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Primal Decomposition and Constraint Generation for
Asynchronous Distributed Mixed-Integer Linear Programming

Andrea Camisa, Giuseppe Notarstefano

Abstract—1In this paper, we deal with large-scale Mixed
Integer Linear Programs (MILPs) with coupling constraints
that must be solved by processors over networks. We propose
a finite-time distributed algorithm that computes a feasible
solution with suboptimality bounds over asynchronous and
unreliable networks. As shown in a previous work of ours,
a feasible solution of the considered MILP can be computed
by resorting to a primal decomposition of a suitable problem
convexification. In this paper we reformulate the primal de-
composition resource allocation problem as a linear program
with an exponential number of unknown constraints. Then we
design a distributed protocol that allows agents to compute an
optimal allocation by generating and exchanging only few of
the unknown constraints. Each allocation is iteratively used to
compute a candidate feasible solution of the original MILP.
We establish finite-time convergence of the proposed algorithm
under very general assumptions on the communication network.
A numerical example corroborates the theoretical results.

I. INTRODUCTION

In different network contexts such as, e.g., energy man-
agement, smart grid, cooperative task allocation in robotic
networks, Mixed-Integer Linear Programs (MILPs) need to
be solved in real time. In these applications, problem data is
typically scattered throughout the network, and collecting the
required information at a central node is not possible (or at
least convenient). Thus, distributed optimization algorithms
are required. Moreover, as MILPs are NP-hard problems,
fast algorithms providing (feasible) suboptimal solutions
are attractive, as e.g., in the case of dynamic optimization
problems arising in Model Predictive Control [1].

In [2], a fast parallel dual decomposition approach based
on the restriction of the coupling constraints has been intro-
duced to obtain a feasible solution, however a coordinating
unit is required. The method has been improved in [3],
where a time-varying restriction allows for a higher solution
quality. To date, there are few works tackling MILPs within
a distributed framework. In [4], a distributed version of [3]
has been formalized. A different idea has been explored in
[5], where a primal decomposition approach is exploited to
devise a fast distributed algorithm that computes a (feasible)
suboptimal solution, where simulations on random problems
have highlighted tighter suboptimality bounds compared to
[2]. Other approaches to solve MILPs over networks include
[6], where a distributed cutting-plane algorithm is devised to
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solve a MILP with common cost. In [7], a distributed column
generation approach is used to solve a task-target assign-
ment problem. In [8], a multi-assignment problem is solved
by means of an auction-based algorithm. All the methods
mentioned so far involve the iterative solution of suitably
constructed Linear Programs (LPs). As regards distributed
algorithms for LPs, in [9] a simplex algorithm is formulated
to solve degenerate LPs. In [10] a continuous-time algorithm
to obtain an optimal primal-dual pair of a LP is considered,
while in [11] a method based on event-triggered communica-
tion is analyzed with tools from switched and hybrid systems.
In [12], a distributed Dantzig-Wolfe decomposition method
with online column generation is used to solve in finite
time a LP with a coupling constraint among the variables.
Notice that [9]-[12] are not immediately applicable to the LP
convexification of the MILP addressed in this paper, since
an explicit description of the local convexified constraints is
not available, as we will show in the following.

The contributions of the paper are as follows. We propose
a distributed algorithm that converges, in a finite number
of communication rounds, to a feasible solution, with sub-
optimality bounds, of a large-scale MILP with coupling
constraints among the variables. Following [5], we adopt a
primal decomposition approach applied to a convexification
of the target MILP with restricted coupling constraints.
In this paper, we exploit piece-wise linearity of the cost
functions to suitably reformulate the primal decomposition
(resource allocation) problem into a LP with exponentially
many constraints. Then, to solve the LP, we propose a dis-
tributed algorithm with constraint exchange among neighbors
(whose general idea was introduced in [13]), based on the
local online generation of constraints at each node, so that
the simultaneous processing of all the constraints is avoided.
The optimal allocation is then used to compute a (feasible)
suboptimal solution to the original MILP. We are able to
establish finite-time convergence of the algorithm under
very general assumptions on the communication network,
i.e., asynchronous, unreliable (e.g., subject to packet loss),
directed time-varying graph. Our algorithm requires, as a
computation step, the calculation of the lexicographically
minimal Lagrange multiplier of a small local linear program.
However, since this problem is not trivial to solve in practice,
because of the (unknown) exponentially many constraints,
we provide a local routine, based on outer approximations,
to perform this computation step. Notably, our algorithm
preserves information privacy, i.e., the solution estimates are
not shared with neighbors. Finally, we provide numerical
computations, confirming the theoretical analysis.



