The College at Brockport: State University of New York Digital Commons @Brockport

Environmental Science and Ecology Theses

Environmental Science and Ecology

1-2002

Water Quality Assessment of Irondequoit Creek using Benthic Macroinvertebrates

Nichelle Bailey-Billhardt The College at Brockport, nbillhardt@lewiscountyny.org

Follow this and additional works at: http://digitalcommons.brockport.edu/env_theses Part of the <u>Environmental Monitoring Commons</u>, and the <u>Natural Resources Management and</u> <u>Policy Commons</u>

Repository Citation

Bailey-Billhardt, Nichelle, "Water Quality Assessment of Irondequoit Creek using Benthic Macroinvertebrates" (2002). *Environmental Science and Ecology Theses*. 75. http://digitalcommons.brockport.edu/env_theses/75

This Thesis is brought to you for free and open access by the Environmental Science and Ecology at Digital Commons @Brockport. It has been accepted for inclusion in Environmental Science and Ecology Theses by an authorized administrator of Digital Commons @Brockport. For more information, please contact kmyers@brockport.edu.

Water Quality Assessment of Irondequoit Creek

using Benthic Macroinvertebrates

by Nichelle Bailey-Billhardt

Submitted to the Graduate Faculty in the Department of

Biological Sciences in partial fulfillment of

the requirements for the degree of

Master of Science

State University of New York

College at Brockport

January 2002

THESIS DEFENSE

Nichelle Bailey - Billhardt 1/29/02

APPROVED NOT	APPROVED	MASTER'S DEGREE ADVISORY	COMMITTEE
<u>·</u>		Major Advisor	- 1/29(02 Date
		- Jos Alk Committee Member	47.9/07- Date
		Cathe Nut Committee Member	 Date
	A		

/// Cha ttee

Chairman, Dept. of Biological Sciences

ABSTRACT

The Rochester Embayment of Lake Ontario is one the 43 Great Lakes' Areas of Concern designated by the Environmental Protection Agency (Monroe County 1993). As part of a Remedial Action Plan (RAP), degradation of benthos was one of the 14 use impairments identified for the Rochester Embayment (Monroe County 1993). Stage II of the RAP identified stream health monitoring as a method of identifying existing and future conditions of the Embayment and its tributaries, including Irondequoit Creek. There is much debate in the "world" of stream health biomonitoring using aquatic macroinvertebrates regarding methods of collection, sample size and taxonomic resolution required to obtain accurate stream health assessments. My study compared stream health at three locations in Irondequoit Creek (upstream, midstream and downstream) and in three habitats (gravel, mud and vegetation) and evaluated methods of sampling macroinvertebrates and analyzing stream health used by the Stream Biomonitoring Unit of the New York State Department of Environmental Conservation (Bode et al. 1996). There were few differences between upstream (primarily agricultural or rural land use) and midstream (primarily agricultural and suburban land use) communities, but stream health decreased from upstream to downstream (primarily urban/suburban land use). As expected, community differences were found across habitats (gravel, vegetation, mud) at the same sampling locations. Fixed 100 count methods were compared with entire macroinvertebrate samples in the gravel habitat at the midstream location (Powder Mill Park, Rochester, NY). Although metric values for random and haphazard samples of 100 organisms differed from values for whole samples, stream health assessments did not differ.

ii

DEDICATION

I would like to dedicate this work

in loving memory

of my cousin

Rebecca (Becky) Joe Andre.

Thank you for friendship, support and all the laughter!!!!!!!!

BIOGRAPHY

Nichelle Lynn Bailey Billhardt was born in Oswego, New York in September of 1972. She grew up in Glenfield, NY and graduated from South Lewis Jr./Sr. High School in Turin, NY. She earned her Associates' degree in Liberal Arts: Math/Science from Jefferson Community College, Watertown, NY. Her Bachelor's degree in Biological Sciences (emphasis, environmental science) was earned in 1996 at SUNY College at Brockport. Nichelle continued on at SUNY Brockport to earn her Master's degree in Biology (with an emphasis on aquatic ecology). Nichelle is currently employed as the District Manager of the Orleans County Soil and Water Conservation District. Her hobbies are camping, reading and enjoying the outdoors.

ACKNOWLEDGEMENTS

First of all, I would like to thank my major advisor, Dr. James Haynes, for his guidance and mentorship during my time at Brockport as an undergraduate and graduate student. I am grateful for all of his sacrificed hours that were put into writing (and rewriting) this paper. I am very fortunate to have such an outstanding professor for a major advisor.

I would also like to thank Dr. Joseph Makarewicz and Dr. Christopher Norment for their guidance and patience during my enrollment in the graduate program at SUNY Brockport. As teachers they have made my college career demanding, challenging and, all along, very rewarding.

I thank George Cook, a fellow graduate student, for his help in sampling and identification of the chironomids (and others) on this project. I would also like to thank him for his guidance, patience and friendship throughout my graduate studies.

Thanks also go to Chris Cody, Al Boekhout, Randy Rhyne, Bill Allgeier, and Dave Young for endless sorting and identification in the dungeon.

Many thanks go to Robert Bode of the Stream Biomonitoring Unit (New York State Department of Environmental Conservation, Albany, NY) for his guidance and background information regarding rapid bioassessment protocols. Also, I thank Wease Bollman of Rhithron Biological Associates, Missoula, MT₂ for aiding in identification of some macroinvertebrates.

I also thank Judy Bennett (Orleans County SWCD) for her patience while I was taking time off to finish this project, Charlie Wood (NRCS) for his moral support and the Farm Service Agency for all the chocolate.

v

I am extremely grateful to a fellow graduate student and friend, Judy Robinson. While aiding her on many of her thesis-related, adventurous trips to Jefferson County, she gave moral support, guidance and continual prodding, urging me to finish my project. I greatly appreciate her introducing me to the world of marsh monitoring, but most of all, I value her friendship.

I would like to thank my parents for instilling in me the belief that hard work does pay off and that I can do anything that I set my mind to, if I want it badly enough. I would also like to thank my family for not asking anymore when my thesis will be done!

Lastly, but certainly not least, I thank my husband Matt for so many things. I want to thank him for his extreme patience and understanding throughout my undergraduate and graduate career, for my late night dinners he made, for tolerating me after a late night at the books, and for still loving me even after this thing we call college is over. I could not have done it without you!

vi

Table of Contents

ABSTRACT	ii
DEDICATION	iii
BIOGRAPHY	iv
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF APPENDICES	xii
INTRODUCTION	<u> </u>
Structure Metrics	4
Community Balance Metrics	6
OBJECTIVES	8
STUDY AREA	9
Sample Sites	10
METHODS	
Physical and Chemical Parameters	11
Sampling	11
Subsampling	13
Experimental Design and Statistical Analysis	14
Comparing Stream Reaches and Habitats	14
Comparing 100 (Haphazard and Random) and Whole Samples	14

Table of Contents (continued)

RESULTS	16
Physical and Chemical Parameter Comparison	16
Benthic Community Comparisons Among Locations Within Each Habitat	17
Gravel Habitat Comparisons	. 18
Vegetation Habitat Comparisons	. 19
Mud Habitat Comparisons	. 19
Benthic Community Comparisons Among Habitats Within Each Location	20
Upstream Location (Cheese Factory Road)	20
Midstream Location (Powder Mill Park)	21
Downstream Location (Ellison Park)	22
Haphazard vs. Random vs. Whole Count Metrics	22
DISCUSSION	23
Importance of Comparable Physical and Chemical Habitat Parameters	23
Biological Stream Health Assessment Across Locations and Habitats	24
Haphazard vs. Random vs. 100 Counts vs. Whole Counts	27
SUMMARY/CONCLUSIONS	30
LITERATURE CITED	31
TABLES	35
FIGURES	41
APPENDICES	_49

LIST OF TABLES

Table 1.	Physical and chemical habitat parameters across habitats and locations	35
Table 2.	Gravel habitat comparability criteria among three stream location	35
Table 3.	Mud habitat comparability criteria among three stream locations	35
Table 4.	Raw and scaled average metric results for gravel habitats among three locations (upstream, midstream and downstream) compared by 1-way ANOVA	36
Table 5.	Raw and scaled average metric results for vegetation habitats among three locations (upstream, midstream and downstream) compared by 1-way ANOVA	36
Table 6.	Raw and scaled average metric results for mud habitats among three locations (upstream, midstream and downstream) compared by 1-way ANOVA	36
Table 7.	Raw and scaled taxa richness values among locations (upstream, midstream, downstream) within habitats (gravel, vegetation, mud) compared by 1-way ANOVA and Student Newman-Keuls	37
Table 8.	Raw and scaled Ephemeroptera-Plecoptera-Trichoptera richness values among locations (upstream, midstream, downstream) within habitats (gravel, vegetation, mud) compared by 1-way ANOVA and Student Newman-Keuls	
Table 9.	Raw and scaled Hilsenhoff Biotic Index values among locations (upstream, midstream, downstream) within habitats (gravel, vegetation, mud) compared by 1-way ANOVA and Student Newman-Keuls	.37
Table 10.	Raw and scaled Percent Model Affinity values among locations (upstream, midstream, downstream) within habitats (gravel, mud) compared by 1-way ANOVA and Student Newman-Keuls	37
Table 11.	Raw and scaled Non-Chronomid and Oligochaete values among locations (upstream, midstream, downstream) within habitats (vegetation, mud) compared by 1-way ANOVA and Student Newman Keuls	_37
Table 12.	Raw and scaled Shannon-Weiner Diversity values among locations (upstream, midstream, downstream) within the mud habitat compared by 1-way ANOVA and Student Newman-Keuls	_37

LIST OF TABLES (Continued)

Table 13.	Raw and scaled Dominance-3 values among locations (upstream, midstream downstream) within the mud habitat compared by 1-way ANOVA and Student Newman-Keuls	n, 37
Table 14.	Raw and scaled average metric results for the upstream location among three habitats (gravel, vegetation and mud) compared by 1-way ANOVA	_38
Table 15.	Raw and scaled average metric results for the midstream location among three habitats (gravel, vegetation and mud) compared by 1-way ANOVA	_38
Table 16.	Raw and scaled average metric results for the downstream location among three habitats (gravel, vegetation and mud) 1-way ANOVA	.38
Table 17.	Raw and scaled taxa richness comparisons among habitats (gravel, vegetation, mud) using Student Newman-Keuls	_39
Table 18.	Raw and scaled Hilsenhoff Biotic Index comparisons among habitats (gravel, vegetation, mud) using Student Newman-Keuls	39
Table 19.	Raw and scaled metric averages and 1-way ANOVA results comparing random and haphazard 100 count subsamples and whole samples all taken to gravel community samples at the midstream location	from 40
Table 20.	Raw and scaled Student Newman-Keuls comparisons among random and haphazard 100 count subsamples and whole samples all taken from gravel community samples at the midstream location	.40

*

. .

LIST OF FIGURES

Figure 1.	Sample Locations, Irondequoit Creek watershed	41
Figure 2.	Species-Sampling Intensity Curve	_42
Figure 3.	Biological assessment profile of index values for riffle (gravel) habitats (Bode et al. 1996)	43
Figure 4.	Biological assessment profile of index values for ponar (mud) habitats (Bode et al. 1996)	_44
Figure 5.	Biological assessment profile of index values for slow, sandy streams (vegetation) habitats (Bode et al. 1996)	45
Figure 6.	Stream health assessment among locations for gravel habitat	_46
Figure 7.	Stream health assessment among locations for vegetation habitat	_46
Figure 8.	Stream health assessment among locations for mud habitat	46
Figure 9.	Stream health assessment among habitats for upstream location (Cheese Factory Road)	_47
Figure 10.	Stream health assessment among habitats for midstream location (Powder Mill Park)	47
Figure 11.	Stream health assessment among habitats for downstream location (Ellison Park)	47
Figure 12.	Stream health assessment for random, haphazard and whole samples from midstream gravel habitat	48

Ф.

LIST OF APPENDICES

Appendix A.	Complete taxonomic listing of macroinvertebrates found at the upstream, midstream and downstream locations in the gravel, vegetation and mud habitats	.49
Appendix B.	Location (upstream, midstream and downstream) comparison (both raw and scaled) among habitats (gravel, vegetation and mud) for Taxa Richness, Ephemeroptera-Plecoptera-Trichoptera Richness, Hilsenhoff Biotic Index, Percent Model Affinity, Non-Chironomid/ Non-Oligochaete Richness, Shannon-Weiner Diversity and Dominance-3 using 1-way ANOVA and Student Newman-Keuls	<u>-</u> 68
Appendix C.	Habitat (gravel, vegetation and mud) comparisons (both raw and scaled) among locations (upstream, midstream and downstream) for the metrics Taxa Richness, Ephemeroptera-Plecoptera-Trichoptera Richness, Hilsenhoff Biotic Index and Percent Model Affinity using 1-way ANOVA and Student Newman-Keuls	_84
Appendix D.	Comparison among random, haphazard and whole sample metrics including Taxa Richness, Ephemeroptera-Plecoptera-Trichoptera Richness, Hilsenhoff Biotic Index and Percent Model Affinity using 1-way ANOVA and Student Newman-Keuls	.96
Appendix E.	Raw and scaled metric values for Taxa Richness, Ephemeroptera- Plecoptera-Trichoptera Richness, Hilsenhoff Biotic Index, Percent Model Affinity, Non-Chironomid/Oligochaete Richness, Shannon- Weiner Diversity and Dominance-3 for upstream, midstream and downstream locations in the gravel, vegetation and mud habitats	_99

xii

Z.

Introduction

Water quality of the Rochester Embayment declined tremendously after European settlement of the Genesee Valley. The Embayment was used as a disposal system by surrounding towns and municipalities, ultimately resulting in PCB and dioxin contamination, eutrophication, oxygen depletion and fish die-offs (Kappel et al. 1981, Monroe County 1993). As a result of the threat to fish and other wildlife, the Rochester Embayment was designated an Area of Concern (AOC) in the Great Lakes by the Environmental Protection Agency (Monroe County 1993). A Remedial Action Plan (RAP) was developed for the AOC to provide a long-term course of action for environmental cleanup. Stage I of the RAP identified 12 use impairments for Rochester Embayment, which included degradation of fish and wildlife populations, loss of fish and wildlife habitat, and degradation of benthos (Monroe County 1993).

The quality of Rochester Embayment water is indicative of the quality of water of the streams and rivers that flow into it. A proposed method of monitoring stream health, designated by the Stage II RAP, identified species diversity and abundance of benthic and water-column macroinvertebrates as a measure of pollution impact in waters such as the Genesee₂River (the largest contributor of water and contaminants to the Rochester Embayment) (Monroe County 1997). Irondequoit Creek, an important Embayment tributary that flows into Irondequoit Bay, also required water quality assessment (Johnston and Sherwood 1988). My study used benthic macroinvertebrate indices (Bode et al. 1996) to assess the health of Irondequoit Creek.

Several methods of assessment have been used to measure water quality conditions in the Rochester Embayment. Although physiochemical approaches have proven successful for measuring water pollutant concentrations, these techniques record the chemical makeup of the water only at the time of sampling. Pollutant concentrations can fluctuate greatly within a system over a period of just a few minutes, thus chemical measurement may not be indicative of water conditions over the lifetime of organisms living in a stream (Rosenburg and Resh 1993). "Biological indicators can indicate the occurrence of pollution even if the pollutant is temporarily absent at the time of measurement..." (Brower et al. 1990). Therefore, biological techniques have proven successful in the assessment of water quality over longer periods (Rosenburg and Resh 1993).

Benthic macroinvertebrates are ideal bioindicators because they are sedentary organisms that play active roles in nutrient and pollutant cycling. These organisms are exposed to physical and chemical fluctuations that occur in lotic waters throughout the entire year. Therefore, only organisms that have the ability to tolerate all of a stream's conditions can inhabit it. Organisms such as macroinvertebrates, mainly aquatic insect larvae, are commonly used to indicate the impact of pollution on bodies of water (Rosenberg and Resh 1993; EPA 1993). Despite difficulties with classification, the relative ease and low cost of sampling attracts researchers to biomonitoring over more expensive physiochemical techniques (Hellawell 1986; Thorne and Williams 1997).

A multimetric approach to assess pollution impacts on streams was originally designed by Karr for use with fish communities (Index of Biotic

Integrity, Barbour et al. 1992) and has been modified for use with macroinvertebrates (Loeb and Spacie 1994). Karr's procedure analyzed different components of the "structure and function of stream and river fish communities in an integrated assessment, using various attributes of ecological systems (Barbour et al. 1992; Rosenberg and Resh 1993; Reice and Wohlenberg 1993)." This multimetric approach has been modified by several researchers, including Hilsenhoff (1982), Plafkin et al. (1989), and Bode et al. (1996), for use with benthic macroinvertebrates. In 1983, New York State's Stream Biomonitoring Unit began developing methods for assessing stream water quality that use benthic macroinvertebrates as a measure of stream pollution (Bode et al. 1991, 1996).

The use of a single metric, such as taxa richness or diversity, provides a more limited representation of the invertebrate community at a particular site than does a multimetric approach. Combining results from different metrics should remove much of the bias a single metric may provide and, in theory, provide a reasonable estimate of water quality (Barbour et al. 1992; Lenz and Miller 1996).

