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Abstract: In Variational Autoencoders, when working in high-dimensional latent spaces, there is a natural 
collapse of latent variables with minor significance, that get altogether neglected by the generator. We discuss this 
known but controversial phenomenon, sometimes referred to as overpruning, to emphasize the under-use of the 
model capacity. In fact, it is an important form of self-regularization, with all the typical benefits associated with  
sparsity: it forces the model to focus on the really important features, enhancing their disentanglement and 
reducing the risk of overfitting. In this article, we discuss the issue, surveying past works, and particularly focusing 
on the exploitation of the variable collapse phenomenon as a methodological guideline for the correct tuning of 
the model capacity, and of the loss function parameters. 
 
Keywords: Variational autoencoders, Variable collapse, Overpruning, Sparsity, Kullback-Leibler divergence, 
Generative models, Gaussian mixture models. 
 
 
 
1. Introduction 

 

Variational Autoencoders (VAE) ([16, 19]) are a 
fascinating facet of autoencoders, supporting, among 
other things, random generation of new data samples. 
Many interesting researches have been recently 
devoted to this subject, aiming either to extend the 
paradigm, such as conditional VAE ([20, 21]), or to 
improve some of its aspects, as in the case of 
importance weighted autoencoders (IWAE) and their 
variants ([4, 18]). From the point of view of 
applications, variational autoencoders proved to be 
successful for generating many kinds of complex data 
([12, 23]), comprising probabilistic predictions of 
unkown situations ([22], [10]). 

Variational Autoencoders have a very nice 
mathematical theory (see [9] for an introduction), that 
we shall briefly survey in the next Section. A major 
component of the objective function neatly resulting 
from this theory is the Kullback-Leibler divergence 

( ( | ) || ( ))KL Q z X P z , where ( | )Q z X  is the 

distribution of latent variables z  given the data X  

guessed by the network, and ( )P z  is a prior 

distribution of latent variables (typically, a Normal 
distribution). This component is acting as a 
regularizer, inducing a better distribution of latent 
variables, essential for generative sampling. 

An additional effect of the Kullback-Leibler 
component is that, working in latent spaces of 
sufficiently high-dimension, the network learns 
representations sensibly more compact than the actual 
network capacity: many latent variables are zeroed-out 
independently from the input, and are completely 
neglected by the generator. In the case of VAE, this 
phenomenon was first observed in [4]; following a 
terminology introduced in [24], it is sometimes 
referred to as overpruning, to stress the fact that the 
model is induced to learn a suboptimal generative 
model by limiting itself to exploit a limited number of 
latent variables. From this point of view, it is usually 
regarded as a negative property, and different training 
mechanisms have been envisaged to tackle this issue: 
we shall survey on the recent literature in Section 6.1. 
In this article, we take a slightly different perspective, 
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similar to the one advocated in [14, 5], looking at  
sparsity of latent variables as an important form of 
self-regularization, with all the typical benefits 
associated with it: in particular, it forces the model to 
focus on the really important features, typically 
resulting in a more robust and disentangled encoding, 
less prone to overfitting. Sparsity is usually achieved 
in Neural Network by means of weight-decay L1 
regularizers (see e.g. [11]), and it is hence a pleasant 
surprise to discover that a similar effect is induced in 
VAEs by the Kullback-Leibler component of the 
objective function. 

In this article (a revised and extended version of 
[2]) we especially focus on the exploitation of the 
variable collapse phenomenon as a  methodological 
guideline for the correct tuning of the KL component 
in the loss function (in order to ensure that its 
regularization effect is properly working), and of the 
model capacity, progressively augmenting the 
dimension of the latent space up to the emergence of 
sparsity. 

The structure of the article is the following:  
Section 2 provides a short introduction to Variational 
Autoencoders; in Section 3, we introduce the collapse 
phenomenon, discussing a couple of neural 
architectures for the generation of MNIST digits; 
Section 4 is devoted to the problem of understanding 
if the regularization effect of the KL-component is 
properly working, a problem tightly related to the 
calibration between reconstruction loss and  
KL-divergence; in Section 5, we discuss the relation 
between the collapse phenomenon and the  
KL-divergence, giving experimental evidence by 
investigating the behavior of latent variables corrupted 
by a progressive amount of Gaussian noise; Section 6 
contains a short survey on recent literature on this 
controversial topic; finally we offer some concluding 
remarks in Section 7. 