This paper extends [5]. Indeed, here we achieve finite-
time convergence by exploiting piece-wise linearity of the
costs of the primal decomposition problem and by using a
different algorithmic structure. On the other hand, in [5], only
finite-time feasibility can be obtained, but it requires further
restriction of the coupling constraints, with a degradation
of the solution performance. The idea of combining local
online constraint generation and exchange is inspired by the
distributed column generation approach in [12]. However, the
algorithm of the current paper is structurally different, since it
is based on primal decomposition instead of Dantzig-Wolfe
decomposition. Moreover, the algorithm in [12] addresses
LPs and its extension to MILPs is not straightforward.

The paper is organized as follows. In Section II we
describe the problem set-up and we recall several results
on primal decomposition. In Section III we reformulate the
problem and we introduce our distributed algorithm together
with a local routine. The algorithm is analyzed in Section IV,
while in Section V we provide numerical computations. For
the sake of space, all proofs are omitted and will be provided
in a forthcoming document.

II. PROBLEM SET-UP AND PRIMAL DECOMPOSITION

We consider a network of N agents that communicate
according to a time-varying digraph G! = ({1,..., N}, &%),
where ¢ denotes time and £ C {1,...,N}? is the edge
set at time ¢. We will denote by N/ the in-neighbor set of
agent i at time ¢, i.e., N} = {j | (j,i) € £'}. We make the
following assumption on the communicaton graph.

Assumption 2.1: The communication graph G is jointly
strongly connected, i.e., the graph G = ({1,...,N},&L),
with &&= J72, &7, is strongly connected for all ¢ > 0. O
Assumption 2.1 is very general. We will see that in the
local iterates of our algorithm the agents need not know the
universal time ¢, which means that it can also be implemented
in unreliable, asynchronous communication networks, and, in
particular, in networks subject to packet loss.

We suppose that the agents want to solve the mixed-integer
linear program

_ N
min

C:XZ‘
X1,y XN i=1

N
subj. to > A;x; <b M

i=1
x; € PN (Z% xR, ie{l,...,N},

where P; C R™ are nonempty compact polyhedra with
n, = Z; + R;, and A; € R5%" and b € RS describe
coupling constraints among the variables. Throughout the
paper, we use inequality symbols also for vectors, meaning
that inequality holds for each component of the vectors. To
streamline the notation, we denote the local mixed-integer
sets as X; = P; N (Z% x R%). We assume that problem (1)
is feasible and that each agent ¢ knows only ¢;, A;, X; and
that everyone knows b.

For large-scale problems, where Zi]\ilm > S, it is of
interest to look for fast distributed algorithms providing (fea-
sible) suboptimal solutions of problem (1), with guaranteed

suboptimality bounds. Indeed, being (1) NP-hard, computing
an optimal solution may be computationally prohibitive. To
this end, we employ a method based on the convexification
of the local sets X; and on the restriction of the coupling
constraints [2]. In this paper, however, we will not rely on
the dual decomposition approach used in [2], but instead
consider the primal decomposition idea introduced in our
previous work [5], for which tighter restrictions and lower
suboptimality levels can be obtained (see [5, Section V.B]).
Formally, the convexified and restricted problem, for a given
a restriction o > 0, is
. N
min
Z1,ZN

T
C; Zj
1

N 2
subj. to > Az, <b—o @
i=1

z; € conv(X;), ie{l,...,N},

where conv(X;) denotes the convex hull of X; and we
adopted the notational convention that the variables z;, € R™
are the convex counterpart of x; € Z% x R As done in
other works, we make the following assumption.