Three categories of metrics are used to delineate stream health: structure, community balance, and functional feeding group metrics (Barbour et al. 1992). Ideally, each metric should provide a distinct view of the community assemblage. Thus a more accurate assessment of impairment can be obtained. Bode et al.'s protocol (1996) was used to examine benthic macroinvertebrates as indicators of water quality in Irondequoit Creek, and consisted of the following metrics (defined below): Taxa Richness, EPT Richness, Hilsenhoff Biotic Index, Percent

Model Affinity, DOM-3, NCO Richness and Shannon-Weiner Diversity. These metrics fall into two of the main categories suggested by Barbour et al. 1992: structure and community balance metrics. The third type of metric, not used in Bode's protocol, involves functional feeding groups that are more useful for assessing stream health using fish communities (Merritt and Cummins 1996; Resh and Jackson 1993).

Structure Metrics

The most common richness metrics used to describe macroinvertebrate communities are total taxa richness (TR) and EPT (Ephemeroptera, Plecoptera, Trichoptera) richness (Lenat and Barbour 1994; Barbour et al. 1992; Reice and Wohlenberg 1993). To these structural metrics Bode et al. (1996) add percent model affinity (PMA) and Non-Chironomid/Non-Oligochaete richness (NCO). Taxa richness establishes the number of distinct species found in a particular sample (Barbour et al. 1996) and depicts the diversity of the aquatic assemblage (Resh et al. 1995). In most cases, as the amount of stream perturbation increases, taxa richness decreases. As Resh et al. (1995) state:

Increasing diversity correlates with increasing health of the assemblage and suggests that niche space, habitat, and food source are adequate to support survival and propagation of many species. The number of taxa measures the overall variety of the macroinvertebrate assemblage.

Ideally, taxa richness consists of species-level identifications, but this often is not the case due to limited classification keys (e.g., certain tribes of Family Chironomidae). My study was limited to genus identifications in many instances.

Comparisons at the genus level may not reflect the true diversity of a benthic macroinvertebrate community (Merritt and Cummins 1996).

Richness measures can also be specific to certain indicator organisms. One such measure includes EPT richness, which refers to the total number of taxa in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). According to researchers at North Carolina State University, "this measure was very sensitive to changes in water quality," and it proved to be less variable than total taxa richness in relation to between-year changes in flow (unpublished data from North Carolina's ambient monitoring network; Lenat and Barbour 1994; Bartenhagen 1995). These three orders of insects are generally indicators of good water quality. Absence or low diversity of them may indicate a serious degradation of water quality.

The TR metric is applied to all sampling methods suggested by Bode et al. (1996). EPT richness metrics are applied to all but ponar (sediment) samples. NCO richness, however, is used specifically for samples collected in slow, sandy streams (Bode et al. 1996). NCO is a measure of richness, similar to EPT, except that it measures the non-Chironomidae and non-Oligochaeta portion of a sample. Organisms in these two groups are generally more pollution tolerant and are found in abundance in degraded habitats, but they are also commonly found in non-degraded benthic habitats of slow moving streams. Other NCO taxa in finer sediments of streams are more commonly less tolerant of degraded habitats, therefore their presence would indicate higher water quality (Bode et al. 1996).

Percent Model Affinity is a third structure metric used by Bode et al. (1996). It measures the similarity of an actual sample to a model non-impacted community based on percent abundance of seven major groups. The model New York stream gravel community is 40% Ephemeroptera, 5% Plecoptera, 10% Trichoptera, 10% Coleoptera, 20% Chironomidae, 5% Oligochaeta, and 10% other; the model mud community is 20% Oligochaeta, 15% Mollusca, 15% Crustacea, 20% Non-Chironomid Insecta, 20% Chironomid and 10% other (Bode et al. 1996).

Community Balance Metrics

The second category of metrics used in Bode et al.'s (1996) protocol measure community balance. These include a percent dominance measure (DOM-3), a diversity measure (Shannon-Wiener) and the modified Hilsenhoff Biotic Index (HBI).

Dominance is a measure of balance, or evenness, of taxa numbers within a community (Bode et al. 1996). This measure captures redundancy of taxa in a community and works on the premise that a "highly redundant community (major abundance by a single taxon) reflects an impaired community" (Barbour et al. 1992). DOM-3 is the combined percentage of the three most numerous taxa. A high DOM-3 percentage indicates a community strongly dominated by one or a few taxa (Bode et al. 1996).

Diversity is a measure that combines taxa richness with community balance. Taxa richness is the measure of the number of taxa in a sample. Community balance, or evenness, refers to the relative abundance of each taxon in a sample. The Shannon-Wiener index of diversity (also known as Shannon-Weaver index) (Bode et al. 1996; Brower et al. 1990) is the method chosen by

Bode et al. (1996) to calculate diversity. A high diversity value is indicative of an even (or balanced) community, whereas low diversity may indicate community impairment (Bode et al. 1996; Brower et al. 1990).

A biotic index includes a list of species commonly occurring in a geographic area and their individual pollution tolerance values (Bartenhagen 1995). Tolerance values, on a scale of one to ten, are assigned to each species depending on their ability to cope with pollutants (low values translate less tolerance to pollutants). In North America, most biotic indices are based on Chutter's (1972) system modified by Hilsenhoff (1982). Hilsenhoff used a large Wisconsin database (2000+ collections) to assign tolerance values to a 0-10 range (Lenat and Barbour 1994). The biotic index for each site, defined by Hilsenhoff, is calculated by multiplying the number of individuals of each species by its assigned tolerance value, summing these products, and dividing by the total number of individuals (Bode et al. 1996). The HBI metric is valuable because it uses detailed knowledge of individual species and it reflects their known sensitivity to the influence of human actions (Loeb and Spacie 1994). "This index weights the relative abundance of each taxon in terms of its pollution tolerance in determining a community score", (Resh and Jackson 1993). Site impairments can be assessed and water quality improvements can then be measured by sampling in subsequent years (Bode et al. 1996).

Biotic indices are popular because they provide an easily understood numerical expression of a biological response (Merritt and Cummins 1996). A disadvantage of using this technique is that it depends on an accurate assessment

of pollution tolerances for different taxa (Merritt and Cummins 1996). Also, if the biotic index is not specific to the geographic area being sampled, incorrect tolerances values may be assigned. For example, species A may occur both in the Midwest and the Northeast. However, due to differences in environmental conditions and adaptations, their pollution tolerances may be different. Thus, the overall impact assessment may be inaccurate if it is not species-specific to a geographic region.

Objectives

The first objective of my study was to determine the current degree of community health/impairment at three locations in the Irondequoit Creek watershed using the protocol of Bode et al. (1996). Communities in Irondequoit Creek were compared among locations (upstream, midstream, downstream) and among habitats (gravel, mud, vegetation). These data will serve as a baseline for future studies to determine if the health of Irondequoit Creek is improving as a result of remediations suggested in the Rochester Embayment RAP (Monroe County 1997). The second objective was to examine the reliability of the NYS Department of Environmental Conservation's Rapid Bioassessment Protocol (Bode et al. 1996). Bode's method requires kick sampling of gravel substrate, haphazardly picking 100 invertebrates out of the sample in the field, identifying all 100 organisms and calculating the metrics described above. My study compares results from Bode's method of subsampling (haphazard) with random subsampling and an analysis of all macroinvertebrates in a sample.

Study Area

Irondequoit Creek is located in Monroe and Ontario Counties, NY east and south of the City of Rochester. Tributary streams that form Irondequoit Creek's headwaters originate in the Mendon - West Bloomfield corners of Monroe and Ontario Counties. Land uses surrounding the headwaters are primarily rural and agricultural (small farms, country homes, and villages) (Sutton 1998). Proceeding north for 19 miles (30.6 Km), Irondequoit Creek is joined by Trout Creek (upstream from Village of Mendon), Thomas Creek (near Whitney Road, East Rochester), and Allen's Creek (between Route 441 and Penfield Road) before entering Irondequoit Bay at Empire Blvd (Figure 1) (Sutton 1998). What is considered "lower" Irondequoit Creek receives runoff from surrounding residential areas, small villages, golf courses, parks, and some commercial developments (Sutton 1998). As a result of pollution discharge and runoff from the surrounding watershed, Irondequoit Creek has been identified as a major source of pollution contributing to the eutrophication of Irondequoit Bay (Johnston and Sherwood 1988).

Historically, the surrounding land was cleared for agriculture in the 1800s. The creek was used as a source of water power for the Lawless Paper Mill in 1886 (Sutton 1998). Prior to the installation of a wastewater-treatment facility in 1979, sewage was directly discharged into the creek and its tributaries (Johnston and Sherwood 1988). Although sewage diversion has improved water quality, other sources of pollution, such as sediment and nonpoint-source pollution, persist (Sutton 1998). Land uses are rapidly changing as populations are moving out of

the city into outlying towns such as Pittsford, Perinton, Penfield and Mendon (Johnston and Sherwood 1988). While agricultural land-use is declining, residential land-use is on the rise in the Irondequoit Creek basin. Therefore, while surface runoff of pesticides and fertilizers from agriculture is decreasing, runoff (especially stormwater) is on the rise from housing and commercial development (Johnston and Sherwood 1988).

Sample Sites

Sites were chosen that represented expected differences in types and degrees of impact. Samples were collected at Cheese Factory Road (upstream, rural/agricultural land use), Powder Mill Park (midstream, suburban/agricultural land use), and Ellison Park (downstream, suburban/urban land use) (Figure 1). Although the headwaters of Irondequoit Creek, located on Cheese Factory Road, are affected by agricultural runoff, this site was the least anthropogenically influenced and, therefore, was considered a "control" site. The two downstream sites were in Powder Mill Park (near Bergundy Basin) and Ellison Park (south of Blossom Road). In addition to being representative of the upper, middle, and lower portions of the creek, the three sampling locations were chosen because they were accessible, wadeable and had mixtures of gravel, vegetation, and mud habitats.

Methods

Physical and Chemical Parameters

To ensure habitat comparability among locations, certain physical, chemical and biological parameters were compared (Bode et al. 1991). Dissolved oxygen, pH, conductivity, temperature, and current speed were measured once at the upper- and lowermost stations at each location. Substrate particle size, percent embeddedness, percent canopy cover, width and depth, and presence of aquatic vegetation were recorded for all five stations at each sampling location (Bode et al. 1991).

Sampling

With the exception of the Ellison Park downstream site (Figure 1), five replicate samples of invertebrates were collected in gravel, mud and vegetation habitats in April of 1997. Mud and vegetation samples (five replicates each) were collected just downstream in 1996 (Haynes and McNamara 1998).

Mud samples were collected with an Ekman grab sampler. A site was chosen within the sampling station where there was adequate silt and mud habitat. The grab sampler was set, plunged into the silt/mud substrate, and the jaws were triggered. The sampler was pulled out of the substrate, placed over a mesh sieve and a bucket and much of the silt and mud were washed through into the bucket while retaining the organisms on the sieve. Organisms on the sieve were then washed off with water into a collecting jar. Vegetation stations were chosen where vegetation was growing at the water's surface, hanging from bank edges or where trapped but floating vegetation existed. Samples were collected by passing an aquatic dip net through vegetative habitat until the net was half full. Once removed from the water, the dip net was inverted into a bucket and contents washed clean from the net. The sample was then poured from the bucket into a collecting jar.

Gravel samples were collected using the 2-min kick sampling method and an aquatic net (Bode et al. 1996). The 2-min kick sampling method was used in my study, as opposed to the 5-min method (according to Bode et al. 1990, index values derived from the 2-min and 5-min kick samples are comparable). A 5-m chain was placed diagonally across the riffle portion of the stream and substrate was dislodged, using a sweeping motion with the feet, for a 2-min period while traveling downstream to upstream. Once the dip net was removed from the water the sample was poured into a sieve. Small substrate was washed through the sieve while large substrate and organisms were retained on the sieve. Again, the contents of the sieve were washed into a collecting jar.

Samples were preserved in the field in 5% formalin. After 24 hours each sample was transferred to a solution of 70% ethanol with rose bengal dye. Organisms were separated from debris and placed into smaller sample jars. Second sorts were done on each sample to ensure the retrieval of most organisms, and they were added to the first counts.

Subsampling

For three locations (upstream, midstream, downstream) and three habitats (gravel, vegetation, mud) 100 organisms were randomly chosen from a gridded sorting pan by drawing random letters and numbers to determine quadrats in the pan to sample (RNB-Nichelle Bailey-Billhardt's random sample). Whole samples (WNB) were then sorted, identifications made and metrics were calculated along with the random samples (RNB).

For midstream (Powder Mill Park) gravel samples, three sampling methods were compared in order to determine if different sampling methods would yield similar community and structure metrics and similar stream health assessments. Using new samples collected from the same stream reach in Powder Mill Park in May 1998, 100 organisms were chosen from a gridded sorting pan haphazardly at the discretion of the sampler (haphazard samples, HCC, done by research assistant Christine Cody). Then, after replacement, 100 organisms were taken randomly (RCC- Cody's random sample). Metrics (TR, EPT, HBI, PMA) were calculated for 100 counts (HCC, RCC and RNB) and compared with metrics for the whole sample (WNB-Nichelle Bailey-Billhardt's whole sample) for the Powder Mill Park gravel habitat.

Invertebrates were identified to the lowest possible taxonomic level using keys by Merritt and Cummins (1996), Peckarsky et al. (1990), Wiggins (1977), Pennak (1989) and confirmed by W. Bollman 1998; Rhithron Biological Associates, Missoula, MT, personal communication).

Methods used by Bode et al. (1996) require a fixed count of 100 organisms to calculate each metric. However, chironomids were removed from my samples for another thesis project (Cook 1998) prior to obtaining 100

organisms. Therefore, metrics used for stream health assessment were calculated using whole samples, which include a detailed list of chronomid taxa provided by Cook (1998) (Appendix A). Haphazard and random counts include chironomids keyed only to the family level and, for consistency, they were compared to whole counts that included chironomids as one taxon.

Experimental Design and Statistical Analyses

Comparing Stream Reaches and Habitats

I used one-way ANOVA to test the null hypotheses that there were no differences in biotic indices among the upstream, midstream and downstream locations or the vegetation, mud and gravel habitats of Irondequoit Creek. Both raw metric values and metrics converted to the modified O'Brien plot (or scaled values; Figures 2-4) (Bode et al. 1996) were compared. I predicted that the results would show increasing impact farther downstream (e.g., more development) and differences among habitats (e.g., one would expect mud to support fewer taxa with higher "pollution" tolerance than gravel). When differences among treatments were significant, a Student Newman Keuls (Studentized Q; Sokal and Rolff 1981) test was used to determine which means were different.

Comparing 100 (Haphazard and Random) and Whole Samples

I used one-way ANOVA to test the null hypotheses that there were no differences in the biotic indices among 100 haphazard and 100 random samples (drawn and identified by C. Cody) and 100 random and whole samples collected and identified by me. When differences among treatments were significant, a Student Newman Keuls (Studentized Q; Sokal and Rolff 1981) test was used to

distinguish means. Because samples were collected a month apart in different years (but in the same stream reach), it was possible that results of her random counts and mine would differ. If they did not differ, I could be confident that comparing my whole samples to her haphazard samples would be a valid methodology.

Because the number of taxa found is likely related to the number of organisms examined (in the sense of a species/sampling intensity curve, Figure 2), I predicted that the indices that depended on taxa counts (taxa richness, EPT, HBI) would be different for whole vs. 100 count samples, whereas the Percent Model Affinity index should be uninfluenced by the number organisms examined.

The key comparisons in this part of my study were between index values for the 100 haphazardly and randomly drawn organisms and between 100 haphazardly drawn organisms and whole samples. Invertebrate identification is incredibly labor-intensive and, to a lesser degree, so is random sampling, especially in the field. If there is no significant difference in indicators of stream health between 100 haphazardly drawn organisms and randomly drawn or whole samples, then the methods of Bode et al. (1996) really do offer a reliable, low cost way to assess stream health.

Results

Physical and Chemical Parameter Comparison

In order to ensure that invertebrate communities were sampled from similar stream habitats, the following physical and chemical parameters were recorded at the upper and lowermost stations at each location: depth, width, current, percent canopy cover, percent substrate embeddedness, temperature, conductivity, dissolved oxygen, pH and substrate particle size (Table 1). Of these parameters, the key habitat comparability criteria set by Bode et al. (1990) are substrate particle size, percent embeddedness, current speed, and canopy cover (Tables 2 and 3). Physiochemical parameters were recorded separately for different habitats (gravel, vegetation, mud), depending on where the sample was taken, and they were compared within the same habitat across locations to assess habitat similarity before collecting. At some locations, measurements were the same for more than one habitat.

Among habitats being compared, particle size should not differ by more than 3 phi units in gravel habitats or by more than 50% in mud habitats (Bode et al. 1990). In the gravel habitat, the upstream and downstream locations differed by 3.4 units (Table 2), slightly more than the recommended criterion. Particle sizes in the mud habitat did not differ by more than 50% among the three sampling locations (Table 3).

Differences in percent embeddedness should not exceed 50% unless the values are within 20 percentage units (Bode et al. 1990). In the gravel and mud habitats embeddedness did not differ by more than 50% (Tables 2 and 3).

Differences in current speed should not to exceed 50% unless they are within 20 cm/sec (Bode et al. 1990). For the gravel habitat, differences in current speeds were not greater than 50% among the three sample locations (Table 2). The upstream mud habitats did differ from other locations by more than 50% (Table 3).

Canopy cover should not to exceed a 50% difference unless the values are within 20 percentage units (Bode et al. 1990). The canopy cover above the upstream gravel habitat differed by more than 50% from the mid- and downstream values (Table 2). The upstream location was post-agricultural, dominated by vegetation in an early successional stage of tree growth, which explains the lower canopy cover values. The canopy cover above the midstream mud habitat differed from the other two locations by more than 50% (Table 3).