 
 

2. Variational Autoencoders 
 

In latent variable models we express the 
probability of a data point X  through marginalization 
over a vector of latent variables:  
 

( )

( ) = ( | , ) ( )

( | , ),z P z

P X P X z P z dz

P X z

θ

θ≈

 

 (1) 

 
where θ  are the parameters of the model (we shall 
omit them in the sequel). 

Sampling in the latent space may be problematic 
for several reasons. The variational approach exploits 
sampling from an auxiliary distribution ( | )Q z X . The 

relation between ( )P X  and ( | ) ( | )z Q z X P X z   is 

expressed by the following equation: 

                                                 
1 http://www.cs.unibo.it/ 
asperti/variational.htmlhttp://www.cs.unibo.it/asperti/variat
ional.html 

( | )

( ( )) ( ( | ) || ( | )) =

( ( | ) ( ( | ) || ( ))z Q z X

log P X KL Q z X P z X

log P X z KL Q z X P z

−
− 

 (2) 

 
Since the Kullback-Leibler divergence is always 

positive, the term on the right is a lower bound to the 
loglikelihood ( )P X , known as Evidence Lower 

Bound (ELBO). 
Supposing ( | )Q z X  is a reasonable approximation 

of ( | )P z X , the quantity ( ( ) || ( | ))KL Q z P z X  is 

small; in this case the loglikelihood ( )P X  is close to 

the Evidence Lower Bound, and it looks reasonable to 
take as learning objective its maximization. 

Note that the ELBO has a form resembling an 
autoencoder, where the term ( | )Q z X  maps the input 

X  to the latent representation z , and ( | )P X z  

decodes z  back to X . 
The common assumption in variational 

autoencoders is that ( | )Q z X  is normally distributed 

around an encoding function ( )Xθμ , with variance 

( )Xθσ ; similarly ( | )P X z  is normally distributed 

around a decoder function ( )d zθ . All functions θμ , 

θσ  and dθ  are computed by neural networks. 

Knowing the variance of latent variables allows 
sampling during training. 

Provided the decoder function ( )d zθ  has enough 

power, the shape of the prior distribution ( )P z  for 

latent variables can be arbitrary, and for simplicity it 
is assumed to be a normal distribution ( ) = (0,1).P z G  

The term ( ( | ) || ( )KL Q z X P z  is hence the  

KL-divergence between two Gaussian distributions 
2( ( ), ( ))G X Xθ θμ σ  and (1,0)G  which can be 

computed in closed form:  
 

2 2 2

( ( ( ), ( )), (0,1)) =

1
( ( ) ( ) ( ( )) 1)

2

KL G X X G

X X log X

θ θ

θ θ θ

μ σ

μ σ σ+ − −
 (3) 

 
As for the term ( | ) ( ( | )z Q z X log P X z  , under the 

Gaussian assumption the logarithm of ( | )P X z  is just 

the quadratic distance between X  and its 
reconstruction ( )d zθ . 

The problem of integrating sampling with 
backpropagation, is solved by the well known 
reparametrization trick ([16, 19]). 

 
 

3. The Collapse Phenomenon 
 

In a video available on line1 we describe the 
trajectories in a binary latent space followed by ten 
random digits of the MNIST dataset (one for each 
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class) during the first epoch of training. The animation 
is summarized in Fig. 1, where we use a fading effect 
to describe the evolution in time.  

 
 

 
 

Fig. 1. Trajectories of ten MNIST digist in a binary latent 
space during the first epoch of training; pictures fade away 

with time.  
 
 

In this case, the network is a simple dense network 
with layers of dimension 784-256-64-16-2; we shall 
consider the convolutional case in Section 3.1. 