Assumption 2.2: For a given o > 0, problem (2) is
feasible and its optimal solution is unique. |
A slight perturbation of the cost vector is sufficient to
guarantee uniqueness of the solution, while a sufficiently
tight restriction can likely allow for the feasibility of the
restricted problem [5]. Also, notice that we are not requiring
feasibility of the restricted version of (1). Problem (2) is
convex and exhibits a decomposable structure, as we show
in the next subsection.

A. Preliminaries on Relaxation and Primal Decomposition

Primal decomposition can be directly applied to prob-
lem (2). However, as it will be clear from the forthcoming
discussion, this approach would lead to an optimization
problem with constraints that are difficult to handle. To
overcome this issue, we consider the following relaxed
version of problem (2)

N
min Y (¢ z; + Rv;)

Z1,--2ZN, T
Visonvy =1

N N (3)
subj. to > Az, <b—0o+ > vl
i=1 i=1

z; € conv(X;), v; >0, ie€{l,...,N},

where 1 is the vector with all components equal to 1
and we added the v; variables, used to model violations
of the coupling constraints. These violations, however, are
penalized in the cost by an appropriate parameter R > 0.
The following lemma establishes the relationship between
the optimal solutions of problems (2) and (3).

Lemma 2.3: There exists a sufficiently large R > 0 such
that the optimal solutions of problem (3) are of the form
(z%,...,2%,0,...,0), with (z},...,2}%) being an optimal
solution of problem (2). Thus, the optimal solutions of (3)
must have v; =0 for all s € {1,...,N}. O



The proof of the statement is very similar to [14, Proposition
II1.3]. We now wish to solve (3) by exploiting the decom-
posable structure of the problem. In a primal decomposition
approach, it is customary to consider, for all i € {1,..., N},
the function p; : RS — R, defined as the optimal cost of the
i-th subproblem

pilyi) = ;nlvn ¢i z; + Ry;
subj. to A;z; <y; +v;l @)
z; € conv(X;), v; > 0,

where y; € RS is the i-th allocation vector, and the goal is
to find an optimal allocation by solving the master problem
N

min

pi(y:)
Yi:-0¥YN =1

N ®)
subj.to > y;=b—o.

i=1
Let (y3,...,yx) be an optimal solution of problem (5) and
let (z}, v}) be an optimal solution of problem (4) with y,; =
y}. Then, by using Lemma 2.3, it follows that v} = 0 for all
i and that (2}, ..., z}%) is an optimal solution of problem (2).

B. Feasible Mixed-Integer Solution Computation

The primal decomposition approach discussed in Sec-
tion II-A can be used to compute a (feasible) suboptimal
solution of problem (1). In [5], we introduced a method based
on the restriction of the coupling constraints that allows for
the computation of a feasible mixed-integer solution. For-
mally, we first define the vector L; € R with components

L} = sed{l,..., S},

inIéi)I%i Alx;,
where A7 denotes the s-th row of A; and the L; vectors
represent the minimum amount of allocation that an agent
requires for a feasible solution. Then, a tight a-priori restric-
tion can be computed as

oc21(S+1) max max

A$ .LfLs) 6
i€{17-~~)N}S€{1,...,S}( i i) (©)

where, for all 1, x% is an optimal solution of

min max
x; €X; s€{1,...,S}

(Ax; — L).
Given an optimal solution of the master problem (5), with o
defined as in (6), a feasible mixed-integer solution of prob-
lem (1) can be computed as specified by the next proposition,
where we denote by lex-min the lexicographically minimal
optimal solution of an optimization problem.