In sum, there were few consistent physical differences in the gravel and mud habitats sampled in upper, middle and lower Irondequoit Creek. Bode et al. (1990) do not provide distinguishing criteria for vegetated habitats. Therefore, it is unlikely that any differences found in benthic macroinvertebrate communities across locations would be due to physical habitat differences in the sections sampled in Irondequoit Creek.

Benthic Community Comparisons Among Locations Within Each Habitat

The TR (Taxa Richness), EPT (Ephemeroptera-Plecoptera-Trichoptera), HBI (Hilsenhoff Biotic Index) and PMA (Percent Model Affinity) metrics were used to compare benthic macroinvertebrate communities in gravel habitats, the TR, HBI, EPT and NCO (Non-Chironomid and Oligochaeta) metrics were used to compare communities in vegetation habitats, and the TR, DIV (Simpson's Diversity), HBI, DOM-3 (percent of

community comprised by the three most abundant taxa), PMA and NCO metrics were used to compare mud habitat communities (Bode et al. 1996). Although NCO is not included in Bode's biological assessment profile of index values for soft sediments, nor is the formula available for scaled conversion, it is a valid metric for invertebrate communities in mud habitats (Bode 2001, NYSDEC Stream Biomonitoring Unit Albany, NY, personal communication). A 1-way ANOVA was performed on all raw and scaleconverted metrics (Tables 4-6), and if ANOVAs were significant analysis continued with Student Newman-Keuls tests to distinguish significant differences among treatment means (Tables 7-13; Raw data is found in Appendix B).

Gravel Habitat Comparisons Across Locations

Raw and scale-converted metrics applicable to the gravel habitat (TR, EPT, HBI, PMA) were compared among the upstream (Cheese Factory Road), midstream (Powder Mill Park) and downstream (Ellison Park) locations (Figure 1). In the gravel habitat, there were significant differences across locations in raw and scaled values for the TR, EPT and PMA indices (Tables 4, 7, 8 and 10). For raw and scaled values, the higher TR, HBI and PMA indices indicated improving water quality from downstream to upstream (Table 4, 7 and 10). While there were no differences in the HBI across locations (P=0.076, Table 4), the trend for the HBI also suggests improving water quality from downstream to upstream to upstream to upstream. Raw and scaled EPT richness values, however, indicate that the midstream community had the highest water quality followed by the upstream and then the downstream community (Tables 4 and 8). Overall, water quality declined from upstream to downstream in the gravel habitats.

Vegetation Habitat Comparisons Across Locations

Metrics applicable to the vegetation habitat (TR, HBI, EPT and NCO) were compared among the three stream locations, but no definitive trends were found. Raw community TR values did not differ significantly (P=0.057) among the three communities sampled in the vegetation habitat (Tables 5 and 7), although the trend suggests better water quality at the up- and midstream than at the downstream locations (Table 5). There were differences across locations for the scaled TR and for the raw and scaled EPT and HBI indices (Tables 5, 7, 8 and 9). The TR and EPT indices denote better water quality at the midstream location, followed by the up- and downstream locations (Table 5, 7 and 8). A low scaled HBI value indicates a slight impact on water quality in the midstream community compared to the up- and downstream communities in the vegetation habitat. No significant differences were found among raw and scaled NCO indices (Tables 5 and 11).

Mud Habitat Comparisons Across Locations

Metrics applicable in the mud habitat (TR, HBI, PMA, DIV, DOM3 and NCO) were compared among the upstream, midstream and downstream locations. There were no significant differences among the three mud communities in raw and scaled values for the TR, HBI, PMA and NCO indices (Tables 6, 7, 9, 10 and 11). For the mud habitat, only the raw NCO richness values were calculated (there is no formula available for scaled values) (Bode 2001, personal communication). Raw and scaled DIV (Simpson's Diversity) and DOM-3 indices indicated improving water quality from downstream to upstream (Tables 6, 12 and 13).

Benthic Community Comparisons Among Habitats Within Each Location

Comparisons among all habitats within the same location are limited to the Taxa Richness (TR) and the Hilsenhoff Biotic Index (HBI) metrics. Ephemeroptera-Plecoptera-Trichoptera richness (EPT) is applicable only for comparing gravel and vegetation habitats, Percent Model Affinity (PMA) is applicable only to the gravel and mud habitats, and NCO (non-Chironomid, non-Oligochaeta) richness is applicable only to the vegetation and mud habitats. DIV (Shannon-Wiener Diversity) and DOM3 (percentage of the three most abundant taxa in the community) were not used for habitat comparisons because these metrics are only used for the mud habitat. For each location (upstream, midstream, downstream) each applicable metric was analyzed using 1-way ANOVA's followed by Student-Newman Keuls (SNK) tests, if appropriate (Tables 14-18; Raw data is found in Appendix C).

Upstream Location (Cheese Factory Road)

At the upstream location (Figure 1), there were significant differences in index values among the three habitats for the TR, EPT, and HBI indices (Table 14). Raw TR was higher in the gravel habitat than in the mud and vegetation habitats (Tables 14 and 17), raw EPT richness was greater in the gravel habitat than in the vegetation habitat (Table 14), and the raw HBI metric indicated a healthier benthic community in the vegetation habitat than in the mud and gravel habitats (Tables 14 and 18). Raw PMA values did not differ between the gravel and mud communities, and raw NCO values suggest better water quality in the vegetation habitat than in the mud habitat (P = 0.052, Table 14). For scaled values, only the HBI index remained significantly different among the three habitats, with the gravel community having higher HBI diversity than the mud

and vegetation communities (Tables 14 and 18). Overall, once adjusted by scaled values for inherent differences in habitat quality for benthic macroinvertebrates (gravel \geq vegetation > mud), there were no apparent water quality-related differences among the gravel, mud and vegetation communities at the upstream location.

Midstream Location (Powder Mill Park)

At the midstream location, raw values were significantly different among habitats for the TR, HBI, and NCO indices (Tables 15, 17, and 18). Raw TR and HBI values were higher and lower, respectively, in the gravel and vegetation habitats than in the mud habitat (Tables 15 and 17), and NCO was higher in the vegetation habitat than in the mud habitat (Table 15). There were no significant differences for the raw EPT and PMA indices (Table 15). Scaled EPT richness was higher in vegetation than in gravel, and scaled PMA was significantly higher in gravel than in mud (Table 15), but scaled values were not significantly different for the TR and HBI indices (Tables 15, 17, and 18). TR and HBI are the two indices that allow comparisons across all three habitats, so it is reassuring to see that these indices, when scaled, show no differences among benthic communities at the midstream location. The PMA scaled index suggests that the gravel habitat has greater affinity with a model gravel community than the mud habitat does with a model mud community. Overall, once adjusted by scaled values for inherent differences in habitat quality for macroinvertebrates (gravel > vegetation > mud), there were few water quality-related differences among the gravel, vegetation and mud communities at the midstream location.

Downstream Location (Ellison Park)

At the downstream location raw values were different for all indices (Table 16). Raw TR for the gravel habitat was higher than for the vegetation and mud habitats (Tables 16 and 17), and raw HBI values for the vegetation, gravel and mud habitats ranged from lower to higher, respectively (Tables 16 and 18). Raw EPT richness was higher in the gravel habitat than in the vegetation habitat, raw PMA was higher for the mud than the gravel community, and the raw NCO index was higher for the vegetation than the mud community (Table 16). Scaled values were different for the EPT and HBI indices, and they approached significance for TR (P = 0.07, Table 16), with the gravel habitat appearing to have greater TR than the mud and vegetation habitats (Table 16). The scaled HBI suggests better water quality in the gravel and mud habitats than in the vegetation habitat (Tables 16 and 18), and the scaled EPT index suggests better water quality in the gravel than in the vegetation habitat (Table 16). Thus, in lower Irondequoit Creek the indices used give a confusing picture of water quality impacts.

Haphazard versus Random versus Whole Count Metrics

Except for the PMA index, raw and scaled metrics for haphazard and random samples of 100 organisms and whole-sample analyses were different, with whole counts consistently providing higher scaled scores, indicative of better water quality, for the TR and EPT indices (Tables 19 and 20; raw data is found in Appendix D). Except for the HBI metric, there were no differences between haphazard and random values for samples of 100 organisms or between the values obtained with different random samples from the same midstream reach in Powder Mill Park (Tables 19 and 20). These results suggest that haphazard subsampling provides the same quality of information as the random
subsampling, but that whole samples provide much additional information. Consistent within- and between- investigator results for the TR and EPT indices are a good indicator of methodological soundness. However, the significant difference in HBI values between investigators is troubling. C. Cody (May 1998) and N. Bailey-Billhardt (April 1997) did analyze different samples from the same stream section in Powder Mill park, but why there is a dramatic difference between their HBI values and not their TR and EPT values is unknown.

Discussion

Importance of Comparable Physical and Chemical Habitat Parameters

Sampling multiple habitats at the same location is an excellent way to assess stream health. However, one must be careful when comparing raw community and structure metrics derived from different habitats. Bode et al.'s (1996) protocol ensures habitat comparability by establishing acceptable limits for specified chemical and physical parameters that result in minimal differences in community health metrics due to habitat differences (Bode et al. 1990). In my study, samples were taken in gravel, vegetation and mud habitats. Due to differing biological requirements of species, the benthic invertebrate community in each habitat was expected to be different. Substrate characteristics, particularly particle size, are believed to be one of the most important habitat factors that determine macroinvertebrate community structure (Richards and Host 1994; Mackay 1992). Substrate differences will result in distinct community assemblages, while the same substrate at a different location likely will yield the same community assemblage (Brown and Brussock 1991; McCulloh 1986; Jenkins et al. 1984). Therefore, when raw metrics

were compared across habitats at the same location in my study, the differences seen in my data were expected.

Bode et al.'s protocol (1996) takes into account inter-habitat variation by converting raw metrics to habitat-specific scaled metrics. If community differences across habitats were not taken into account, "inter-habitat variation" could be mistaken for ecological impairment (Parson and Norris 1996). In my study, raw metric data differed much more frequently when comparing habitats within locations than did scaled metrics for the same samples. Thus, it appears that the scaled metrics did a good job of removing inter-habitat variability from my data.

Biological Stream Health Assessment Across Locations and Habitats

The first objective of my study was to determine invertebrate community health in Irondequoit Creek based on Bode et al.'s protocol (1996). Individual metrics were calculated for the gravel, vegetation and mud habitat at each stream location (upstream, midstream and downstream) and converted by formulae (Bode 2001, personal communication) to scaled values between one and ten (Figures 3-5). These scaled metrics were then averaged to determine the degree of water quality impact at each location and habitat. Figures 6, 7 and 8 compare scaled metric values within the three habitats (gravel, vegetation, mud) among the three stream locations. When comparing similar habitats across locations, the trend is that there were few differences in scaled community metrics between the up- and midstream locations while the downstream location is often different than the middle and upper reaches of Irondequoit Creek. While there is some variation among the metrics regarding their predictions of impact, the average of the metrics for the benthic macroinvertebrate communities in Irondequoit Creek indicate that water quality is better at the upper and middle locations than at the downstream location. Thus, it appears that as Irondequoit Creek passes through areas of greater suburban and urban development its water quality declines.

Figures 9-11 compare scaled metric values within locations among the three habitats. While there is some variation among metrics, the vegetation habitat exhibits the least impact, the gravel habitat shows intermediate impact, and the mud habitat has the greatest impact. At the upstream location, all habitats appear to be only slightly impacted, although the vegetation habitat borders the lower limit of no impact (Figure 9). At the midstream location, average metric values categorize the gravel habitat as slightly impacted, the vegetation as non-impacted, and the mud as moderately impacted (Figure 10). At the downstream location, average metric values categorize the gravel and vegetation habitats as moderately impacted, while the mud habitat is severely impacted (Figure 11). As seen above, relative stream health improves from downstream to upstream.

At the downstream location (Ellison Park) stream health assessment can be compared to historical data from previous macroinvertebrate studies (Coon 1997; Sutton 1998). Sutton (1998) calculated macroinvertebrate metrics for the gravel habitat at Ellison Park for samples taken in June of 1995, while the RIBS (NYSDEC Rotating Intensive Basin Survey) for Irondequoit Creek took samples from gravel habitat in August of 1995 and 1996 (Coon 1997). Both studies evaluated results using the New York State expected index values for flowing water (Bode et al. 1990). Sutton (1998) and my study

categorized Ellison Park's benthic macroinvertebrate community as moderately impacted based on the EPT and PMA metrics. However, Sutton's study assessed the downstream macroinvertebrate community as moderately impacted using the TR metric, while my study characterized the community as slightly impacted. Also, Sutton's (1998) HBI metric assessed the downstream impact as slight, while my study characterized the downstream location as moderately impacted. The RIBS report identified the downstream site as slightly impacted in both years 1995 and 1996 (Coon 1997). Overall, assessments from these three studies are in substantial agreement and categorized the gravel habitat of lower Irondequoit Creek as slightly to moderately impacted. Data from Cook's (1998) chironmid analysis revealed higher taxa richness and Simpson's Diversity values in the upstream location than in the downstream. Based on these results, it seems reasonable to conclude that my data indicating healthier benthic macroinvertebrate communities at the up- and midstream locations are valid.

The degree of impact at the downstream site is not surprising given the history of the watershed. Since the early 1800s the Irondequoit Basin has been subject to polluted effluent from many anthropogenic sources. Throughout its history the basin's waters have undergone large population fluctuations and as a result, Irondequoit Basin has received nutrient-rich raw and treated sewage, excessive sediment caused by logging practices, raw effluent from tanneries, and nutrients, sediment and pesticide runoff from agricultural practices (Verna 1995; Tangorra 1996). This pattern of pollution rendered Irondequoit Bay and its tributaries culturally eutrophied (Verna 1995; Tangorra 1996).

In efforts to remediate and/or prevent further degradation of Irondequoit Bay and its tributaries, sewage diversions were established and the Frank E. Van Lare Treatment Plant was enlarged and updated to institute primary and secondary treatment, as well as phosphorus removal, for the basin (Verna 1995). The changing degree of impact from upstream to downstream in Irondequoit Creek may reflect efforts made to improve the quality of water entering Irondequoit Creek. My results can also be used as a comparison of stream health in subsequent years as cleanup efforts continue within the Irondequoit Creek Watershed.

Haphazard vs. Random 100 Counts vs. Whole Samples

The second objective of my study was to examine the reliability of the NYSDEC Stream Biomonitoring Protocol (Bode et al. 1996). In my study, haphazard subsampling of 100 organisms per sample was not performed in the field. The entire sample was taken back to the lab for sorting, then after sorting and elimination of debris, 100 organisms were sampled haphazardly and randomly, with replacement, identified and then returned to the whole sample. In my study, organisms sorted by the haphazard method were considered comparable to Bode et al.'s (1996) field sort.

Some researchers suspect that field sorting may bias a sample to over represent larger, more easily seen organisms versus smaller, less visible or rare invertebrates (Lenz and Miller 1996). Barbour and Gerritsen (1996) suggested that fixed-count methods require non-biased subsampling, or random sampling, to ensure accurate assessments of stream health. In my study, the random grid/quadrat method of sorting was used to eliminate this potential bias (Cao et al. 1998; Barbour and Gerritsen 1996). No

differences were found between 100 count random and haphazard subsamples, other than for the HBI metric (Figure 12), suggesting that haphazard and random samples of 100 organisms give nearly equivalent results.

Fixed count, subsampling methods are the preferred methodology because they are a more practical and economical approach for using benthic macroinvertebrates to assess ecosystem health (Barbour and Gerritsen 1996; Plafkin et al. 1989), but do they provide statistical results equivalent to whole samples? I found significant differences (1-way ANOVA, p<0.01) between the TR and EPT metrics calculated from fixed count methods versus those calculated from whole samples (Tables 19 and 20). However, following Bode et al.'s protocol (1996), even though statistical differences were found for two individual metrics, the average metrics for all methods showed the midstream location to be slightly impacted (Figure 12).

The elimination of rare species often indicates differences between a relatively "pristine" stream reach and a polluted one. Cao et al. (1998) suggest that fixed count methods, random or haphazard, overlook rare species, resulting in diminished species richness values and difficulty in discerning differences in stream health among sites. Streams with less distinct variations may not be differentiated at all with fixed count methods. The haphazard and random subsamples in my study all underestimated TR and EPT richness compared to whole samples for the same location (Figure 12). These results suggest that the fixed 100 count random and haphazard samples do eliminate rare species and result in lower richness values as opposed to entire counts, but again these differences did not generally suggest differences in stream community health. Higher richness values

for the whole sample also support the idea that a larger number of samples will yield a greater number of species up to a point (Figure 2).

Although most metrics calculated in my study followed expected trends across locations and habitats, the HBI metric did not. This metric relies on taxonomic resolution to the species level, although some tolerance values are established for genus- and familylevel identifications (Lenz and Miller 1996; Bode et al. 1996). Taxa, in my study, were identified to the lowest practical level possible and included family, genus and species level identifications. Perhaps if the taxonomic resolution was to species level across all of my samples the HBI index values would follow predicted stream health assessments. Familylevel identifications can be used with Hilsenhoff's Family Level Biotic Index, which yielded results similar to the HBI in a study by Lenz and Miller (1996). However, in my study, the Family Biotic Index rated the midstream gravel habitat non-impacted, as opposed to the HBI rating of slightly impacted.

