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ABSTRACT 

The Rochester Embayment of Lake Ontario is one the 43 Great Lakes' Areas of 

Concern designated by the Environmental Protection Agency (Monroe County 1993). As 

part of a Remedial Action Plan (RAP), degradation ofbenthos was one of the 14 use 

impairments identified for the Rochester Embayment (Monroe County 1993). Stage II of 

the RAP identified stream health monitoring as a method of identifying existing and 

future conditions of the Embayment and its tributaries, including Irondequoit Creek. 

There is much debate in the "world" of stream health biomonitoring using aquatic 

macro invertebrates regarding methods of collection, sample size and taxonomic 

resolution required to obtain accurate stream health assessments. My study compared 

stream health at three locations in Irondequoit Creek (upstream, midstream and 

downstream) and in three habitats (gravel, mud and vegetation) and evaluated methods of 

sampling macro invertebrates and analyzing stream health used by the Stream 

Biomonitoring Unit ofthe New York State Department ofEnvironmental Conservation 

(Bode et al. 1996). There were few differences between upstream (primarily agricultural 

or rural land use) and midstream (primarily agricultural and suburban l~d use) 

communities, but stream health decreased from upstream to downstream (primarily 

.urban/suburban land use). As expected, community differences were found across 

habitats (gravel, vegetation, mud) at the same sampling locations. Fixed 100 count 

· methods were compared with entire macro invertebrate samples in the gravel habitat at the 

midstream location (Powder Mill Park, Rochester, NY). Although metric values for 

random and haphazard samples of 100 organisms differed from values for whole 

samples, stream health assessments did not differ. 
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Introduction 

Water quality of the Rochester Embayment declined tremendously after 

European settlement of the Genesee Valley. The Embayment was used as a 

disposal system by surrounding towns and municipalities~ ultimately resulting in 

PCB and dioxin contaminatio~ eutrophicatio~ oxygen depletion and fish die-offs 

(Kappel et al. 1981, Monroe County 1993). As a result of the threat to fish and 

other wildlife, the Rochester Embayment was designated an Area of Concern 

(AOC) in the Great Lakes by the Environmental Protection Agency (Monroe 

County 1993). A Remedial Action Plan (RAP) was developed for the AOC to 

provide a long-term course of action for environmental cleanup. Stage I of the 

RAP identified 12 use impairments for Rochester Embayment, which included 

degradation of fish and wildlife populations, loss of fish and wildlife habitat, and 

degradation of benthos (Monroe County 1993). 

The quality ofRochester Embayment water is indicative of the quality of 

water of the streams and rivers that flow into it. A proposed method of 

monitoring stream health, designated by the Stage II RAP, identified species 

diversity and abundance of benthic and water-column macroinvertebrates as a 

measure of pollution impact in waters such as the Genesee~~ver (the largest 

· contributor of water and contaminants to the Rochester Enibayment) (Monroe 

County 1997). Irondequoit Creek, an important Embayment tributary that flows 

into Irondequoit Bay, also required water quality assessment (Johnston and 

Sherwood 1988). My study used benthic macro invertebrate indices (Bode et al. 

1996) to assess the health oflrondequoit Creek. 
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Several methods of assessment have been used to measure water quality 

conditions in the Rochester Embayment. Although physiochemical approaches 

have proven successful for measuring water pollutant concentrations, these 

techniques record the chemical makeup of the water only at the time of sampling. 

Pollutant concentrations can fluctuate greatly within a system over a period of just 

a few minutes, thus chemical measurement may not be indicative of water 

conditions over the lifetime of organisms living in a stream (Rosenburg and Resh 

1993). "Biological indicators can indicate the occurrence of pollution even if the 

pollutant is temporarily absent at the time of measurement ... " (Brower et al. 

1990). Therefore, biological techniques have proven successful in the assessment 

of water quality over longer periods (Rosenburg and Resh 1993). 

Benthic macroinvertebrates are ideal bioindicators because they are 

sedentary organisms that play active roles in nutrient and pollutant cycling. These 

organisms are exposed to physical and chemical fluctuations that occur in lotic 

waters throughout the entire year. Therefore, only organisms that have the ability 

to tolerat~ all of a stream's conditions can inhabit it. Organisms such as 

macro invertebrates, mainly aquatic insect larvae, are commonly used to indicate 

the impact of pollution on bodies of water (Rosenberg and Resh 1993; EPA 

1993). Despite difficulties with classification, the relative ease and low cost of 

sampling attracts researchers to biomonitoring over more expensive 

physiochemical techniques (Hellawell 1986; Thorne and Williams 1997). 

A multimetric approach to assess pollution impacts on streams was 

originally designed by Karr for use with fish communities (Index of Biotic 
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Integrity, Barbour et al. 1992) and has been modified for use with 

macroinvertebrates (Loeb and Spacie 1994). Karr's procedure analyzed different 

components of the "structure and function of stream and river fish communities in 

an integrated assessment, using various attributes of ecological systems (Barbour 

et al. 1992; Rosenberg and Resh 1993; Reice and Wohlenberg 1993)." This 

multimetric approach has been modified by several researchers, including 

Hilsenhoff ( 1982), Plafkin et al. ( 1989), and Bode et al. (1996), for use with 

benthic macroinvertebrates. In 1983, New York State's Stream Biomonitoring 

Unit began developing methods for assessing stream water quality that use 

benthic macroinvertebrates as a measure of stream pollution (Bode et al. 1991, 

1996). 

The use of a single metric, such as taxa richness or diversity, provides a 

more limited representation of the invertebrate community at a particular site than 

does a multimetric approach. Combining results from different metrics should 

remove much of the bias a single metric may provide and, in theory, provide a 

reasonabl~ estimate of water quality (Barbour et al. 1992; Lenz and Miller 1996). 

Three categories of metrics are used to delineate stream health: structure, 

community balance, and functional feeding group metrics (Barbour et al. 1992). 

Ideally, each metric should provide a distinct view of the community assemblage. 

Thus a more accurate assessment of impairment can be obtained. Bode et al.'s 

protocol (1996) was used to examine benthic macroinvertebrates as indicators of 

water quality in Irondequoit Creek, and consisted of the following metrics 

(defined below): Taxa Richness, EPT Richness, HilsenhoffBiotic Index, Percent 
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Model Affinity, DOM-3, NCO Richness and Shannon-Weiner Diversity. These 

metrics fall into two of the main categories suggested by Barbour et al. 1992: 

structure and community balance metrics. The third type of metric, not used in 

Bode's protocol, involves functional feeding groups that are more useful for 

assessing stream health using fish communities (Merritt and Cummins 1996; Resh 

and Jackson 1993). 

Structure Metrics 

The most common richness metrics used to describe macroinvertebrate 

communities are total taxa richness (TR) and EPT (Ephemeroptera, Plecoptera, 

Trichoptera) richness (Lenat and Barbour 1994; Barbour et aL 1992; Reice and 

Wohlenberg 1993). To these structural metrics Bode et al. (1996) add percent 

model affinity (PMA) and Non-Chironomid/Non-Oligochaete richness (NCO). 

Taxa richness establishes the number of distinct species found in a particular 

sample (Barbour et al. 1996) and depicts the diversity of the aquatic assemblage 

(Resh et aL 1995). In most cases, as the amount of stream perturbation increases, 

taxa richness decreases. As Resh et al. (1995) state: 

Increasing diversity correlates with increasing health of the assemblage 

and suggests that niche space, habitat, and food solf"ce are adequate to 

support survival and propagation of many species. ']'he number of taxa 

measures the overall variety of the macroinvertebrate assemblage. 

Ideally, taxa richness consists of species-level identifications, but this often is not 

the case due to limited classification keys (e.g., certain tribes of Family 

Chironomidae). My study was limited to genus identifications in many instances. 
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Comparisons at the genus level may not reflect the true diversity of a benthic 

macroinvertebrate community (Merritt and Cummins 1996). 

Richness measures can also be specific to certain indicator organisms. 

One such measure includes EPT richness, which refers to the total number of taxa 

in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera 

( caddisflies). According to researchers at North Caro 1ina State University, "this 

measure was very sensitive to changes in water quality," and it proved to be less 

variable than total taxa richness in relation to between-year changes in flow 

(unpublished data from North Carolina's ambient monitoring network; Lenat and 

Barbour 1994; Bartenhagen 1995). These three orders of insects are generally 

indicators of good water quality. Absence or low diversity of them may indicate a 

serious degradation of water quality. 

The TR metric is applied to all sampling methods suggested by Bode et al. 

(1996). EPT richness metrics are applied to all but ponar (sediment) samples. 

NCO richness, however, is used specifically for samples collected in slow, sandy 

streams (Bode et al. 1996). NCO is a measure of richness~ similar to EPT, except 

that it measures the non-Chironomidae and non-Oligochaeta portion of a sample. 

Organisms in these two groups are generally more pollution tolerant and are 

found in abundance in degraded habitats, but they are also commonly found in 

non-degraded benthic habitats of slow moving streams. Other NCO taxa in finer 

sedirnents of streams are more commonly less tolerant of degraded habitats, 

therefore their presence would indicate higher water quality (Bode et al. 1996). 
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Percent Model Affinity is a third structure metric used by Bode et al. 

(1996). It measures the similarity of an actual sample to a model non-impacted 

community based on percent abundance of seven major groups. The model New 

York stream gravel community is 40% Ephemeroptera, 5% Plecoptera, 10% 

Trichoptera, 10% Coleoptera, 20% Chironomidae, 5% Oligochaeta, and 10% 

other; the model mud community is 20% Oligochaeta, 15% Mollusca, 15% 

Crustacea, 20% Non-Chironomid Insecta, 20% Chironomid and 10% other (Bode 

et al. 1996) ~ 

Community Balance Metrics 

The second category ofmetrics used in Bode et al.'s (1996) protocol 

measure community balance. These include a percent dominance measure 

(DOM-3), a diversity measure (Shannon-Wiener) and the modified Hilsenhoff 

Biotic Index (HBI). 

Dominance is a measure of balance, or evenness, of taxa numbers within a 

community (Bode et aL 1996). This measure captures redundancy of taxa in a 

community and works on the premise that a "highly redundant community (major 

abundance by a single taxon) reflects an impaired community" (Barbour et al. 

1992)~ DOM-3 is the combined percentage of the three most numerous taxa~ A 

high DOM-3 percentage indicates a community strongly dominated by one or a 

few taxa (Bode et al. 1996). 

Diversity is a measure that combines taxa richness with community 

balance. Taxa richness is the measure of the number of taxa in a sample. 

Community balance, or evenness, refers to the relative abundance of each taxon in 

a sample. The Shannon-Wiener index of diversity (also known as Shannon-

Weaver index) (Bode et al. 1996; Brower et al. 1990) is the method chosen by 
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Bode et al. (1996) to calculate diversity. A high diversity value is indicative of an 

even (or balanced) community, whereas low diversity may indicate community 

impairment (Bode et al. 1996; Brower et al. 1990). 

A biotic index includes a list of species commonly occurring in a 

geographic area and their individual pollution tolerance values (Bartenhagen 

1995). Tolerance values~ on a scale of one to ten, are assigned to each species 

depending on their ability to cope with pollutants (low values translate less 

tolerance to pollutants). In North America, most biotic indices are based on 

Chutter's (1972) system modified by Hilsenhoff(1982). Hilsenhoffused a large 

Wisconsin database (2000+ collections) to assign tolerance values to a 0-10 range 

(Lenat and Barbour 1994 ). The biotic index for each site, defined by Hilsenhoff, 

is calculated by multiplying the number of individuals of each species by its 

assigned tolerance value, summing these products, and dividing by the total 

number of individuals (Bode et aL 1996). The HBI metric is valuable because it 

uses detailed knowledge of individual species and it reflects their known 

sensitivity to the influence of human actions (Loeb and Spacie 1994 ). :'This index 

weights the relative abundance of each taxon in terms of its pollution tolerance in 

determining a community score", (Resh and Jackson 1993). Site impairments can 

be assessed and water quality improvemt{nts can then be 11leasured by sampling in 

subsequent years (Bode et al. 1996). 

Biotic indices are popular because they provide an easily understood 

numerical expression of a biological response (Merritt and Cummins 1996). A 

disadvantage of using this technique is that it depends on an accurate assessment 
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of pollution tolerances for different taxa (Merritt and Cummins 1996). Also, if 

the biotic index is not specific to the geographic area being sampled, incorrect 

tolerances values may be assigned. For example, species A may occur both in the 

Midwest and the Northeast. However, due to differences in environmental 

conditions and adaptations, their pollution tolerances may be different. Thus, the 

overall impact assessment may be inaccurate if it is not species-specific to a 

geographic region. 

Objectives 

The first objective of my study was to determine the current degree of 

community health/impairment at three locations in the Irondequoit Creek 

watershed using the protocol of Bode et al. (1996). Communities in Irondequoit 

Creek were compared among locations (upstreatl\ midstream, downstream) and 

among habitats (gravel, mud, vegetation). These data will serve as a baseline for 

future studies to determine if the health of Irondequoit Creek is improving as a 

result ofremediations suggested in the Rochester Embayment RAP (Monroe 

County 1997). The second objective was to examine the reliability of the NYS 

Department of Environmental Conservation's Rapid Bioassessment Protocol 

(Bode et al. 1996). Bode's method requires kick sampling of._gravel substrate, 

haphazardly picking 100 invertebrates out of the sample in the·field, identifying 

all 100 organisms and calculating the metrics described above. My study 

compares results from Bode's method ofsubsampling (haphazard) with random 

subsampling and an analysis of all macro invertebrates in a sample. 
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Study Area 

Irondequoit Creek is located in Monroe and Ontario Counties, NY east 

and south of the City of Rochester. Tributary streams that form Irondequoit 

Creek's headwaters originate in the Mendon- West Bloomfield comers of 

Monroe and Ontario Counties. Land uses surrounding the headwaters are 

primarily rural and agricultural (small farms, country homes, and villages) (Sutton 

1998). Proceeding north for 19 miles (30.6 Km), Irondequoit Creek is joined by 

Trout Creek (upstream from Village of Mendon), Thomas Creek (near Whitney 

Road, East Rochester), and Allen's Creek (between Route 441 and Penfield Road) 

before entering Irondequoit Bay at Empire Blvd (Figure 1) (Sutton 1998). What 

is considered "lower" Irondequoit Creek receives runoff from surrounding 

residential areas, small villages, golf courses, parks, and some commercial 

developments (Sutton 1998). As a result of pollution discharge and runoff from 

the surrounding watershed, Irondequoit Creek has been identified as a major 

source of pollution contributing to the eutrophication of Irondequoit Bay 

(Johnston and Sherwo~d 1988). 

Historically, the surrounding land was cleared for agriculture in the 1800s. 

The creek was used as a source of water power for the Lawless Paper Mill in 1886 
.. 

(Sutton 1998). Prior to the installation of a wastewater-treatment facility in 1979, 
:-

sewage was directly discharged into the creek and its tributaries (Johnston and 

Sherwood 1988). Although sewage diversion has improved water quality, other 

sources of pollution, such as sediment and nonpoint-source pollution, persist 

(Sutton 1998). Land uses are rapidly changing as populations are moving out of 
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the city into outlying towns such as Pittsford, Perinton, Penfield and Mendon 

(Johnston and Sherwood 1988). While agricultural land-use is declining, 

residential land-use is on the rise in the Irondequoit Creek basin. Therefore, while 

surface runoff of pesticides and fertilizers from agriculture is decreasing, runoff 

(especially storm water) is on the rise from housing and commercial development 

(Johnston and Sherwood 1988). 

Sample Sites 

Sites were chosen that represented expected differences in types and 

degrees of impact. Samples were collected at Cheese Factory Road (upstream, 

ruraL/agricultural land use), Powder Mill Park (midstream, suburban/agricultural 

land use), and Ellison Park (downstream, suburban/urban land use) (Figure 1). 

Although the headwaters of Irondequoit Creek, located on Cheese Factory Road, 

are affected by agricultural runoff, this site was the least anthropogenically 

influenced and, therefore, was considered a "control" site. The two downstream 

sites were in Powder Mill Park (near Bergundy Basin) and Ellison Park (south of 

Blossom Road). In addition to being representative of the upper, middle, and 

lower portions of the creek, the three sampling locations were chosen because 

they were accessible, wadeable and had mixtures of gravel, vegetation, and mud 

habitats. .. 
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Methods 

Physical and Chemical Parameters 

To ensure habitat comparability among locations, certain physical, 

chemical and biological parameters were compared (Bode et al. 1991 ). Dissolved 

oxygen, pH, conductivity, temperature, and current speed were measured once at 

the upper- and lowermost stations at each location. Substrate particle size, 

percent embeddedness, percent canopy cover, width and depth, and presence of 

aquatic vegetation were recorded for all five stations at each sampling location 

(Bode et al. 1991 ). 

Sampling 

With the exception of the Ellison Park downstream site (Figure 1 ), five 

replicate samples of invertebrates were collected in gravel, mud and vegetation 

habitats in April of 1997. Mud and vegetation samples (five replicates each) were 

collected just downstream in 1996 (Haynes and McNamara 1998). 

Mud samples were collected with an Ekman grab sampler. A ~ite was 

chosen within the sampling station where there was adequate silt and mud habitat. 

The grab sampler was set, plunged into the silt/mud substrate, and the jaws were 

triggered. The sampler was pulled out of the substrate, placed over a mesh sieve 

and a bucket and much of the silt and mud were washed through into the bucket 

while retaining the organisms on the sieve. Organisms on the sieve were then 

washed off with water into a collecting jar. 

11 



Vegetation stations were chosen where vegetation was growing at the 

water's surface, hanging from bank edges or where trapped but floating · 

vegetation existed. Samples were collected by passing an aquatic dip net through 

vegetative habitat until the net was half full. Once removed from the water, the 

dip net was inverted into a bucket and contents washed clean from the net. The 

sample was then poured from the bucket into a collecting jar. 

Gravel samples were collected using the 2-min kick sampling method and an 

aquatic net (Bode et al. 1996). The 2-min kick sampling method was used in my study, 

as opposed to the 5-min method (according to Bode et al. 1990, index values derived 

from the 2-min and 5-min kick samples are comparable). A 5-m chain was placed 

diagonally across the riflle portion of the stream and substrate was dislodged, using a 

sweeping motion with the feet, for a 2-min period while traveling downstream to 

upstream. Once the dip net was removed from the water the sample was poured into a 

sieve. Small substrate was washed through the sieve while large substrate and organisms 

were retained on the sieve. Again, the contents of the sieve were washed into a collecting 

Jar. 

Samples were preserved in the field in 5% formalin. After 24 hours each 

sample was transferred to a solution of70% ethanol with rose bengal dye. 

Organisms were separated from debris and placed into smitller sample jars. 

Second sorts were done on each sample to ensure the retrieval of most organisms, 

and they were added to the first counts. 
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.J.....c_ 

Subsampling 

For three locations (upstream, midstream, downstream) and three habitats (gravel, 

vegetation; mud) 1 00 organisms were randomly chosen from a gridded sorting pan by 

drawing random letters and numbers to determine quadrats in the pan to sample (RNB­

Nichelle Bailey-Billhardfs random sample). Whole samples (WNB) were then sorted, 

identifications made and metrics were calculated along with the random samples (RNB). 

For midstream (Powder Mill Park) gravel samples, three sampling methods were 

compared in order to determine if different sampling methods would yield similar 

community and structure metrics and similar stream health assessments. Using new 

samples collected from the same stream reach in Powder Mill Park in May 1998, 100 

organisms were chosen from a gridded sorting pan haphazardly at the discretion of the 

sampler (haphazard samples, HCC, done by research assistant Christine Cody). Then, 

after replacement, 100 organisms were taken randomly (RCC- Cody's random sample). 