Proposition 2.4 ([5], Theorem 4.1): Let Assumption 2.2
hold and let (y7,...,y%) be an optimal solution of (5),
with o equal to (6), and R > 0 sufficiently large. Moreover,
for all 4, let (¢, &, x7) be the optimal solution of

lex-min ¢;

PisisXi

subj. to cZ-TxZ- <&
Aix; < yi +pil
x; € Xi, ¢ 2 0.

Then, (x7,...,x}) is a feasible solution of (1). |

It is worth noting that in Proposition 2.4 is the first place
where Assumption 2.2 comes into play, and is required to
guarantee feasibility of the computed solution for MILP (1).

Remark 2.5 (Suboptimality bounds): The feasible mixed-
integer solution defined in Proposition 2.4 is, in general,
suboptimal. However, tight suboptimality bounds can be
computed as suggested by [5, Theorem 4.3]. ]

III. A DISTRIBUTED FINITE-TIME ALGORITHM

Proposition 2.4 allows us to focus on the solution of prob-
lem (5) as a key step for obtaining a feasible solution of (1).
For time-varying networks and for smooth p; functions, one
can apply distributed algorithms such as the one considered
in [15], which enjoys asymptotic convergence. However, the
p; are not smooth in general. In this section we introduce a
distributed algorithm with finite-time convergence that solves
problem (5) and computes a (possibly suboptimal) feasible
solution of (1). Before describing the algorithm, we discuss
a linear program reformulation of problem (5).

A. LP Reformulation of Master Problem

It is well known that, since X; is bounded, conv(X;) is
a bounded polyhedron [16]. This implies that each subprob-
lem (4) is in fact a Linear Program. This property allows us
to prove the following important result.
Lemma 3.1: For all ¢ € {1,...,N}, the function p; is
piece-wise linear, i.e., there exist a%,...,aliLil € R® and
1 fF) € R such that

pi(y:) = max (y/'aj + f;). O
A consequence of Lemma 3.1 is that p;(y;) can be al-
ternatively defined as the smallest number p; such that
(af)Tyi + ff < p; for all £ € L;. Thus, problem (5) can
be equivalently recast as the linear program

N
min i
Y150 ¥YN ; pi
P1,--PN VT

N (7)
subj.to Yy, =b—o0
i=1

yial+ f{ <pi, VleL;,Vie{l,...,N}.

In the following, we will compactly denote the optimization
variable as (y, p). We point out that the number of inequality
constraints of (7) is Zfil |L;|, which can be extremely
large, since |L;| is usually exponential in the number of
integer variables of X;. Thus, it is not affordable to solve
the problem by enumerating all the constraints. In the next
subsection we introduce an algorithm, based on online con-
straint generation, to solve (7). Such algorithm is specifically
designed to solve MILP (1), since the resulting LP has a huge
number of constraints, not necessarily known a priori. To
guarantee convergence of all the nodes to the same solution,
we focus on the lex-optimal solution of problem (7).

Given a vertex (y, p) of the feasible set of problem (7),
it is well known from linear programming that a basis
associated to (y, p) consists of N (S + 1) active constraints,




i.e., satisfied with equality at (y, p), such that the relaxed
LP, containing only the constraints in the basis, has the same
optimal solution of (7).

B. Distributed Algorithm: Description and Discussion

In this subsection, we introduce our algorithm Distributed
Primal Decomposition with Constraint Generation for MILP
(DiP-COGEN-MILP). We first introduce the notation. We
use the abbreviation “lex-min multiplier” to denote the
lexicographically minimal Lagrange multiplier. The subscript
[7] indicates the agent that computed a given quantity, while
the subscript 7 is used to indicate the i-th component of a
vector (when both are necessary, we write i, [j]). We denote
the basis of agent 7 at time ¢ with Bfi] and we say that the
tuple (a, f,7), with a € RS, f € Rand j € {1,...,N},
belongs to Bfi] if the constraint y;ra + f < p; is in the basis
of agent 4 at time ¢. If B[ti] is a basis, then (yfﬂ , pfi]) must be
the lex-optimal solution of problem (9) with Hryyp = B[tl.].