Summary/Conclusions

Generally, as development and civilization encroach upon stream banks, stream health tends to degrade. The watershed of Irondequoit Creek is increasingly developed from upstream to downstream. Therefore, it is useful to know that the upstream and midstream locations were slightly impaired (averaged across habitats), while the downstream location was moderately impaired. My study provides a detailed list of organisms to which, in the event that better land management practices are put in place, the human impact on stream health can be compared in the future.

Low fixed count methods of sampling may indeed eliminate rare species, leading to inaccurate stream health assessments. In my study, although statistical differences were found among random and haphazard (100 counts) versus whole sample counts, no statistical differences were found among stream health assessments determined by these methods. Therefore, according to Bode et al.'s (1996) protocol, stream health assessments were as accurate for 100 counts as they were for the whole sample.

Literature Cited

- Barbour, M.T., and J. Gerritson. 1996. Subsampling of benthic samples: A defense of the fixed count method. J. N. Am. Benthol. Soc. 15:386-391.
- Barbour, M.T., J.L. Plafkin, B.P. Bradley, C.G. Graves and R.W. Wisseman. 1992. Evaluation of EPA's Rapid Bioassessment Benthic Metrics: Metric redundancy and variability among reference stream sites. *Environmental Toxicology and Chemistry* (11):437-449.
- Bartenhagen, K.A. 1995. A water quality manager's guide to water resource protection. M.S. thesis. Duke University School of Environment.
- Bode, R.W., M.A. Novak, and L.E. Abele. 1990. Biological impairment criteria for flowing waters in New York State. NYSDEC, Division of Water, Albany, NY.
- Bode, R.W., M.A. Novak and L.E. Abele. 1991. Quality assurance work plan for biological stream monitoring in New York State. NYSDEC, Division of Water, Albany, NY.
- Bode, R.W., M.A. Novak and L.E. Abele. 1996. Quality assurance work plan for biological stream monitoring in New York State. NYSDEC, Division of Water, Albany, NY.
- Brower, J.E., J.H. Zar and C.N. von Ende. 1990. Field and Laboratory Methods for General Ecology, 3rd Ed. Wm. C. Brown Publishers, Dubuque, IA.
- Brown, A.V., and P.P. Brussock. 1991. Comparisons of benthic invertebrates between riffles and pools. *Hydrobiologia* 220:99-108.
- Cao, Y., D.D. Williams and N.E. Williams 1998. How important are rare species in aquatic community ecology and bioassessment. *Limnology and Oceanography* 43(7):1403-1409.
- Chutter, F.M. 1972. An empirical biotic index of the quality of water in South African streams and rivers. *Water Resources* 6:19-30.
- Cook, E. 1998. Chironomid (Diptera: Chironomidae) larvae as indicators of water quality in Irondequoit Creek, New York. M.S. thesis, Department of Biological Sciences, SUNY College at Brockport.

- Coon, W. 1997. Hydrology, Sedimentology and Biology of Ellison Park Wetland at the Mouth of Irondequoit Creek near Rochester, New York. U.S. Geological Survey, Water Resources Division.
- EPA, Monroe County Health Department. 1993. Rochester Embayment Area of Concern. (www.epa.gov/grtlakes/aoc/rochester.html).
- Haynes, J.M., and J.N. McNamara. 1998. Indicators of change in water quality and environmental health in the Irondequoit Creek Wetland Complex. Department of Biological Sciences. SUNY College at Brockport
- Hellawell, J.M. 1986. <u>Biological Indicators of Freshwater Pollution and Environmental</u> <u>Management.</u> Elsevier, London.
- Hilsenhoff, W.L. 1982. Using a biotic index to evaluate water quality in streams. Technical Bulletin No. 132. Wisconsin Department of Natural Resources, Madison, WI.
- Jenkins, R. A, K.R. Wade and Pugh 1984. Macroinvertebrate habitat relationships in the River Teifi catchment and the significance to conservation. *Freshwater Biology* 14:23-42.
- Johnston, W.H. and D.A. Sherwood. 1988. Water Resources of Monroe County, New York, Water Years 1984-1988, with Emphasis on Water Quality in the Irondequoit Creek Basin; Part 2.
- Kappel, W.M., R.M. Yager and P.J. Zarriello. 1981. Quantity and Quality of Urban Storm Runoff in the Irondequoit Creek Basin near Rochester, New York. Part 2: Quality of Storm Runoff and Atmospheric Deposition, Rainfall-Runoff-Quality Modeling, and Potential of Wetlands for Sediment and Nutrient Retention.
- Lenat, D.R., and M.T. Barbour. 1994. Using benthic macroinvertebrate community structure for rapid, cost-effective, water quality monitoring: rapid bioassessment. In: S.L. Loeb and A. Spacie (Eds.), <u>Biological Monitoring of Aquatic Ecosystems</u>, Lewis Publishers, Boca Raton, FL
- Lenz, B.N., and M.A. Miller. 1996. Comparison of aquatic macroinvertebrate samples collected using different field methods. USGS Fact Sheet FS-216-96.
- Loeb, S.L. and A. Spacie (Eds.). 1994. <u>Biological Monitoring of Aquatic Ecosystems</u>. Lewis Publishers, Boca Raton, FL.
- Mackay, R.J. 1992. Colonization by lotic macroinvertebrates: A review of processes and patterns. *Canadian Journal of Fisheries and Aquatic Science* 49:617-628.

- McCulloh, D.L. 1986. Benthic macroinvertebrate distribution in the riffle-pool community of two East Texas streams. *Hydrobiologia* 135:61-70.
- Merritt, R.W., and K.W. Cummins. 1996. <u>An Introduction to the Aquatic Insects of</u> <u>North America</u>: (3rd Ed.) Kendall/Hunt Publishing Company, Dubuque, IA.
- Monroe County Department of Health, Rochester, NY. 1993. Rochester Embayment Remedial Action Plan, Stage I. 1993. New York State Department of Environmental Conservation, Albany, NY
- Monroe County Department of Health, Rochester, NY. 1997. Rochester Embayment Remedial Action Plan, Stage II, Volume 1. New York State Department of Environmental Conservation, Albany, NY.
- Parsons, M., and R.H. Norris. 1996. The effect of habitat specific sampling on biological assessment of water quality using a predictive model. *Freshwater Biology* 36:419-434.
- Peckarsky, B.L., P.R. Fraissinet, M.A. Penton, and D.J. Conklin, Jr. 1990. <u>Freshwater</u> <u>Macroinvertebrates of Northeastern North America</u>. Cornell University Press, Ithaca, NY.
- Pennak, R.W. 1989. <u>Freshwater Invertebrates of the United States</u>, 3rd Ed. John Wiley and Sons, New York.
- Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, and R.M. Hughes. 1989.
 Rapid Bioassessment Protocols for Use in Streams and Rivers. Benthic
 Macroinvertebrates and Fish. EPA/444/4-89/001. Office of Water Regulations and Standards, U.S. Environmental Protection Agency, Washington, D.C.
- Reice, S.R., and M. Wohlenberg. 1993. Monitoring freshwater benthic macroinvertebrates and benthic processes: Measures for assessment of ecosystem health. In: <u>Freshwater Biomonitoring and Benthic</u> <u>Macroinvertebrates</u>, D.M. Rosenberg and V.H. Resh (Eds.). Routledge, Chapman & Hall, Inc. New York.
- Resh, V.H., and J.K. Jackson. 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In: <u>Freshwater Biomonitoring and Benthic</u> <u>Macroinvertebrates</u>, D.M. Rosenberg and V.H. Resh (Eds.). Routledge, Chapman & Hall, Inc. New York.
- Resh, V.H., R.H. Norris and M.T. Barbour. 1995. Design and implementation of rapid bioassessment approaches for water resources monitoring using benthic macroinvertebrates. *Australian Journal of Ecology* 20:108-121.

- Richards, C., and G. Host. 1994. Examining land use influences on stream habitats and macroinvertebrates: A GIS approach. *Water Resources Bulletin* 30(4):729-738.
- Rosenberg, D.M. and V.H. Resh.(Eds.) 1993. <u>Freshwater Biomonitoring and Benthic</u> <u>Macroinvertebrates</u>. Routledge, Chapman & Hall, Inc. New York.

Sokal, R.R., and F.J. Rohlf. 1981. Biometry: 2nd Ed. W.H. Freeman, San Francisco.

- Somers, K.M., R.A. Reid and S.M. David. 1998. Rapid biological assessments: How many animals are enough? J. N. Am. Benthol. Soc. 17(3):348-358.
- Sutton, W.L. 1998. Biological stream assessment of Irondequoit Creek and two tributaries, Thomas and Allen Creeks. In cooperation with NYSDEC, Division of Fish and Wildlife. Albany, NY.
- Tangorra, P.A. 1996. Sediment chemistry of Irondequoit Bay, NY. M.S. thesis. Department of Biological Sciences, SUNY College at Brockport.
- Thorne, R. S. J., and P. Williams. 1997. The response of benthic macroinvertebrates to pollution in developing countries: A multimetric system of bioassessment. *Freshwater Biology* 37:671-686.
- Verna, A. 1995. The paleolimnology of Irondequoit Bay: Trophic history inferred from sediment diatom assemblages. M.S. thesis. Department of Biological Sciences, SUNY College at Brockport.
- Wiggins, G.B. 1977. Larvae of the North American Caddisfly Genera. University of Toronto Press, Toronto.

2

Table 1. Physical (depth, width, current, canopy, % embeddedness, temperature and particle size) and chemical (conductivity, dissolved oxygen and pH) habitat parameters across habitats (gravel, vegetation, mud) and locations (upstream, midstream, downstream). Measurements were taken at the uppermost and lowermost station at each location. Gravel and vegetation habitat parameters were taken at different sites for the upstream and midstream samples. Habitat parameters were measured at three different habitat sites at the downstream location.

	Upstream		Midstream		Downstream		
						Lower	
	Gravel,				Upper Site	Site Veg,	
	Veg	Mud	Veg, Gravel	Mud	Veg, Mud	Mud	Gravel
Depth (cm)	44.5	44.5	41.8	71.8	55	94	48
Width (m)	4.9	4.9	9.8	9.3	18	18	14.4
Current (cm/s)	79.8	79.8	52	20.2	29	18	81
Canopy (%)	6	6	45	45.2	2	0	60
Embeddedness (%)	30	80	24	85	92	96	43
Temperature (C)	10.9	10.9	12.2	13	14.9	10.5	12.3
Conductivity (umhos)	353	353	972	1099	600	555	992
DO (mg/L)	10	10	11	11.2	6.9	12.6	10.3
рН	7.5	7.5	7	8.2	8.1	7.8	7.9
Particle size (phi)	-1.2	4.8	-2.9	3.4	3	5.6	-4.6

Table 2. Particle size, % embeddedness, current andcanopy cover at the upstream, midstream and downstreamlocations in the gravel habitat. Habitat comparabilitycriteria identified by Bode et al. (1991).

Gravel	Upstream	Midstream	Downstream
Particle size (phi)	-1.2	-2.9	-4.6
Embeddedness (%)	30	24	43
Current (cm/s)	79.8	52	81
Canopy (%)	6	45	60

Table 3. Particle size, % embeddedness, current and canopy cover at the upstream, midstream and downstream locations in the mud habitat. Habitat comparability criteria identified by Bode et al. (1991).

Mud	Upstream	Midstream	Downstream
Particle size (phi)	4.8	3.4	4.3
Embeddedness (%)	80	85	94
Current (cm/s)	79.8	20.2	23.5
Canopy (%)	6	45.2	1

Table 4. Average raw and scaled metric results including Taxa Richness (TR; modified from Bode et al. (1996) Species Richness), Ephemeroptera-Plecoptera-Trichoptera Richness (EPT), Hilsenhoff Biotic Index (HBI) and Percent Model Affinity (PMA) for gravel habitats among three locations (upstream, midstream and downstream) compared by 1-way ANOVA.

		Upstream	Midstream	Downstream	F	P-value
Taxa Richness	Raw	37.80	29.80	25.40	5.331	0.022
	Scaled	9.28	8.36	7.19	5.633	0.019
EPT Richness	Raw	8.80	9.80	3.40	12.095	0.001
	Scaled	6.78	7.33	3.58	11.894	0.001
HBI	Raw	5.88	6.06	6.87	3.220	0.076
	Scaled	5.78	5.55	4.54	3.220	0.076
PMA	Raw	58.22	47.42	36.00	6.434	0.013
	Scaled	6.27	4.70	2.79	6.701	0.011

Table 5.Average raw and scaled metric results including Taxa Richness (TR;modified from Bode et al. (1996) Species Richness), Ephemeroptera-Plecoptera-Trichoptera (EPT) Richness, Hilsenhoff Biotic Index (HBI) and Non-Chironomid/Non-Oligochate (NCO) Richness for vegetation habitats among three locations (upstream,midstream and downstream) compared by 1-way ANOVA.

		Upstream	Midstream	Downstream	F	P-value
Taxa Richness	Raw	24.60	25.60	16.60	3.672	0.057
	Scaled	7.74	9.40	5.20	5.249	0.023
EPT Richness	Raw	4.40	9.80	0.00	103.257	0.000
	Scaled	6.08	9.84	0.00	129.536	0.000
HBI	Raw	4.08	5.83	4.74	5.663	0.019
	Scaled	9.04	6.92	8.80	5.948	0.016
NCO	Raw	12.80	15.60	14.80	0.817	0.465
	Scaled	8.32	10.00	9.28	2.702	0.107

Table 6.Average raw and scaled metric results including Taxa Richness (TR;modified from Bode et al. 1996 Species Richness), Hilsenhoff Biotic Index (HBI),Percent Model Affinity (PMA), Non-Chironomid/Non-Oligochate (NCO) Richness,Shannon Weiner Diversity (DIV) and DOM-3 (% of three most dominant species) formud habitats among three locations (upstream, midstream and downstream)compared by 1-way ANOVA.

		Upstream	Midstream	Downstream	F	P-value
Taxa Richness	Raw	19.20	19.40	14.80	2.587	0.116
	Scaled	7.38	7.37	5.13	2.903	0.094
НВІ	Raw	6.78	7.34	7.83#	1.581	0.246
	Scaled	7.97	6.66	5.39	1.627	0.237
РМА	Raw	49.84	38.64	48.45	2.314	0.141
	Scaled	3.97	2.11	3.69	2.174	0.156
NCO	Raw	7.40	6.40	6.80	0.167	0.848
	Scaled	ND	ND	ND	ND	ND
DIV	Raw	2.03	1.85	1.14	8.234	0.006
	Scaled	2.85	1.88	0.15	5.692	0.018
DOM3	Raw	66.75	70.99	88.50	5.044	0.026
	Scaled	6.38	5.67	2.56	5.396	0.021

Table 7. Raw and scaled taxa richness (TR) values among locations (upstream-U, midstream-M, downstream-D) within habitats (gravel, vegetation, mud) compared by 1-way ANOVA and Student Newman Keuls (if significance was found with ANOVA). (*, P<0.05; **, P< 0.01; ***, P<0.005).

	TR	U-M	U-D	M-D
Gravel	Raw	**	***	ns
Gravel	Scaled	ns	* * *	*
Veg	Raw	ns	ns	ns
Veg	Scaled	ns	*	***
Mud	Raw	ns	ns	ns
Mud	Scaled	ns	ns	ns

 Table 8. Raw and scaled Ephemeroptera-Plecoptera-Trichoptera
 (EPT) Richness values among locations (upstream-U, midstream-M, downstream-D) within habitats (gravel, vegetation, mud) compared by 1-way ANOVA and Student Newman-Keuls (if significance was found with ANOVA). (*, P<0.05; **, P< 0.01; ***, P<0.005).

		U-M	U-D	M-D
Gravel	Raw	ns	***	***
Gravel	Scaled	ns	* * *	* * *
Veg	Raw	***	***	***
Veg	Scaled	** **	***	***

Table 9. Raw and scaled Hilsenhoff Biotic Index values among locations (upstream, midstream, downstream) within habitats (gravel, vegetation, mud) compared by 1-way ANOVA and Student Newman-Keuls (if significance was found with ANOVA). (*, P<0.05; **, P< 0.01; ***, P<0.005).