In the figure, each digit is depicted by a circle with 
an area proportional to its variance. Intuitively, you 
can think of this area as the portion of the latent space 
producing a reconstruction similar to the original. At 
start time, the variance is close to 1, but it rapidly gets 
much smaller. This is not surprising, since we need to 
find a place for 60000 different digits. Note also that 
the ten digits initially have a chaotic distribution, but 
progressively dispose themselves around the origin in 
a Gaussian-like shape. 

The previous behaviour is the expected one. 
However, augmenting the number of dimensions of 
the latent space, we face an interesting phenomenon: 
the representation becomes  sparse. 

In Fig. 2 we show the evolution during a typical 
training of the variance of latent variables in a space 
of dimension 16 (the rest of network is essentially 
unchanged). 

Table 1 provides relevant statistics for each latent 
variable at the end of training, computed over the full 
dataset: the mean of its variance (that we expect to be 
around 1, since it should be normally distributed), and 
the mean of the computed variance 2 ( )Xθσ  (that we 

expect to be a small value, close to 0). The mean value 
is around 0 as expected, and we do not report it.   

All variables highlighted in red have an anomalous 
behavior: their variance is very low (in practice, they  
always have value 0), while the variance 2 ( )Xθσ  

computed by the network is around 1 for each X . In 

other words, the representation is getting  sparse! Only 
8 latent variables out of 16 are in use: the other ones 
are completely ignored by the generator. For instance, 
in Fig. 3 we show a few digits randomly generated 
from Gaussian sampling in the latent space (upper 
line) and the result of generation when inactive latent 
variables have been zeroed-out (lower line): they are 
indistinguishable. 
 

 

 
 

Fig. 2. Evolution of the variance along training  
(16 variables, MNIST case). On the x-axis we have 

numbers of minibatches, each one of size 128. 
 

 
Table 1. Inactive variables in the VAE for generating 

MNIST digits (dense case, 784-256-64-32-16 architecture). 
 

 
 

 

 
 

Fig. 3. Upper line: digits generated from a vector of 16 
normally sampled latent variables. Lower line: digits 
generated after “red” variables have been zeroed-out: these 
latent variables are completely neglected by the generator. 
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3.1. Convolutional Case 
 

With convolutional networks, sparsity is less 
evident. We tested a relatively sophisticated network, 
whose structure is summarized in Fig. 4; we only 
describe the encoder; the structure of the decoder is 
symmetric, upsampling vai transposed Convolutions.  

 
 

 
 
Fig. 4. Architecture of the convolutional encoder.  
The two final layers compute mean and variance  

for 16 latent variables. 

 
 
The previous network is able to produce excellent 

generative results (see Fig. 5).  
In this case, only 3 of the 16 latent variables are 

zeroed out. Having less sparsity seems to suggest that 
convolutional networks make a better exploitation of 
latent variables, typically resulting in a more precise 
reconstruction and improved generative sampling. 
This is likely due to the fact that latent variables 
encode information corresponding to different 
portions of the input space, and are less likely to 
become useless for the generator. 

                                                 
2 Called by some authors  aggregate posterior distribution 
[17]. 

  
 

Fig. 5. Generation of MNIST digits via a convolutional 
network. 

 
 

4. Ensuring KL-divergence is Working 
 

The whole point of VAEs is to force the generator 
to produce a marginal encoding distribution2 

( ) = ( | )XQ z Q z X  close to the prior ( )P z . 

Averaging the Kullback-Leibler regularizer 
( ( | ) || ( ))KL Q z X P z  on all input data, and expanding 

the Kullback-Leibler divergence in terms of entropy, 
we get:  

 

( | )

( )

( ) ( ). ( | )

( ( | ) || ( ))

= ( ( | )) ( ( | ), ( ))

= ( ( | )) ( )

= ( ( | )) ( )

= ( ( | )) ( ( ), ( ))

X

X X

X X z Q z X

X z Q z

X

Cross entropy of Q X vs P zAvg Entropy of Q z X

KL Q z X P z

Q z X Q z X P z

Q z X logP z

Q z X logP z

Q z X Q z P z
−

− +
− +
− +
− +

 


 
  
 






 


 



 (4) 

 
 
The cross-entropy between two distributions is 

minimal when they coincide, so we are pushing ( )Q z  

towards ( )P z . At the same time, we try to augment the 

entropy of each ( | )Q z X ; under the usual assumption 

that ( | )Q z X  is Gaussian, this amounts to enlarge the 

variance, further improving the coverage of the latent 
space, essential for generative sampling (at the cost of 
more overlapping, and hence more confusion between 
the encoding of different datapoints). 