At each communication round ¢, agent ¢ has a current
guess yfi] of the global allocation vector, that may vio-
late some of the constraints of problem (7). Thus, a new
constraint is generated as follows. It computes a Lagrange
multiplier u’fi] of problem (8). According to [17, Section
5.4.4], —u‘fi is a subgradient of p; at y;m, and a feasible
vector (y,pg of problem (7) must satisfy the subgradient
inequality, i.e., it must hold (y} ; — yj)Tyfi] +pfy < pje
Thus, agent ¢ generates this constraint and solves a local
version of problem (7) to find a new guess of the global
allocation, and a basis of the solution is communicated to
neighbors. Finally, the updated allocation is used to compute
a tentative mixed-integer solution for problem (1).

Our algorithm DiP-COGEN-MILP is summarized in the
table from the perspective of node ¢, while the convergence
properties are formalized in Section IV. We want to stress
that problem (8) is a small linear program, but it is not
possible to use standard techniques to solve it. Indeed,
conv(X;) has an exponential number of constraints, not
explicitly known. In Section III-C, we provide a routine
that can be used to obtain the lex-min multiplier (needed to
guarantee finite-time convergence) without enumerating all
the constraints. As for problem (9), any lexicographic solver
for LPs can be used. Finally, as regards problem (10), it can
be solved as described in [5], i.e., by first determining the
smallest ; such that the constraint A;x; < yfﬁ + il
is satisfied, then by minimizing ¢/ x;. In order to cope
with unbounded problems at an early stage of the algorithm
execution, we consider the additional bounding box —M1 <
y,p < M1 in problem (9). The “big-M" initialization
indicated in the table consists of computing y%] by solving
problem (9) with Hyyp = 0.

Remark 3.2 (Basis dimension): Since the S equality con-
straints of problem (7) are always satisfied at any feasible
vector, the size of communicated bases consists of N (S +
1) — S active inequality constraints (except the bounding box
constraints that are common to all the agents).

Comparison with previous work. In [5], a distributed
algorithm has been proposed to obtain an optimal solution

Distributed Algorithm DiP-COGEN-MILP
Initialization: y) , obtained via big-M and BJj =0

Evolution: for all t = 0,1, ...

T .
Generate /j; = ((—ufil)y (Pfy+ mfy i), 1) as

constraint tuple with P the optimal cost and u’fi]
the lex-min multiplier of

min ciTzi + Rv;
subj. to l‘l’[z] : Aizi < yf[z] + Ui]- (8)

z; € conv(X;), v; >0
Receive Bf;) from j € N} and set

Hoyp = B[ti] U (UjeNf ij]) U {hfl]}

Compute (y@.‘]H, pf;]rl) as the optimal solution and B[t;]“l

as the corresponding basis of

N
lex-min > p;
i=1

Plseey PN
N

subj. to Yy, =b—o )
=1
YjTCH‘fSPj; V(a, f.j) € Hrwe

Compute Xa—l as the optimal solution of

lex-min ¢;

®irirXi

subj. to c:xi <&
Aix; < yfﬁ + @il
x; € Xi, w; > 0.

(10)

of problem (5), used to retrieve a feasible mixed-integer
solution of the original MILP (1). The algorithm in [5] is
based on a subgradient method with diminishing step size.
In this paper, instead, we use a constraint generation and
exchange technique, although the size of the optimization
variable in problem (9) depends on N. We highlight that
the constraint exchange method and the piece-wise linearity
of the p; functions (cf. Lemma 3.1) allow us to guarantee
finite-time convergence of the algorithm under very general
assumptions on the communication network.

C. Routine for Local Problem

In this subsection, we discuss how to practically compute
the lex-min Lagrange multiplier of problem (8). For a fixed
y: € RY, we can compute the dual of problem (8) when
dualizing only the constraint A;z; < y; + v;1. The dual
problem, in minimization form, is
min g;(p;)

3

subj. to p; >0 (1)

n 1<R,



where gi(p,) = plyi — min (] +p] Ai)xi).