Metrics (TR, EPT, HBI, PMA) were calculated for 100 counts (HCC; RCC and RNB) 

and compared with metrics for the whole sample (WNB-Nichelle Bailey-Billhardt's 

whole sample) for the Powder Mill Park gravel habitat. 

Invertebrates were identified to the lowest possible taxonomic level using 

keys by Merritt and Cummins (1996), Peckarsky et al. (1990), Wiggins (1977), 

Pennak (1989) and confirmed by W. Bollman 1998; Rhithren Biological 

Associates, Missoula, MT, personal communication). 

Methods used by Bode et al. (1996) require a fixed count of 100 

organisms to calculate each metric. However, chironomids were removed from 

my samples for another thesis project (Cook 1998) prior to obtaining 100 
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organisms. Therefore, metrics used for stream health assessment were calculated 

using whole samples, which include a detailed list of chronomid taxa provided by 

Cook (1998) (Appendix A). Haphazard and random counts include chironomids 

keyed only to the family level and, for consistency, they were compared to whole 

counts that included chironomids as one taxon. 

Experimental Design and Statistical Analyses 

Comparing Stream Reaches and Habitats 

I used one-way ANOVA to test the null hypotheses that there were no 

differences in biotic indices among the upstream, midstream and downstream 

locations or the vegetation, mud and gravel habitats of Irondequoit Creek. Both 

raw metric values and metrics converted to the modified O'Brien plot (or scaled 

values; Figures 2-4) (Bode et al. 1996) were compared. I predicted that the results 

would show increasing impact farther downstream (e.g., more development) and 

differences among habitats (e.g., one would expect mud to support fewer taxa 

with higher "pollution" tolerance than gravel). When differences among 

treatments were signip.cant, a Student Newman Keuls (Studentized Q; 'Sokal and 

Rolff 1981) test was used to determine which means were different. 

Comparing 100 (!-lap hazard and Random) and Whole Samples 
.. 

I used one-way ANOV A to test the null hypotheses that there were no 

differences in the biotic indices among 100 haphazard and 100 random samples 

(drawn and identified by C. Cody) and 100 random and whole samples collected 

and identified by me. When differences among treatments were significant, a 

Student Ne\\:man Keuls (Studentized Q; Sakal and Rolff 1981) test was used to 
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distinguish means. Because samples were collected a month apart in different 

years (but in the same stream reach), it was possible that results of her random 

counts and mine would differ. If they did not differ, I could be confident that 

comparing my whole samples to her haphazard samples would be a valid 

methodology. 

Because the number of taxa found is likely related to the number of 

organisms examined (in the sense of a species/sampling intensity curve, Figure 2), 

I predicted that the indices that depended on taxa counts (taxa richness, EPT, 

HBI) would be different for whole vs. 100 count samples, whereas the Percent 

Model Affinity index should be uninfluenced by the number organisms examined. 

The key comparisons in this part of my study were between index values for the 

1 00 haphazardly and randomly drawn organisms and between 1 00 haphazardly drawn 

organisms and whole samples. Invertebrate identification is incredibly labor-intensive 

and, to a lesser degree, so is random sampling, especially in the field. If there is no 

significant difference in indicators of stream health between 100 haphazardly drawn 

organisms and randomly drawn or whole samples, then the methods o:f Bode et aL ( 1996) 

really do offer a reliable, low cost way to assess stream health. 
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Results 

Physical and Chemical Parameter Comparison 

In order to ensure that invertebrate communities were sampled from similar stream 

habitats, the following physical and chemical parameters were recorded at the upper and 

lowermost stations at each location: depth, width, current, percent canopy cover, percent 

substrate embeddedness, temperature, conductivity, dissolved oxygen, pH and substrate 

particle size (Table 1). Of these parameters, the key habitat comparability criteria set by 

Bode et al. ( 1990) are substrate particle size, percent embeddedness, current speed, and 

canopy cover (Tables 2 and 3). Physiochem1cal parameters were recorded separately for 

different habitats (gravel, vegetation, mud), depending on where the sample was taken, 

and they were compared within the same habitat across locations to assess habitat 

similarity before collecting. At some locations, measurements were the same for more 

than one habitat. 

Among habitats being compared, particle size should not differ by more than 3 phi 

units in gravel habitats or by more than 50% in mud habitats (Bode et ah 1990). In the 

gravel habitat, the upstream and downstream locations differed by 3.4 units (Table 2), 

slightly more than the recommended criterion. Particle sizes in the mud habitat did not 

differ by more than 50% among the three Sampling locations (Table 3) .. 

Differences in percent embeddedness should not exceed 50% unless the values are 

within 20 percentage units (Bode et al. 1990). In the gravel and mud habitats 

embeddedness did not differ by more than 50% (Tables 2 and 3). 
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Differences in current speed should not to exceed 50% unless they are within 20 

em/sec (Bode et al. 1990). For the gravel habitat, differences in current speeds were not 

greater than 50% among the three sample locations (Table 2). The upstream mud habitats 

did differ from other locations by more than 50% (Table 3). 

Canopy cover should not to exceed a 50% difference unless the values are within 

20 percentage units (Bode et al. 1990). The canopy cover above the upstream gravel 

habitat differed by more than 50% from the mid- and downstream values (Table 2). The 

upstream location was post-agricultural, dominated by vegetation in an early successional 

stage of tree growth, which explains the lower canopy cover values. The canopy cover 

above the midstream mud habitat differed from the other two locations by more than 50% 

(Table 3). 

In sum, there were few consistent physical differences in the gravel and mud 

habitats sampled in upper, middle and lower Irondequoit Creek. Bode et al. (1990) do not 

provide distinguishing criteria for vegetated habitats. Therefore, it is unlikely that any 

differences found in benthic macroinvertebrate communities across locations would be due 

to physical habitat differences in the sections sampled in Irondequoit Creek. 

Benthic Community Comparisons Among Locations Within Each Habitat 

The TR (Taxa Richness), EPT (Ephemeroptera-Plecbptera-Trichoptera), HBI 

(HilsenhoffBiotic Index) and PMA (Percent Model Affinity) metrics were used to 

compare benthic macroinvertebrate communities in gravel habitats, the TR, HBI, EPT and 

NCO (Non-Chironomid and Oligochaeta) metrics were used to compare communities in 

vegetation habitats, and the TR, DIV (Simpson's Diversity), HBI, DOM-3 (percent of 
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community comprised by the three most abundant taxa), PMA and NCO metrics were 

used to compare mud habitat communities (Bode et al. 1996). Although NCO is not 

included in Bode's biological assessment profile of index values for soft sediments, nor is 

the formula available for scaled conversion, it is a valid metric for invertebrate 

communities in mud habitats (Bode 2001, NYSDEC Stream Biomonitoring Unit Albany, 

NY, personal communication). A 1-way ANOV A was performed on all raw and scale­

converted metrics (Tables 4-6), and if ANOVAs were significant analysis continued with 

Student Newman-Keuls tests to distinguish significant differences among treatment means 

(Tables 7-13; Raw data is found in Appendix B). 

Q:ravel Habitat Comparisons Across Locations 

Raw and scale-converted metrics applicable to the gravel habitat (TR, EPT, HBI, 

PMA) were compared among the upstream (Cheese Factory Road), midstream (Powder 

Mill Park) and downstream (Ellison Park) locations (Figure 1 ). In the gravel habitat, there 

were significant differences across locations in raw and scaled values for the TR, EPT and 

PMA indices (Tables 4, 7, 8 and 10). For raw and scaled values, the ~gher TR, HBI and 

PMA indices indicated improving water quality from downstream to upstream (Table 4, 7 

and 10). While there were no differences in the HBI across locations (P=0.076, Tabie 4), 

the trend for the HBI also suggests improving water qualitS from downstream to 

upstream. Raw and scaled EPT richness values, however, htdicate that the midstream 

community had the highest water quality followed by the upstream and then the 

downstream community (Tables 4 and 8). Overall, water quality declined from upstream 

to downstream in the gravel habitats. 
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Vegetation Habitat Comparisons Across Locations 

Metrics applicable to the vegetation habitat (TR, HBI, EPT and NCO) were 

compared among the three stream locations, but no definitive trends were found. Raw 

community TR values did not differ significantly (P=0.057) among the three communities 

sampled in the vegetation habitat (Tables 5 and 7), although the trend suggests better 

water quality at the up- and midstream than at the downstream locations (Table 5). There 

were differences across locations for the scaled TR and for the raw and scaled EPT and 

HBI indices (Tables 5, 7, 8 and 9). The TR and EPT indices denote better water quality at 

the midstream location, followed by the up- and downstream locations (Table 5, 7 and 8). 

A low scaled HBI value indicates a slight impact on water quality in the midstream 

community compared to the up- and downstream communities in the vegetation habitat. 

No significant differences were found among raw and scaled NCO indices (Tables 5 and 

11). 

Mud Habitat Comparisons Across Locations 

Metrics applicable in the mud habitat (TR, HBI, PMA, DIV, DOM3 and NCO) 

were compared among the upstream, midstream and downstream locations. There were 

no significant differences among the three mud communiti~s in raw and scaled values for 

the TR, HBI, PMA and NCO indices (Tables 6, 7, 9, 10 cmd 11). For the mud habitat, 

only the raw NCO richness values were calculated (there is no formula available for scaled 

values) (Bode 2001, personal communication). Raw and scaled DIV (Simpson's 

Diversity) and DOM-3 indices indicated improving water quality from downstream to 

upstream (Tables 6, 12 and 13). 

19 



Benthic Community Comparisons Among Habitats Within Each Location 

Comparisons among all habitats within the same location are limited to the Taxa 

Richness (TR) and the HilsenhoffBiotic Index (HBI) metrics. Ephemeroptera-Plecoptera­

Trichoptera richness (EPT) is applicable only for comparing gravel and vegetation 

habitats, Percent Model Affinity (PMA) is applicable only to the gravel and mud habitats, 

and NCO (non-Chironomid, non-Oligochaeta) richness is applicable only to the vegetation 

and mud habitats. DIV (Shannon-Wiener Diversity) and DOM3 (percentage ofthe three 

most abundant taxa in the community) were not used for habitat comparisons because 

these metrics are only used for the mud habitat. For each location (upstream, midstream, 

downstream) each applicable metric was analyzed using 1-way ANOVA's followed by 

Student-Newman Keuls (SNK) tests, if appropriate (Tables 14-18; Raw data is found in 

Appendix C). 

Upstream Location (Cheese Factory Road) 

At the upstream location (Figure 1 ), there were significant differences in index 

values among the three habitats for the TR, EPT, and HBI indices (Table 14). Raw TR 

was higher in the gravel habitat than in the mud and vegetation habitats (Tables 14 and 

1 7), raw EPT richness was greater in the gravel habitat than in the vegetation habitat · 

(Table 14), and the raw HBI metric indica~ed a healthier benthic community in the 

vegetation habitat than in the mud and gravel habitats (Tables. 14 and 18). Raw PMA 

values did not differ between the gravel and mud communities, and raw NCO values 

suggest better water quality in the vegetation habitat than in the mud habitat (P = 0.052, 

Table 14). For scaled values, only the HBI index remained significantly different among 

the three habitats, with the gravel community having higher HBI diversity than the mud 
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and vegetation communities (Tables 14 and 18). Overall, once adjusted by scaled values 

for inherent differences in habitat quality for benthic macroinvertebrates (gravel 2: 

vegetation> mud), there were no apparent water quality-related differences among the 

gravel, mud and vegetation communities at the upstream location. 

Midstream Location (Powder Mill Park) 

At the midstream location, raw values were significantly different among habitats 

for the TR, HBI, and NCO indices (Tables 15, 17, and 18). Raw TR and HBI values were 

higher and lower, respectively, in the gravel and vegetation habitats than in the mud 

habitat (Tables 15 and 17), and NCO was higher in the vegetation habitat than in the mud 

habitat (Table 15). There were no significant differences for the raw EPT and PMA 

indices (Table 15). Scaled EPT richness was higher in vegetation than in gravel, and 

scaled PMA was significantly higher in gravel than in mud (Table 15), but scaled values 

were not significantly different for the TR and HBI indices (Tables 15, 17, and 18). TR 

and HBI are the two indices that allow comparisons across all three habitats, so it is 

reassuring to see that these indices, when scaled, show no differences among benthic 

communities at the midstream location. The PMA scaled index suggests that the gravel 

habitat has greater affinity with a model gravel community than the mud habitat does with 

a model mud community. Overall, once adjusted by scaled._ values for inherent differences 

in habitat quality for macro invertebrates (gravel 2: vegetati0n > mud), there were few 

water quality-related differences among the gravel, vegetation and mud communities at the 

midstream location. 
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Downstream Location (Ellison Park) 

At the downstream location raw values were different for all indices (Table 16). 

Raw TR for the gravel habitat was higher than for the vegetation and mud habitats (Tables 

16 and 1 7), and raw HBI values for the vegetation, gravel and mud habitats ranged from 

lower to higher, respectively (Tables 16 and 18). Raw EPT richness was higher in the 

gravel habitat than in the vegetation habitat, raw PMA was higher for the mud than the 

gravel community, and the raw NCO index was higher for the vegetation than the mud 

community (Table 16). Scaled values were different for the EPT and HBI indices, and 

they approached significance for TR (P = 0.07, Table 16), with the gravel habitat 

appearing to have greater TR than the mud and vegetation habitats (Table 16). The scaled 

HBI suggests better water quality in the gravel and mud habitats than in the vegetation 

habitat (Tables 16 and 18), and the scaled EPT index suggests better water quality in the 

gravel than in the vegetation habitat (Table 16). Thus, in lower Irondequoit Creek the 

indices used give a confusing picture of water quality impacts. 

Haphazard versus Random versus Whole Count Metrics 

Except for the PMA index, raw and scaled metrics for haphazard and random 

samples of 100 organisms and whole-sample analyses were different, with whole counts 

consistently providing higher scaled scores, indicative of better water quality, for the TR 
.. 

and EPT indices (Tables 19 and 20; raw data is found in A:rpendix D). Except for the 

HBI metric, there were no differences between haphazard and random values for samples 

of 100 organisms or between the values obtained with different random samples from the 

same midstream reach in Powder Mill Park (Tables 19 and 20). These results suggest that 

haphazard suhsampling provides the same quality of information as the random 
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subsampling, but that whole samples provide much additional information. Consistent 

within- and between- investigator results for the TR and EPT indices are a good indicator 

of methodological soundness. However, the significant difference in HBI values between 

investigators is troubling. C. Cody (May 1998) and N. Bailey-Billhardt (April1997) did 

analyze different samples from the same stream section in Powder Mill park, but why there 

is a dramatic difference between their HBI values and not their TR and EPT values is 

unknown. 

Discussion 

Importance of Comparable Physical and Chemical Habitat Parameters 

Sampling multiple habitats at the same location is an excellent way to assess stream 

health. However, one must be careful when comparing raw community and structure 

metrics derived from different habitats. Bode et al.'s (1996) protocol ensures habitat 

comparability by establishing acceptable limits for specified chemical and physical 

parameters that result in minimal differences in community health metrics due to habitat 

differences (Bode et al. 1990). In my study, samples were taken in gravel, vegetation and 

mud habitats. Due to differing biological requirements of species, the benthic invertebrate 

community in each habitat was expected to be different. Substrate characteristics, 

particularly particle size, are believed to be one of the most 'important habitat factors that 

determine macroinvertebrate community structure (Richards and Host 1994; Mackay 

1992). Substrate differences will result in distinct community assemblages, while the same 

substrate at a different location likely will yield the same community assemblage (Brown 

and Brussock 1991; McCulloh 1986; Jenkins et al. 1984). Therefore, when raw metrics 
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were compared across habitats at the same location in my study, the differences seen in my 

data were expected. 

Bode et al. 's protocol (1996) takes into account inter-habitat variation by 

converting raw metrics to habitat-specific scaled metrics. If community differences across 

habitats were not taken into account, "inter-habitat variation" could be mistaken for 

ecological impairment (Parson and Norris 1996). In my study, raw metric data differed 

much more frequently when comparing habitats within locations than did scaled metrics 

for the same samples. Thus, it appears that the scaled metrics did a good job of removing 

inter-habitat variability from my data. 

Biological Stream Health Assessment Across Locations and Habitats 

The first objective of my study was to determine invertebrate community health in 

Irondequoit Creek based on Bode et al.'s protocol (1996). Individual metrics were 

calculated for the gravel, vegetation and mud habitat at each stream location (upstream, 

midstream and downstream) and converted by formulae (Bode 2001, personal 

communication) to scaled values between one and ten (Figures 3-5). These scaled metrics 

were then averaged to determine the degree of water quality impact at each location and 

habitat. Figures 6, 7 and 8 compare scaled metric values within the three habitats (gravel, 

vegetation, mud) among the three stream locations. When comparing similar habitats 

across locations, the trend is that there were few differences in scaled community metrics 

between the up- and midstream locations while the downstream location is often different 

than the middle and upper reaches of Irondequoit Creek. While there is some variation 

among the metrics regarding their predictions of impact, the average of the metrics for the 

24 



benthic macroinvertebrate communities in Irondequoit Creek indicate that water quality is 

better at the upper and middle locations than at the downstream location. Thus, it appears 

that as Irondequoit Creek passes through areas of greater suburban and urban 

development its water quality declines. 

Figures 9-11 compare scaled metric values within locations among the three 

habitats~ While there is some variation among metrics, the vegetation habitat exhibits the 

least impact, the gravel habitat shows intermediate impact, and the mud habitat has the 

greatest impact. At the upstream location, all habitats appear to be only slightly impacted, 

although the vegetation habitat borders the lower limit of no impact (Figure 9). At the 

midstream location, average metric values categorize the gravel habitat as slightly 

impacted, the vegetation as non-impacted, and the mud as moderately impacted (Figure 

1 0). At the downstream location, average metric values categorize the gravel and 

vegetation habitats as moderately impacted, while the mud habitat is severely impacted 

(Figure 11). As seen above, relative stream health improves from downstream to 

upstream. 

At the downstream location (Ellison Park) stream health assessment can be 

compared to historical data from previous macroinvertebrate studies (Coon 1997; Sutton 

1998). Sutton ( 1998) calculated macro invertebrate metries for the gravel habitat at 

Ellison Park for samples taken in June of 1995, while the RIBS (NYSDEC Rotating 

Intensive Basin Survey) for Irondequoit Creek took samples from gravel habitat in August 

of 1995 and 1996 (Coon 1997). Both studies evaluated results using the New York State 

expected index values for flowing water (Bode et al. 1990). Sutton ( 1998) and my study 
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categorized Ellison Park's benthic macroinvertebrate community as moderately impacted 

based on the EPT and PMA metrics. However, Sutton's study assessed the downstream 

macroinvertebrate community as moderately impacted using the TR metric, while my 

study characterized the community as slightly impacted. Also, Sutton's (1998) HBI 

metric assessed the downstream impact as slight, while my study characterized the 

downstream location as moderately impacted. The RIBS report identified the downstream 

site as slightly impacted in both years 1995 and 1996 (Coon 1997). Overall, assessments 

from these three studies are in substantial agreement and categorized the gravel habitat of 

lower Irondequoit Creek as slightly to moderately impacted. Data from Cook's (1998) 

chironmid analysis revealed higher taxa richness and Simpson's Diversity values in the 

upstream location than in the downstream. Based on these results, it seems reasonable to 

conclude that my data indicating healthier benthic macro invertebrate communities at the 

up- and midstream locations are valid. 

