Absolute Values and Inequalities using TICalculator

Marc Coffie
The College at Brockport

Follow this and additional works at: http://digitalcommons.brockport.edu/cmst_lessonplans
Part of the Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons

Repository Citation

Coffie, Marc, "Absolute Values and Inequalities using TI-Calculator" (2006). Lesson Plans. 37.
http://digitalcommons.brockport.edu/cmst_lessonplans/37
This Lesson Plan is brought to you for free and open access by the CMST Institute at Digital Commons @Brockport. It has been accepted for inclusion in Lesson Plans by an authorized administrator of Digital Commons @Brockport. For more information, please contact kmyers@brockport.edu.
\qquad

To check the values of an absolute value equation or inequality using your TI-83+ or TI-84+ calculator, follow these steps:

1. Isolate the absolute value (get the $|\ldots .$.$| by itself).$
2. Whatever is on the left of the $=,<,>, \leq$, or \geq, goes into Y_{1} on your calculator.
a. If it is an absolute value expression (has |......|), this is entered into your calculator by pressing ` 0 (which is $\neq \quad$) and the first function is abs (which stands for absolute value. Place whatever is in between the

3. Whatever is on the right of the $=,<,>, \geq$, or \leq goes in Y_{2} on your calculator.
4. Press \# 6 to see if you can see where the graphs intersect.
a. If an equality:
i. If you can see the intersections, then you can determine the x-values where the equation is solved (è ulate them!)
ii. If you cannot see the intersections, change your @ until you can, then see Step i. above.
b. If an inequality:
i. If they are asking for $<$ or \leq, you are looking for values below the horizontal line and you will be using an and (\qquad $<x<$ \qquad _)
ii. If they are asking for $>$ or \geq, you are looking for values above the horizontal line and you will be using an or ($x<$ \qquad or $x>$ \qquad

Example 1:

Solve $|x-3|-2=5$.
(1) Get $|x-3|$ by itself:
$|x-3|=7$
Put $|x-3|$ in Y_{1} :
Put 7 in Y_{2} :
(2) Press \# 6

You can see where the graphs intersect, but let's change the @ to see them better.
(3) Set $X \max =12$ and press $\%$

(4) You can see where the graphs 5: i nt er sect better now. Find the values using è ($\quad \$ \quad$). The values are $x=$ \qquad and $x=$ \qquad .

\qquad Date: \qquad

Graph the solution of $|x-3|=5$:

Example 2:

Solve: $3|2 x+3|-1 \leq 14$
(1) Remember, isolate the |.....| first!

$$
|2 x+3| \leq 5
$$

(2) Enter the left hand side into Y_{1} and the right hand side into Y_{2} :
(3) Press \% :

For what values of x is the graph of the absolute value (the "V"-shaped graph) below the horizontal line?*
Between \qquad and \qquad . Our solution then is:
\qquad $\leq x \leq$ \qquad and the graph:

*Conversely, if asked $|2 x+3|>5$, we would look for the values of x when the absolute value graph is above the horizontal line.

Practice:

Solve and graph the solution set of:
a. $|x+2|=3$
b. $4|2 x-1|>8$
c. $|1-x|<5$