We are interested in ﬁﬁdinlg the lex-optimal solution of
problem (11). To this end, we now formulate a finite-time
algorithm based on outer approximations. To differentiate the
notation with the distributed algorithm, here we denote the
iterations with the letter k.

Algorithm 2 Local routine for problem (9)

Initialization: Set k¥ = 0 and start at a feasible uf € RS
Evolution: Repeat until ¢! (u¥) = ¢;(u¥)
Compute g¥ =y, — A;x¥ (subgradient of ¢;(p¥)) with

xf € argmin (CTT + (,qu)TAi)xi (12)
x; Evert(X;)
Update
it = lexmin  gf(p,) (13)
>0, u 1<R
where
k 2 (T —u) T g7
¢ () = max (i (u]) + (s — ) " 97)
Set k«+— k+1

Notice that the lex-optimal solution of problem (13) can be
found by using any lexicographic solver for linear programs
applied to the epigraph form of the problem. We now give
the convergence result of Algorithm 2.

Proposition 3.3: Let y; € RS be given and let the
sequence {u¥},>0 be generated by Algorithm 2. Moreover,
let piEX denote the lex-optimal solution of problem (11).
Then, Algorithm 2 converges in finite time to pi*%, i.e., there
exists Ko € N such that p° = pt™ and

g (1) = (). O
IV. ANALYSIS OF DIP-COGEN-MILP

In this section we analyze DiP-COGEN-MILP. We first
provide an intermediate result, which states that the set
of all Lagrange multipliers of problem (7) is a compact
polyhedron, and each vertex is associated to a linear portion
of the piece-wise linear p; (cf. Lemma 3.1). We will denote
by L;(y;) the indices ¢ for which the maximum of the piece-
wise linear p; (cf. Lemma 3.1) is attained, i.e.,

Li(y:) 2{t e Li|y]al + f{ =pi(y:)}-

Lemma 4.1: For a fixed y;, let S; denote the set of all
Lagrange multipliers of problem (4). Then,

(i) S; is a compact polyhedron;

(ii) for all @, € vert(S;), there exists an £ € L;(y;) such

that — 1, = a. O

A consequence of Lemma 4.1 is that the lexicographically
minimal Lagrange multiplier of problem (4) can be used to
compute a constraint of problem (7).

Corollary 4.2: Lety; € RS be given and let p;(y;) be the
optimal cost and p;®* the lex-min multiplier of problem (4).
Then, there exists a £ € £;(y;) C L; such that af = —pt=
and ff = pi(y:) +y pi™. U

Notice that DiP-COGEN-MILP generates constraints as
suggested by Corollary 4.2. But since L; is a finite set for
all 7, this implies that the set of generated constraints during
the algorithm evolution is finite. This key fact allows us to

obtain finite-time convergence (cf. Theorem 4.4).

A. Convergence Result

In this section, we formalize the convergence result of
DiP-COGEN-MILP, under the following assumption.

Assumption 4.3: The lex-optimal solution (y*,p*) of
problem (7) exists. U
We now state the main convergence result of the paper.

Theorem 4.4: Let Assumptions 2.1, 2.2 and 4.3 hold and
let o be defined as in (6) and R, M > 0 be sufficiently large.
Consider the allocation sequences {y@.]}tzo and the mixed-
integer sequences {xfi]}tzo, i € {1,..., N}, generated by
DiP-COGEN-MILP. There exists a sufficiently large (finite)
time 7" > 0 such that, for all ¢ > T,

(i) for all i € {1,...,N}, it holds yf; = § € RY?,

optimal solution of problem (5);

(i) The vector (xfl]7 e ,fo}) € RELimi s a feasible
solution for problem (1), i.e., xfi] € X, for all 7 €
{1,...,N} and Zfil Aixfi] <b. O

The mixed-integer solution computed by the agents for
t > T is feasible for problem (1). However, in general,
it is suboptimal, but a tight suboptimality bound can be
computed by using [5, Theorem 4.3]. We highlight that a side
contribution of the paper is that the agents reach consensus
in finite time on an optimal solution of (5).