If the KL-divergence is working, we expect ( )Q z  

to be normally distributed. 
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Let us look at ( ) = ( | )XQ z Q z X  as a Gaussian 

Mixture Model (GMM), and let us consider its 
moments. 

Its first moment (that should be 0) is just the mean 
over all X  of the first moments of the composing 
distributions 2( | ) = ( ( ), ( ))Q z X N X Xμ σ . This 

means that we expect that the mean of all ( )Xμ  is 0, 

i.e. the latent space should be centered around the 
origin. 

The variance of ( )Q z  (that should be 1) is  
 

(2) (1) 2 (2) (1) 2( ) = ( ) = ( ) ( )Var f Xμ μ μ μ− − , 
 

where we use the hat notation to express the mean over 
all data X . 

Under the assumption that (1) = 0μ ,  
 



 



(2)

2 (1) 2

2 2

( ) = ( )

= ( ) ( ( ))

= ( ) ,

Var f X

X X

X

μ

σ μ

σ σ

+

+

 

 

where the last passage is again justified by the 
assumption that (1) = 0μ . 

So, if the KL-divergence is properly working, we 
expect that, for each variable z , the sum between the 
mean of the variances 2 ( )Xσ  computed by the 

network for each X  and its actual variance should  
be 1, that is a condition that can be easily checked. 

The reader is referred to [1] for a more thorough 
investigation of the previous law, together with its 
experimental validation on many different datasets. 

 
 

5. KL-divergence and Sparsity 
 

Let us now try to better understand the collapse 
phenomenon. Let us consider again the loglikelihood 
for data X.  

 

( | ) ( ( | ) ( ( | ) || ( ))z Q z X log P X z KL Q z X P z−   
 

If we remove the Kullback-Leibler component 
from the previous objective function, or just keep the 
quadratic penalty on latent variables, the sparsity 
phenomenon disappears. So, sparsity must be related 
to that component, and in particular to the part of the 
term trying to keep the variance close to 1, that is  

 

 2 2( ) ( ( )) 1X log Xθ θσ σ− + +  (5) 
 

whose effect typically degrades the distinctive 
characteristics of the features. It is also evident that if 
the generator ignores a latent variable, ( | )P X z  will 

not depend on it and the loglikelihood is maximal 
when the distribution of ( | )Q z X  is equal to the prior 

distribution ( )P z , that is just a normal distribution 

with 0 mean and standard deviation 1. In other words, 

the generator is induced to learn a value ( ) = 0Xθμ , 

ans a value ( ) = 1Xθσ ; sampling has no effect, since 

the sampled value for z  will just be ignored. 
During training, if a latent variable is of moderate 

interest for reconstructing the input (in comparison 
with other variables), the network will learn to give 
less importance to it; at the end, the Kullback-Leibler 
divergence may prevail, pushing the mean towards 0 
and the standard deviation towards 1. This will make 
the latent variable even more noisy, in a vicious cycle 
that will eventually induce the network to completely 
ignore the latent variable (Fig. 6). 

 
 

 
 

Fig. 6. The vicious cycle leading to latent variable collapse. 
 
   

We can get some empirical evidence of the 
previous phenomenon by artificially deteriorating the 
quality of a specific latent variable. In Fig. 7 we show 
the evolution during training of one of the active 
variables of the variational autoencoder in Table 1 
subject to a progressive addition of Gaussian noise. 
During the experiment, we force the variables that 
were already inactive to remain so, otherwise the 
network would compensate the deterioration of a new 
variable by revitalizing one of the dead ones. 

 
 

 
 

Fig. 7. Evolution of reconstruction gain and KL-divergence 
of a latent variable during training, acting on its quality by 
addition of Gaussian blur. We also show in the same picture 
the evolution of the variance, to compare their progress. 
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In order to evaluate the contribution of the variable 

to the loss function we compute the difference 
between the reconstruction error when the latent 
variable is zeroed out with respect to the case when it 
is normally taken into account; we call this 
information  reconstruction gain.  