The degree of impact at the downstream site is not surprising given the history of 

the watershed. Since the early 1800s the Irondequoit Basin has been subject to polluted 

effluent from many anthropogenic sources. Throughout its history the basin's waters have 

undergone large population fluctuations and as a result, Irondequoit Basin has received 

nutrient-rich raw and treated sewage, excessive sediment c~used by logging practices, raw 

effiuent from tanneries, and nutrients, sediment and pesticide runoff from agricultural 

practices (Verna 1995; Tangorra 1996). This pattern of pollution rendered Irondequoit 

Bay and its tributaries culturally eutrophied (Verna 1995; Tangorra 1996). 
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In efforts to remediate and/or prevent further degradation of Irondequoit Bay and 

its tributaries, sewage diversions were established and the Frank E. Van Lare Treatment 

Plant was enlarged and updated to institute primary and secondary treatment, as well as 

phosphorus removal, for the basin (Verna 1995). The changing degree of impact from 

upstream to downstream in Irondequoit Creek may reflect efforts made to improve the 

quality of water entering Irondequoit Creek. My results can also be used as a comparison 

of stream health in subsequent years as cleanup efforts continue within the Irondequoit 

Creek Watershed. 

Haphazard vs. Random 100 Counts vs. Whole Samples 

The second objective of my study was to examine the reliability of the NYSDEC 

Stream Biomonitoring Protocol (Bode et al. 1996). In my study, haphazard subsampling 

of 100 organisms per sample w~s not performed in the field. The entire sample was taken 

back to the lab for sorting, then after sorting and elimination of debris, 100 organisms 

were sampled haphazardly and randomly, with replacement, identified and then returned to 

the whole sample. In my study, organisms sorted by the haphazard method were 

considered comparable to Bode et al.' s (1996) field sort. 

Some researchers suspect that field sorting may bias a sample to over represent 

larger, more easily seen organisms versus smaller, less visiBle or rare invertebrates (Lenz 

and Miller 1996). Barbour and Gerritsen (1996) suggested that fixed-count methods 

require non-biased subsampling, or random sampling, to ensure accurate assessments of 

stream health. In my study, the random grid/quadrat method of sorting was used to 

eliminate this potential bias ( Cao et al. 1998; Barbour and Gerritsen 1996). No 
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differences ~.vere found between 100 count random and haphazard subsamples, other than 

for the HBI metric (Figure 12), suggesting that haphazard and random samples of 100 

organisms give nearly equivalent results. 

Fixed count, subsampling methods are the preferred methodology because they are 

a more practical and economical approach for using benthic macro invertebrates to assess 

ecosystem health (Barbour and Gerritsen 1996; Plafkin et al. 1989), but do they provide 

statistical results equivalent to whole samples? I found significant differences (1-way 

ANOVA, p<0.01) between the TR and EPT metrics calculated from fixed count methods 

versus those calculated from whole samples(Tables 19 and 20). However, following 

Bode et al.'s protocol (1996), even though statistical differences were found for two 

individual metrics, the average metrics for all methods showed the midstream location to 

be slightly impacted (Figure 12). 

The elimination of rare species often indicates differences between a relatively 

"pristine" stream reach and a polluted one. Cao et al. (1998) suggest that fixed count 

methods, random or haphazard, overlook rare species, resulting in diminished species 

richness values and difficulty in discerning differences in stream health among sites. 

Streams with less distinct variations may not be differentiated at all with fixed count· 

methods. The haphazard and random sul;>samples in my study all underestimated TR and 

EPT richness compared to whole samples for the same locafiqn (Figure 12). These results 

suggest that the fixed 100 count random and haphazard samples do eliminate rare species 

and result in lower richness values as opposed to entire counts, but again these differences 

did not generally suggest differences in stream community health. Higher richness values 
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for the whole sample also support the idea that a larger number of samples will yield a 

greater number of species up to a point (Figure 2). 

Although most metrics calculated in my study followed expected trends across 

locations and habitats, the HBI metric did not. This metric relies on taxonomic resolution 

to the species level, although some tolerance values are established for genus- and family­

level identifications (Lenz and Miller 1996; Bode et al. 1996). Taxa, in my study, were 

identified to the lowest practical level possible and included family, genus and species level 

identifications. Perhaps if the taxonomic resolution was to species level across all of my 

samples the HBI index values would follow predicted stream health assessments. Family­

level identifications can be used with Hilsenhoff s Family Level Biotic Index, which 

yielded results similar to the HBI in a study by Lenz and Miller ( 1996). However, in my 

study, the Family Biotic Index rated the midstream gravel habitat non-impacted, as 

opposed to the HBI rating of slightly impacted. 
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Summary/Conclusions 

Generally, as development and civilization encroach upon stream banks, stream 

health tends to degrade. The watershed of Irondequoit Creek is increasingly developed 

from upstream to downstream. Therefore, it is useful to know that the upstream and 

midstream locations were slightly impaired (averaged across habitats), while the 

downstream location was moderately impaired. My study provides a detailed list of 

organisms to which, in the event that better land management practices are put in place, 

the human impact on stream health can be compared in the future. 

Low fixed count methods of sampling may indeed eliminate rare species, leading to 

inaccurate stream health assessments. In my study, although statistical differences were 

found among random and haphazard (100 counts) versus whole sample counts, no 

statistical differences were found among stream health assessments determined by these 

methods. Therefore, according to Bode et al.'s (1996) protocol, stream health 

assessments were as accurate for 100 counts as they were for the whole sample. 
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Table 1. Physical (depth, width, current, canopy, % embeddedness, temperature and particle size) and 
chemical (conductivity, dissolved oxygen and pH) habitat parameters across habitats (gravel, vegetation, 
mud) and locations (upstream, midstream, downstream). Measurements were taken at the uppermost and 
lowermost station at each location. Gravel and vegetation habitat parameters were taken at different sites 
for the upstream and midstream samples. Habitat parameters were measured at three different habitat 
sites at the downstream location 

Upstream Midstream 

Gravel, 
Veg Mud Veg, Gravel 

Depth (em) 44.5 44.5 41.8 
Width (m) 4.9 4.9 9.8 

Current (cm/s) 79.8 79.8 52 
Canopy(%) 6 6 45 

Embeddedness (%) 30 80 24 
Temperature ( C ) 10.9 10.9 12.2 

Conductivity (umhos) 353 353 972 
DO (mg/L) 10 10 11 

pH 7.5 7.5 7 
Particle size (phi) -1.2 4.8 -2.9 

Table 2. Particle size, % embeddedness, current and 
canopy cover at the upstream, midstream and downstream 
locations in the gravel habitat. Habitat comparability 
criteria identified by Bode et al. (1991) 

Gravel Upstream Midstream Downstream I 

Particle size (phi) -1.2 -2.9 -4.6 
Embeddedness (%) 30 24 43 

Current (cm/s) 79.8 52 811 
Canopy(%) 6 4~ ___ 60J 

Table 3. Particle size,% embeddedness, current and 
canopy cover at the upstream, midstream and downstream 
locations in the mud habitat. Habitat comparability criteria 
identified by Bode et al. (1991 ). 

Mud Upstream Midstream Downstream j 

Particle size (phi) 4.8 3.4. 4.31 

Embeddedness (%) 80 85 94 
Current (cm/s) 79.8 20.2 23.5! 

~- 9C:l_I'!OPY (%) 
.. 

6 45.2 11 
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Mud 
71.8 
9.3 

20.2 
45.2 
85 
13 

1099 
11.2 
8.2 
3.4 

l" 

Downstream 
Lower 

Upper Site Site Veg, 
Veg, Mud Mud Gravel 

55 94 48 
18 18 14.4 
29 18 81 
2 0 60 

92 96 43 
14.9 10.5 12.3 
600 555 992 
6.9 12.6 10.3 
8.1 7.8 7.9 
3 5.6 -4.6 



Table 4. Average raw and scaled metric results including Taxa Richness (TR; 
modified from Bode et al. {1996) Species Richness), Ephemeroptera-Piecoptera­
Trichoptera Richness (EPT), Hilsenhoff Biotic Index (HBI) and Percent Model Affinity 
(PMA) for gravel habitats among three locations (upstream, midstream and 
downstream) compared by 1-way ANOVA. 

Upstream Midstream Downstream F P-value 
Taxa· Richness Raw 37.80 29.80 25.40 5.331 0.022 

Scaled 9.28 8.36 7.19 5.633 0.019 
EPT Richness Raw 8.80 9.80 3.40 12.095 0.001 

Scaled 6.78 7.33 3.58 11.894 0.001 
HBI Raw 5.88 6.06 6.87 3.220 0.076 

Scaled 5.78 5.55 4.54 3.220 0.076 

PMA Raw 58.22 47.42 36.00 6.434 0.013 
Scaled 6.27 4.70 2.79 6.701 0.011 

Table 5. Average raw and scaled metric results including Taxa Richness (TR; 
modified from Bode et al. (1996) Species Richness), Ephemeroptera-Piecoptera­
Trichoptera (EPT) Richness, Hilsenhoff Biotic Index (HBI) and Non-Chironomid/Non­
Oiigochate (NCO) Richness for vegetation habitats among three locations (upstream, 
midstream and downstream) compared by 1-way ANOVA. 

Upstream Midstream Downstream F P-value 
Taxa Richness Raw 24.60 25.60 16.60 3.672 0.057 

Scaled 7.74 9.40 5.20 5.249 0.023 
EPT Richness Raw 4.40 9.80 0.00 103.257 0.000 

Scaled 6.08 9.84 0.00 129.536 0.000 
HBI Raw 4.08 5.83 4.74 5.663 0.019 

Scaled 9.04 6.92 8.80 5.948 0.016 
NCO Raw 12.80 15.60 14.80 0.817 0.465 

Scaled 8.32 10.00 9.28 2.702 0.107 

Table 6. Average raw and scaled metric results including Taxa Richness (TR; 
modified from Bode et al. 1996 Species Richness), Hilsenhoff Biotic Index (HBI), 
Percent Model Affinity (PMA), Non-Chironomid/Non-Oiigochate (NCO) Richness, 
Shannon Weiner Diversity (DIV) and DOM-3 (% of three most dominant species) for 
mud habitats among three locations (upstream, midstream and downstream) 
compared by 1-way ANOVA. 

Upstream Midstream Downstream F P-value 
Taxa Richness Raw 19.20 19.40 14.80. 2.587 0.116 

Scaled 7.38 7.37 5.13 2.903 0.094 
HBI Raw 6.78 7.34 7.83r 1.581 0.246 

Scaled 7.97 6.66 5.39 1.627 0.237 
PMA Raw 49.84 38.64 48.45 2.314 0.141 

Scaled 3.97 2.11 3.69 2.174 0.156 
NCO Raw 7.40 6.40 6.80 0.167 0.848 

Scaled NO NO NO NO NO 
DIV Raw . 2.03 1.85 1.14 8.234 0.006 

Scaled 2.85 1.88 0.15 5.692 0.018 
DOM3 Raw 66.75 70.99 88.50 5.044 0.026 

Scaled 6.38 5 .. 67 2.56 5.396 0.021 -
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Table 7. Raw and scaled taxa richness (TR) values among locations 
(upstream-U, midstream-M, downstream-D) within habitats (gravel, 
vegetation, mud) compared by 1-way ANOV A and Student Newman 
Keuls (if significance was found with ANOVA). (*, P<0.05; **, P< 
0.01; ***, P<0.005). 

TR U-M U-D M-D 
Gravel Raw ** *** ns 
Gravel Scaled ns *** * 
Veg Raw ns ns ns 
Veg Scaled ns * *** 

Mud Raw ns ns ns 
Mud Scaled ns ns ns 

Table 8. Raw and scaled Ephemeroptera-Plecoptera-Trichoptera 
(EPT) Richness values among locations (upstream-U, midstream-M, 
downstream-D) within habitats- (gravel, vegetation, mud) compared 
by 1-way ANOV A and Student Newman-Keuls (if significance was 
found with ANOVA). (*, P<0.05; **, P< 0.01; ***, P<0.005). 

U-M U-D M-D 
Gravel Raw ns *** *** 
Gravel Scaled ns *** *** 
Veg Raw *** *** *** 
Veg Scaled "' *** *** *** ·•. 

Table ~. Kaw ana scaled Hllsennorr tltotlc 1naex values among 
locations (upstream, midstream, downstream) within habitats 
(gravel, vegetation, mud) compared by 1-way ANOVA and Student 
Newman-Keuls (if significance was found with ANOV A). (*, 
P<0.05; **, P< 0.01; ***, P<0.005). 

U-M U-D M-D 

Gravel Raw ns ns ns 
Gravel Scaled ns ns ns 
Veg Raw *** ns ** 
Veg Scaled *** ns *** 
Mud Raw ns ns ns 
Mud Scaled ns ns ns 
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Table 10. Raw and scaled Percent Model Affinity (PMA) 
values among locations (upstream-U, midstream-M, 
downstream-D) within habitats (gravel, mud) compared by 1-
way ANOV A and Student Newman-Keuls (if significance 
was found with ANOV A). (*, P<0.05; **, P< 0.01; ***, 
P<0.005) 

U-M U-D M-D 
Gravel Raw * *** * 
Gravel Scaled * *** * 
Mud Raw ns ns ns 
Mud Scaled ns ns ns 

TabJe ll. Raw and scaled Non-Choronomid/Non-
Oligochaete (NCO) values among locations (upstream-U, 
midstream-M, downstream-D) within habitats (vegetation, 
mud) compared by 1-way ANOV A and Student Newman-
Keuls (if signifcance was found with ANOVA). (*, P<0.05; 
**, P< 0.01; ***, P<0.005) 

U-M U-D 

Veg Raw ns ns 
Veg Scaled ns ns 
Mud Raw ns ns 

(*, P<0.05; **, P< 0.01; ***, 

Mud 
Mud 

Raw 
Scaled 

U-M 
ns 
ns 

U-D 
*** 
*** 

Table 13. Raw and scaled DOM-3 (%of three most 

wl-D 

ns 
ns 
ns 

M-D 
*** 
** 

dominant species) values among locations (upstream-U, 
midstream-M, downstream-D) within the mud habitat 
compared by 1-way ANOV A and Student Newman-Keuls (if 
significance was found with ANOVA). (*, P<0.05; **, P< 
0.01; ***, P<0.005) 

U-M U-D M-D 
Mud Raw ns *** *** 
Mud Scaled ns *** *** 



Table 14. Raw and scaled metric results for Taxa Richness (TR; modified from Bode et al. 1996), Ephemeroptera-Piecoptera-Trichoptera 
Richm~ss. Hilsenhoff Biotic inde~~ (HBI), Percent Model Affinity (PMA), Non-Chironomid/Non-Oiigochaete (NCO) Richness, 

Shannon-Weiner Diversity (DIV) and percentage of the three most dominant species (DOM-3) at the upstream location among three 
habitats (gravel, vegetation and mud) compared by 1-way ANOVA. 

Gravel Veg Mud F P-va/ue 
Taxa Richness Raw 37.800 24.600 19.200 8.069 0.006 

Scaled 9.278 7.740 7.385 1.237 0.325 
EPT Richness Raw 8.800 4.400 NA 16.133 0.004 

Scaled 6.782 6.100 NA 0.622 0.453 
HBI Raw 5.877 4.081 6.782 10.265 0.003 

Scaled 5.779 9.040 7.973 5.886 0.017 
PMA Raw 58.220 NA 49.842 1.200 0.305 

Scaled 6.270 NA 3.968 3.599 0.094 
NCO Raw NA 12.800 7.400 5.207 0.052 

Scaled NO NO NO NO NO 
DIV Raw NA NA 2.034 * * 

Scaled NA NA 2.850 * * 
DOM-3 Raw NA NA 66.746 * * 

Scaled NA NA 6.376 * * 
-----~-----~i.--

Table 15. Raw and scaled metric results for Taxa Richness (TR; modified from Bode et al. 1996), Ephemeroptera-Piecoptera-Trichoptera 
(EPT) Richness, Hilsenhoff Biotic Index (HBI), Percent Model Affinity (PMA), Non-Chironomid/Non-Oiigochaete (NCO) Richness, 
Shannon-Weiner Diversity (DIV) and percentage of the three most dominant species (DOM-3) at the midstream location among three 
habitats (gravel, vegetation and mud) compared by 1-way ANOVA. 

Gravel Veg Mud F P-value 
Taxa Rich ness Raw 29.800 25.600 19.400 7.851 0.007 

Scaled 8.356 9.400 7.367 2.668 0.110 
EPT Richness Raw 9.800 9.800 NA 0.000 1.000 

Scaled 7.327 9.840 NA 12.433 0.008 
HBI Raw 6.063 5.830 7.337 11.138 0.002 

Scaled 5.546 6.920 6.657 2.120 0.163 
PMA Raw 47.416 NA 38.638 2.438 0.157 

Scaled 4.696 NA 2.105 9.883 0.014 
NCO Raw NA 15.600 6.400 26.286 0.014 

Scaled NO NO NO NO NO 
DIV Raw NA NA 1.854 * * 

Scaled NA NA 1.880 * * 
DOM-3 Raw NA NA 70.990 * * 

-~~led __ NA NA 5.668 * * 
-- ---

Table 16. Raw and scaled metric results for Taxa Richness (TR; modified from Bode et al. 1996), Ephemeroptera-Piecoptera-Trichoptera 
(EPT) Richness, Hilsenhoff Biotic Index (HBI), Percent Model Affinity (PMA), Non-Chironomid/Non-Oiigochaete (NCO) Richness, 
Shannon-Weiner Diversity (DIV) and percentage of the three most dominant species (DOM-3) at the downstream location among three 
habitats (gravel, vegetation and mud) compared by 1-wa.y ANOVA. 

Gravel Veg Mud F P-value 
Taxa Richness Raw 25.400 16.600 14.800 17.678 0.000 

Scaled 7.193 5.200 5.172 3.351 0.070 
EPT Richness Raw 3.400 0.000 ._NA 25.130 0.001 

Scaled 3.583 0.000 NA 34.597 0.000 
HBI Raw 6.868 4.736 7.830 16.190 0.000 

Scaled 4.540 8.804 5.385 7.601 0.007 
PMA Raw 35.996 NA 48.454 9.795 0.014 

Scaled 2.792 NA 3.691 1.345 0.280 
NCO Raw NA 14.800 6.800 18.935 0.002 

Scaled NO NO NO NO NO' 
DIV Raw NA NA 1.136 * * 

Scaled NA NA 0.150 * * 
DOM-3 Raw NA NA 88.500 * * 

Scaled _.__NA NA 2.562 * * 
------~-

Tables 14, 15, 16: NA-not applicable, NO-No data conversion formula available, *No ANOVA perfomed, 
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Table 17. When 1-way ANOVA comparisons resulted in significant difference, Student Newman-Keuls' tests 
were run on raw and scaled Taxa Richness values among habitats (gravei-G, vegetation-V, mud-M) within 
each location (upstream, midstream, downstream) using Student Newman-Keuls'. (*, P<O.OS; **, P< 0.01; ***, 
P<O.OOS). 

Gravel-Vegetation Vegetation-Mud Gravel-Mud 
Upstream Raw *** ns *** 

Scaled ns ns ns 
Midstream Raw * *** *** 

Scaled ns ns ns 
Downstream Raw *** ns *** 

Scaled ns ns ns ----

Table 18. When 1-way ANOVA comparisons resulted in significant difference, Student Newman-Keuls' tests 
were run on raw and scaled Hilsenhoff Biotic Index comparisons among habitats (gravel-G. vegetation-V, mud­
M) within each location (upstream, midstream, and downstream). (*, P<0.05; **, P< 0.01; ***, P<O.OOS). 