	, , ,			
		U-M	U-D	M-D
Gravel	Raw	ns	ns	ns
Gravel	Scaled	ns	ns	ns
Veg	Raw	***	ns	**
Veg	Scaled	***	ns	***
Mud	Raw	ns	ns	ns
Mud	Scaled	ns	ns	ns

 Table 10. Raw and scaled Percent Model Affinity (PMA)
 values among locations (upstream-U, midstream-M, downstream-D) within habitats (gravel, mud) compared by 1 way ANOVA and Student Newman-Keuls (if significance was found with ANOVA). (*, P<0.05; **, P<0.01; ***, P<0.005)

		U-M	U-D	M-D
Gravel	Raw	*	***	*
Gravel	Scaled	*	* * *	*
Mud	Raw	ns	ns	ns
Mud	Scaled	ns	ns	ns

Table 11. Raw and scaled Non-Choronomid/Non-Oligochaete (NCO) values among locations (upstream-U, midstream-M, downstream-D) within habitats (vegetation, mud) compared by 1-way ANOVA and Student Newman-Keuls (if signifcance was found with ANOVA). (*, P<0.05; **. P< 0.01; ***, P<0.005) U-M U-D M-D

Veg	Raw	ns	ns	ns
Veg	Scaled	ns	ns	ns
Mud	Raw	ns	ns	ns

Table 12.	Raw and scal	ed Shannon-	Weiner Dive	ersity (DIV)
values amo	ng locations ((upstream-U,	, midstream-	М,
downstrear	n-D) within tl	he mud habit	tat compared	l by 1-way
ANOVA a	nd Student No	ewman-Keul	s (if signfica	nce was
found with	ANOVA). (*	*, P<0.05; *'	*, P< 0.01; *	**,
P<0.005)				
		U-M	U-D	M-D

		U-M	U-D	M-D
Mud	Raw	ns	***	***
Mud	Scaled	ns	* * *	* *
		ويجاوز بالبران فالتحديث والمتحد والمتحد والمحد		

Table 13.	Raw and scal	led DOM-3 (% of three n	nost			
dominant species) values among locations (upstream-U,							
midstream	-M, downstrea	am-D) within	n the mud ha	abitat			
compared	by 1-way ANG	OVA and Stu	ident Newm	an-Keuls (if			
significan	ce was found v	with ANOVA	A). (*, P<0.0	05; **, P<			
0.01; ***,	P<0.005)						
		U-M	U-D	M-D			
Mud	Raw	ns	***	***			

ns

Scaled

37

Mud

Table 14. Raw and scaled metric results for Taxa Richness (TR; modified from Bode et al. 1996), Ephemeroptera-Plecoptera-Trichoptera (EPT) Richness, Hilsenhoff Biotic Index (HBI), Percent Model Affinity (PMA), Non-Chironomid/Non-Oligochaete (NCO) Richness, Shannon-Weiner Diversity (DIV) and percentage of the three most dominant species (DOM-3) at the upstream location among three habitats (gravel, vegetation and mud) compared by 1-way ANOVA.

	<u> </u>	Gravel	Veg	Mud	F	P-value
Taxa Richness	Raw	37.800	24.600	19.200	8.069	0.006
	Scaled	9.278	7.740	7.385	1.237	0.325
EPT Richness	Raw	8.800	4.400	NA	16.133	0.004
	Scaled	6.782	6.100	NA	0.622	0.453
НВІ	Raw	5.877	4.081	6.782	10.265	0.003
	Scaled	5.779	9.040	7.973	5.886	0.017
PMA	Raw	58.220	NA	49.842	1.200	0.305
	Scaled	6.270	NA	3.968	3.599	0.094
NCO	Raw	NA	12.800	7.400	5.207	0.052
	Scaled	ND	ND	ND	ND	ND
DIV	Raw	NA	NA	2.034	*	*
	Scaled	NA	NA	2.850	*	*
DOM-3	Raw	NA	NA	66.746	*	*
	Scaled	NA	NA	6.376	*	*

Table 15. Raw and scaled metric results for Taxa Richness (TR; modified from Bode et al. 1996), Ephemeroptera-Plecoptera-Trichoptera (EPT) Richness, Hilsenhoff Biotic Index (HBI), Percent Model Affinity (PMA), Non-Chironomid/Non-Oligochaete (NCO) Richness, Shannon-Weiner Diversity (DIV) and percentage of the three most dominant species (DOM-3) at the midstream location among three habitats (gravel, vegetation and mud) compared by 1-way ANOVA.

		Gravel	Veg	Mud	F	P-value
Taxa Richness	Raw	29.800	25.600	19.400	7.851	0.007
	Scaled	8.356	9.400	7.367	2.668	0.110
EPT Richness	Raw	9.800	9.800	NA	0.000	1.000
	Scaled	7.327	9.840	NA	12.433	0.008
HBI	Raw	6.063	5.830	7.337	11.138	0.002
	Scaled	5.546	6.920	6.657	2.120	0.163
РМА	Raw	47.416	NA	38.638	2.438	0.157
	Scaled	4.696	NA	2.105	9.883	0.014
NCO	Raw	NA	15.600	6.400	26.286	0.014
	Scaled	ND	ND	ND	ND	ND
DIV	Raw	NA	NA	1.854	*	*
	Scaled	NA	NA	1.880	*	*
DOM-3	Raw	NA	NA	70.990	*	*
	Scaled	NA	NA	5.668	*	*

Table 16. Raw and scaled metric results for Taxa Richness (TR; modified from Bode et al. 1996), Ephemeroptera-Plecoptera-Trichoptera (EPT) Richness, Hilsenhoff Biotic Index (HBI), Percent Model Affinity (PMA), Non-Chironomid/Non-Oligochaete (NCO) Richness, Shannon-Weiner Diversity (DIV) and percentage of the three most dominant species (DOM-3) at the downstream location among three habitats (gravel, vegetation and mud) compared by 1-way ANOVA.

		Gravel	Veg	Mud	F	P-value
Taxa Richness	Raw	25.400	16.600	14.800	17.678	0.000
	Scaled	7.193	5.200	5.172	3.351	0.070
EPT Richness	Raw	3.400	0.000	₂ NA	25.130	0.001
	Scaled	3.583	0.000	NA	34.597	0.000
НВІ	Raw	6.868	4.736	7.830	16.190	0.000
	Scaled	4.540	8.804	5.385	7.601	0.007
PMA	Raw	35.996	NA	48.454	9.795	0.014
	Scaled	2.792	NA	3.691	1.345	0.280
NCO	Raw	NA	14.800	6.800	18.935	0.002
	Scaled	ND	ND	ND	ND	ND 1
DIV	Raw	NA	NA	1.136	*	*
	Scaled	NA	NA	0.150	*	*
DOM-3	Raw	NA	NA	88.500	*	*
	Scaled	NA	NA	2.562	*	*

Tables 14, 15, 16: NA-not applicable, ND-No data conversion formula available, *No ANOVA perfomed,

Table 17. When 1-way ANOVA comparisons resulted in significant difference, Student Newman-Keuls' tests were run on raw and scaled Taxa Richness values among habitats (gravel-G, vegetation-V, mud-M) within each location (upstream, midstream, downstream) using Student Newman-Keuls'. (*, P<0.05; **, P< 0.01; ***, P<0.005).

		Gravel-Vegetation	Vegetation-Mud	Gravel-Mud
Upstream	Raw	***	ns	***
	Scaled	ns	ns	ns
Midstream	Raw	*	***	***
	Scaled	ns	ns	ns
Downstream	Raw	***	ns	***
	Scaled	ns	ns	ns

Table 18. When 1-way ANOVA comparisons resulted in significant difference, Student Newman-Keuls' tests were run on raw and scaled Hilsenhoff Biotic Index comparisons among habitats (gravel-G, vegetation-V, mud-M) within each location (upstream, midstream, and downstream). (*, P<0.05; **, P< 0.01; ***, P<0.005).

		Gravel-Vegetation	Vegetation-Mud	Gravel-Mud
Upstream	Raw	***	***	ns
	Scaled	***	ns	**
Midstream	Raw	ns	***	. ***
	Scaled	ns	ns	ns
Downstream	Raw	***	***	*
	Scaled	***	***	ns

Table 19. Raw and scaled metric averages and 1-way ANOVA results comparing random (RCC, RNB) and haphazard 100 count subsamples (HCC) and whole samples (WNB) taken from gravel community samples at the midstream location, Powder Mill Park, Rochester, NY.

		HCC1	RCC ¹	RNB ¹	WNB ¹	F	P-Value
TR	Raw	14.20	13.60	15.00	20,40	8.18	0.002
	Scale	3.74	3.51	3.97	5.65	8.21	0.002
EPT	Raw	5.00	6.20	7.00	9.80	4.92	0.013
	Scaled	4.76	5.47	5.80	7.33	5.02	0.012
HBI	Raw	2.61	1.81	5.10	5.52	31.34	0.000
	Scaled	9.39	9.87	6.73	6.21	26.47	0.000
РМА	Raw	41.00	43.80	51.27	52.58	2.00	0.155
	Scaled	3.62	4.09	5.32	5.55	1.93	0.165
. 1	HCC	Cody's hap	hazard 100	count subs	ample		
RCC Cody's random 100 count subsample							
	RNB	Bailey's rar	ndom 100 c	ount subsan	nple		
	WNB Bailey's whole sample						

Table 20. Raw and scaled Student Newman-Keuls comparisons among random (RCC, RNB) and haphazard 100 count subsamples (HCC) and whole samples (WNB) taken from gravel community samples at the midstream location, Powder Mill Park, Rochester, NY.

		HCC-RCC1	HCC-RNB ¹	HCC-WNB ¹	RCC-RNB ¹	RNB-WNB ¹	RCC-WNB ¹
TR	Raw	ns	ns	***	ns	***	***
	Scaled	ns	ns	***	ns	***	***
EPT	Raw	ns	ns	***	ns	**	***
	Scaled	ns	ns	***	ns	**	***
HBI	Raw	*	***	***	***	ns	***
	Scaled	ns	***	***	***	ns	***
PMA	Raw	ns	ns	ns	ns	ns	ns
	Scaled	ns	ns	ns	ns	ns	ns
1	HCC	Cody's hap	hazard 100	count subsa	ample	*	P<.05
	RCC	Cody's random 100 count subsample				**	P<.01
	RNB	Bailey's rar	Bailey's random 100 count subsample				P<.005
	WNB	Bailey's wh	ole sample				

2

Figure 3. BIOLOGICAL ASSESSMENT PROFILE OF INDEX VALUES FOR RIFFLE HABITATS

	SPP	HBI	EPT	РМА		
10.0 -		2.00	15	90]	
· -		2.50	14	85	×	
9.0 -		3.00	13	80	n e	
-	-30	3.50	12	75	No	
8.0 -		4.00	11	70		
		4.50	10	65	1	
7.0 -	25	5.00	9	60		\bigcirc
C C		5.50	8		p p	Z J
() 6.0 -	20	6.00	7	55		
\geq 5 1	20	0.50	6	50		>
			5		0) -	
		7.00	4	45	- at	\mathcal{T}
\overrightarrow{O} 4.0 $\overrightarrow{=}$	15	7.50	3			5
		8.00	2	40	lod	Y
		0.50		35		
TY I	10	0.50				Ī
≥ 2.0		9.00		30	e A	7 7
-			1	19 - A	7e1	
1.0 -		9.50	,	25	e to	
		·		·		
	<u> </u>				l	

The Biological Assessment Profile of index values is a method of plotting biological index values on a common scale of water quality impact. For riffle habitats, these indices are used: SPP (species richness), HBI (Hilsenhoff Biotic Index), EPT (EPT richness), and PMA (Percent Model Affinity). Values from the four indices are converted to a common 0-10 scale as shown in this figure. The mean scale value of the four indices represents the assessed impact for each site.

Figure 4 BIOLOGICAL ASSESSMENT PROFILE OF INDEX VALUES FOR PONAR SAMPLES FROM SOFT SEDIMENTS

		SPP	DIV	HBI	DOM3	РМА		
	10.0 -	35				86		~7
			3.75	6.25	50	-	e e	
	9.0 -	30	3.50	6.50		75	no	
Щ	8.0 -		3.25	6.75	55	70	Z	
AL								JA(
SO	7.0	25		7.25	65	65	÷	$ $ \sum
\succ	6.0 -		2.75	7.50		60	igh	\succ
		20	۰	7.75	70		ស	
Ρ	5.0 =			8.00				ΑU
Ø		4.5		8.25	80	50	ate	Ø
Z	4.0 -	15	2.25	8.50		50	ler	FZ
Ш Х	3.0 -		•	8.75	85	45	Moc	Ш Z
\Box	:]-	1'Ò		9.00				\Box
S	2.0			9.25		40	Pe	СЛ. (Л.
	1.0 -	, ,	1.75	9.50	95	35	eve:	
	.]			9.75			S	
	0.0 1	5,	1.50					

The Biological Assessment Profile of index values is a method of plotting biological index values on a common scale of water quality impact. For Ponar samples from soft sediments, these indices are used: SPP (species richness), HBI (Hilsenhoff Biotic Index), DOM3 (Dominance-3), PMA (Percent Model Affinity), and DIV (species diversity). Values from the five indices are converted to a common 0-10 scale as shown in this figure. The mean scale value of the five indices represents the assessed impact for each site.

Figure 5 BIOLOGICAL ASSESSMENT PROFILE OF INDEX VALUES FOR NET SAMPLES FROM SLOW, SANDY STREAMS

$10.0 = \frac{26}{25} + \frac{100}{9} + \frac{10}{14} = \frac{15}{9} + \frac{10}{14} = \frac{10}{9} + \frac{10}{25} + \frac{10}{8} + \frac{10}{13} = \frac{10}{7} + \frac{10}{23} + \frac{10}{5} + \frac{10}{5} + \frac{10}{7} + \frac{10}{22} + \frac{10}{22} + \frac{10}{6} + \frac{10}{11} + \frac{10}{12} + \frac{10}{20} + \frac{10}{5} + \frac$			SPP	HBI	EPT	NCO		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·	10.0 -	26	4.00				٦
9.0 $\begin{array}{c} 24 \\ 23 \\ 8.0 \\ 22 \\ 6 \\ 11 \\ \end{array}$ $\begin{array}{c} 23 \\ 5.00 \\ 22 \\ 6 \\ 11 \\ \end{array}$ $\begin{array}{c} 21 \\ 5.59 \\ 10 \\ 20 \\ 20 \\ 5.0 \\ 19 \\ 19 \\ 17 \\ 6 \\ \end{array}$ $\begin{array}{c} 21 \\ 5.59 \\ 10 \\ 10 \\ 17 \\ 6 \\ 17 \\ 2 \\ 3 \\ 9 \\ 10 \\ 10 \\ 1 \\ 10 \\ 9 \\ 9 \\ 9.50 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		•	25		9	14		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9.0 -	24	4.50	8	13	ne	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	23	5.00	7	12	No	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8.0 -	22		6	11		{
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1		21	5.50	· · · · · · · · · · · · · · · · · · ·	10		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.0 -	20	ദ്വ	5	9		AO
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S	-	19	0.00		8	,ht	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ഗ	6.0 -	18	6.50	4	7	Jlig	$ \geq$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\succ	-	17			6	20	>-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.0 -	16			5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A		15	7.50	3	4	ate	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ð	4.0 -	14			T	er	ð
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\sim		13	00.6	2	5	po	~
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ļ Ļ	3.0 -	. 12			۲.	X	
2.0 = 9.00 1.0 = 9.50 0.0 = 8. 9.00 = 1 9.00 = 1 9.00 = 1 9.00 = 1 1.0 = 9 0.0 = 0 0.0 = 0	AT		11					AT
1.0 = 10 9 9.50 0.0 = -8 10.00 1.0 = -8 10.00 0.0 1.0 = -8 0.00 1.0 = -8 0.00	\geq	2.0 -	· · · · · · · · · · · · · · · · · · ·	9.00	.		. 0	\geq
9 9.50		10	10		1	1 .	Vel	
$00\frac{1}{8}$			· .9	9.50			Se	
		Enn	.	10.00	<u> </u>	<u> </u>		

The Biological Assessment Profile of index values is a method of plotting biological index values on a common scale of water quality impact. For net samples from slow, sandy streams, these indices are used: SPP (species richness), HBI (Hilsenhoff Biotic Index), EPT (EPT richness), and NCO (NCO richness). Values from the four indices are converted to a common 0-10 scale as shown in this figure. The mean scale value of the four indices represents the assessed impact for each site.

1. Sampling by C. Cody, May 1998

2. Sampling by N. Bailey-Billhardt, April 1997

APPENDIX A.

Complete taxonomic listing of macroinvertebrates found at the upstream, midstream and downstream locations in the gravel, vegetation and mud habitats.