After each increment of the Gaussian noise we 
repeat one epoch of training, to allow the network to 
suitably reconfigure itself. In this particular case, the 
network reacts to the Gaussian noise by enlarging the 
mean values ( )x Xμ , in an attempt to escape from the 

noisy region, but also jointly increasing the KL-
divergence. At some point, the reconstruction gain of 
the variable is becoming less than the KL-divergence; 
at this point we stop augmenting the Gaussian noise. 
Here, we assist to the sparsity phenomenon: the KL-
term is suddenly pushing variance towards 1 (due to 
equation 5), with the result of decreasing the KL-
divergence, but also causing a sudden and catastrophic 
collapse of the reconstruction gain of the latent 
variable. 

Contrarily to what is frequently believed, sparsity 
seems to be reversible, at some extent. If we remove 
noise from the variable, as soon as the network is able 
to perceive a potentiality in it (that may take several 
epochs, as evident if Fig. 7), it will eventually make a 
suitable use of it. Of course, we should not expect to 
recover the original information gain, since the 
network may have meanwhile learned a different 
repartition of roles among latent variables. 

 
 

6. A Controversial Issue 
 
The sparsity phenomenon in Variational 

Autoencoders is a controverial topic: you can either 
stress the suboptimal use of the actual network 
capacity (overpruning), or its beneficial regularization 
effects. In this section we shall rapidly survey on the 
recent research along this two directions. 

 
 

6.1. Overpruning 
 

The observation that working in latent spaces of 
sufficiently high-dimension, Variational 
Autoencoders tend to neglect a large number of latent 
variables, likely resulting in impoverished, suboptimal 
generative models, was first made in [4]. The term  
overpruning to denote this phenomenon was 
introduced in [24], with a clearly negative acception: 
an issue to be solved to improve VAE. 

The most typical approach to tackle this issue is 
that of using a parameter to trade off the contribution 
of the reconstruction error with respect to the 
Kullback-Leibler regularizer:  

 

( | )

( ( ))

( ( | ) ( ( | ) || ( ))z Q z X

log P X

log P X z KL Q z X P zλ
− ≈

− + 

 (6) 

 
The theoretical role of this lambda -parameter is 

not so evident; let us briefly discuss it. In the closed 
form of the traditional logloss fo VAE there are two 
parameters that seems to come out of the blue, and that 
may help to understand the λ . The first one is the 
variance of the prior distribution, that seems to be 
arbitrarily set to 1. However, as should be clear from 
the discussion in Section 4, a different variance for the 
prior may be easily compensated by the learned means 

( )Xμ  and variances 2 ( )Xσ  for the posterior 

distribution ( | )Q z X : in other words, the variance of 

the prior has essentially the role of fixing a unit of 
measure for the latent space. The second choice that 
looks arbitrary is the assumption that the distribution 

( | )P X z  has a normal shape around the decoder 

function ( )d zθ : in fact, in this case, the variance of 

this distribution may strongly affect the resulting loss 
function, and could justify the introduction of a 
balancing λ  parameter. 

Tuning down λ  reduces the number of inactive 
latent variable, but this may not result in an improved 
quality of generated samples: the network uses the 
additional capacity to improve the quality of 
reconstruction, at the price of having a less regular 
distribution in the latent space, that becomes harder to 
exploit by a random generator. 

More complex variants of the previous technique 
comprise an annealed optimization schedule for λ  [3] 
or enforcing minimum KL contribution from subsets 
of latent units [15]. All these schemes require hand-
tuning and, to cite [24], they easily risk to “take away 
the principled regularization scheme that is built into 
VAE.” 