Gravel-Vegetation Vegetation-Mud Gravel-Mud 
Upstream Raw *** *** ns 

Scaled *** ns ** 

Midstream Raw ns *** *** 

I Scaled ns ns ns 
Downstream Raw *** *** * 

I Scaled *** *** ns 
-- ---

r 
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Table 19. Raw and scaled metric averages and 1-way ANOVA results comparing random 
(RCC, RNB) and haphazard 100 count subsamples (HCC) and whole samples (WNB) taken 
from gravel community samples at the midstream location, Powder Mill Park, Rochester, 
NY. 

HCC1 RCC1 RNB1 WNB1 F P-Va/ue 
TR Raw 14.20 13.60 15.00 20.40 8.18 0.002 

Scale 3.74 3.51 3.97 5.65 8.21 0.002 
EPT Raw 5.00 6.20 7.00 9.80 4.92 0.013 

Scaled 4.76 5.47 5.80 7.33 5.02 0.012 
HBI Raw 2.61 1.81 5.10 5.52 31.34 0.000 

Scaled 9.39 9.87 6.73 6.21 26.47 0.000 
PMA Raw 41.00 43.80 51.27 52.58 2.00 0.155 

Scaled 3.62 4.09 5.32 5.55 1.93 0.165 
1 HCC Cody's haphazard 100 count subsample 

RCC Cody's random 1 00 count subsample 
RNB Bailey's random 1 00 count subsample 
WNB Bailey·~-~~_()le sa~e~~ -----

Table 20. Raw and scaled Student Newman-Keuls comparisons among random (RCC, 
RNB) and haphazard 100 count subsamples (HCC) and whole samples (WNB) taken from 
gravel community samples at the midstream location, Powder Mill Park, Rochester, NY. 

HCC-RCC1 HCC-RNB1 HCC-WNB1 RCC-RNB1 RNB-WNB1 RCC-WNB1 

TR Raw ns ns *** ns *** *** 
Scaled ns ns *** ns *** *** 

EPT Raw ns ns *** ns ** *** 

Scaled ns ns *** ns ** *** 
HBI Raw * *** *** *** ns *** 

Scaled ns *** *** *** ns *** 

PMA Raw ns ns ns ns ns ns 
Scaled ns ns ns ns ns ns 

1 HCC Cody's haphazard 1 00 count subsample * P<.05 
RCC C<?dy's random 1 00 count subsample ** P<.01 
RNB Bailey's random 1 00 count subsample *** P<.005 
WNB Bailey's whole sample 
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Figure 2. Species-sampling Intensity curve depicting the 
relationship that the greater the nt.mber of organsims taken, the 
greater the species count wiU be, until you reach an aysmptotic 
point. 
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3. 
ASSESSMEN1:~ PROFILE OF INDEX VALUES FOR 

HABffATS 
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The Biological Ass~mcnt Profile of index values is a n1cthod of plotting biological index 
values on a conunou scale of water quality impact. Fer riffle habitats, these indices arc 
used: SPP (species richness), IIDI (Hilscnhoff Biotic Index), EPT (EIT richness), and PMA 
(Percent Model Affinity). Values from the four indices· ~rc converted to .a common 0-10 
scale ~ shown in this figure. ll1c mean scale value of the four indices represent~ the 
assessed impact for each site. 
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4 BIOLOGICAL ASSESSMENT PROFILE OF INDEX VALUES FOR 
·SAMPlE<; FROM SOFT SEDIMENTS 
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The Biological Assessment Profile· of index values is a kethod of plotting biological index 
values on a oonuilon scale. of Water quality impact. For fonar saniples from soft sediments, 
these indices are ~d:· SPP (species richness), HBI (Hilsenhoff Biotic Index), DOM3 
(Dominance-3), PMA: (Percent Model Affinity), and DIV (species diversity). Values from 
the.five. indices ·are converted to a common 0-10 scale as shown in this. figure. The mean 
scale value of the five .indices represents the assessed impact for each site. 
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_ Figure 5 BIOLOGICAL ASSESSMENT PROFILE OF INDEX VALUES FOR 
NET' SAJ\1PIES FROM SLOW, SANDY SlREAMS 
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The Biological·Assessment Profile of index value.s is a method of plotting biological index 
values on a common scale of water quality impact· For net samples from slow, sandy 
streams, these indices are used: SPP (species richness), 'HBI (Hilsenhoff Biotic Index), EPT 
(BPT rlclmess), and NCO (NCO richness)~ Values from the four indices are converted to 
a common 0.10 .~e ··as shown in this figure. The mean scale value of the four indices 
represents the a.~~.ssed impact for each site. 
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Figure. 6. Stream health assessment among locations for 
gravel habitat 
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Figure 7. Stream health assessment among locations for 
vegetation habitat 
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Figure 8. Stream health assessment among locations for 
mud habitat 
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Figure 9. Stream health assessment among habitats for 
upstream location 
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Figure 10. Stream health assessment among habitats for 
midstream location 

Gravel Vegetation Mud 

II TR 
CEPT 
CHBI 
. PMA 
• otv 
CIDOM-3 
fl Habitat Average 

Degree of Impact 
7.6-10 No Impact 
5-7.6 Slight 
2. 6-5 Moderate 
0-2.5 Severe 

Figure 11. Stream health assessment among habitats for 
downstream location 
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Figure 12. Stream health assessment for Random, 
Haphazard and Whole samples from the midstream gravel 
habitat 

HCC1 RCC1 RNB2 WNB2 

1. Sampling by C. Cody, May 1998 
2. Sampling by N. Bailey-Billhardt, April 1997 
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APPENDIX A. 

Complete taxonomic listing ofmacroinvertebrates found at the upstream, midstream and 
downstream locations in the grave4 vegetation and mud habitats. 

r 
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Appendix A. Benthic macroinvertebrates collected at the upstream location (Cheese Factory Road), Irondequoit 
Creek, in Sorina of 1997. 

Habitat Sampled Upstream Gravel Upstream Vegetation Upstream Mud 

Station (up- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 
P. Platyhelminthes 

C. Turbellaria 
0. Tricladida 

P. Nematomorpha 
P.Annelida 1 

C. Oligocha~ta 15 116 166 305 18 39 22 3 15 40 143 15 33 
0. Tubificida 
0. Haplotaxidae 

F. Tubificidae 
Limnodrilus hoffmeisteri 

C. Hirudinea 1 7 
0. Rhynchobdellida 

F. Glossiphoniidae 2 
HelobdeUa stagnalis 7 19 8 
Placobdella sp. 

F. Piscicolidae 
Myzobdella lugubris 

P. Arthropoda 
C. Crustacea 

O.Isopoda 
F. Asellidae 

Caecidotea sp. 10 20 29 56 27 2 1 1 2 
0. Ampbipoda 1 3 15 

F. Gammaridae 1 1 3 
Gammarus fasciatus 1 2 
G. psuedolimnaeus 

0. Decapoda 
F. Cambaridae 1 2 

C. Insecta 
0. Diptera 

F. Cbironomidae 3 2 
pupae 17 53 22 98 6 7 5 2 14 2 1 2 3 

Chironomus sp. 6 1 
Cladopelma sp. 
Cryptochironomus sp. 13 12 49 2 1 1 5 11 1 
Cryptotendipes sp. 
Dicrotendipes sp. 31 1 88 1 2 2 1 20 1 1 
Einfeldia sp. 
Endochironomus sp. 
G/yptotendipes sp. 
Microtendipes sp. 158 1 157 29 3 10 1 
Parachironomus sp. 

~ 

Paracladopelma sp. 
Paratendipes sp. 125 20 49 30 11 15 10 31 79 74 27 
Phaenopsectra sp. 10 1 
Polypedilum sp. 112 44 98 18 3 4 1 5 2 1 14 2 
Saetheria sp. 
Stenochironomus sp. 

-- Stictochironomus sp. 10 
Trihelos sp. 6 
C/adotanytarsus sp. 1 39 1 2 1 1 2 

!--· 
Micropsectra sp. 62 50 29 1 4 2 2 1 1 1 10 
Paratanytarsus sp. 7 6 1 
Rheotanytarsus sp. 13 6 2 13 2 1 2 20 

~-

StempellineUa sp. 19 10 1 1 
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Appendix A. Benthic macroinvertebrates collected at the upstream location (Cheese Factory Road), Irondequoit 
Creek, in Sorina of 1997. 

Habitat Sampled Upstream Gravel Upstream Vegetation Upstream Mud 

Station (up- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 
Sublettea sp. 
Tanytarsus sp. 99 50 127 22 2 13 1 2 1 13 1 1 4 
BriUia sp. 1 
Cricotopus/Orthocladius 389 143 50 284 102 25 48 1 13 4 3 5 33 4 
Eukiefferiella sp. 6 12 10 1 
Heterotrissocladius sp. 56 10 45 10 10 12 1 
Nanocladius sp. 19 10 2 13 1 10 10 1 
Parametriocnemus sp. 13 
Paraphaenocladius sp. 
Parorthocladius sp. 1 
Rheocricotopus sp. 10 1 
Smittia sp. 6 
ThienemannieUa sp. 2 
Ablabesmyia sp. 1 
Clinotanypus sp. 1 
Coelotanypus sp. 
Natarsia sp. 2 1 1 
Nilotanypus sp. 7 
Procladius sp. 1 1 5 
Tanypus sp. 
Thienemannimya sp. 13 13 10 1 
Diamesa sp. 7 6 1 1 
Pagastia sp. 13 10 
Unidentified Chironomidae 10 

F. Atbericidae 
Atherixsp. 

F. Simulidae 1 
Simulium sp. 1 7 3 1 

F. Tabanidae 
Chrysops sp. 3 1 2 1 2 

F. Empididae 1 
Hemerodromia sp. 1 8 5 2 1 1 1 1 
Cbelifera sp. 

F. Ceratopogonidae 2 
Culicoides sp. 4 2 
MaUochohelea sp. 5 
Probezzia sp. 1 11 1 1 1 9 5 
Pupae 2 
Sphaeromias sp. 5 6 

F. Epbydridae 1 
F. Stratiomyidae 
Odontomyia sp. 1 

~ 
2 

Myxosargus sp. 

Nemotelus sp. 
~-

Stratiomys sp. 1 2 
F. Sciomyzidae (pupae) 1 
F. Tipulidae 

Dicranota sp. 
--

Antochasp. 15 6 1 7 2 1 
Leptotarsus sp. 1 1 
Ormo.~ia sp. 3 4 

--
Prioncera sp. 1 
Molophllu.s sp. 1 
Pi/aria sp. 1 

-- Paradelphomyia sp. 1 -

51 



Appendix A. Benthic macroinvertebrates collected at the upstream location (Cheese Factory Road), Irondequoit 
Creek, in of 1997. 

Habitat Sampled Upstream Gravel Upstream Vegetation Upstream Mud I 

Station (up- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 
Rhabdomastix sp. 19 3 I 

0. Tricboptera 5 1 

F. Beraeidae 
Beraeasp. I 

F. Helicopsycbidae I 

Helecopsyche sp. 4 I 
F. Philopotamidae 

Wormalida sp. 

Chima"asp. 2 1 

F. Limnepbilidae 
-

Hydatophylax tzrgus 9 
F. Polycentropodidae 7 1 1 1 2 

Polycentropus sp. 

Neurecleosis sp. 

F. Hydropsycbidae 
Ceratopsyche sp. 

Cheumatopsyche sp. 3 1 3 24 

Hydropsyche sp. 12 
Potamyla sp. 2 1 17 1 
pupae 

F. Glossomatidae 
Glossosoma sp. 

F. Hydroptiladae 
Hydroptila sp. 1 17 34 131 2 2 1 1 

F. Bracbycentridae 
Micrasema sp. 

F. Helicopsychidae 
Helicopsyche sp. 

F. Leptoceridae 4 
Leptosarsus sp. 

Setodes sp. 

F. Limnepbilidae sp. 1 1 
Chyranda sp. 

F. Odontoceridae 4 5 
Namamyia sp. 

F. Psychomiida_e 
Lypesp. 16 22 

0. Coleoptera 1 

F. Chrysomelidae 5 5 
F. Elmidae 2 17 7 17 1 2 1 1 

Dubiraphia sp. 

Macronychus sp. 2 
Ancyronyx sp. 5 4 5 12 4 

.. 
Optioservus sp. 

Ordohrevia sp. 6 10 7 17 26 f 1 
Stenelmis sp. 8 6 5 5 1 ' 1 

F. Psephenidae 1 4 3 7 1 3 14 1 
EctiJpria sp. 2 1 8 1 2 
Psephenus sp. 

-- ----
F. Hyste1·idae 

__ F. Haliplidae 1 
Peltodytes sp. 

--

F. Gyrinidae 
__ Dineutus sp. 

F. Dytisci~ae 1 - - - -----·--- -
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Appendix A. Benthic macroinvertebrates collected at the upstream location (Cheese Factory Road), Irondequoit 
Creek, in of 1997. 

Habitat Sampled Upstream Gravel Upstream Vegetation Upstream Mud 

Station (up- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 
Hydaticus sp. 
Laccophilus sp. 

Neosantopterus sp. 2 1 
Uvarissp. 

F. Hydropbilidae 1 

Enochrus sp. 

F. Dryopidae 
H elichus sp. 

0. Hemiptera 
F. Corixidae 
F. Notonectidae 

Notonecta sp. 

F. Belostomidae 
Belostoma sp. 

F. Gerridae 
Gerrissp. 

Rheumatobates sp. 

F. Pleidae 
Neopleasp. 
Paraples sp. 

F. Mesoveliidae 
Mesovelia sp. 

F. Nepidae 
Nepasp. 1 
Ranatra sp. 

F. Hebridae 
Hebrussp. 

0. Odonata 1 
F. Aesbnidae 

Boyeriasp. 
Anta:sp. 

F. Coeoogrionidae 
Enallagma sp. 
Ishnurasp. 

F. Calopterygidae 
Calopteryx sp, 1 12 
H etaerina sp. 1 

F. Lestidae 
Lestessp. 

F. Gompbidae 
_:frigomphus sp. 

I<'. Cordoliidae 
~, 

Somatochlora sp. 

0. Epbemeroptera 1 
F. Isooycbiadae 

Isonycltia sp. 

F. Baetidae 
Acerpenna sp. 1 
Baeits sp. 

F. Caenidae 
Amercaenis sp. 11 45 89 444 60 3 1 1 1 1 3 

F. Epbemeridae 
~-

Hexagenia sp. 
~-

_______!'. Heptageniidae 
Stenacron sp. 

- --- -'----- -----

53 



-~ 

Appendix A. Benthic macroinvertebrates collected at the upstream location (Cheese Factory Road), Irondequoit 
Creek, in Sorino of 1997. 

Habitat Sampled Upstream Gravel Upstream Vegetation Upstream Mud 

Station (utr to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 
Heptagenia sp. 

Stenonema sp. 16 1 6 22 27 1 1 
F. Epbemerellidae 

Ephemerella sp. 

F. Leptopblebiidae 
Paraleptophlebia sp. 1 

0. Plecoptera 
F. Perlodidae 1 

!soper/a sp. 47 75 16 33 28 22 25 54 20 26 1 

F. Nemouridae 
Amphinemura wui 1 1 1 1 

F. Taeniopterygidae 
Strophopteryx fasciata 

0. Lepidoptera 
in star 

F.Pyralidae 
Acentria sp. 

F. Tortricidae 
Archipssp. 

0. Megalopterta 
F. Sialidae 

Sialis sp. 

0. Collembola 
F. Poduridae 

Podura aquatica 

C. Arachnida 
O.Aranae 

F. Pisauridae 
Dolomedes sp. 

F. Tetragnathridae 
Tetragnathra sp. 

P. Mollusca 2 
C. Pelecypoda 

0. Veneroida 
F. Sphaeridae 

Pisidium sp. 

Sphaerium sp. 5 
F. Dreissenidae 

Dreissena polymorpha 

C. Gastropoda 

__2:_~asommatopbora 

F. Pbysidae 
Physella sp. 

.. 
1 

Aplexa elongata 1 

F. Lymnaeidae r 

Fossaria sp. 

Pseudosuccinea columella 2 6 8 
F. Ancylidae 

Laevapex fuse us 

F. Planorbidae 
Gyraulus sp, 2 

---
Planorbella sp. 1 

~-

Menetus dilatatus 1 

f-------------0. Mesogastropoda 
F. Hydrobiidae 
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Appendix A. Benthic macroinvertebrates collected at the upstream location (Cheese Factory Road), Irondequoit 
Creek, in of 1997. 

Habitat Sampled Upstream Gravel Upstream Vegetation Upstream Mud 

Station (up- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 
Taxon 

Amnicola limosa 

F. Bithyniidae 
_ Bithynia tentaculata 

--- --
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Creek, in Spring of 1997 .. 

llabit.at Sampled Midstream Gravel Midstream Vegetation Midstream Mud 

Station (up- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 

P. Platyhebninthes 

C. Turbellarla 

0. Tricladida 

P. Nematomorpha 
~ ~---~-

P.Annelida 

C. Oligochaeta 302 182 132 151 117 457 494 62 71 400 321 238 669 136 
0. Tubificida 

r---------
0. Haplotaxidae 

F. Tubificidae 

Limnodrilus hoffmeisteri 

C. Hirudinea 

0. Rhynchobdellida 

F. Glossiphoniidae 

Helobdella stagnalis 

Placohdella sp. 
--r-- ---· --

F. Piscicolidae 

Myzohdella lugubris 

P. Arthropoda 

C. Crustacea 

0. Isopoda 

F. Asellidae 

Caecidotea sp. 8 4 6 30 9 1 4 1 14 
!----·· 

0. Amphipoda I 

----i 
F. Gammaridae 44 6 9 8 28 25 8 28 2 3 102 11 91 

Gammarus fm,·ciatus 47 
G. psuedolimnaeus 19 

0. Decapoda 
--

F. Cambaridae 

C. Insecta 

0. Diptera 

F.Chironomidae 

pupae 33 23 44 83 21 15 72 73 33 20 7 17 8 476 
Chironomus sp. 1 8 
Cladopebna sp. 

-- -··· 

Cryptochironomus sp. 11 58 27 17 22 1 15 17 38 173 
Cryptotendipes sp. 

Dicrotendipes sp. 6 
Einfeldia sp. 

Endochironomus sp. 12 6 
-----·---~·-------~~-~-----~-·-·-----·---~~~-- . --~- ---···--·--··- -·-~ -~ ~--

~ Glyptotendipes sp. 

Microtendipes sp. 5 l 23 4 
Parachironomus sp. 

Paracladopelma sp. 8 
Paratendipes sp. 5 23 4 6 247 126 193 183 204 
Phaenopsectra sp. 4 t 2 75 134 23 502 
Polypedilum sp. 44 21 127 107 105 95 155 237 75 90 53 96 47 289 235 
Saetheria sp. ,. 8 16 
Stenochironomus sp. 

Stictochironomus sp. 
-· 

Trihelos sp. 1 5 6 7 330 
Cladot.anytarsus sp. 83 41 255 509 121 19 6 329 12 146 70 152 47 
Micropsectra sp. 

------·--- t--
10 5 7 

·--

1 
___ !a_r_aJo."!llll'_sus sp. 6 

.•. ··-··· - ---------·- ---·······-· 88··· 6 Rl1eotanytarsus sp. 44 3 185 161 21 19 53 959 6 7 
Stempellinella sp. 