Habitat Sampled	1	Upstre	am Gi	ravel		Up	strea	m Ve	getat	ion	Τ	Ups	tream	Mud	
Station (up- to downstream)	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Taxon							<u> </u>								
P. Platyhelminthes	1										1				
C. Turbellaria						1					1				
O. Tricladida															
P. Nematomorpha															
P. Annelida	1														
C. Oligochaeta	15	116	166	305	18	39	22		3		15	40	143	15	33
O. Tubificida															
O. Haplotaxidae											1				
F. Tubificidae															
Limnodrilus hoffmeisteri															
C. Hirudinea	1			7											
O. Rhynchobdellida															
F. Glossiphoniidae	2														
Helobdella stagnalis		7	19		8										
Placobdella sp.															
F. Piscicolidae															
Myzobdella lugubris															
P. Arthropoda															
C. Crustacea															
O. Isopoda						-									
F. Asellidae															
Caecidotea sp.	10	20	29	56	27		2					1		1	2
O. Amphipoda						1		3	15						
F. Gammaridae	1	1			3										
Gammarus fasciatus				1							2				
G. psuedolimnaeus															
O. Decapoda															
F. Cambaridae		1		2											
C. Insecta							1								
O. Diptera															
F. Chironomidae												3	2		
рирае	17	53	22	98	6	7	5	2	14	2	1			2	3
Chironomus sp.		6												1	
Cladopelma sp.															
Cryptochironomus sp.	13	12		49	2		1		1		5			11	1
Cryptotendipes sp.															
Dicrotendipes sp.		31	1	88	1	2	2		1			20	1		1
Einfeldia sp.															
Endochironomus sp.	 														
Glyptotendipes sp.															
Microtendipes sp.	158		1	157	- 29	3	10				1				
Parachironomus sp.			,				- 2								
Paraciadopeima sp.									- 1 -		- 10				
Paratenaipes sp.		125	20	49		30	11		15		10	31	/9	/4	27
Phaenopsectra sp.	440			10	- 10							1			
Polypeauum sp.	112	44		98	18	3	4		1	5	2		1	14	2
Stanoshironomia ar	┨↓														
Stenochironomus sp.				- 10											
Tribalog an	 			01											
Cladatamtemus	 	6													
Microphysian sp.	· ·		1	39		2			1		1		2		
Micropsectra sp.	<u>-</u>	62	50	29	1	4	2		2		1		1	1	10
Phantamytarsus sp.		6			1										
Kneotanytarsus sp.	13	6				2	13	2		1		2		20	
Stempetinella sp.		19							10				1	1	

Habitat Sampled		Upstrea	am Gr	avel		Up	strea	n Ve	getati	on		Ups	tream	Mud	
Station (up- to downstream)	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Taxon															
Sublettea sp.	-														
Tanytarsus sp.	99	50		127	22	2	13	1	2		1	13	1	1	4
Brillia sp.							1			-atat					
Cricotopus/Orthocladius	389	143	50	284	102	25	48	1	13	4	3		5	33	4
Eukiefferiella sp.	6				12	10	1								
Heterotrissocladius sp.		56		10		45	10	10	12				1		
Nanocladius sp.		19		10		2	13			1	10			10	1
Parametriocnemus sp.		13													
Paraphaenocladius sp.															
Parorthocladius sp.							,			1					
Rheocricotopus sp.				10				1							
Smittia sp.		6													
Thienemanniella sp.							2								
Ablabesmvia sn.							1								
Clinotanypus sn.															
Coelotanynus sn.											<u>├</u>				
Natarsia sp.							2						1	1	
Nilatanynus en	7						~ ~								
Procladius en	'-						1				1		5		
				<u>.</u>							'				
Thionamannimus on	12	12		10						4					
Diamasa an	13	13		10											1
Diamesa sp.		0									- 1				10
Fugusua sp.	13													10	10
Uniaentijiea Chironomiaae					[
F. Athericidae															
Atherix sp.												· · · ·			
F. Simulidae									1						
Simulium sp.						3				1					
F. Tabanidae	_														
Chrysops sp.		3							1			2	1		2
F. Empididae										1					
Hemerodromia sp.	1		8	5	2		1	1	1	1					
Chelifera sp.															
F. Ceratopogonidae		2													
Culicoides sp.														4	2
Mallochohelea sp.										Ĺ	5				
Probezzia sp.	1	11					1	1	1					9	5
Pupae							· ·		2						
Sphaeromias sp.					[5	6		
F. Ephydridae													1		
F. Stratiomyidae															
Odontomyia sp.						1	2				2				
Myxosargus sp.															
Nemotelus sp.															
Stratiomys sp.		1	1				2							2	
F. Sciomyzidae (pupae)								- 1							1
F. Tipulidae															
Dicranota sp.															
Antocha sp.	15	6	1	7	2				1						
Leptotarsus sp.	1			1											
Ormosia sp.		3				4									
Prioncera sp.	1														
Molophilus sp.											1				
Pilaria sp.										[· · · · · · · · · · · · · · · · · · ·	1			
Paradelphomyia sp	-							,							

Habitat Sampled	1	Upstre	am G	ravel		Ur	ostrea	m Ve	getat	ion		Ups	tream	Mud	
Station (up- to downstream)	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Taxon												<u> </u>			
Rhabdomastix sp.	1								19	1		1		3	
O. Trichoptera		5			1			1							
F. Beraeidae	1														
Beraea sp.															
F. Helicopsychidae															
Helecopsyche sp.				4											
F. Philopotamidae															
Wormalida sp.									ļ		ļ				
Chimarra sp.	2				1										
F. Limnephilidae															
Hydatophylax argus	1			9				<u> </u>	-						
F. Polycentropodidae							1		'	2					
Polycentropus sp.	l														
F Hydronsychidae											 				
Ceratonsvche sn															
Cheumatonsvche sn.	3		1	3	24										
Hydropsyche sp.	12							1	1		1				
Potamyia sp.	2			1	17	1		1	1						
рирае								1	1						
F. Glossomatidae															
Glossosoma sp.															
F. Hydroptiladae								1							
Hydroptila sp.	1	17	34	131	2	2					1				1
F. Brachycentridae															
Micrasema sp.											[
F. Helicopsychidae								-							
Helicopsyche sp.	ļ						ļ	ļ							
F. Leptoceridae				4				L			ļ				
Leptosarsus sp.															
Setodes sp.							1								
F. Limbephildae sp.	 	1					1								
E Odontoseridee			5												
Namamyia sp															
F. Psychomiidae															
Lvpe sp.			16	22				1							
O. Coleoptera												1			
F. Chrysomelidae		5							5						
F. Elmidae	2	17	7	17			1						2	1	1
Dubiraphia sp.															
Macronychus sp.						2									
Ancyronyx sp.	5	4	5	12	4		ŕ.								
Optioservus sp.															
Ordobrevia sp.	6	10	7	17	26		1	1				1			
Stenelmis sp.	8	6	5		5		1	·		1					
F. Psephenidae		4	3	7		1	3		14				1		
Ectopria sp.	2		1	8	1		2								
Psephenus sp.															
F. Hysteridae															
F. Haupudae															
F Curinidae								· · · · · · · · · · · · · · · · · · ·							
Dineutus sn.															
F. Dytiscidae				1				-							
1 • * J • * * * * * * * * * * * * * * * *	L			1				I							

Habitat Sampled	T	Upstre	am G	ravel		U	ostrea	ım Ve	getat	ion	Τ	Ups	tream	Mud	
Station (up- to downstream)	1	2	3	4	5	1	2	3	4	5	5 1	2	3	4	5
Taxon								-	1	1		1			
Hydaticus sp.			·····												
Laccophilus sp.					1										
Neosantopterus sp.		2	1								1				
Uvaris sp.															
F. Hydrophilidae								1							
Enochrus sp.															
F. Dryopidae															
Helichus sp.									ļ			-			
O. Hemiptera									ļ						
F. Corixidae								1	ļ						
F. Notonectidae										<u> </u>					
Notonecta sp.					· · · ·										
F. Belostomidae															
Belostoma sp.											· [
F. Gerridae	1														
Gerris sp.															
E Disidaa															
Naoplag sp							<u> </u>								
Paranles sn															
F Mesovelijdae	1														
Mesovella sp.							+	+			+	+			
F. Nepidae										-					
Nepa sp.	1		<u> </u>								1	1			
Ranatra sp.								1		†					
F. Hebridae	-				1			1			1				
Hebrus sp.							1	1		1					
O. Odonata		1								1	1				
F. Aeshnidae					1					1	1				
Boyeria sp.															
Anax sp.															
F. Coenogrionidae															
Enallagma sp.															
Ishnura sp.															
F. Calopterygidae								ļ		ļ;					
Calopteryx sp,									1					12	
Hetaerina sp.			1		· .						ļ				
F. Lestidae						ļ					 				
Lestes sp.										L	 				
F. Gomphidae											 				
Arigompnus sp.															
F. Coruandae Somatochlora sp			,												
O Ephemeronters									1						
F Isonychiadae				· · · · ·											
Isonychia sn															
F. Baetidae	1														
Acerpenna sp.	1 1	<u>.</u>													
Baeits sp.	1														
F. Caenidae											1				
Amercaenis sp.	11	45	89	444	60	3	1		1		1		1	3	
F. Ephemeridae	1														
Hexagenia sp.											1				
F. Heptageniidae															
Stenacron sp.															

Habitat Sampled	T	Upstre	am G	ravel		Up	strea	m Ve	getat	ion	Ι	Ups	tream	Mud	
Station (up- to downstream)	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Taxon	<u></u>										[<u>+</u>			
Hentagenia sp.	+	-													
Stenonema sp.	16	1	6	22	27	1				1					+
F. Enhemerellidae															
Enhemerella sp.															1
F. Lentophlebiidae															
Paraleptophlebia sp.		······································		1											
O. Plecoptera	1														
F. Periodidae								1				1			
Isoperla sp.	47	75	16	33	28	22	25	54	20	26			1		
F. Nemouridae															
Amphinemura wui		1				1		1	1						
F. Taeniopterygidae	1										1				
Strophopteryx fasciata	1														
O. Lepidoptera															
instar															
F. Pyralidae	1														
Acentria sp.															
F. Tortricidae	1														
Archips sp.															
O. Megalopterta															
F. Sialidae															
Sialis sp.															
O. Collembola															
F. Poduridae														L	
Podura aquatica											l				
C. Arachnida															
O. Aranae															
F. Pisauridae															
Dolomedes sp.														L	
F. Tetragnathridae															<u> </u>
Tetragnathra sp.														ļ	ļ
P. Mollusca				2										ļ	
C. Pelecypoda											ļ			ļ	
O. Veneroida															
F. Sphaeridae				·											<u> </u>
Pisiaium sp.															ļ
Sphaerium sp.	5		·····												
F. Dreissenidae															
C. Costropodo															<u> </u>
C. Gastropoda															
F Physidae															
Physical Physical							2					1		-	
Anleya elongata												· · · ·	1		
F. Lymnaeidae							1								
Fossaria sp.							(
Pseudosuccinea columella		2						6	8						
F. Ancylidae															
Laevapex fuscus											•				
F. Planorbidae		·													
Gyraulus sp.									2						
Planorbella sp.		1												[
Menetus dilatatus								1							
O. Mesogastropoda															
F. Hydrobiidae															
			1												

Habitat Sampled		Upstre	am G	ravel		Up	strea	m Ve	getat	ion		Ups	tream	Mud	
Station (up- to downstream)	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Taxon															
Amnicola limosa															
F. Bithyniidae															
Bithynia tentaculata															

Creek, in Spring of 1997.

Habitat Samuled	T	Mids	tream (Iravel		N	Aidstre	am Veo	getatio	on	1	Mids	tream	Mud	
Station (up- to downstream)		2	3	4	5	1	2	3	4	5	1	2	3	4	5
Taxon	<u> </u>					<u>†</u>	+		<u> </u>	+		<u>† </u>	<u></u>	+	
P Platyhelminthes							1	+				+			
C. Turbellaria						1			1	+	1				
O Tricladida									-						
P Nematomornha															
P Annelida															
C Oligoshaata	302	192	122	151	117	457	101	62	71	400	321	238	669	136	
O Tubificida	- 302	102	152	151	117			02		400	021	200	000	100	
O Hanlotavidae															
F Tubificidae															
I imnodrilus haffmeisteri															
C Himdines															
O Rhynchobdellide						}	1		1			 			
F. Clossiphoniidae															
Halobdella staenalis										+					
Digoobdella sugnalis				-				<u> </u>	 						
F Bisgicalidaa								+							
F. I ISCROINTAC											}				
Mytobaeua iugubris				· . I											
C. Crustance															
O Jaapada															
E Acellidae								+				-			
r. Asemuae					-	20		1		A		4	1.4		
Caecuolea sp.			· · · ·	4	0	30	9			4			14		
D. Ampaipoda					0		20	25	0	20		2	100	11	
F. Gammaridae	44	6	9		8	17	20	25	0	28	2	3	102		9
Gammarus jasciatus				10		4/									
G. psueaoumnaeus				19											
O. Decapoda															
F. Cambaridae						ļ		l							
C. Insecta															
O. Diptera							ļ								
F. Chironomidae						45	70	70					47		170
	33	23	44	83	21	15	. 72	/3	33	20		/	17	8	4/6
Chironomus sp.											1	ļ		.8	
Cladopelma sp.													47		
Cryptochtronomus sp.			58	27	17		22		· ·		1	15	17	- 38	1/3
Cryptotenaipes sp.															
Dicrotendipes sp.													6	<u> </u>	
Einfelaia sp.									ł						
Endochtronomus sp.								ļ			12		6		
Glyptotenaipes sp.	_														31
Microtenaipes sp.	5	1	23		4										
Parachuronomus sp.	_							Í							
Paraciadopeima sp.														8	
Paratendipes sp.	. 5		23		4	6		L			247	126	193	183	204
Phaenopsectra sp.					4	2					2	75	134	23	502
Polypedilum sp.	44	21	127	107	105	95	155	237	75	90	53	96	47	289	235
Saetheria sp.														8	16
Stenochtronomus sp.															
Stictochironomus sp.															
Tribelos sp.	_										1	5	6	7	330
Cladotanytarsus sp.	83	41	255	509	121	19			6	329	12	146	70	152	47
Micropsectra sp.							-				10	5		7	
Paratanytarsus sp.	6														
Rheotanytarsus sp.	- 44	3	185	161	21	19	88	53	6	959			6	7	
Stempellinella sp.															
Sublettea sp.		·				45			6						
Tanytarsus sp.	5	2	70	107		6				120	10	20	47	8	
Brillia sp.					4					30					
Cricotopus/Orthocladius	259	12	347	1287	80	325	1677	1898	423	959	13	10	46	23	31

Creek, in Spring of 1997.

Habitat Sampled]	Mids	tream (Fravel		N	lidstrea	am Veg	etatio	n		Mids	tream	Mud	
Station (up- to downstream)	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Taxon	1														
Eukiefferiella sp.	33					19	132	158	56	120					1
Heterotrissocladius sp.									6				[t
Nanocladius sp.					4						10	5	6		1
Parametriocnemus sp	<u> </u>														
Paranhaenocladius sp															
Parorthocladius sp	1														
Rhaaricatanus sp.															
Smittig sp															
Thionomannialla sp	<u> </u>								6						
Ablah samuia an									0						<u> </u>
Clinoteruput ap															
Canlatawaya sp.															
Coelolanypus sp.															
Natarsia sp.					ļ										
Nuotanypus sp.															
Procladius sp.															
<i>Tanypus</i> sp.															
Thienemannimya sp.	L														ļ
Diamesa sp.	33		46	456	54	102	132	132	31	299					ļ
Pagastia sp.	22	10	23	27				158	6	90					<u> </u>
Unidentified Chironomidae											1				ļ
F. Athericidae															
Atherix sp.				}											
F. Simulidae															
Simulium sp.	16		1	1	23	24	74	49	14	9		1	1		1
F. Tabanidae															
Chrysops sp.															
F. Empididae															
Hemerodromia sp.		3	9	2	5				4	10			6	1	
Chelifera sp.	7			5											
F. Ceratopogonidae															
Culicoides sp.						1									
Mallochohelea sp.															
Probezzia sp.															
Pupae		1													
Sphaeromias sp.				1									4		
F. Ephydridae															
F. Strationvidae															
Odontomvia sp.															
Myyosarous sp															
Nemotelus sp		d.a.a.tearronhanton													
Strationus sp.															L
F Sciomvzidae (nunae)															
F. Tipulidae						·····									
Diargueta sp								{		{	{			{	
Artocha sp.	. 2	16	147	120	15	7	~ 5	2	12	- 20		1	3		1
Aniocha sp.	90	40	, 14/	120	15		* J	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12						
Lepiolarsus sp.					2										
Ormosia sp.							è.							{	
Prioncera sp.							(
Motophius sp.															
Puaria sp.															
Paradelphomyta sp.															
Khabdomastix sp.		·													
O. Trichoptera															
F. Beraeidae	· · · · ·														
Beraea sp.															
F. Helicopsychidae															
Helecopsyche sp.							·]					
F. Philopotamidae									- 10 - 10				0		
Wormalida sp.	1							T							

Creek, in Spring of 1997.

Habitat Sampled		Mids	tream (ravel		M	lidstrea	am Veg	etatio	n		Mids	tream	i Mud	
Station (up- to downstream)	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Taxon		_									Γ				
Chimarra sp.												1			1
F. Limnephilidae															
Hydatophylax areus								2	3	13					
F Polycentronodidae															
Paluamtropus an	1														
roiycentropus sp.			1								ł				
Neurecleosis sp.			1												
F. Hydropsychidae										07					
Ceratopsyche sp.	196	26	139	136	7	50	100	137	/5	31					
Cheumatopsyche sp.	32	3	31	7		4	6	7		6	ſ	2	10		1
Hydropsyche sp.	22	12	32		24	27	4	2	2						
Potamyia sp.	6												1	6	
рирае		6	7	2	5				2						
F. Glossomatidae															
Glossosoma sp.	7														
F. Hydrontiladae				······								1			
Hudrontila sn	276	228	156	139	18	66	189	841	154	91		8	44		
E Due characterida e	270	220	150	138	10		100	041	104						
				~					4		[
Micrasema sp.				2					1				<u> </u>		
F. Helicopsychidae									·			ļ	L		
Helicopsyche sp.			2												
F. Leptoceridae															
Leptosarsus sp.	3		s.												
Setodes sp.															
F. Limnephilidae sp.															
Chvranda sp.															
F Odontoceridae															
Namamuia co															
E Denshamiltar													<u> </u>		
F. Psychomudae															
Lype sp.										11					
O. Coleoptera															
F. Chrysomelidae															
F. Elmidae															
Dubiraphia sp.		2		4											
Macronychus sp.															
Ancyronyx sp.	12													1	
Optioservus sp.	20	10	34	58	36	1			1	15					
Ordabrevia sp		1		1									2		
Standmin en		3			217		1		2	1					
E Developeda 2					2.17		·····		·				'		
r. rsepnemaae															
Lctopria sp.															i
Psepnenus sp.												ļ		J	
F. Hysteridae			2									· ·	·	I	
F. Haliplidae													2		
Peltodytes sp.	· _														
F. Gyrinidae						2									
Dineutus sp.															
F. Dytiscidae															
Hydaticus sp.				· · · · · · · · · · · · · · · · · · ·			, l						{		
Laccophilus sp										i					
Neosantontanus sp.															
Ineusainuopierus sp.															
Uvaris sp.															
F. Hydrophilidae															
Enochrus sp.			· · · ·									<u> </u>			
F. Dryopidae															
Helichus sp.						3									
O. Hemiptera										-					
F. Corixidae							,								
F. Notonectidae															
Notomorta en															
Notonecia sp.											L			L	
Creek, in Spring of 1997.