Alternatively, we may try to  learn the correct 
value for λ  during training, es e.g. attempted in [7]. 
The problem, in this case, is the choice of the loss 
function to minimize: if we use reconstruction error, 
the network will simply try to neglect the  
KL-component. The final objective is to maximize the 
quality of generated samples, but unfortunately there 
is no clear metrics for that. State of the art proposal for 
measuring the quality of generated samples, such as 
Frechet Inception Distance [13] are not accurate 
enough to be used for balancing between 
reconstruction error and KL-divergence. We suggest 
to select a minimal λ  large enough to ensure the 
regularization effect of KL-component, that can be 
done by checking - either manually or automatically - 
the laws of Section 4. 

A different way to tackle overpruning is that 
model-based, consisting in devising architectural 
modifications that may alleviate the problem. For 
instance, in [25] the authors propose a probabilistic 
generative model composed by a number of sparse 
variational autoencoders called epitoms that partially 
share their encoder-decoder architectures. The 
intuitive idea is that each data X  can be embedded 
into a small subspace XK  of the latent space, specific 

to the given data. 



Sensors & Transducers, Vol. 234, Issue 6, June 2019, pp. 1-8 

 7

Similarly, in [8] the use of  skip-connections is 
advocated as a possible technique to address over-
pruning. 

While there is no doubt that particular network 
architectures show less sparsity than others (see also 
the comparison we did in this article between dense 
and convolutional networks), in order to claim that the 
aforementioned approaches are general techniques for  
tackling over-pruning it should be proved that they 
systematically lead to improved generative models 
across multiple architectures and many different data 
sets, that is a result still in want of confirmation. 

 
 

6.2. Regularization 
 

Recently, there have been a few works trying to 
stress the beneficial effects of the Kullback-Leibler 
component, and its essential role for generative 
purposes. 

An interesting perspective on the calibration 
between the reconstruction error and the Kullback-
Leibler regularizer is provided by β -VAE [14] [5]. 

Formally, the shape of the objective function is the 
same of equation 6 (where the parameter λ  is 
renamed β ), but in this case the emphasis is in 

pushing β  to be high. This is reinforcing the sparsity 

effect of the Kullback-Leibler regularizer, inducing 
the model to learn more disentangled features. The 
intuition is that the network should naturally learn a 
representation of points in the latent space such that 
the “confusion” due to the Kullback-Leibler 
component is minimized: latent features should be 
general, i.e. apply to a large number of data, and data 
should naturally cluster according to them. A metrics 
to measure the degree of disentanglement learned by 
the model is introduced in [14], and it is used to 
provide experimental results confirming the beneficial 
effects of a strong regularization. In [5], an interesting 
analogy between β -VAE and the Information 

Bottleneck is investigated. 
In a different work [6], it has been recently proved 

that a VAE with affine decoder is identical to a robust 
PCA model, able to decompose the dataset into a low-
rank representation and a sparse noise. This is 
extended to the nonlinear case in [7]; in particular, it is 
proved that a VAE with infinite capacity can detect the 
manifold dimension and only use a minimal number 
of latent dimensions to represent the data, filling the 
redundant dimensions with white noise. In the same 
work the authors propose a quite interesting two stage 
approach, to address the potential mismatch between 
the aggregate posterior ( )Q z  and the prior ( )P z : a 

second VAE is trained to learn an accurate 
approximantion of ( )Q z ; samples from a Normal 

distribution are first used to generate samples  
of ( )Q z , and then fed to the actual generator of data 

points. In this way, it no longer matters that ( )P z  and 

( )Q z  are not similar, since you can just sample from 

the latter using the second-stage VAE. This approach 
does not require additional hyperparameters or 
sensitive tuning, and produces high-quality samples, 
competitive with state-of-the-art GAN models, both in 
terms of FID score and visual quality. 

 
 

7. Conclusions 
 
In this article we discussed the interesting collapse 

phenomenon for latent variables typical of Variational 
Autoencoders, and briefly surveyed some of the recent 
literature on the topic. Our point of view is slightly 
different from the traditional overpruning perspective, 
in the sense that maybe, as it is also suggested in other 
recent works (see Section 6.2), there is no issue to 
tackle: the Kullback-Leibler component has a 
beneficial self-regularizing effect with all the 
advantages tipically associated with  sparsity: it forces 
the model to focus on the really important and more 
disentangled features, sensibly reducing the risk of 
overfitting. 