--
Sublettea sp. 45 6 

---·-~-·-------~----~------- ---- ---- --------··-··----- --------~-- ·····-····-·----

I _ ___ !'!_"J'_~r!ll! sp. 5 2 70 107 6 120 10 20 47 8 
I· ···--·· ... -· . ... ··--· 

I Brillia sp. 4 30 
Cricatopus/Orthodadills 259 12 347 1287 80 325 1677 1898 423 959 13 10 46 23 31 
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Creek, in Spring of 1997. 

Habitat Sampled Midstream Gravel Midstream Vegetation Midstream Mud 

Station (up-- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 
Eukiefferiella sp. 33 19 132 158 56 120 
Heterotrissodadius sp. 6 
Nanocladius sp. 4 10 5 6 
Parametriocnemus sp. 

Paraphaenocladius sp. I 

Parorthocladius sp. 

Rheocricotopus sp. 
---~--~ -- f--- --

Smittia sp. 

Thienemanniella sp. 6 
Ablabesmyia sp. 

Clinotanypus sp. 

Coelotanypus sp. 

Natarsia sp. 

Nilntanypus sp. 

Procladius sp. 

Tanypus sp. 

Thienemannimya sp. 

Diamesa sp. 33 46 456 54 102 132 132 31 299 
Pagastia sp. 22 10 23 27 158 6 90 
U ni.dentlfred Chirotwmidae 1 

F. Athericidae 

Atherixsp. I 

F. Simulidae 

Simulium sp. 16 1 1 23 24 74 49 14 9 1 1 1 

F. Tabanidae 

Chrysops sp. 

F. Empididac 

Hemerodro~ sp. 3 9 2 5 4 10 6 1 
Chelifera sp. 7 5 

r--
F. Ceratopogonidae 

Culicoides sp. 1 

MalkJchohelea sp. 

Probezzia sp. 
Pupae 1 

Sphaeromias sp. 1 4 
F. Ephydridae 

F. Stratiomyidae 

Odontomyia sp. 

Myxosargus sp. 
--~ -'---~-~--------- ~---- ~-~~- -~~ e.--1------- ---·--

Nemotelus sp. 

Stratiomys sp. 

F. Sciomyzidae (pupae) 

F. Tipulidae 

Dicratwta sp. 2 

Antochasp. 90 46 147 128 15 7 .. 5 2 12 30 1 3 1 
Le.ptotarsus sp. 2 

--

Ormosiasp. r 
Prioncera sp. 

Molophilus sp. 

Pilaria sp. 

Paradelplwmyia sp. 
~- -- ---- -----

Rhabdomastix sp. 
-- -~ -~------ --------~ 1----------~- ------ --~ --- r-----
_ _2-__!~<;lt_o_llf--:111 --------- ------------ --

F. Beraeidae 

Beraea Sf!. 

F. Helicopsychidae 
~-------- --~---~------------------ --- - ------ ----------- ---· ----- ---------------- -------

Helecopsyche sp. 
---------------------------------- ---- ·--- ----- --------- --

c---- F. Philopotamidae 0 
-~ ---e.--- -~ ~--- ~-

Wormalida sp. 1 
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Creek, in Spring of 1997. 

Habitat Sampled Midstream Gravel Midstream Vegetation Midstream Mud 

Station (up- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 

Chimarra sp. I 

F. Limnephilidae 

Hydatophylax argus 2 3 13 
F. Polycentropodidae 

--r--
Po(l'Centropus sp. l 

Neurecleosis sp. l 

F. Hydropsychidae 

Ceratopsyche sp. 196 26 139 136 7 50 100 137 75 37 
Cheumatopsyche sp. 32 3 31 7 4 6 7 6 2 10 1 

Hydropsyche sp. 22 12 32 24 27 4 2 2 
Potamyia sp. 6 1 6 

pupae 6 7 2 5 2 
F. Glossomatidae 

Glossosoma sp. 7 
F. Hydroptlladae 

Hydroptila sp. 276 228 156 138 18 66 189 841 154 91 8 44 

F. Brachycentridae 

Micrasema sp. 4 2 1 

F. Helicopsychidae 

Helicopsyche sp. 2 
F. Leptoceridae 

Leptosarsus sp. 3 
Setodes sp. 

F. Limnephilidae sp. 

Chyranda sp. 

F. Odontoceridae 

Namamyia sp. 

F. Psych~miidae 

Lypesp. 11 

0. Coleoptera 

F. Chrysomelidae 

F. Elmidae 

Dubiraphia sp. 2 4 
1"facronychus sp. 

,---

Ancyronyx sp. 12 1 
Optioservus sp. 20 10 34 58 36 1 1 15 
Ordobrevia sp. 1 1 2 
Stenelmis t.p. 2 3 2.17 1 1 

F.Psephenidae -----------~-~~-~~---------------- -~---

Ectopria sp. 

Psephenus sp. 

F. Hysteridae 2 
F. Haliplidae 

---- ------
Peltodytes sp. 

_____ F.Gyrinidae .. 
Dineutus sp. 

F. Dytiscidae _r 
Hydaticus sp. 

Laccophilus sp. 

Neosantopterus sp. 

'--------
Uvaris sp. 

f------ --1---

--
F. Hydropbilidae 

f-----------1---- --1-------
__ ____ E_nt?l:!!l'us sp. _________________ 

~~- --~ .····---- --- ~--~- -------

__ F. Dryopidae 

Helichus sp. 3 
f--- 0. Hemiptera 

------·-·--·--- ---------- ---

F. Corixidae 
----- ...... 

F. Notonectidae 
----

Notonecta sp. -
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Creek, in Spring of 1997. 

Habitat Sampled Midstream Gravel Midstream Vegetation Midstream Mud 

Station (up- to doWitStream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 
F. Belostomidae 

'--

Belosroma ;;p. 

F. Gerrldae 

Gerris sp. 
-~--- --

Rheumatobates sp. 

F. Pleidae 

Neopleasp. 
--

Paraples sp. 

F. Mesoveliidae 

Mesovelia sp. 

F. Nepidae 

Nepasp. 

Ranatrasp. 

F. Hebridae 

Hebrus sp. 

O.Odonata 

F. Aeshnidae 

Boyeriasp. 

Anaxsp. 

F. Coenogrionidae 
Enallagma sp. 

Ishnurasp. 

F. Calopterygidae 

Calopteryx sp. 

Hetaerina sp. 

F. Lestidae 

Lestes sp. 

F. Gomphidae 

Arigomphus sp. 

F. Cordullidae 

Somatochlora sp. 

0. Ephemeroptera 

F. Isonychiadae 

Isonychia sp. 1 
--r-----

F. Baetidae 

Acerpenna sp. 38 28 21 88 117 173 143 45 
Baeits sp. 2 

F. Caenidae 

Amercaenis sp. 1 
--~~-~~ ------------ --

F. Ephemeridae 

H exagenia sp. 

F. Heptageniidae 

,---------
Stenacron sp. 

-----1 -~ 

1--- Heptagenia sp. 
Steno11ema sp. 8 3 4 1 3 .. 1 1 2 1 1 

f-----
F. Ephemerellidae 

. Epltemerella sp. 19 7 78 37 22 24 r 35 30 24 13 2 1 
F. Leptophlebiidae 

Para_leptophlebia sp. 

0. Plecoptera 

F. Perlodidae 
f----- ---

Isoperla sp. 2 6 3 33 2 3 3 
1-- --

F. Nemouridae 

Amphinemura wui 2 30 18 16 19 
F. Taeniopterygidae 

r----

Strophopteryx fasciata 18 
~--- -~-···- --- -------

- __ <:):__~p~~~~ra -- ----------- - - -- ~-------- c----------- -

ins tar 
---

F. Pyralidae 
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Creek, in of 1997. 

r---· Habitat Sampled Midstream Gravel Midstream Vegetation Midstream Mud 

Station (up- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 

Acentria sp. 

F. Tortricidae 

Archips sp. 1 

0. Megalopterta 

F. Sialidae 

Sia/is sp. 1 

0. Collembola 
--

F. Podnridae 

Podura aquatica 

C. Arachnida 

0. Aranae 

F. Pisauridae 

Dolomedes sp. 

F. Tetragnathridae 

T etragnathra sp. I 

P. Mollusca 21 
C. Pelecypoda 

0. Veneroida I 

I 

F. Sphaeridae 

Pisidium sp. 

Sphaerium sp. 

F. Dreissenidae 

Dreissena polymorph a 

C. Gastropoda 

0. Basommatophora 

F. Physidae 
--

Physella sp. 

Aplexa elongata 
---

F. Lymnaeidae 

Fossaria sp. 1 

Pseudosuccinea columella 

F.Ancylidae 

Laevapex fuscus 
-- ---

F. Planorbidae 

Gyraulus sp. 

Planorbella sp. 

Menetus dilatatus 

0. Mesogastropoda 

'---
F. Hydrobiidae 

--~--

Amnicola limosa 

F. Bithyniidae 

Bithynia tentaculata I 

.. 
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Appendix A. Benthic macroinvertebrates collected at the downstream site (Ellison Park), Irondequoit Creek, in 
Spring of 1997. 

Habitat Sampled Downstream Gravel Downstream Vegetation Dou'llStream Mud 

Station (up- to doll'llStream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 

P. Platyhelminthes 

C. Turbellarla 

0. Tricladida 3 

P. Nematomorpha 1 2 

P. Annelida 
~ 

C. Oligochaeta 

0. Tubificida 

F. Tubificidae 
-~ 

Limnodrilus hoffmeisteri 625 1367 1616 216 3 5 1 61 433 406 496 487 180 1178 

C. Hirudinea 

0. Rhynchobdellida 
- --- - -----·-·- --- ---!--------------··-----·-·-···---------- '-------- -- -------·--·1-- ------------

F. Glossiphoniidae 
------ - ·- ------------------- ------·----·- ------ 1------------ ----- ----·-·- ------ -----f-----

H elobdeUa stagnalis 

Placobdell.a sp. 
-~ -- I 

F. Piscicolidae 

Myzobdella lugubris 1 

P.Arthropoda 

C. Crustacea 

0. Isopoda 

F. Asellidae 22 

Caecidotea sp. 10 5 2 4 2 3 10 47 69 5 1 1 I 

0. Amphipoda 

F. Gammaridae 5 6 10 6 165 

18 2 258 16 27 1317 7 3 2 4 3 
1------

Gammarus fasciatus 

G.psuedolimnaeus 25 1188 1361 624 127 49 63 130 112 

0. Decapoda 

F. Cambaridae 
--

C. Insecta 

0. Diptera 11 
--

F. Chironomidae 14 4 1 87 45 50 178 157 

pupae 175 6 128 63 2 

I 

Chironomus sp. 8 9 49 16 31 126 56 
Cladopelma sp. 1 

Lryptochironomus sp. 26 131 53 158 20 2 1 1 3 
• 

Cryptotendipes sp. 6 
Dicrotendipes sp. 12 9 .. 1 1 3 1 
Einfeldia sp. 

Endochironomus sp. 4 14 r 
--

Glyptotendipes sp. 

Microtendipes sp. 9 143 97 287 20 
Parachironomus sp. 

Paracladopelma sp. 2 1 
-~ 

Paratendipes sp. 44 24 29 
- -- ---~- ---- ---------

Phaenopsectra sp. 6 24 43 7 

Polypedilu.m sp. 49 60 106 244 65 4 
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Appendix A. Benthic macroinver1ebrates collected at the downstream site (Ellison Park), Irondequoit Creek, in 
Spring of 1997. 

Habitat Sampled Downstream Gravel Downstream Vegetation Downstream Mud 

Station (up- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 

Saetlleria sp. 36 
Stenochironomus sp. 

Stictochironomus sp. 

Tribelos sp. 

Cladotanytorsus sp. 6 12 43 
Micropsectra sp. 1 

Paratanytarsus sp. 

Rheotanytarsus sp. 

Stempellinella sp. 

Sublettea sp. 
--

Tanytarsus sp. 14 6 1 1 
-------~-------------·---··- -- -------

Brillia sp. 
-----·- f----~ -------- ---·-·--- ----- ----------- ----- ---c-----------

Cricotopus/Orthocladius 21 538 381 431 169 

Eukiefferiella sp. 12 26 
H eterotrissocladius sp. 

Nanocladius sp. 9 48 9 57 
Parametriocnemus sp. 

Paraphaenocladius sp. 

Parorthocladius sp. 

Rheocricotopus sp. 

Smittia sp. 

Thienemanniella sp. 

Ahlabesmyia sp. 

Clinotanypus sp. 

Coelotanypus sp. 
I 

Natarsia sp. i 

Nilotanypus sp. ' 

Procladius sp. 8 3 8 10 6 
Tanypta sp. 1 2 4 

Thienemannimya sp. v 
Diamesa sp. 4 155 221 115 332 
Pagastia sp. 2 

U nidentifted Chirmwmidae 1 5 4 

F. Athericidae 

Atherixsp. 1 

F. SimuJidae .. 
Simulium sp. l 1 1 1 2 

i 
F. Tabanidae r -
Chrysops sp. 

F. Empididae 

Hemerodiomia sp. 1 3 

Chelifera sp. 4 

F. Ceratopogonidae 1 
t- ----1-- --

Culicoides sp. 

Mallochohelea sp. 
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Appendix A. Benthic macroinvertebrates collected at the downstream site (Ellison Park), Irondequoit Creek, in 
Spring of 1997. 

Habitat Sampled Dm:mstream Gravel Downstream Vegetation Downstream Mud 

Station (up- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 

Probez:r.ia sp. 2 2 3 

Pupae 

Sphaeromias sp. ! 

F. Ephydridae 

F. Stratiomyidae 

Od01rtomyia sp. 

Myxosargus sp. 1 

Nemotelus sp. 

Stratiomys sp. 

F. Sciomyzidae (pupae) 

----~J!!~~e__ -------- - --~~-~-- ---
I 

c---·---··· ·-- --~~--- !--~- --·-··-~ --~ -~----·--

Dicranota sp. 101 
----~ ~--- -~-- -- ~- ~----- ----- -----~ -----------

Antochasp. 5 27 145 25 31 

Leptotarsus sp. 

Ormosiasp. 

Prioncera sp. 

Molophilus sp. 

Pi/aria sp. 

Paradelphomyia sp. 

Rhabdomastix sp. 

0. Trichoptera 

F. Beraeidae 

Beraeasp. 

F. Helicopsychidae 

Helecopsyche sp. 

F. Philopotamidae 

Wormalida sp. 

Chimarra sp. 

F. Limnephilidae 

Hydatophylax argus y 

F. Polycentropodidae 

Polycentropus sp. 

Neurecleosis sp. 

F. Hydropsychldae 

Ceratopsyche sp. 20 

Cheumatopsyche sp. 5 45 9 18 

Hydropsyche sp. 10 1 8 3 

Potamyia sp. 42 5 9 ,. 
-

pupae 25 

F. Glossomatidae 1 2 9 12 5 

Glossosoma sp. 

F. Hydroptiladae 

Hydroptilo sp. l 
--

F. Brachycentridae 

I Micrasema sp. 
~~ - -
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Appendix A. Benthic macroinvertebrates collected at the downstream site (Ellison Park), Irondequoit Creek, in 
Spring of 1997. 

Habitat Sampled Downstream Gravel Downstream Vegetation Domtstream Mud 

Station (up- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 

F. Helicopsychldae 

Helicopsyche sp. 

F. Leptoceridae 

Leptosarsus sp. 

Setodes sp. 

F. Limnephllidae sp. 

Chyranda sp. 

F. Odontoceridae I 

I 

Namamyia sp. 
I 

F. Psychomiidae 

-~-~ype sp_.__ __ ~-- - ~- ------------·-- -·-- -- 1----- ------- -------·--·- ---- ~---- -··------

------~·Coleoptera 1 
--~·-··---- ----- ~---~ ----- f-- ·-·--·--·-------

F. Chrysomelidae 

F. Elmidae 1 1 3 1 --
Dubiraphia sp. 1 1 

Macronychus sp. 24 1 

Ancyronyx sp. 2 1 13 11 28 3 

OptWservus sp. 3 31 

Ordobrevia sp. 6 11 44 34 50 

Stenelmis sp. 3 1 4 

F. Psephenidae 2 

Ectopria sp. 1 1 

Psephenus sp. 

F. Hysteridae 

F. Haliplidae 

Peltodytes sp. L 1 

F. Gyrinidae 

Dineutus sp. 

F. Dytiscidae 

Hydaticus sp. 

Laccophilus sp. 3 9 

Neosantopterus sp. 

Uvaris sp. 

F. Hydrophllidae 

Enochrus sp. 1 

F. Dryopidae _ .. 
Helichus sp. 

0. Hemiptera r 19 

·F. Corixidae 2 41 20 26 2 4 

F. Notonectidae 1 

Notonecta sp. 5 3 3 
--

F. Belostomidae 1 

Belostoma sp. 3 t _ ~', (;errldae 

-- -f---

Gerris sp. _ -- - -
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Appendix A. Benthic macroinvertebrates collected at the downstream site (Ellison Park), Irondequoit Creek, in 
Spring of 1997. 

Habitat Sampled Downstream Gravel Downstream Vegetation Do'ftnstream Mud 

Station (up- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 

Rheumatobates sp. 

F. Pleidae 
-

Neopleasp. 

Paraples sp. 

F. Mesoveliidae 

.Mesovelia sp. 1 

F. Nepidae 

Nepasp. 

Ranatra sp. 1 2 

F. Hebridae 

Hebrussp. 1 
-----~------~-- -·- --·-- -·- -----~-- ------·-

0. Odonata 
-----·~---··---·-- ------·---·----·-------·-- - ~----- - ------- ----- --·----· ----- ··-

F. Aeshnidae 

Boyeriasp. 

Anaxsp. 1 

F. Coenogrionidae 1 

EnaUagma sp. 2 7 8 5 

Lvhnurasp. 4 

~-F. Calopterygidae 

Calopteryx sp. 

Hetaerina sp. 

F. Lestidae 

Lestes sp. 

F. Gomphidae 

Arigomphus sp. 

F. Corduliidae . 

Somatochlora sp. 

0. Ephemeroptera 

F. Isonychiadae 

Isonyd1ia sp. .. 

F. Baetidae 

Acerpenna sp. 

Baeits sp. 

F. Caenidae 

Amercaenis sp. 

F. Ephemeridae .. 
~-Hexagenia sp. 

F. Heptageniidae I' 

Stenacron sp. 

Heptagenia sp. 

Stenonema sp. 
-· 

F. Ephemerellidae 
--

Ephemerella sp. 
--

F. Leptophlebildae 

Paraleptophlebia sp. 
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Appendix A. Benthic macroinvertebrates collected at the downstream site (Ellison Park), Irondequoit Creek, in 
Spring of 1997. 

Habitat Sampled Dol-lnstream Gravel Downstream Vegetation Downstream Mud 

Station (up- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 

0. Plecoptera 
-- --

F. Perlodidae 

lsoperla sp. 

F. Nemouridae 

Amphinemura wui 

F. Taeniopterygidae 

Strophopteryx fasciata 

0. Lepidoptera 

instar 

F.Pyralidae 

Acentria sp. 6 4 1 4 2 
---- -------- --------·-- .. ···--··- ----------- --- ---- --------- ----

F. Tortricidae 
···- -------

Archips sp. 

0. Megalopterta 
----1 

F. Sialidae 2 

Sialis sp. 