A remarkable property of the algorithm is that the agents
can detect convergence in a fully distributed way, so that
the following stopping criterion can be used: for uniformly
jointly strongly connected graphs with period B, each agent
1 can conclude that convergence has occurred if its local
solution (yfi]7 p‘[fi]) has not changed after 2BN + 1 commu-
nication rounds [18, Theorem 1].

V. NUMERICAL COMPUTATIONS

In this section, we provide a numerical example that
validates the theoretical analysis of Section IV. For the sake
of space, we only show how DiP-COGEN-MILP behaves
on a single instance of problem (1). By using the same
generation model as [5] (with & € [0,0.1]), we generate
a random MILP with N = 30 agents, S = 3 coupling
constraints and resource vector b with entries in [20, 120].
Moreover, we set R = 10 - |p*||1, with pu* a Lagrange
multiplier of problem (2) (so that Lemma 2.3 applies),
and M = 2 -103. As for the communication network,
we randomly generate an Erd&s-Rényi undirected connected
graph with edge probability equal to 0.1.

In Figure 1 (left), the evolution of the optimal cost of
problem (9) (for all ¢), compared to the optimal cost of
problem (7), is shown. In an outer approximation fashion, the




algorithm selects infeasible points (yfi], pfi]) that eventually
become feasible (for problem (7)) and equal to each other.
The figure highlights also that in the early iterations there
are still insufficient constraints in the network, so that the
global allocation estimates are attained at the bounding box.
We point out that, by construction, the points (y'fi],pfi]) are
always feasible for problem (5). In Figure 1 (right), we
compare, for all i, the evolution of the cost of (yfi]7 pfi])
for problem (5), with respect to its optimal cost. We see that
initially the points have a high cost, but they become optimal
in finite time, as expected from Theorem 4.4.
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Fig. 1. On the left, the evolution of the optimal cost of problem (9),

compared with the optimal cost J* of problem (7) is reported for all 4,.
The inset figure shows the behavior of the algorithm in the early iterations.
On the right, the evolution of the cost of problem (5) at the computed vectors
yfi], compared with J*, is shown on a logarithmic scale.

Now, we consider the sequence of distributed mixed-
integer solutions (xtl], . ,fo]). In Figure 2, the evolution
of primal feasibility (with respect to the coupling constraint)
is shown. Notice that the algorithm is allowed to violate the
constraints during the evolution, but, according to Proposi-
tion 2.4, it becomes feasible when convergence to an optimal
solution of problem (5) occurs. We highlight that the algo-
rithm in [5] could require a larger number of iterations than
DiP-COGEN-MILP until feasibility is reached. However,
such comparison is not completely meaningful, as one should
also compare the local computation time and the quantity of
exchanged information among agents.

0 10 20 30 40 50

communication round ¢

Fig. 2. Evolution of the distributed coupling constraint value. As soon
as convergence is reached, the mixed-integer solution is guaranteed to be
feasible for problem (1).

VI. CONCLUSIONS

In this paper, we proposed a novel finite-time distributed
algorithm to compute a feasible solution of MILP (1), with
suboptimality bounds. We considered a convexification of
the original MILP, with restricted coupling constraints, to
which we applied the primal decomposition approach of [5].
After a reformulation of the primal decomposition (resource

allocation) problem to a LP with an exponential number of
unknown constraints, we devised a distributed algorithm, in
which agents generate constraints of the LP and exchange
solution bases, until they eventually converge to the lex-
optimal solution of the LP. The allocation estimates are
used to compute tentative mixed-integer solutions, which are
guaranteed to be feasible for problem (1) when convergence
of the distributed algorithm has occurred. In order to guar-
antee finite-time convergence, we provided a local routine
that allows for the generation of constraints by using the
lexicographically minimal Lagrange multiplier of a small
problem at each node. Finally, we provided a numerical
example to validate the results.