This suggests a very clear methodology that can be 
followed for training VAEs. First of all, we must 
correctly balance the KL component, ensuring it is 
properly working, by checking the first moments of 
the latent distribution or also, as suggested in  
Section 4, the fact that for each latent variable, the sum 
between its variance and the average variance of the 
Gaussian distributions ( | )Q z X  is always 

approximately 1. Then, we progressively augment the 
dimension of the latent space to attain sparsity. If the 
resulting network does not give satisfactory generative 
results, we should likely switch to more sophisticated 
architectures, making a better exploitation of the latent 
space. Finally, if the reconstruction error is low but 
generation is bad, it is a clear indication of a mismatch 
between the aggregate posterior ( )Q z  and the prior 

( )P z ; in this case, a simple two-stage approach as 

described in [7] might suffice to solve the issue. 
  
 

References 
 
[1]. Andrea Asperti, About generative aspects of 

variational autoencoders, in Proceedings of the 5th 
International Conference on Machine Learning, 
Optimization, and Data Science, September 10-13, 
2019, Certosa di Pontignano, Siena, Tuscany, Italy, 
LNCS (to appear). 2019. 

[2]. Andrea Asperti, Sparsity in variational autoencoders, 
in Proceedings of the 1st International Conference on 
Advances in Signal Processing and Artificial 
Intelligence (ASPAI 2019), Barcelona, Spain,  
20-22 March, 2019, pp. 11-22. 

[3]. Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, 
Andrew M. Dai, Rafal Józefowicz, and Samy Bengio, 
Generating sentences from a continuous space, in 
Proceedings of the SIGNLL Conference on 
Computational Natural Language Learning (CONLL), 
2016, abs/1511.06349. 



Sensors & Transducers, Vol. 234, Issue 6, June 2019, pp. 1-8 

 8

[4]. Yuri Burda, Roger B. Grosse, and Ruslan 
Salakhutdinov, Importance weighted autoencoders. in 
Proceedings of the ICLR 2015 Conference, 
abs/1509.00519. 

[5]. Christopher P. Burgess, Irina Higgins, Arka Pal, Loic 
Matthey, Nick Watters, Guillaume Desjardins, and 
Alexander Lerchner, Understanding disentangling in 
beta-vae, in Proceedings of the NIPS Workshop on 
Learning Disentangled Representations, 2017. 

[6]. Bin Dai, Yu Wang, John Aston, Gang Hua, and David 
P. Wipf, Connections with robust PCA and the role of 
emergent sparsity in variational autoencoder models, 
Journal of Machine Learning Research, 19, 41, 2018, 
pp. 1-42. 

[7]. Bin Dai and David P. Wipf, Diagnosing and enhancing 
vae models, in Proceedings of the 7th International 
Conference on Learning Representations (ICLR 
2019), May 6-9, New Orleans, 2019. 

[8]. Adji B. Dieng, Yoon Kim, Alexander M. Rush, and 
David M. Blei, Avoiding latent variable collapse with 
generative skip model, in Proceedings of the 22nd 
International Conference on Artificial Intelligence 
and Statistics (AISTATS’ 2019), Naha, Okinawa, 
Japan, 2019, abs/1807.04863. 

[9]. Carl Doersch. Tutorial on variational autoencoders. 
CoRR, abs/1606.05908, 2016. 

[10]. S. M. Ali Eslami, Danilo Jimenez Rezende, Frederic 
Besse, Fabio Viola at all, Neural scene representation 
and rendering, Science, 360, 6394, 2018, pp. 1204–
1210. 

[11]. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, 
Deep Learning, MIT Press, 2016. 
http://www.deeplearningbook.org 

[12]. Karol Gregor, Ivo Danihelka, Alex Graves, and Daan 
Wierstra, DRAW: A recurrent neural network for 
image generation, in Proceedings of the 32nd 
International  Conference on Machine Learning, Lille, 
France, 2015, abs/1502.04623. 