0. Collembola 

F. Poduridae 

__ Podura aquatica 

C. Arachnida 

O.Aranae 

F. Pisauridae 3 

Dolomedes sp. 1 1 2 

F. T etragnathridae 

Tetragnathra sp. 2 12 2 

P. Mollusca 

C. Pelecypoda 

0. Veneroida 

F. Sphaeridae 1 
r---

Pisidium sp. 1 2 3 5 2 13 

Sphaerium sp. 1 4 

F. Dreissenidae 

Dreissena polymorph a 1 1 1 

C. Gastropoda 

0. Basommatophora 

'-----
F. Physidae .. 

Physella sp. 7 2 
-- --

Aplexaelongata 10 35 :136 3 --
F. Lymnaeidae 

Fossaria sp. 
----

Pseudosuccinea columella 
I F. Ancylidac 2 

Laevapex filscus 2 

[ 

--------- ------- -r-- -----

F. Planorbidae 

I 
Gyraulus sp. --- - - --- - -
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Appendix A. Benthic macroinvertebrates collected at the downstream site (Ellison Park), Irondequoit Creek, in 
Spring of 1997. 

I 

Habitat Sampled Downstream Gra'\lel Downstream Vegetation Downstream Mud 

Station (up- to downstream) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Taxon 

Planorbella sp. I 

Menetus dilatatus I 
0. Mesogastropoda 3 I 

F. Hydrobiidae I 

Amnicola limosa 1 I 

F. Bithyniidae 
I 

Bitlty11ia tentaculata 
-~~·~~~···~~ 

1 I --·- -
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APPENDIX B. 

Location (upstream, midstream and downstream) comparison (both raw and scaled) for 
Taxa Richness, Ephemeroptera-Plecoptera-Trichoptera Richness, HilsenhoffBiotic 
Index, Percent Model Affinity, Non-Chironomid/Non-Oligochaete Richness, Shannon­
Weiner Diversity and Dominance-3 using 1-way ANOVA and Student Newman-Keuls. 
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.Appendix B. Location (U, M, D = upstream, midstream, and downstream) comparison (both raw and scaled) among habitats (G, V, M =gravel, vegetation, and 
mud) for taxa richness using 1-way AN OVA. 

Raw MG DG UG Scaled MG DG UG 
Taxa Richness 1 38 25 41 Taxa Richness 1 10.00 7.06 10.00 

2 25 30 48 2 7.06 8.61 10.00 
3 30 25 27 3 8.61 7.06 7.78 
4 28 24 43 4 8.06 6.76 10.00 
5 28 23 30 5 8.06 6.47 8.61 

Anova: Single Factor Anova: Single Factor 
SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 
MG 5 149 29.8 24.2 MG 5 41.78105 8.356209 1.157754 
DG 5 127 25.4 7.3 DG 5 35.96 7.192 0.68837 
UG 5 189 37.8 79.7 UG 5 46.39 9.278 1.06352 

ANOVA ANOVA 
Source of Variation ss df MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 
Between Groups 395.2 2 197.6 5.330935 0.022045 3.88529 Between Groups 10.92746 2 5.463731 5.633401 0.018822 3.88529 
Within Groups 444.8 12 37.06667 Within Groups 11.63858 12 0.969881 

Total 840 14 Total 22.56604 14 

Raw MV DV uv Scaled MV DV uv 
Taxa Richness 1 27 15 27 Taxa Richness 1 10 4.30 10 

2 23 20 33 2 8.50 6.80 10.00 
3 £3 t:-) 19 16 3 8.50 6.40 4.80 
4 . 28 12 33 4 10.00 3.00 10.00 
5 27 17 14 5 10.00 5.50 3.90 

Anova: Single Factor Anova: Single Factor 
SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 
MV 5 128 25.6 5.8 MV 5 47 9.4 0.675 
DV 5 83 16.6 10.3 DV 5 26 5.2 2.435 
uv 5 123 24.6 83.3 uv 5 38.7 7.74 9.678 

ANOVA ANOVA 
Source of Variation ss df MS F P-value F crit Source of Variation ss df MS F P-value Fcrit 
Between Groups 243.3333 2 121.6667 3.672032 0.05699 3.88529 Between Groups 44.74533 2 22.37267 5.248514 0.023032 3.88529 
Within Groups 397.6 12 33.13333 Within Groups 51.152 12 4.262667 

Total 640.9333 14 Total 95.89733 14 
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Appendix B. Location (U, M, D = upstream, midstream, and downstream) comparison (both raw and scaled) among habitats (G, V, M =gravel, vegetation, and 
mud) for taxa richness using 1-way ANOVA. 

Raw MM DM UM Scaled MM DM UM 
Taxa Richness 1 15 18 19 Taxa Richness 1 5.45 6.82 7.27 

2 19 14 15 2 7.27 4.72 5.45 
3 26 10 21 3 10.00 2.27 8.27 
4 22 17 22 4 ' 8.65 6.36 8.65 
5 15 15 19 5 5.45 5.45 7.27 

Anova: Single Factor Anova: Single Factor 
SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 
MM 5 97 19.4 22.3 MM 5 36.83566 7.367133 3.978129 
DM 5 74 14.8 9.7 DM 5 25.62859 5.125717 3.205734 
UM 5 96 19.2 7.2 UM 5 36.92308 7.384615 1.535925 

ANOVA ANOVA 

Source of Variation ss df MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 
Between Groups 67.6 2 33.8 2.586735 0.116396 3.88529 Between Groups 16.87812 2 8.439059 2.903417 0.093663 3.88529 
Within Groups 156.8 12 13.06667 Within Groups 34.87915 12 2.906596 

Total 224.4 14 Total 51.75727 14 
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Appendix B. Location (U, M, D =upstream, midstream, and downstream) comparison (both raw and scaled) among habitats (G, V, M =gravel, vegetation and 
mud) for EPT richness using 1-way ANOVA. 

Raw MG DG UG Scaled MG DG UG 
EPT Richnes:i 1 14 1 10 EPT Richness 1 9.50 1.25 7.27 

2 8 5 7 2 6.36 4.72 5.91 

3 12 4 7 3 8.50 4.17 5.91 

4 8 4 11 4 6.36 4.17 8.00 

5 7 3 9 5 5.91 3.61 6.82 

Anova: Single Factor Anova: Single Factor 

SUMMARY SlJMMARY 
,, 

Groups Count Sum Average Variance Groups Count Sum Average Variance 

MG 5 49 9.8 9.2 MG 5 36.6364 7.327273 2.4911157 

DG 5 17 3.4 2.3 DG 5 17.9167 3.583333 1.8557099 

UG 5 44 8.8 3.2 UG 5 33.9091 6.781818 0.8123967 

ANOVA ANOVA 
Source of Variation ss df MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 

Between Groups 118.533 2 59.26667 12.09524 0.00133 3.88529 Between Groups 40.9082 2 20.45409 11.893706 0.00142 3.88529 

Within Groups 58.8 12 4.9 Within Groups 20.6369 12 1.719741 

Total 177.333 14 Total 61.5451 14 

Raw MV DV uv Scaled MV DV uv 
, EPT Richness 1 9 0 7 EPT Richness 1 9.60 0.00 8.40 

2 10 0 4 2 10.00 0.00 6.00 

3 10 0 3 3 10.00 0.00 4.50 

4 11 0 5 4 10.00 0.00 7.00 

5 9 ~ f<) 0 3 5 9.60 0.00 4.50 

Anova: Single Factor Anova: Single Factor 

SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 

MV 5 49 9.8 0.7 MV 5 49.2 9.84 0.048 

DV 5 0 0 0 DV 5 0 0 0 

uv 5 22 4.4 2.8 uv 5 30.4 6.08 2.807 

ANOVA ANOVA 
Source of Variation ss df MS F P-va/ue Fcrit Source of Variation ss df MS F P-value Fcrit 

Between Groups 240.933 2 120.4667 103.2571 2.7E-08 3.88529 Between Groups 246.549 2 123.2747 129.53555 7.5E-09 3.88529 

Within Groups 14 12 1.166667 Within Groups 11.42 12 0.951667 

Total 254.933 14 Total 257.969 14 
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Appendix B. Location (U, M, D =upstream, midstream and downstream) comparison (both raw and scaled) among habitats (G,V,M =gravel, vegetation, mud) for 
Hilsenhoff Biotic Index using 1-way ANOVA. 

I 

Raw MG DG UG Scaled MG DG UG 
HBi 1 5.99 6.11 5.26 HBI 1 5.64 5.48 6.55 

2 6.67 6.62 5.69 2 4.79 4.85 6.01 
-· 

3 5.89 7.68 6.77 3 5.76 3.52 4.66 
4 5.54 7.82 6.32 4 6.19 3.35 5.23 
5 6.22 6.10 5.35 5 5.34 5.50 6.44 

Anova: Single Factor Anova: Single Factor 

SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 
MG 5 30.31459 6.062918 0.173217 MG 5 27.73176 5.546353 0.270651 
DG 5 34.34086 6.868172 0.699346 DG 5 22.69893 4.539786 1.092729 
UG 5 29.38258 5.876515 0.421246 UG 5 28.89678 5.779356 0.658198 

ANOVA ANOVA 

Source of Variation ss df MS F P-value Fcrit Source ofVariation ss df MS F P-value Fcrit 
Between Groups 2.777603 2 1.388801 3.220261 0.075936 3.88529 Between Groups 4.340004 2 2.170002 3.220261 0.075936 3.88529 
Within Groups 5.175238 12 0.43127 Within Groups 8.086309 12 0.673859 

Total 7.952841 14 Total 12.42631 14 

Raw MV DV uv Scaled MV DV uv 
HBI 1 6.64 4.30 5.57 HBI 1 5.50 9.60 7.40 

2 5.89 4.48 5.23 2 6.90 9.22 7.80 
3 5.22 4.46 2.83 3 7.90 9.40 10.00 
4 5.50 4.92 3.59 4 7.50 8.40 10.00 

5 ~.92 5.52 3.19 5 6.80 7.40 10.00 
Anova: Single Factor Anova: Single Factor 
SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 

MV 5 29.15065 5.83013 0.287617 MV 5 34.6 6.92 0.832 
DV 5 23.68 4.736 0.24508 DV 5 44.02 8.804 0.82408 
uv 5 20.40361 4.080723 1.536566 uv 5 45.2 9.04 1.748 

ANOVA ANOVA 
Source ofVariation ss df MS F ?-value F crit Source of Variation ss df MS F P-value Fcrit 

Between Groups 7.81156 2 3.90578 5.662565 0.018541 3.88529 Between Groups 13.49925 2 6.749627 5.948415 0.016034 3.88529 
Within Groups 8.277054 12 0.689755 Within Groups 13.61632 12 1.134693 

Total 16.08861 14 Total 27.11557 14 
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Appendix B. Location (U, M, D =upstream, midstream and downstream) comparison (both raw and scaled) among habitats (G,V,M =gravel, vegetation, mud) for 
Hilsenhoff Biotic Index using 1-way ANOVA. 

Raw MM DM UM Scaled MM DM UM 
HBI 1 7.88 7.48 6.16 HBI 1 5.30 6.30 9.61 

2 7.53 8.72 7.37 2 6.17 3.20 6.59 

3 7.95 8.59 8.03 3 5.11 3.53 4.93 
4 6.85 5.92 5.86 4 7.88 10.00 10.00 

--
5 6.47 8.44 6.50 5 8.82 3.90 8.74 

Anova: Single Factor Anova: Single Factor 

SUMMARY SUMMARY 
Groups Count Sum Average Variance Groups Count Sum Average Variance 

MM 5 36.68562 7.337123 0.425491 MM 5 33.28596 6.657192 2.659321 

DM 5 39.15 7.83 1.3 781 DM 5 26.925 5.385 8.143625 
UM 5 33.90974 6.781948 0.804435 UM 5 39.86539 7.973077 4.636646 

ANOVA ANOVA 
Source of Variation ss df MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 

Between Groups 2.749266 2 1.374633 1.581234 0.245736 3.88529 Between Groups 16.74695 2 8.373475 1.627013 0.237018 3.88529 
Within Groups 10.4321 12 0.869342 Within Groups 61.75837 12 5.146531 

Total 13.18137 14 Total 78.50532 14 
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Appendix B. Location (U, M, D =upstream, midstream, and downstream) comparison (both raw and scaled) among habitats (G, V, M =gravel, vegetation, mud) for 
Percent Model Affinity using 1-way ANOVA. 

I 

Raw MG DG UG Scaled MG DG UG 
~_ent Model Affinity 1 I 48.83 37.42 37.17 Pecent Model Affinity 1 4.89 3.05 3.01 

2 45.12 37.46 46.94 2 4.29 3.06 4.59 

3 51.27 37.38 69.69 ' 3 5.37 3.05 8.05 
4 40.83 28.43 62.34 4 3.60 1.45 7.15 

5 51.03 39.29 74.96 5 5.33 3.35 8.55 
Anova: Single Factor Anova: Single Factor ., 

SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 

MG 5 237.08 47.416 19.64018 MG 5 23.48065 4.696129 0.561451 
DG 5 179.98 35.996 18.54533 DG 5 13.95806 2. 791613 0.579554 
UG 5 291.1 58.22 249.776 UG 5 31.35096 6.270192 5.650671 

ANOVA ANOVA 
Source ofVariation ss df MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 

Between Groups 1235.082 2 617.5408 6.433578 0.0126 3.88529 Between Groups 30.34229. 2 15.17114 6.701354 0.011112 3.88529 
Within Groups 1151.846 12 95.98715 Within Groups 27.16671 12 2.263892 

Total 2386.927 14 Total 57.50899 14 

Raw MM DM UM Scaled MM DM UM 

Pecent Model Affinity 1 40.29 57.65 58.75 Pecent Model Affinity 1 2.06 5.53 5.75 
2 42 .. 22 It<' 40.39 50.57 2 2.44 2.08 4.11 

3 ·53.08 44.61 45.45 3 4.62 2.92 3.09 

4 37.04 55.92 41.83 4 1.41 5.18 2.37 
5 20.56 43.70 52.61 5 0.00 2.74 4.52 

Anova: Single Factor Anova: Single Factor 

SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 

MM 5 193.19 38.638 138.3747 MM 5 10.526 2.1052 2.834771 
DM 5 242.27 48.454 60.67813 DM 5 18.454 3.6908 2.427125 

UM 5 249.21 49.842 42.75652 UM 5 19.842 3.9684 1.710261 

ANOVA ANOVA 
Source of Variation ss df MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 

Between Groups 373.0167 2 186.5083 2.31391 0.1413 3.88529 Between Groups 10.10451 2 5.052253 2.173898 0.156434 3.88529 

Within Groups 967.2375 12 80.60312 Within Groups 27.88863 12 2.324052 

Total 1340.254 14 Total 37.99313 14 
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Appendix B. Location (U, M, 0 =upstream, midstream, and downstream) comparison (both raw and scaled) among habitats (G, V, M =gravel, vegetation, mud) for 
NCO richness using 1-way ANOVA. 

NCO NCO 
Raw MV DV uv Scaled MV DV uv 

1 16 13 13 1 10.00 9.10 9.10 
2 15 18 13 2 10.00 10.00 9.10 
3 15 17 10 3 10.00 10.00 7.40 
4 16 10 21 4 10.00 7.30 10.00 
5 16 16 7 5 10.00 10.00 6.00 

Anova: Single Factor Anova: Single Factor 
., 

SUMMARY SUMMARY 
Groups Count Sum Average Variance Groups Count Sum Average Variance 

MV 5 78 15.6 0.3 MV 5 50 10 0 
DV 5 74 14.8 10.7 DV 5 46.4 9.28 1.377 
uv 5 64 12.8 27.2 uv 5 41.6 8.32 2.567 

ANOVA ANOVA 
Source of Variation ss df MS F P-value F crit Source of Variation ss df MS F P-value Fcrit 
Between Groups 20.8 2 10.4 0.816754 0.464988 3.88529 Between Groups 7.104 2 3.552 2.70182556 0.1074596 3.88529031 
Within Groups 152.8 12 12.73333 Within Groups 15.776 12 1.31466667 

Total 173.6 14 Total 22.88 14 

NCO MM DM UM 
Raw 1 1 9 6 i 

2 7 7 f<' 8 

3 12 3 8 
4 7 6 8 
5 5 9 7 

Anova: Single Factor 

SUMMARY 
Groups Count Sum Average Variance 

MM 5 32 6.4 15.8 
DM 5 34 6.8 6.2 
UM 5 37 7.4 0.8 

ANOVA 
Source of Variation ss df MS F P-value Fcrit 

Between Groups 2.53333 2 1.266667 0.166667 0.848408 3.88529 
Within Groups 91.2 12 7.6 

Total 93.7333 14 
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Appendix B. Location (U, M, D =upstream, midstream, downstream) comparison (both raw and scaled) among habitats (G, V, M =gravel, vegetation, mud) for 
Shannon-Weiner Diversity and Dom-3 metrics using 1-way ANOVA. 

Raw MM UM DM Scaled MM UM DM 
DIV 1 1.39 2.44 1.41 DIV 1 0.00 4.70 0.00 

2 1.95 1.87 0.82 2 2.25 1.85 0.00 
3 1.97 1.32 0.9 3 2.35 0.00 0.00 
4 2.01 2.34 1.65 4 2.55 4.20 0.75 
5 1.95 2.2 0.9 5 2.25 3.50 0.00 

Anova: Single Factor Anova: Single Factor ., 

SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 
MM 5 9.27 1.854 0.06788 MM 5 9.4 1.88 1.1195 
UM 5 10.17 2.034 0.20568 UM 5 14.25 2.85 3.6975 
DM 5 5.68 1.136 0.13763 DM 5 0.75 0.15 0.1125 

ANOVA ANOVA 
Source of Variation ss df MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 
Between Groups 2.257213 2 1.128607 8.234198 0.005609 3.88529 Between Groups 18.70633 2 9.353167 5.692159 0.018262 3.88529 
Within Groups 1.64476 12 0.137063 Within Groups 19.718 12 1.643167 

Total 3.901973 14 Total 38.42433 14 

Raw MM UM DM Scaled MM UM DM 
DOM3 1 89.22 54.69 86.47 DOM3 1 2.63 8.39 3.09 

2 66.61 73.98 94.7 I 2 6.39 5.17 1.33 
3 68.22 88.72 92.88 3 6.13 2.71 1.78 
4 67.31 53.28 74.73 4 6.28 8.62 5.05 
5 63.53 63.06 93.72 5 6.91 6.99 1.57 

Anova: Single Factor Anova: Single Factor 

SUMMARY SUMMARY 
Groups Count Sum Average Variance Groups Count Sum Average Variance 

MM 5 354.95 70.99 106.9656 MM 5 28.34167 5.668333 2.971265 
UM 5 333.73 66.746 218.8636 UM 5 31.87833 6.375667 6.079544 
DM 5 442.5 88.5 69.65165 DM 5 12.80833 2.561667 2.392018 

ANOVA ANOVA 
Source of Variation ss df MS F P-value Fcrit Source ofVariation ss df MS F P-value Fcrit 

Between Groups 1329.747 2 664.8735 5.043533 0.025719 3.88529 Between Groups 41.16382 2 20.58191 5.396021 0.0213 3.88529 
Within Groups 1581.923 12 131.8269 Within Groups 45.77131 12 3.814276 

Total 2911.67 14 Total 86.93513 14 
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Appendix B. Student Neuman-Keuls (raw vs scaled) comparing locations (U, M, D = upstream, midstream and downstream) within the same habitat 
(gravel, vegetation and mud) fortaxa richness. 