Habitat Sampled	Γ	Mids	tream (Gravel		N	Aidstrea	am Veç	jetatic	m		Mids	tream	n Mud	
Station (up- to downstream)	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Taxon	1	†	1	<u> </u>	1	1	T		1						
F. Belostomidae	t	<u> </u>		+	1	1	1		1		[1	<u> </u>		
Belostoma sp.	1	1	1		1	1	1	[[[[
F. Gerridae	1					<u> </u>									
Gerris sp.	<u> </u>														
Rheumatobates sp.															
F. Pleidae					1				1		1	1			
Neonlea sp															
Paraples sp						1									
F. Mesovelijdae															
Mesovelia sp	t													1	
F Nenidae	<u> </u>														
Nepa sp	<u> </u>														
Ranatra sp					+										
F Habridge	<u>+</u>										· · · · · ·				
Habrus en												· · · ·			
O Odonete															
F Asshnidas	h														
Rowaria sp	<u> </u>					<u> </u>			<u> </u>						
Doyeru sp.	l				+										
Anax sp.													· · · · · · · · · · · · · · · · · · ·		
F. Coenogrioindae	<u> </u>			-		-									
Isnnura sp.			·												
F. Calopterygidae															
Calopteryx sp.						 									
Hetaerina sp.	 														
F. Lestidae															
Lestes sp.	'														
F. Gomphidae	ļ														
Arigomphus sp.															
F. Corduliidae															
Somatochlora sp.															
O. Ephemeroptera												L			
F. Isonychiadae															
Isonychia sp.	1		ļ	ļ										ļ ļ	
F. Baetidae												·			
Acerpenna sp.			38	28	21	88	117	173	143	45					
Baeits sp.		2				·									
F. Caenidae									2						
Amercaenis sp.						ļ	1				 				
F. Ephemeridae															
Hexagenia sp.						 									
F. Heptageniidae												1 at 1			
Stenacron sp.	ļ												2		
Heptagenia sp.	L!					L									
Stenonema sp.	8	3	<u>,</u> 4		1	3	2 1	1	2	1			1		
F. Ephemerellidae															
Ephemerella sp.	19	7	78	37	22	24	<u>,</u> 35	30	24	13			2	1	
F. Leptophlebiidae	 						(
Paraleptophlebia sp.															
O. Plecoptera	· · · ·														
F. Perlodidae															
Isoperla sp.	2		6	3		33	2	3	3						
F. Nemouridae															
Amphinemura wui	·		2				30	18	16	19					
F. Taeniopterygidae															
Strophopteryx fasciata		· ·				18									
O. Lepidoptera															
instar															
F. Pyralidae															

Creek, in Spring of 1997.

Habitat Sampled		Mids	stream (Gravel		N	Aidstre	am Veg	jetatio	on		Mids	tream	I Mud	
Station (up- to downstream)	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Taxon								{							
Acentria sp.															
F. Tortricidae															
Archips sp.														1	
O. Megalopterta															
F. Sialidae															
Sialis sp.												1			
O. Collembola															
F. Poduridae	I								L		<u> </u>				
Podura aquatica															
C. Arachnida												ļ			
O. Aranae							1					ļ			
F. Pisauridae				1											
Dolomedes sp.	L														
F. Tetragnathridae															
Tetragnathra sp.															
P. Mollusca															2
C. Pelecypoda															
O. Veneroida															
F. Sphaeridae															
Pisidium sp.															
Sphaerium sp.												l			
F. Dreissenidae			```												
Dreissena polymorpha	· · · · ·														
C. Gastropoda															
O. Basommatophora															
F. Physidae															
Physella sp.															
Aplexa elongata	· .														
F. Lymnaeidae	[
Fossaria sp.														1	
Pseudosuccinea columella															
F. Ancylidae															
Laevapex fuscus															
F. Planorbidae															
Gyraulus sp.															
Planorbella sp.														·	
Menetus dilatatus									,						
O. Mesogastropoda															
F. Hydrobiidae															
Amnicola limosa															
F. Bithyniidae															
Bithynia tentaculata															

60

â.

į

Habitat Sampled	Downstream Gravel						Dormet		logoto	tion		Down	netmos	m M	d
Station (up to Jacobian)	-+	DOWI	stream	Grave	-		Downst	ream v	egeta	-	 .	DOWI	istrea		u
Station (up- to downstream)		2	3	4	3		2	3	4	3			3	- 4	3
P. Platzholminthas															
C. Turballaria															
							2								
P. Nometomorphe							3				<u> </u>				2
P. Annelide															2
C. Olizoshasta															
C. Ongochaeta											{				
E Tubificidae															
F. I ubincidae		(25	1267	1616	216				61	422	406	404	107	190	1170
C Himdings		623	1307	1010	210	3	3	1	01	433	400	490	467	180	11/8
											 				
E Classiphoniidae															
r. Giossiphonudae						1									
Diacobidella stagnaus															
Placobaeua sp.															
F. FISCICONDAE															
Myzobdella lugubris		1													
P. Arthropoda															
C. Crustacea															
O. Isopoda															
F. Asellidae										22					
Caecidotea sp.	10	5	2	4	2	3	10	47	69		5	1		1	
O. Amphipoda															
F. Gammaridae	5		6	10	6					165					
Gammarus fasciatus		18				2	258	16	27	1317	7	3	2	4	3
G. psuedolumnaeus						25	1188	1361	624		127	49	63	130	112
O. Decapoda															
F. Cambaridae														<u>.</u>	
C. Insecta															
O. Diptera										11					
F. Chironomidae						14	4		1	-	87	45	50	178	157
		175	6	128	63	·		2							
Churonomus sp.	8		9								49	16	31	126	56
Claaopelma sp.														1	
Cryptochironomus sp.	26	131	- 53	158	20						2	1	1	3	2
Director li					6										
Dicrotenaipes sp.		12	9					*			1	1		3	1
Emjetata sp.	_														
Churtesten die	4			14				<i>1</i> °							
Giptotenapes sp.															
Microtendipes sp.	9	143	97	287	20										
Parachuronomus sp.					[
Paraciadopeima sp.	2													1	
Paratendipes sp.	44	24		29											
Phaenopsectra sp.	6	24		43	7										
Polypedilum sp.	49	60	106	244	65						4				

Habitat Sampled		Down	stream	Gravel		D	ownstr	eam V	egetat	ion		Down	strear	n Mud	
Station (up- to downstream)	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Taxon															
Saetheria sp.		36													
Stenochironomus sp.				• • • • • • • • • • • • • • • • • • • •											
Stictochironomus sp.															
Tribelos sp.															
Cladotanytarsus sp.	6	12		43											
Micropsectra sp.											1				
Paratanytarsus sp.													1		
Rheotanytarsus sp.															
Stempellinella sp.															
Sublettea sp.															
Tanytarsus sp.				14	6				.				1	1	
Brillia sp.					manu										
Cricotopus/Orthocladius	21	538	381	431	169								Ť		
Eukiefferiella sp.		12			26										
Heterotrissocladius sp.															
Nanocladius sp.	9	48	9	57							1				
Parametriocnemus sp.															
Paraphaenocladius sp.															
Parorthocladius sp.															
Rheocricotopus sp.															·,
Smittia sp.															
Thienemanniella sp.															
Ablabesmyia sp.															
Clinotanypus sp.															
Coelotanypus sp.															
Natarsia sp.															
Nilotanypus sp.															
Procladius sp.											8	3	8	10	6
Tanypus sp.											1	2		4	
Thienemannimya sp.											2				
Diamesa sp.	4	155	221	115	332				+						
Pagastia sp.	2														
Unidentified Chironomidae													1	5	4
F. Athericidae			-												
Atherix sp.					1										
F. Simulidae															
Simulium sp.	1		1	- · -†	1									1	2
F. Tabanidae															
Chrysops sp.															
F. Empididae															
Hemerodromia sp.			1		3							+			
Chelifera sp.			4												
F. Ceratopogonidae			1							1					
Culicoides sp.				•											
Mallachakalag sp															

Habitat Sampled		Down	stream	Gravel		ļт)ownst	ream V	Vegetat	tion		Dow	nstrea	m Mu	ıd
Station (up- to downstream)	1	2	3	4	5	1	2	3	4	5	1	2	3	4	
Taxon															
Probezzia sp.											2		2	3	
Рирае															
Sphaeromias sp.															
F. Ephydridae															
F. Stratiomyidae															
Odontomyia sp.															
Myxosargus sp.							1								
Nemotelus sp.															
Stratiomys sp.															
F. Sciomyzidae (pupae)															
F. Tipulidae	·														
Dicranota sp.		101						•							
Antocha sp.	5	27	145	25	31										
Leptotarsus sp.															
Ormosia sp.															
Prioncera sp.					· ·										
Molophilus sp.															
Pilaria sp.															
Paradelphomyia sp.															
Rhabdomastix sp.															
O. Trichoptera															
F. Beraeidae								L.							
Beraea sp.															
F. Helicopsychidae															
Helecopsyche sp.															
F. Philopotamidae															
Wormalida sp.															
Chimarra sp.															
F. Limnephilidae															
Hydatophylax argus											i.				
F. Polycentropodidae	·														
Polycentropus sp.															
Neurecleosis sp.															
F. Hydropsychidae															
Ceratopsyche sp.		20													
Cheumatopsyche sp.		5	45	9	18				2						
Hydropsyche sp.		10	1						[8				
Potamyia sp.			42	5	9										
pupae		25						<u></u>							
F. Glossomatidae	1	2	9	12	5										
Glossosoma sp.															
F. Hydroptiladae															
Hydroptila sp.				1											
F. Brachycentridae															
Microsema sp			· · · ·						1						<u> </u>

Habitat Sampled		Down	stream	Gravel			Downst	tream V	/egeta	tion		Dowi	nstream	n Mu	d
Station (up- to downstream)	1	2	3	4	5	1	2	3	4	5	1	2	3	4	
Taxon									ļ	ļ					ļ
F. Helicopsychidae								ļ						_	
Helicopsyche sp.											<u> </u>				
F. Leptoceridae															
Leptosarsus sp.									L	1	1				ļ
Setodes sp.											<u> </u>				
F. Limnephilidae sp.											1				
Chyranda sp.												L			ļ
F. Odontoceridae															
Namamyia sp.									ļ		<u> </u>				1
F. Psychomiidae									ļ						
Lype sp.															
O. Coleoptera					1		ļ	L	ļ	ļ	[
F. Chrysomelidae										ļ	ļ				
F. Elmidae	1			1				3		1					
Dubiraphia sp.									ļ		1				
Macronychus sp.		24								1					
Ancyronyx sp.	2	1	13	11	28				3						
Optioservus sp.	3	31													
Ordobrevia sp.	6	11	44	34	50										
Stenelmis sp.	3	1	4												
F. Psephenidae		2													
Ectopria sp.	1		1												
Psephenus sp.															
F. Hysteridae									ļ						
F. Haliplidae															
Peltodytes sp.							1					1			
F. Gyrinidae															
Dineutus sp.											· .				
F. Dytiscidae															
Hydaticus sp.											2 ¹				
Laccophilus sp.							3	9							
Neosantopterus sp.															
Uvaris sp.															
F. Hydrophilidae															
Enochrus sp.								1							
F. Dryopidae								2							
Helichus sp.															
O. Hemiptera								r		19					
F. Corixidae						2	41	20	26			2			
F. Notonectidae										1					
Notonecta sp.						5	3	3							
F. Belostomidae										1					
Belostoma sp.							3								
F. Gerridae]							
Gerris sp.															

Habitat Sampled		Dowi	nstrean	n Grave	el		Downst	tream V	Vegeta	tion		Dow	nstrea	m Mu	ıd
Station (up- to downstream)	1	2	3	5 4	1 5	1	2	3	4	5	5 1	2	3	4	
Taxon					1									1	
Rheumatobates sp.		1			1				1		1	1			
F. Pleidae															
Neoplea sp.															
Paraples sp.															
F. Mesoveliidae															
Mesovelia sp.							1								
F. Nepidae															
Nepa sp.															
Ranatra sp.						1	2							[
F. Hebridae															
Hebrus sp.								1							
O. Odonata															
F. Aeshnidae															
Boyeria sp.															
Anax sp.						1									
F. Coenogrionidae										1					
Enallagma sp.						2	7	8	5						
Ishnura sp.						4									
F. Calopterygidae															
Calopteryx sp.												l	L	l	
Hetaerina sp.															
F. Lestidae														L	[
Lestes sp.															
F. Gomphidae															
Arigomphus sp.															
F. Corduliidae															
Somatochlora sp.									1						
O. Ephemeroptera															
F. Isonychiadae															
Isonychia sp.	_														
F. Baetidae	·														
Acerpenna sp.															
Baeits sp.		<u> </u>		1				Í							
F. Caenidae													ļ		
Amercaenis sp.											L				
F. Ephemeridae				<u> </u>				2							
Hexagenia sp.															
F. Heptageniidae	_			1	· ·										
Stenacron sp.									- (
Heptagenia sp.															
Stenonema sp.					ļ										
F. Ephemerellidae															
Ephemerella sp.															
F. Læptophlebiidae				<u> </u>											
Danalantanklahia sa			1		1										

Habitat Samala J		Down	stroam	Crowel			Downed	room	Jogoto	tion		Der	unc	troo	n Ma	d
Station (mp. 45 Jan. 4	-+	Down	sueam 2	Gravel	-		JUWIIS	a cault V	- egeta	4011		1	2	2	n iviu	u F
Station (up- to downstream)		2	3	4	3	1	2		- 4		<u>'</u>	1	-		4	3
											+-	+	+			
F. Parladidaa				`									-			
Isonarla sn											-					
F Nemouridae																
Amphinemura wui									+		+		-			
F. Taeniontervøidae				· · · ·							1-					
Strophoptervx fasciata																
O. Lepidoptera											-	-				
instar							ater -	1				1				
F. Pvralidae						· · ·										
Acentria sp.						6	4	1	4	1	1		-			2
F. Tortricidae																
Archips sp.																
O. Megalopterta																
F. Sialidae										2		-				
Sialis sp.										<u> </u>	1		1			
O. Collembola											1					
F. Poduridae																
Podura aquatica																
C. Arachnida																
O. Aranae																
F. Pisauridae										3						
Dolomedes sp.						1	1	2								
F. Tetragnathridae																
Tetragnathra sp.							2	12	2							
P. Mollusca																
C. Pelecypoda																
O. Veneroida																
F. Sphaeridae										1						
Pisidium sp.						1		2		3		5	2			13
Sphaerium sp.							1		4							
F. Dreissenidae																
Dreissena polymorpha	1		1	. 1												
C. Gastropoda																
O. Basommatophora																
F. Physidae								2								
Physella sp.	_									7					2	
Aplexa elongata						10	35	,136	3							
F. Lymnacidae								ſ								
Fossaria sp.																
Pseudosuccinea columella																
F. Ancylidae								2								
Laevapex fuscus												2				
F. Planorbidae]
Gyraulus sp.		• T		1	E E						1			ſ	T	1

Habitat Sampled		Downstream Gravel					Downst	ream V	egetat	ion		Down	istrear	n Mu	d
Station (up- to downstream)	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Taxon															
Planorbella sp.															
Menetus dilatatus															
O. Mesogastropoda								3							
F. Hydrobiidae															
Amnicola limosa												1			
F. Bithyniidae															
Bithynia tentaculata										1					

APPENDIX B.

Location (upstream, midstream and downstream) comparison (both raw and scaled) for Taxa Richness, Ephemeroptera-Plecoptera-Trichoptera Richness, Hilsenhoff Biotic Index, Percent Model Affinity, Non-Chironomid/Non-Oligochaete Richness, Shannon-Weiner Diversity and Dominance-3 using 1-way ANOVA and Student Newman-Keuls.

2

						à	······································						· · · ·
Raw		MG	DG	UG			Scaled		MG	DG	UG		Maria (4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Taxa Richness	1	38	25	41			Taxa Richness	1	10.00	7.06	10.00		
	2	25	30	48				2	7.06	8.61	10.00		
	3	30	25	27		1		3	8.61	7.06	7.78	-	
	4	28	24	43				4	8.06	6.76	10.00		
	5	28	23	30				5 .	8.06	6.47	8.61		
Anova: Single Factor							Anova: Single Factor						
SUMMARY							SUMMARY				·		
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
MG	5	149	29.8	24.2			MG	5	41.78105	8.356209	1.157754		
DG	5	127	25.4	7.3			DG	5	35.96	7.192	0.68837		
UG	5	189	37.8	79.7			UG	5	46.39	9.278	1.06352		
ANOVA							ANOVA				يتريد التركي المرجواتين		
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	395.2	2	197.6	5.330935	0.022045	3.88529	Between Groups	10.92746	2	5.463731	5.633401	0.018822	3.88529
Within Groups	444.8	12	37.06667			//	Within Groups	11.63858	12	0.969881			
Total	840	• 14					Total	22.56604	14			· ·	
Raw		MV	DV	UV			Scaled		MV	DV	UV		
Taxa Richness	1	27	15	27			Taxa Richness	1	10	4.30	10		
	2	23	20	33				2	8.50	6.80	10.00		
	3	23	r# 19	16				3	8.50	6.40	4.80		
	4	28	12	33				4	10.00	3.00	10.00		
	5	27	17	14				5	10.00	5.50	3.90		
Anova: Single Factor		-					Anova: Single Factor						
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
MV	5	128	25.6	5.8			MV	5	47	9.4	0.675		
DV	5	83	16.6	10.3			DV	5	26	5.2	2.435		
UV	5	123	24.6	83.3			UV	5	38.7	7.74	9.678		
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	243.3333	2	121.6667	3.672032	0.05699	3.88529	Between Groups	44.74533	2	22.37267	5.248514	0.023032	3.88529
Within Groups	397.6	12	33.13333				Within Groups	51.152	12	4.262667			-
Total	640.9333	14					Total	95.89733	14				

Appendix B. Location (U, M, D = upstream, midstream, and downstream) comparison (both raw and scaled) among habitats (G, V, M = gravel, vegetation, and mud) for taxa richness using 1-way ANOVA.