[13]. Martin Heusel, Hubert Ramsauer, Thomas 
Unterthiner, Bernhard Nessler and Sepp Hochreiter, 
Gans trained by a two time-scale update rule converge 
to a local nash equilibrium, in Proceedings of the 
Advances in Neural Information Processing Systems 
30: Annual Conference on Neural Information 
Processing Systems, 4-9 December 2017, Long Beach, 
CA, USA, pp. 6629–6640. 

[14]. Irina Higgins, Loic Matthey, Arka Pal, Christopher 
Burgess, Xavier Glorot, Matthew Botvinick, Shakir 
Mohamed, and Alexander Lerchner, Beta-vae: 
Learning basic visual concepts with a constrained 
variational framework, in Proceedings of the 5th 
International Conference on Learning 
Representations (ICLR’17), 2017. 

[15]. Diederik P. Kingma, Tim Salimans, and Max Welling, 
Improving variational inference with inverse 
autoregressive flow, in Proceedings of the 29th 

Conference on Neural Information Processing 
Systems (NIPS 2016), Barcelona, Spain, CoRR, 
abs/1606.04934, 2016. 

[16]. Diederik P. Kingma and Max Welling, Auto-encoding 
variational bayes, in Proceedings of the ICLR 2014 
Conference, 2014, abs/1312.6114. 

[17]. Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, 
and Ian J. Goodfellow, Adversarial autoencoders, in 
Proceedings of the International Conference on 
Learning Representations, 2016, abs/1511.05644. 

[18]. Tom Rainforth, Adam R. Kosiorek, Tuan Anh Le, 
Chris J. Maddison, Maximilian Igl, Frank Wood, and 
Yee Whye Teh. Tighter variational bounds are not 
necessarily better, in Proceedings of the 35th 
International Conference on Machine Learning, 
ICML 2018, Stockholmsmässan, Stockholm, Sweden, 
July 10-15, 2018, Vol. 80, pp. 4274–4282.  

[19]. Danilo Jimenez Rezende, Shakir Mohamed, and Daan 
Wierstra, Stochastic backpropagation and 
approximate inference in deep generative models, in 
Proceedings of the 31th International Conference on 
Machine Learning (ICML 2014), Beijing, China,  
21-26 June 2014, Vol. 32, pp. 1278–1286.  

[20]. Kihyuk Sohn, Honglak Lee, and Xinchen Yan, 
Learning structured output representation using deep 
conditional generative models, in Advances in Neural 
Information Processing Systems (C. Cortes,  
N. D. Lawrence, D. D. Lee, M. Sugiyama, and  
R. Garnett, Eds.), Curran Associates, Inc., 28, 2015, 
pp. 3483–3491. 

[21]. Jacob Walker, Carl Doersch, Abhinav Gupta, and 
Martial Hebert, An uncertain future: Forecasting from 
static images using variational autoencoders, in 
Proceedings of the European Conference on 
Computer Vision (ECCV 2016), 2016, pp 835-851, 
abs/1606.07873. 

[22]. Jacob Walker, Carl Doersch, Abhinav Gupta, and 
Martial Hebert, An uncertain future: Forecasting from 
static images using variational autoencoders, in 
Proceedings of the 14th European Conference on 
Computer Vision (ECCV 2016), Amsterdam, The 
Netherlands, October 11-14, 2016, LNCS, Vol. 9911, 
pp. 835–851. 

[23]. Raymond A. Yeh, Ziwei Liu, Dan B. Goldman, and 
Aseem Agarwala. Semantic facial expression editing 
using autoencoded flow, CoRR, abs/1611.09961, 
2016. 

[24]. Serena Yeung, Anitha Kannan, Yann Dauphin, and Li 
Fei-Fei. Tackling over-pruning in variational 
autoencoders, in Proceedings of the Workshop on 
Principled Approaches to Deep Learning (ICML 
2017), 2017, abs/1706.03643. 

[25]. Serena Yeung, Anitha Kannan, and Yann Dauphin,  
Epitomic variational autoencoder, Submited to ICLR 
2017 Conference, 2017. 
https://openreview.net/pdf?id=Bk3F5Y9lx 

 
__________________ 

 
 
 
 
 
 

 

Published by International Frequency Sensor Association (IFSA) Publishing, S. L., 2019 
(http://www.sensorsportal.com). 

 
 