Raw 
I 

0.05 0.01 0.01 Midstream Downstream Upstream M-D D-U M-U 
Gravel I 37.07 I 5.93 7.94 8.80 29.80 25.40 37.80 4.40 12.40 8.00 

Veg 33.i}f- 5.60 7.51 8.32 25.60 16.60 24.60 9.00 8.00 1.00 
Mud 13.07 3.52 4.71 '5.23 I 19.40 14.80 19.20 4.60 4.40 0.20 

Scaled 
Gravel 0.97 0.96 1.28 1.42 8.35 7.192 9.28 1.16 2.09 0.93 

Veg 4.26 2.01 2.69 2.99 9.40 5.20 7.74 '4.20 2.54 1.66 
Mud 2.91 1.66 2.22 2.47 7.37 5.17 7.38 2.20 2.21 0.02 

I Midstream Downstream Upstream M-D D-U M-U 
Gravel Raw 29.80 25.40 37.80 4.40 12.40 8.00 * <.05 

0.05 5.93 ns * * ** <.01 
0.01 7.94 ns ** ** *** <.005 
0.01 8.80 ns *** ns ns *** ns 

Gravel Scaled 8.35 7.19 9.28 1.16 2.09 0.93 
0.05 0.96 * * ns 
0.01 1.28 ns ** ns-
0.01 1.42 ns *** ns * *** ns 
Veg Scaled 9.40 5.20 7.74 4.20 2.54 1.66 
0.05 2.01 * * ns 
0.01 2.69 ** ns ns 
0.01 2.99 *** _ ns ns *** * ns 
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Appendix B. Student Neuman-Keuls (raw vs scaled) comparing locations (U, M, D =upstream, midstream, and downstream) within the gravel and 
vegetation habitats for EPT richness. 

Raw 0.05 0.01 0.01 Midstream Downstream Upstream M-D D-U M-U 
Gravel 4.90 2.15 2.89 3.20 9.80 3.40 8.80 6.40 5.40 1.00 

Veg 1.17 1.05 I 1.41 1.56 9.80 0.00 4.40 9.80 4.40 5.40 
Mud 

r----
Scaled 

Gravel 1.72 1.28 1.71 1.90 7.33 3.58 6.78 3.74 3.20 0.55 
Veg 0.95 0.95 1.27 1.41 9.84 0.00 6.08 9.84 6.08 3.76 
Mud 

Midstream Downstream Upstream M-D D-U M-U 
Gravel Raw 9.80 3.40 8.80 6.40 5.40 1.00 * <.05 

0.05 2.15 . * * ns ** <.01 
0.01 2.89 I ** ** ns *** <.005 
0.01 3.20 *** *** ns *** *** ns 

Gravel Scaled 7.33 3.58 6.78 3.74 3.20 0.55 
0.05 1.28 * * ns 
0.01 1.71 ** ** ns 
0.01 1.90 *** *** ns *** *** ns 

Veg Raw 9.80 0.00 4.40 9.80 4.40 5.40 
0.05 1.05 * * * 
0.01 1.41 ** ** ** 
0.01 1.56 ;<' *** *** *** *** *** *** 
Veg Scaled 9.84 0.00 6.08 9.84 6.08 3.76 
0.05 0.95 * * * 
0.01 1.27 ** ** ** 
0.01 1.41 *** *** *** *** *** *** 
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Appendix B. Student Nueman-Keuls (i·aw vs. scaled) comparing locations (U, M, D =upstream, midstream and downstream) within the same habitats 
(gravel, vegetation and mud) for the Hilsenhoff Biotic Index. 

Raw 0.05 0.01 0.01 ·Midstream Downstream Upstream M-D D-U M·U 
Gravel 0.43 0.64 0.86 0.95 6.06 6.87 5.88 0.81 0.99 0.19 

Veg 0.69 0.81 1.08 1.20 5.83 4.74 4.08 1.09 0.66 1.75 
Mud 0.87 0.91 1.22 1.35 7.34 7.83 6.78 0.49 1.05 0.56 

Scaled 
Gravel 0.67 0.80 1.07 1.19 6.06 6.87 5.88 0.81 0.99 0.19 

Veg 1.13 1.04 1.39 I 1.54 6.92 8.80 9.04 1.88 0.24 2.12 
Mud 5.15 2.21 2.96 3.28 6.66 5.39 7.97 1.27 2.59 1.32 

Midstream Downstream Upstream M-D D-U M-U * <.05 
Veg Raw 5.83 4.74 4.08 1.09 0.66 1.75 ** <.01 
0.05 0.81 * ns * *** <.005 
0.01 1.08 

I ** ns ** 

0.01 1.20 ns ns *** ** ns *** 
Veg Scaled 6.92 8.80 9.04 1.88 0.24 2.12 
0.05 1.04 * ns * 

0.01 1.39 ** ns ** 

0.01 1.54 *** ns *** *** ns *** 
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Appendix B. Student Neuman-Keuls (raw vs. scaled) comparing locations (U, M, D = upstream, midstream, and downstream) within the same habitat 
(gravel and vegetation) for Percent Model Affinity. 

Raw 0.05 0.01 0.005 Midstream Downstream Upstream M-D D-U M-U 
Gravel 95.99 9.54 I 12.77 14.17 47.42 36.00 58.22 11.42 22.22 10.80 

Veg I 

Mud 80.60 8.74 11.71 12.98 ' 38.64 48.45 49.84 9.82 1.39 11.20 
Scaled 

Gravel 2.26 1.46 1.96 2.18 4.70 2.79 6.27 1.90 3.48 1.57 
Veg 
Mud 2.32 1.48 1.99 2.20 2.11 3.69 3.97 1.59 0.28 1.86 

Midstream Downstream Upstream M-D D-U M-U w <.05 
Gravel Raw 47.42 I 36.00 58.22 11.42 22.22 10.80 ** <.01 

0.05 9.54 * * * *** <.005 
0.01 12.77 ns ** ns 
0.01 14.17 ns *** ns * *** * 

Gravel Scaled 4.70 2.79 6.27 1.90 3.48 1.57 
0.05 1.46 I * * * 
0.01 1.96 ns ** ns 
0.01 2.18 ns *** ns * *** * 

Mud Raw 38.64 48.45 49.84 9.82 1.39 11.20 
0.05 8.74 * ns * 
0.01 11.71 ns ns ns 
0.01 12.98 ns ns ns ns ns ns 
Mud Scaled 2.11 3.69 3.97 1.59 0.28 1.86 
0.05 1.48 * ns * 
0.01 1.99 ns ns ns 
0.01 2.20 ns ns ns ns ns ns 
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Appendix B. Student Neuman-Keuls (raw vs. scaled) comparing (U, M, D = upstream, midstream, and downstream) within the same habitat (vegetation 
and mud) for the metric NCO richness. 

Raw 0.05 0.01 0.01 Midstream Downstream Upstream M-D D-U M-U 
Gravel 

-
Veg 12.73 3.47 4.65 5.16 15.60 14.80 12.80 0.80 2.00 2.80 
Mud 7.60 2.68 3.59 3.99 6.40 6.80 I 7.40 0.40 0.60 1.00 
~-

Scaled 
Gravel 

Veg 1.13 1.04 1.39 1.54 10.00 9.28 8.32 0.72 0.96 1.68 
Mud nd nd nd 

Midstream Downstream Upstream M-D D-U M-U • <.05 
Veg Raw 15.60 14.80 12.80 0.80 2.00 2.80 ** <.01 
0.05 3.47 ns ns ns *** <.005 
0.01 4.65 ns ns ns 
0.01 5.16 ns ns ns ns ns ns 
Veg Scaled 10.00 9.28 8.32 0.72 0.96 1.68 
0.05 1.04 ns ns * 
0.01 1.39 ns ns ** 

. 0.01 1.54 ns ns *** ns ns ns 
' I 

Mud Raw 6.40 6.80 7.40 0.40 0.60 1.00 

0.05 2.68 ns ns ns 
0.01 3.59 ns ns ns 
0.01 3.99 ns ns ns ns ns ns 
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Appendix B. Student Neuman-Keuls (raw vs. scaled) comparing locations (U, M, D =upstream, midstream, and downstream) within the mud habitat for 
the Shannon-Weiner Diversity metric. 

Raw 0.05 0.01 0.01 Midstream Downstream Upstream M-D D-U M-U 
Mud 0.14 0.36 0.48 I 0.54 1.85 1.14 2.03 0.72 0.90 0.18 

Scaled 
Mud 1.64 1.25 1.67 1.85 1.88 0.15 2.85 1.73 2.70 0.97 

Midstream Downstream Upstream M-D D-U M-U * <.05 
Mud Raw 1.85 1.14 2.03 0.72 0.90 0.18 ** <.01 
0.05 0.36 * * ns *** <.005 
0.01 0.48 ** ** ns 
0.01 0.54 *** *** ns *** *** ns 
Mud Scaled 1.88 0.15 2.85 1.73 2.70 0.97 
0.05 1.25 * * ns 
0.01 1.67 ** ** ns 
0.01 1.85 ns *** ns ** *** ns 
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Appendix B. Student Neuman-Keuls (raw vs. scaled) comparing locations (U, M, D =upstream, midstream, and downstream) within the mud habitat for 
DOM-3. 

Raw 0.05 0.01 0.01 Midstream Downstream Upstream M-D D-U . M-U 
Gravel 0.00 0.00 0.00 0.00 0.00 0.00 

Veg 0.00 0.00 0.00 . 0.00 0.00 0.00 
Mud 131.83 11.18 14.97 16.60 70.99 88.50 66.75 17.51 21.75 4.24 

Scaled 
r---
Gravel 0.00 0.00 0.00 0.00 0.00 0.00 

Veg 0.00 0.00 0.00 0.00 0.00 0.00 
Mud 3.81 1.90 2.55 2.82 5.67 2.56 6.38 3.11 3.81 0.71 

Midstream Downstream Upstream M-D D-U M-U • <.05 
Mud Raw 70.99 88.50 66.75 17.51 21.75 4.24 ** <.01 
0.05 11.18 * * ns *** <.005 
0.01 14.97 ** ** ns 
0.01 16.60 *** *** ns *** *** ns 
Mud Scaled 5.67 2.56 6.38 3.11 3.81 0.71 
0.05 1.90 * * ns 
0.01 2.55 ** ** ns 
0.01 2.82 *** *** ns *** *** ns 
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APPENDIX C. 

Habitat (grave~ vegetation and mud) comparisons (both raw and scaled) among locations 
(upstream, midstream and downstream) for the metrics Taxa Richness~ Ephemeroptera­
Plecoptera-Trichoptera Richness, HilsenhoffBiotic Index and Percent Model Affinity 
using 1-way ANOVA and Student Newman-Keuls. 

/ 
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Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scale) for the upstream sample location, Cheese Factory Road, using 1-way 
ANOVA. 

Upstream Upstream 

Raw I Gravel Veg Mud Scale-Converted Gravel Veg Mud 
Taxa Richness 1 41 27 19 Taxa Richness 1 10.00 10.00 7.27 

2 48 33 15 2 10.00 10.00 5.45 
3 27 16 21 3 7.78 4.80 8.27 
4 43 33 22 4 10.00 10.00 8.65 
5 30 14 19 5 8.61 3.90 7.27 

Anova: Single Factor Anova: Single Factor ' 

SUMMARY SUMMARY 
Groups Count Sum Average Variance Groups Count Sum Average Variance 

Gravel 5 189 37.8 79.7 Gravel 5 46.39 9.278 1.06352 
Veg 5 123 24.6 83.3 Veg 5 38.7 7.74 9.678 
Mud 5 96 19.2 7.2 Mud 5 36.923 7.384569 1.535823 

ANOVA ANOVA 
Source of Variation ss df MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 
Between Groups 915.6 2 457.8 8.06933 0.006015 3.88529 Between Groups 10.1281 2 5.064046 1.237413 0.324644 3.88529 
Within Groups 680.8 12 56.73333 Within Groups 49.1094 12 4.092448 

Total 1596.4 14 Total 59.2375 14 
Upstream Upstream 

Raw Gravel Veg Scale-Converted Gravel Veg 
EPT Richness 1 10 7 EPT Richness 1 7.27 8.50 

2 7 4 2 5.91 6.00 
3 7 3 3 5.91 4.50 
4, 11 5 4 8.00 7.00 
5 9 3 5 6.82 4.50 

Anova: Single Factor Anova: Single Factor 

SUMMARY SUMMARY 
Groups Count Sum Average Variance Groups Count Sum Average Variance 

Gravel 5 44 8.8 3.2 Gravel 5 33.909 6.781818 0.812397 
Veg 5 22 4.4 2.8 Veg 5 30.5 6.1 2.925 

ANOVA ANOVA 
Source ofVariation ss df MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 
Between Groups 48.4 1 48.4 I 16.13333 0.003859 5.31764 Between Groups 1.16219 1 1.16219 0.621925 0.453067 5.31764 
Within Groups 24 8 3 Within Groups 14.9496 8 1.868698 

Total 72.4 9 Total 16.1118 9 
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Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scale) for the upstream sample location, Cheese Factory Road, using 1-way 
AN OVA. 

I 

Upstream Upstream 
--

Raw Gravell Veg Mud Scale-Converted Gravel *Veg Mod 
HBI 1 5.26 5.57 6.16 HBI 1 6.55 7.4 9.61 

2 5.69 5.23 7.37 2 6.01 7.8 6.59 
I 3 6.77 2.83 8.03 3 4.66 10 4.93 

4 6.32 3.59 5.86 4 5.23 10 10.00 

5 5.35 3.19 6.50 5 6.44 10 8.74 

Anova: Single Factor Anova: Single Factor 

I 

SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 

Gravel 5 29.383 5.876515 0.421246 Gravel 5 28.897 5.779356 0.658198 
Veg 5 20.404 4.080723 1.536566 *Veg 5 45.2 9.04 1.748 
Mud 5 33.91 6.781948 0.804435 Mud 5 39.865 7.973077 4.636646 

ANOVA ANOVA 

Source of Variation ss df MS F ?-value Fcrit Source of Variation ss df MS F ?-value Fcrit 

Between Groups 18.9022 2 9.451083 10.26456 0.00252 3.88529 Between Groups 27.6376 2 13.81878 5.886307 0.016543 3.88529 

Within Groups 11.049 12 0.920749 Within Groups 28.1714 12 2.347615 

Total 29.9512 14 Total 55.8089 14 

Upstream Upstream 

Gravel Mud Gravel Mud 

Raw 1 37.17 58.75 Scale-Converted 1 3.01 5.75 

PMA 2 46.94 50.57 PMA 2 4.59 4.11 

3 ~- 69.69 45.45 3 8.05 3.09 
4' 62.34 41.83 4 7.15 2.37 

5 74.96 52.61 5 8.55 4.52 

Anova: Single Factor Anova: Single Factor 

SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 

Gravel 5 291.1 58.22 249.776 Gravel 5 31.351 6.270192 5.650671 

Mud 5 249.21 49.842 42.75652 Mud 5 19.842 3.9684 1. 710261 

ANOVA ANOVA 

Source of Variation ss df MS F ?-value Fcrit Source of Variation ss df MS F P-value Fcrit 

Between Groups 175.477 1 175.4772 1.199711 0.305256 5.31764 Between Groups 13.2456 1 13.24562 3.598897 0.094392 5.31764 

Within Groups 1170.13 8 146.2662 Within Groups 29.4437 8 3.680466 

Total 1345.61 9 Total 42.6893 9 
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Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scale) for the upstream sample location, Cheese Factory Road, using 1-way 
ANOVA. 

Upstream --
Veg Mud 

Raw 1 13 6 

NCO 2 13 8 

3 10 8 
4 21 8 

5 7 7 

Anova: Single Factor 

SUMMARY 

Groups Count Sum Average Variance 

Veg 5 64 12.8 27.2 

Mud 5 37 7.4 0.8 

ANOVA 

Source of Variation ss df MS F ?-value F crit 

Between Groups 72.9 1 72.9 5.207143 0.051916 5.31764 

Within Groups 112 8 14 

Total 184.9 9 
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Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scaled) for the midstream sample location, Powder Mill Park, using 1-way 
ANOVA. 

Midstream Midstream 
Raw Gravel Veg Mud Scale-Converted Gravel Veg Mud 

Taxa Richness 1 38 27 15 Taxa Richness 1 10 10.00 5.45 
2 25 23 19 2 7.06 8.50 7.27 

r------
3 30 23 26 3 8.611 8.50 10.00 
4 28 28 22 4 8.055 10.00 8.65 
5 28 27 15 5 8.055 10.00 5.45 

Anova: Single Factor Anova: Single Factor ., 

SUMMARY SUMMARY 
Groups Count Sum Average Variance Groups Count Sum Average Variance 
Gravel 5 149 29.8 24.2 Gravel 5 41.781 8.3562 1.157145 
Veg 5 128 25.6 5.8 Veg 5 47 9.4 0.675 
Mud 5 97 19.4 22.3 Mud 5 36.83566 7.367133 3.978129 

ANOVA ANOVA 
Source of Variation ss df MS F P-value Fcrit Source ofVariation ss df MS F P-value Fcrit 
Between Groups 273.7333 2 136.8667 7.85086 0.006608 3.88529 Between Groups 10.33387 2 5.166934 2.667827 0.110014 3.88529 
Within Groups 209.2 12 17.43333 Within Groups 23.24109 12 1.936758 

Total 482.9333 14 Total 33.57496 14 

Midstream Midstream 
Raw Gravel Veg Scale-Converted Gravel Veg 

EPT Richness 1 14 9 EPT Richness 1 9.50 9.60 
2 8 10 2 6.36 10.00 
J.. ;.> 12 10 3 8.50 10.00 
4 8 11 4 6.36 10.00 
5 7 9 5 5.91 9.60 

Anova: Single Factor Anova: Single Factor 

SUMMARY SUMMARY 
Groups Count Sum Average Variance Groups Count Sum Average Variance 

Gravel 5 49 9.8 9.2 Gravel 5 36.63636 7.327273 2.491116 
Veg 5 49 9.8 0.7 Veg 5 49.2 9.84 0.048 

ANOVA ANOVA 
Source of Variation ss 4f MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 

Between Groups 0 1 0 0 1 5.317645 Between Groups 15.7845 1 15.7845 12.43307 0.007777 5.317645 
Within Groups 39.6 8 4.95 Within Groups 10.15646 8 1.269558 

Total 39.6 9 Total 25.94096 9 
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Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scaled) for the midstream sample location, Powder Mill Park, using 1-way 
ANOVA. 

Midstream I Midstream 
Raw Gravel Veg Mud Scale-Converted Gravel *Veg Mud 
HBI 1 5.99 6.64 7.88 HBI 1 5.64 5.5 5.30 

---
2 6.67 5.89 7.53 2 4.79 6.9 6.17 

3 I 5.89 5.22 7.95 3 5.76 7.9 5.11 
4 5.54 5.50 6.85 4 6.19 7.5 7.88 
5 6.22 5.92 6.47 5 5.34 6.8 8.82 

Anova: Single Factor Anova: Single Factor 

SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 

Gravel 5 30.31459 6.062918 0.173217 Gravel 5 27.73176 5.546353 0.270651 
Veg 5 29.15065 5.83013 0.287617 *Veg 5 34.6 6.92 0.832 
Mud 5 36.68562 7.337123 0.425491 Mud 5 33.28596 6.657192 2.659321 

ANOVA ANOVA 

Source of Variation ss df MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 

Between Groups 6.581362 2 3.290681 11.13817 0.001841 3.88529 Between Groups 5.316564 2 2.658282 2.119858 0.162786 3.88529 

Within Groups 3.545302 12 0.295442 Within Groups 15.04789 12 1.253991 

Total 10.12666 14 Total 20.36445 14 

Midstream Midstream 
Gravel Mud Gravel Mud 

Raw 1 48.83 40.29 Scale-Converted 1 4.89 2.06 

PMA 2 J5.12 42.22 PMA 2 4.29 2.44 

3 51.27 53.08 3 5.37 4.62 

4 40.83 37.04 4 3.60 1.41 
5 51.03 20.56 5 5.33 0.00 

Anova: Single Factor Anova: Single Factor 

SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 

Gravel 5 237.08 47.416 19.64018 Gravel 5 23.48065 4.696129 0.561451 
Mud 5 193.19 38.638 138.3747 Mud 5 10.526 2.1052 2.834771 

ANOVA ANOVA 

Source of Variation ss df MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 

Between Groups 192.6332 1 192.6332 2.438165 0.157038 5.317645 Between Groups 16.78228 1 16.78228 9.882912 0.013728 5.317645 

Within Groups 632.0596 8 79.00745 Within Groups 13.58489 8 1.698111 

Total 824.6928 9 Total 30.36717 9 
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Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scaled) for the midstream sample location, Powder Mill Park, using 1-way 
ANOVA. 

