and a mean infectious period of 4.1 days in calculating R0, our estimates are based on a generation 
interval that is probably closer to the estimates by Chowell, et al. assuming a 3-day interval. Our estimate 
of R0 using symptomatic cases up to the peak is 3.99.  It would seem that the 1918-1919 flu epidemic on 
military bases in the U.S. was much more infectious than the second and third wave epidemics in England 
and Wales.   
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