REFERENCES

[1] A. Richards and J. How, “Mixed-integer programming for control,” in
Proceedings of the American Control Conference. 1EEE, 2005, pp.
2676-2683.

[2] R. Vujanic, P. M. Esfahani, P. J. Goulart, S. Mariéthoz, and M. Morari,
“A decomposition method for large scale MILPs, with performance
guarantees and a power system application,” Automatica, vol. 67, no. 5,
pp. 144-156, 2016.

[3] A. Falsone, K. Margellos, and M. Prandini, “A decentralized approach
to multi-agent MILPs: finite-time feasibility and performance guaran-
tees,” preprint arXiv:1706.08788, 2017.

[4] ——, “A distributed iterative algorithm for multi-agent MILPs: finite-
time feasibility and performance characterization,” IEEE Control Sys-
tems Letters, vol. 2, no. 4, pp. 563-568, 2018.

[5] A. Camisa, I. Notarnicola, and G. Notarstefano, “A primal decompo-

sition method with suboptimality bounds for distributed mixed-integer

linear programming,” preprint arXiv:1811.03657, 2018.

A. Testa, A. Rucco, and G. Notarstefano, “Distributed mixed-integer

linear programming via cut generation and constraint exchange,”

preprint arXiv:1804.03391, 2018.

[7]1 S. Karaman and G. Inalhan, “Large-scale task/target assignment for
UAV fleets using a distributed branch and price optimization scheme,”
IFAC Proceedings Volumes, vol. 41, no. 2, pp. 13310-13317, 2008.

[8] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Transactions on Robotics,
vol. 25, no. 4, pp. 912-926, 2009.

[9] M. Biirger, G. Notarstefano, F. Bullo, and F. Allgower, “A distributed
simplex algorithm for degenerate linear programs and multi-agent
assignments,” Automatica, vol. 48, no. 9, pp. 2298-2304, 2012.

[10] D. Richert and J. Cortés, “Robust distributed linear programming,”
IEEE Transactions on Automatic Control, vol. 60, no. 10, pp. 2567—
2582, 2015.

[11] D. Richert and J. Cortes, “Distributed linear programming with event-
triggered communication,” SIAM Journal on Control and Optimiza-
tion, vol. 54, no. 3, pp. 1769-1797, 2016.

[12] M. Biirger, G. Notarstefano, and F. Allgower, “Locally constrained
decision making via two-stage distributed simplex.” in CDC-ECE,
2011, pp. 5911-5916.

[13] G. Notarstefano and F. Bullo, “Distributed abstract optimization via
constraints consensus: Theory and applications,” IEEE Transactions
on Automatic Control, vol. 56, no. 10, pp. 2247-2261, 2011.

[14] 1. Notarnicola and G. Notarstefano, “Constraint coupled dis-
tributed optimization: Relaxation and duality approach,” preprint
arXiv:1711.09221, 2017.

[15] H. Lakshmanan and D. P. De Farias, “Decentralized resource alloca-
tion in dynamic networks of agents,” SIAM Journal on Optimization,
vol. 19, no. 2, pp. 911-940, 2008.

[16] R. R. Meyer, “On the existence of optimal solutions to integer and
mixed-integer programming problems,” Mathematical Programming,
vol. 7, no. 1, pp. 223-235, 1974.

[17] D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont,
1999.

[18] M. Chamanbaz, G. Notarstefano, and R. Bouffanais, “Randomized
constraints consensus for distributed robust linear programming,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 49734978, 2017.

[6



	Introduction
	Problem Set-up and Primal Decomposition
	Preliminaries on Relaxation and Primal Decomposition
	Feasible Mixed-Integer Solution Computation

	A distributed finite-time algorithm
	LP Reformulation of Master Problem
	Distributed Algorithm: Description and Discussion
	Routine for Local Problem

	Analysis of DiP-COGEN-MILP
	Convergence Result

	Numerical computations
	Conclusions
	References