I Midstream 
Veg Mud 

Raw 1 16 1 
NCO 2 15 7 

3 15 12 I 

4 16 7 

5 16 5 

Anova: Single Factor 

SUMMARY 

Groups Count Sum Average Variance 

Veg 5 78 15.6 0.3 

Mud 5 32 6.4 15.8 

ANOVA 

Source of Variation ss df MS F P-value Fcrit 
Between Groups 211.6 1 211.6 26.28571 0.000899 5.317645 
Within Groups 64.4 8 8.05 

Tbtal 276 9 
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Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scaled) for the downstream sample location, Ellison Park, using 1-way ANOVA 

! Downstream Downstream 
c------------

Raw I Gravel Veg r--- Mud Scale-Converted Gravel Veg Mud 
Taxa Richness 1 25.00 15.00 18.00 Taxa Richness 1 7.06 4.30 6.82 

2 30.00 20.00 14.00 2 8.61 6.80 4.72 
r-----· 

3 25.00 19.00 10.00 3 7.06 6.40 2.50 
4 24.00 12.00 17.00 4 6.76 3.00 6.36 
5 23.00 17.00 15.00 5 6.47 5.50 5.45 

Anova: Single Factor Anova: Single Factor 
SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 
Gravel 5.00 127 25.40 7.30 Gravel 5 35.96405 7.19281046 0.68809005 
Veg 5.00 83 16.60 10.30 Veg 5 26 5.2 2.435 
Mud i 5.00 74 14.80 9.70 Mud 5 25.85859 5.17171717 2.88790685 

ANOVA ANOVA 
Source of Variation ss dj_ MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 

Between Groups 321.73 2 160.87 17.68 0.000 3.89 Between Groups 13.4282 2 6.71409292 3.35090487 0.069789 3.88529 
Within Groups 109.20 12 9.10 Within Groups 24.044 12 2.00366563 

Total 430.93 14 Total 37.4722 14 

Downstream Downstream 
Raw Gravel Veg Scale-Converted Gravel Veg 

EPT Richness 1 1.00 0.00 EPT Richness 1 1.25 0.00 
2 5.00 0.00 2 4.72 0.00 

I 3 4.00 0.00 3 4.17 0.00 
I 4 f<' 4.00 0.00 4 4.17 0.00 

5 3.00 0.00 5 3.61 0.00 
Anova: Single Factor Anova: Single Factor 
SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 

Gravel 5.00 17 3.40 2.30 Gravel 5 17.91667 3.58333333 1.85570988 
Veg 5.00 0 0.00 0.00 Veg 5 0 0 0 

ANOVA ANOVA 
Source of Variation ss df MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 

Between Groups 28.90 1 28.90 25.13 0.001 5.32 Between Groups 32.1007 1 32.1006944 34.5966736 0.000369 5.31764 
Within Groups 9.20 8 1.15 Within Groups 7.42284 8 0.92785494 

Total 38.10 9 Total 39.5235 9 
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Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scaled) for the downstream sample location, Ellison Park, using 1-way ANOV A. 

!-· 
Downstream Downstream 

Raw Gravel Veg Mud Scale-Converted Gravel *Veg Mud 

HBI 1 6.11 4.30 7.48 HBI 1 5.48 9.60 6.30 
2 6.62 4.48 8.72 2 4.85 9.22 3.20 
3 7.68 4.46 8.59 3 3.52 9.40 3.53 
4 7.82 4.92 5.92 4 3.35 8.40 10.00 
5 6.10 5.52 8.44 5 5.50 7.40 3.90 

Anova: Single Factor Anova: Single Factor 
SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 

Gravel 5.00 34.34086 6.87 0.70 Gravel 5 22.69893 4.53978558 1.09272859 
Veg 5.00 23.68 4.74 0.25 *Veg 5 44.02 8.804 0.82408 
Mud 5.00 39.15 7.83 1.38 Mud 5 26.925 5.385 8.143625 

ANOVA I ANOVA 

Source of Variation ss df MS F P-value Fcrit Source of Variation ss df MS F P-value Fcrit 

Between Groups 25.07 2 12.54 16.19 0.000 3.89 Between Groups 50.9791 2 25.4895609 7.6009331 0.00737 3.88529 
Within Groups 9.29 12 0.77 Within Groups 40.2417 12 3.35347786 

Total 34.36 14 Total 91.2209 14 

Downstream Downstream 

Gravel Mud Gravel Mud 

Raw 1 37.42 57.65 Scale-Converted 1 3.05 5.53 

PMA 2 "'37.46 40.39 PMA · 2 3.06 2.08 

3 37.38 44.61 3 3.05 2.92 
4 28.43 55.92 4 1.45 5.18 
5 39.29 43.7 5 3.35 2.74 

Anova: Single Factor Anova: Single Factor 

SUMMARY SUMMARY 

Groups Count Sum Average Variance Groups Count Sum Average Variance 

Gravel 5.00 179.98 36.00 18.55 Gravel 5 13.95806 2.7916129 0.57955437 
Mud 5.00 242.27 48.45 60.68 Mud 5 18.454 3.6908 2.4271252 

ANOVA ANOVA 

Source ofVariation ss df MS F P-va/ue Fcrit Source of Variation ss df MS F P-value Fcrit 

Between Groups 388.00 l 388.00 9.80 0.014 5.32 Between Groups 2.02134 1 2.02134359 1.34456868 0.279666 5.31764 

Within Groups 316.89 8 39.61 Within Groups 12.0267 8 1.50333979 

Total 704.90 9 Total 14.0481 9 
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Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scaled) for the downstream sample location, Ellison Park, using 1-way ANOVA. 

I 

----i Downstream 
Veg Mud 

Raw 1 13 9 
NCO 2 18 7 

I 3 17 3 
r--

4 10 6 
5 16 9 

Anova: Single Factor 

SUMMARY 
Groups Count Sum Average Variance 

Veg 5.00 74 14.80 10.70 
Mud 5.00 34 6.80 6.20 

I 

ANOVA 
~ 

Source of Variation ss df MS F P-value Fcrit 

Between Groups 160.00 1 160.00 18.93 0.002 5.32 

Within Groups 67.60 8 8.45 

Total 227.60 9 
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Appendix C. Student Newman-Keuls test comparing raw and scaled taxa richness values among habitats 
(gravel, and mud) within the same location. 

Raw 0.05 0.01 0.01 Gravel Veg Mud G-V V-M G-M 
Downstream 9.10 2.94 3.93 4.36 25.40 16.60 14.80 8.80 1.80 10.60 

1-------
56.73 Upstream 7.33 9.82 10.89 37.80 24.60 19.20 13.20 5.40 18.60 

Midstream 17.43 4.06 5.44 6.04 29.80 25.60 19.40 4.20 6.20 10.40 
Scaled 

Downstream 2.11 1.41 1.89 2.10 7.19 5.20 5.12 1.99 0.08 2.07 
Upstream 4.09 1.97 2.64 2.93 9.28 7.74 7.38 1.54 0.36 1.89 
Midstream 1.94 1.35 1.81 2.01 8.36 9.40 7.37 1.04 2.03 0.99 

Gravel Veg Mud G-V V-M G-M 
Downstream Raw 25.40 16.60 14.80 8.80 1.80 10.60 * <.05 

0.05 2.94 * ns * ** <.01 
0.01 3.93 ** ns ** *** <.005 
0.01 4.36 *** ns *** *** ns *** 

Downstream Scaled 7.19 5.20 5.12 1.99 0.08 2.07 
0.05 1.41 * ns * 
0.01 1.89 ** ns ** 
0.01 2.10 ns ns ns ** ns ** 

Upstream Raw 37.80 24.60 19.20 13.20 5.40 18.60 
0.05 7.33 * ns * 

-------------- ---- --- -·-. - ~------------ -- --------~---··- --------------~ -~---- ~------ -~-----···-· 

0.01 9.82 ** ns ** 
---- ------ ----·---------- -- -----

0.01 10.89 *** ns · *** *** ns *** 
Upstream Scaled 9.28 7.74 7.38 1.54 0.36 1.89 

0.05 2.64 ns ns ns 
0.01 2.93 ns ns ns 
0.01 9.28 ns ns ns ns ns ns 

Midstream Raw 29.80 25.60 19.40 4.20 6.20 10.40 
0.05 4.06 * * * 
0.01 5.44 ns ** ** 
0.01 6.04 ns *** *** * *** *** 

Midstream Scaled 8.36 9.40 7.37 1.04 2.03 0.99 
0.05 1.35 ns * ns 
0.01 1.81 ns ** ns 

I 0.01 2.01 ns *** ns ns ns ns 
.. 

I -'-- L-.. ~ -------
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Appendix C. Student Newman-Keuls test comparing raw and scaled HBI values among habitats (gravel, 
vegetation and within the same location (upstream, midstream and downstream). 

Raw 0.05 0.01 0.01 Gravel Veg Mud G-V V-M G-M 
Downstream 0.77 0.86 1.15 1.?7 6.87 4.74 7.83 2.13 3.09 0.96 

~· 

Upstream 0.92 0.93 1.25 1.39 5.88 4.08 6.78 1.80 2.70 0.91 
Midstream 0.30 0.53 0.71 0.79 6.06 5.83 7.34 0.23 1.51 1.27 

Scaled 
Downstream 3.35 1.78 2.39 2.65 4.54 8.80 5.39 4.26 3.42 0.85 

Upstream 2.35 1.49 2.00 2.22 5.78 9.04 7.97 3.26 1.07 2.19 
Midstream 1.25 1.09 1.46 1.62 5.55 6.92 6.66 1.37 0.26 1.11 

Gravel Veg Mud G-V V-M G-M * <.05 
Downstream Raw 6.87 4.74 7.83 2.13 3.09 0.96 - <.01 i 

0.05 0.86 * * * *** <.005 
0.01 1.15 - ** ns 
0.01 1.27 *** *** ns *** *** * 

Downstream Scaled 4.54 8.80 5.39 4.26 3.42 0.85 
0~05 1.78 * * ns 
0.01 2.39 ** ** ns 
0.01 2.65 *** *** ns *** *** ns 

Upstream Ra~ 5.88 4.08 6.78 1.80 2.70 0.91 I 

0.05 0.93 * * ns 
0.01 1.25 ** ** ns 
0.01 1.39 *** *** ns *** *** ns 

Upstream Scaled 5.78 9.04 7.97 3.26 1.07 2.19 
0.05 1.49 ns * * 
0.01 2.00 ns ** ** 
0.01 2.22 ns ns ns ns - ** 

Midstream Raw 6.06 5.83 7.34 0.23 1~51 1.27 
0.05 0.53 ns * * 
0.01 0.71 ns ** ** 
0.01 0.79 ns *** *** ns *** *** 

i 

Midstream Scaled 5.55 6.94 6.66 1.39 0.28 1.11 
0.05 1.09 * ns * 
0.01 1.46 ns ns ns 
0.01 1.62 ns ns ns ns ns ns 
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APPENDIX D. 

Comparison among random, haphazard and whole sample metrics including Taxa 
Richness, Ephemeroptera-Plecoptera-Trichoptera Richness, HilsenhoffBiotic Index and 
Percent Model Affinity using 1-way ANOVA and Student Newman-Keuls. 

I' 
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Appendix D. 1-way ANOVA metric comparison (TR, EPT, HBI and PMA) among haphazard and random 100 counts and whole counts. 

TAXA RICHNESS HBI 
Sample Hap_ CC Rand CC Rand NB Whole NB Sample HapCC Rand CC Rand NB Whole NB 

1 14 17 16 26 1 2.22 1.36 4.97 5.83 
2 12 10 12 18 2 2.08 1.04 6.53 6.47 
3 16 15 17 20 3 2.93 2.07 4.1 5.49 
4 15 13 16 20 4 2.5 2.09 4.4 5.47 
5 14 13 14 18 5 3.32 2.5 5.5 4.36 

Anova: Smgle Factor SUMMARY Anova: Smgle Factor SUMMARY 
Groups Count Sum Average Variance Groups Count Sum Average Variance 

Hap CC 5 71 14.2 2.2 Hap CC 5 13.05 2.61 0.2629 
Rand CC 5 68 13.6 6.8 Rand CC 5 9.06 1.812 0.35437 
Rand NB 5 75 15 4 Rand NB 5 25.5 5.1 0.92795 
Whole NB 5 102 20.4 10.8 Whole NB 5 27.62 5.524 0.58688 
ANOVA ANOVA 
Source of Variation ss df MS F P-value F crit Source of Variation ss df MS F P-value F crit 
Between Groups 146 3 48.66667 8.179272 0.0016 3.2389 Between Groups 50.1225 3 16.70749 31.344656 6E-07 3.2.389 
Within Groups 95.2 16 5.95 Within Groups 8.5284 16 0.533025 

Total 241.2 19 Total 58.6509 19 

EPT PMA 
Sample Hap CC Rand CC Rand NB Whole NB Sample HapCC Rand CC Rand NB Whole NB 

1 5 6 9 14 1 41 50 61 51.17 
2 5 ~l, 5 8 2 37 50 63 54.88 
3 5 7 10 12 3 41 33 44.98 48.73 
4 6 7 6 8 4 31 31 40.83 59.17 
5 4 7 5 7 5 55 55 46.56 48.97 

Anova: S1ngle Factor SUMMARY Anova: Smgle Factor SUMMARY 
Groups Count Sum Average Variance Groups Count Sum Average Variance 

Hap CC 5 25 5 0.5 Hap CC 5 205 41 78 
Rand CC 5 31 6.2 1.7 Rand CC 5 219 43.8 120.7 
Rand NB 5 35 7 5.5 Rand NB 5 256.37 51.274 100.75188 
Whole NB 5 49 9.8 9.2 Whole NB 5 262.92 52.584 19.64018 
ANOVA ANOVA 
Source of Variation ss df MS F P-value F crit Source of Variation ss df MS F P-value F crit 
Between Groups 62.4 3 20.8 4.923077 0.0131 3.2389 Between Groups 477.899 3 159.2998 1.9969136 0.1551 3.2389 
Within Groups 67.6 16 4.225 Within Groups 1276.37 16 79.77302 

Total 130 19 Total 1754.27 19 
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Appendix D. Student Newman-Keuls metric comparison (TR, EPT and HBI) among haphazard and random 100 
counts and whole sample analyses for raw and scaled values. 

Taxa HCC- HCC- HCC- RCC- RCC- RNB-i 
Richness Raw 0.05 o~o1 0.005 HCC RCC RNB WNB RCC RNB WNB RNB WNB WNB 

TR 5.95 2.55 3.28 3.58 14.20 13.60 15.00 20.40 0.60 0.80 6.20 1.40 6.80 5.401 
EPT 4.23 2.15 2.76 3.02 5.00 6.20 7.00 9.80 1.20 2.00 4.80 0.80 3.60 2.80 
HBI 0.53 0.76 0.98 1.07 2.61 1.81 5.10 5.52 0.80 2.49 2.91 3.29 3.71 0.42 i 

PMA 79.77 9.35 12.00 13.12 41.00 43.80 51.27 52.58 2.80 10.27 11.58 7.47 8.78 1.31 
Scale 

I 

TR 0.57 0.79 1.02 1.11 3.74 3.51 3.97 5.65 0.23 0.23 1.91 0.46 2.14 1.68 
EPT 1.17 1.13 1.45 1.59 4.76 5.47 5.80 7.33 0.71 1.04 2.57 0.33 1.86 1.53 
HBI 0.64 0.84 1.08 1.18 9.39 9.87 6.73 6.21 0.48 2.67 3.18 3.14 3.66 0.51 

PMA 2.26 1.58 2.02 2.21 3.62 4.09 5.32 5.55 0.46 1.70 1.92 1.23 1.46 0.23 

HCC- HCC- HCC- RCC- RNB- RCC-
HCC RCC RNB WNB RCC RNB WNB RNB WNB WNB * <.05 

TR Raw 14.20 13.60 15.00 20.40 0.60 0.80 6.20 1.40 5.40 6.80 ** <.01 
0.05 2.55 ns ns * ns * * *** <.005 
0.01 3.28 ns ns ** ns ** ** 

0.005 3.58 ns ns *** ns *** *** 

TR Scale 3.74 3.5~ 3.97 5.65 0.23 0.23 1.91 0.46 1.68 2.14 
0.05 0.79 ns ns * ns * * 

-

0.01 1.02 ns ns ** ns ** ** 

0.005 1.11 ns ns *** ns *** *** 

EPT Raw 5.00 6.20 7.00 9.80 1.20 2.00 4.80 0.80 2.80 3.60 
0.05 2.15 ns ns * ns * * 

0.01 2.76 ns ns ** ns ** ** 

0.005 3.02 ns ns *** ns ns *** 

EPT Scale 4.76 5.47 5.80 7.33 0.71 1.04 2.57 0.33 1.53 1.86 
0.05 1.13 ns ns * ns * * 

0.01 1.45 ns ns ** ns ** ** 

0.005 1.59 ns ns *** ns ns *** 

HBI Raw 2.61 1.81 5.10 5.52 0.80 2.49 2.91 3.29 0.42 3.71 
0.05 0.76 * * * * ns * 

0.01 0.98 ns ** ** ** ns ** 

0.005 1.07 ns *** *** *** ns *** 

HBI Scale 9.·39 9.87 .6.73 6.21 0.48 2.67 3.18 3.14 0.51 3.66 
0.05 0.84 ns * * * ns * 

-· 
0.01 1.08 ns ** ** ** ns ** 

0.005 1.18 ns *** *** *** ns *** 

... 
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APPENDIX E. 

Raw and scaled metric values for Taxa Richness, Ephemeroptera-Plecoptera-Trichoptera 
Richness, HilsenhoffBiotic Index, Percent Model Affinity, Non-Chironomid/Oligochaete 
Richness, Shannon-Weiner Diversity and Dominance-3 for upstream, midstream and 
downstream locations in the gravel, vegetation and mud habitats. 

/ 

~;. 
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Appendix E. Metric for Taxa Richness, EPT and NCO Richness, Hilsenhoff Biotic Index, Percent Model 
Affinity, Shannon-Weiner Diversity and DOM-3. 

2 14 5 II I! "" 8.72 3.20 40.39 2.08 7 "" 0.82 0.00 94.70 1.33 
3 10 2 n n II II 8.59 3.53 44.61 2.92 3 "" 0.90 0.00 92.88 1.78 
4 17 6 II II !I" 5.92 10.00 55.92 5.18 6 !I II 1.65 0.75 74.73 5.05 
5 15 5 I! II ll" 8.44 3.90 43.70 2.74 9 II II 0.90 0.00 93.72 1.57 
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