<u>Г</u>								·····					
							· · · · · · · · · · · · · · · · · · ·						
Raw		MM	DM	UM			Scaled		MM	DM	UM		
Taxa Richness	1	15	18	19			Taxa Richness	1	5.45	6.82	7.27		
	2	19	14	15		:		2	7.27	4.72	5.45		
· · · · · · · · · · · · · · · · · · ·	3	26	10	21				3	10.00	2.27	8.27		
	4	22	17	22				4 🔬	8.65	6.36	8.65		
	5	15	15	19				5	5.45	5.45	7.27		
Anova: Single Factor							Anova: Single Factor						
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
MM	5	97	19.4	22.3			MM	5	36.83566	7.367133	3.978129		
DM	5	74	14.8	9.7			DM	5	25.62859	5.125717	3.205734		
UM	5	96	19.2	7.2			UM	5	36.92308	7.384615	1.535925		
ANOVA							ANOVA	•					
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	67.6	- 2	33.8	2.586735	0.116396	3.88529	Between Groups	16.87812	2	8.439059	2.903417	0.093663	3.88529
Within Groups	156.8	12	13.06667				Within Groups	34.87915	12	2.906596			
•													
Total	224.4	14					Total	51.75727	14				

Appendix B. Location (U, M, D = upstream, midstream, and downstream) comparison (both raw and scaled) among habitats (G, V, M = gravel, vegetation, and mud) for taxa richness using 1-way ANOVA.

Raw		MG	DG	UG			Scaled		MG	DG	UG		
EPT Richness	1	. 14	1	10			EPT Richness	1	9.50	1.25	7.27		
	2	8	5	7			-	2	6.36	4.72	5.91		
	3	12	4	7				3	8.50	4.17	5.91		
	4	8	4	11				4	6.36	4.17	8.00		
	5	7	3	9				5	5.91	3.61	6.82		
Anova: Single Factor	•						Anova: Single Factor	•					
SUMMARY							SUMMARY			- ^X			
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
MG	5	49	9.8	9.2			MG	5	36.6364	7.327273	2.4911157		
DG	5	17	3.4	2.3			DG	5	17.9167	3.583333	1.8557099		
UG	5	44	8.8	3.2			UG	5	33.9091	6.781818	0.8123967		
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	118.533	2	59.26667	12.09524	0.00133	3.88529	Between Groups	40.9082	2	20.45409	11.893706	0.00142	3.88529
Within Groups	58.8	12	4.9				Within Groups	20.6369	12	1.719741			
Total	177.333	14					Total	61.5451	14				
Raw		MV	DV	UV			Scaled		MV	DV	UV	-	
EPT Richness	1	9	0	7			EPT Richness	1	9.60	0.00	8.40		
	2	10	0	4				2	10.00	0.00	6.00		
	3	10	0	3				3	10.00	0.00	4.50		
	4	11	0	5				4	10.00	0.00	7.00		
	5	9	· · · 0	3				5	9.60	0.00	4.50		
Anova: Single Factor	ſ	~					Anova: Single Factor	•					
SUMMARY							SUMMARY	· .					
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
MV	5	49	9.8	0.7			MV	5	49.2	9.84	0.048		
DV	5	0	0	0			DV	5	0	0	0		
UV	5	22	4.4	2.8			UV	5	30.4	6.08	2.807		
							ΑΝΟΥΑ						
ANUVA		10	1.00		D I	.	AINUVA	CC	10	1.00	F	D I	F . 11
Source of Variation	33	dj	MS	F	P-value	F crit	Source of Variation	33	aj	MS	F 100 52555	P-value	F Crit
Between Groups	240.933	2	120.4667	103.2571	2.7E-08	3.88529	Between Groups	246.549	$\frac{2}{12}$	123.2747	129.53555	7.5E-09	3.88529
Within Groups	14	12	1.166667	1			within Groups	11.42	12	0.951667			
Total	254.933	14					Total	257.969	14				

Appendix B. Location (U, M, D = upstream, midstream, and downstream) comparison (both raw and scaled) among habitats (G, V, M = gravel, vegetation and mud) for EPT richness using 1-way ANOVA.

Raw		MG	DG	UG			Scaled		MG	DG	UG		
HBI	1	5.99	6.11	5.26			HBI	1	5.64	5.48	6.55		
	2	6.67	6.62	5.69				2	4.79	4.85	6.01		
	3	5.89	7.68	6.77	,			3	5.76	3.52	4.66		
	4	5.54	7.82	6.32				4	6.19	3.35	5.23		
	5	6.22	6.10	5.35				5	5.34	5.50	6.44		
Anova: Single Factor							Anova: Single Factor						
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
MG	5	30.31459	6.062918	0.173217			MG	5	27.73176	5.546353	0.270651		
DG	5	34.34086	6.868172	0.699346			DG	5	22.69893	4.539786	1.092729		
UG	5	29.38258	5.876515	0.421246			UG	5	28.89678	5.779356	0.658198		
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	2.777603	2	1.388801	3.220261	0.075936	3.88529	Between Groups	4.340004	2	2.170002	3.220261	0.075936	3.88529
Within Groups	5.175238	12	0.43127				Within Groups	8.086309	12	0.673859			
Total	7.952841	. 14					Total	12.42631	14				
Raw		MV	DV	UV			Scaled		MV	DV	UV		
HBI	1	6.64	4.30	5.57			HBI	1	5.50	9.60	7.40		
	2	5.89	4.48	5.23				2	6.90	9.22	7.80		
	3	5.22	4.46	2.83			-	. 3	7.90	9.40	10.00		
	4	5.50	4.92	3.59				4	7.50	8.40	10.00		
	5	5.92	5.52	3.19	Village			5	6.80	7.40	10.00		
Anova: Single Factor							Anova: Single Factor						
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
MV	5	29.15065	5.83013	0.287617			MV	5	34.6	6.92	0.832		
DV	5	23.68	4.736	0.24508			DV	5	44.02	8.804	0.82408		
UV	5	20.40361	4.080723	1.536566			UV	5	45.2	9.04	1.748		
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	7.81156	2	3.90578	5.662565	0.018541	3.88529	Between Groups	13.49925	2	6.749627	5.948415	0.016034	3.88529
Within Groups	8.277054	12	0.689755				Within Groups	13.61632	12	1.134693			
Total	16.08861	14					Total	27.11557	14				
						بالمرقار المزافرة والمسير يغاوا الالات		1					

Appendix B. Location (U, M, D = upstream, midstream and downstream) comparison (both raw and scaled) among habitats (G,V,M = gravel, vegetation, mud) for Hilsenhoff Biotic Index using 1-way ANOVA.

Appendix B. Location (U, M, D = upstream, midstream and downstream) comparison (both raw and scaled) among habitats (G,V,M = gravel, vegetation, mud) for Hilsenhoff Biotic Index using 1-way ANOVA.

[1					
Raw		ММ	DM	UM			Scaled		MM	DM	UM		
HBI	1	7.88	7.48	6.16			HBI	1	5.30	6.30	9.61		
	2	7.53	8.72	7.37				2	6.17	3.20	6.59		
	3	7.95	8.59	8.03		1	· · · · · · · · · · · · · · · · · · ·	3	5.11	3.53	4.93		
	4	6.85	5.92	5.86				4	7.88	10.00	10.00		
· · · · · · · · · · · · · · · · · · ·	5	6.47	8.44	6.50				5	8.82	3.90	8.74		
Anova: Single Factor							Anova: Single Factor						
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
MM	5	36.68562	7.337123	0.425491			MM	5	33.28596	6.657192	2.659321		
DM	5	39.15	7.83	1.3781			DM	5	26.925	5.385	8.143625		
UM	5	33.90974	6.781948	0.804435			UM	5	39.86539	7.973077	4.636646		
											-		
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F .	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	2.749266	2	1.374633	1.581234	0.245736	3.88529	Between Groups	16.74695	2	8.373475	1.627013	0.237018	3.88529
Within Groups	10.4321	12	0.869342				Within Groups	61.75837	12	5.146531			
Total	13.18137	14					Total	78.50532	14				

**

٠.

Appendix B. Location (U, M, D = upstream, midstream, and downstream) comparison (both raw and scaled) among habitats (G, V, M = gravel, vegetation, mud) for Percent Model Affinity using 1-way ANOVA.

Raw		MG	DG	UG			Scaled		MG	DG	UG		
Pecent Model Affinity	1	48.83	37.42	37.17			Pecent Model Affinity	1	4.89	3.05	3.01		
	2	45.12	37.46	46.94				2	4.29	3.06	4.59		
	3	51.27	37.38	69.69		<i>i</i>		3	5.37	3.05	8.05		
	4	40.83	28.43	62.34				4	3.60	1.45	7.15		
	5	51.03	39.29	74.96				5	5.33	3.35	8.55		
Anova: Single Factor							Anova: Single Factor		ix.				
·													
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
MG	- 5	237.08	47.416	19.64018			MG	5	23.48065	4.696129	0.561451		
DG	5	179.98	35.996	18.54533			DG	5	13.95806	2.791613	0.579554		
UG	5	291.1	58.22	249.776			UG	5	31.35096	6.270192	5.650671		
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1235.082	2	617.5408	6.433578	0.0126	3.88529	Between Groups	30.34229	2	15.17114	6.701354	0.011112	3.88529
Within Groups	1151.846	12	95.98715				Within Groups	27.16671	12	2.263892			
Total	2386.927	14					Total	57.50899	14				
			-										
Raw		MM	DM	UM			Scaled		ММ	DM	UM		
Raw Pecent Model Affinity	1	MM 40.29	DM 57.65	UM 58.75			Scaled Pecent Model Affinity	1	MM 2.06	DM 5.53	UM 5.75		
Raw Pecent Model Affinity	1 2	MM 40.29 42,22	DM 57.65 83 40.39	UM 58.75 50.57			Scaled Pecent Model Affinity	<u>1</u> 2	MM 2.06 2.44	DM 5.53 2.08	UM 5.75 4.11		
Raw Pecent Model Affinity	1 2 3	MM 40.29 42.22 53.08	DM 57.65 ^{№3} 40.39 44.61	UM 58.75 50.57 45.45			Scaled Pecent Model Affinity	1 2 3	MM 2.06 2.44 4.62	DM 5.53 2.08 2.92	UM 5.75 4.11 3.09		
Raw Pecent Model Affinity	1 2 3 4	MM 40.29 42.22 53.08 37.04	DM 57.65 ** 40.39 44.61 55.92	UM 58.75 50.57 45.45 41.83			Scaled Pecent Model Affinity	1 2 3 4	MM 2.06 2.44 4.62 1.41	DM 5.53 2.08 2.92 5.18	UM 5.75 4.11 3.09 2.37		
Raw Pecent Model Affinity	1 2 3 4 5	MM 40.29 42.22 53.08 37.04 20.56	DM 57.65 № 40.39 44.61 55.92 43.70	UM 58.75 50.57 45.45 41.83 52.61			Scaled Pecent Model Affinity	1 2 3 4 5	MM 2.06 2.44 4.62 1.41 0.00	DM 5.53 2.08 2.92 5.18 2.74	UM 5.75 4.11 3.09 2.37 4.52		
Raw Pecent Model Affinity Anova: Single Factor	1 2 3 4 5	MM 40.29 42.22 -53.08 37.04 20.56	DM 57.65 ** 40.39 44.61 55.92 43.70	UM 58.75 50.57 45.45 41.83 52.61			Scaled Pecent Model Affinity Anova: Single Factor	1 2 3 4 5	MM 2.06 2.44 4.62 1.41 0.00	DM 5.53 2.08 2.92 5.18 2.74	UM 5.75 4.11 3.09 2.37 4.52		
Raw Pecent Model Affinity Anova: Single Factor	1 2 3 4 5	MM 40.29 42.22 53.08 37.04 20.56	DM 57.65 * 40.39 44.61 55.92 43.70	UM 58.75 50.57 45.45 41.83 52.61			Scaled Pecent Model Affinity Anova: Single Factor	1 2 3 4 5	MM 2.06 2.44 4.62 1.41 0.00	DM 5.53 2.08 2.92 5.18 2.74	UM 5.75 4.11 3.09 2.37 4.52		
Raw Pecent Model Affinity Anova: Single Factor SUMMARY	1 2 3 4 5	MM 40.29 42,22 53.08 37.04 20.56	DM 57.65 ↔ 40.39 44.61 55.92 43.70	UM 58.75 50.57 45.45 41.83 52.61			Scaled Pecent Model Affinity Anova: Single Factor SUMMARY	1 2 3 4 5	MM 2.06 2.44 4.62 1.41 0.00	DM 5.53 2.08 2.92 5.18 2.74	UM 5.75 4.11 3.09 2.37 4.52		
Raw Pecent Model Affinity Anova: Single Factor SUMMARY Groups	1 2 3 4 5 <i>Count</i>	MM 40.29 42,22 53.08 37.04 20.56 Sum	DM 57.65 ↔ 40.39 44.61 55.92 43.70 Average	UM 58.75 50.57 45.45 41.83 52.61 Variance			Scaled Pecent Model Affinity Anova: Single Factor SUMMARY Groups	1 2 3 4 5 <i>Count</i>	MM 2.06 2.44 4.62 1.41 0.00	DM 5.53 2.08 2.92 5.18 2.74 <i>Average</i>	UM 5.75 4.11 3.09 2.37 4.52 Variance		
Raw Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM	1 2 3 4 5 <i>Count</i> 5	MM 40.29 42,22 53.08 37.04 20.56 <i>Sum</i> 193.19	DM 57.65 ↔ 40.39 44.61 55.92 43.70 Average 38.638	UM 58.75 50.57 45.45 41.83 52.61 <i>Variance</i> 138.3747			Scaled Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM	1 2 3 4 5 <i>Count</i> 5	MM 2.06 2.44 4.62 1.41 0.00 <i>Sum</i> 10.526	DM 5.53 2.08 2.92 5.18 2.74 <i>Average</i> 2.1052	UM 5.75 4.11 3.09 2.37 4.52 <i>Variance</i> 2.834771		
Raw Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM	1 2 3 4 5 	MM 40.29 42,22 53.08 37.04 20.56	DM 57.65 ** 40.39 44.61 55.92 43.70 Average 38.638 48.454	UM 58.75 50.57 45.45 41.83 52.61 <i>Variance</i> 138.3747 60.67813			Scaled Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM	1 2 3 4 5 	MM 2.06 2.44 4.62 1.41 0.00 Sum 10.526 18.454	DM 5.53 2.08 2.92 5.18 2.74 <i>Average</i> 2.1052 3.6908	UM 5.75 4.11 3.09 2.37 4.52 <i>Variance</i> 2.834771 2.427125		
Raw Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM	1 2 3 4 5 	MM 40.29 42,22 53.08 37.04 20.56	DM 57.65 ** 40.39 44.61 55.92 43.70 Average 38.638 48.454 49.842	UM 58.75 50.57 45.45 41.83 52.61 <i>Variance</i> 138.3747 60.67813 42.75652			Scaled Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM	1 2 3 4 5 	MM 2.06 2.44 4.62 1.41 0.00 Sum 10.526 18.454 19.842	DM 5.53 2.08 2.92 5.18 2.74 <i>Average</i> 2.1052 3.6908 3.9684	UM 5.75 4.11 3.09 2.37 4.52 <i>Variance</i> 2.834771 2.427125 1.710261		
Raw Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM	1 2 3 4 5 	MM 40.29 42,22 53.08 37.04 20.56	DM 57.65 ** 40.39 44.61 55.92 43.70 Average 38.638 48.454 49.842	UM 58.75 50.57 45.45 41.83 52.61 <i>Variance</i> 138.3747 60.67813 42.75652			Scaled Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM	1 2 3 4 5 	MM 2.06 2.44 4.62 1.41 0.00 Sum 10.526 18.454 19.842	DM 5.53 2.08 2.92 5.18 2.74 <i>Average</i> 2.1052 3.6908 3.9684	UM 5.75 4.11 3.09 2.37 4.52 <i>Variance</i> 2.834771 2.427125 1.710261		
Raw Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM	1 2 3 4 5 	MM 40.29 42,22 53.08 37.04 20.56 Sum 193.19 242.27 249.21	DM 57.65 ** 40.39 44.61 55.92 43.70 Average 38.638 48.454 49.842	UM 58.75 50.57 45.45 41.83 52.61 <i>Variance</i> 138.3747 60.67813 42.75652			Scaled Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM	1 2 3 4 5 <i>Count</i> 5 5 5 5	MM 2.06 2.44 4.62 1.41 0.00 <i>Sum</i> 10.526 18.454 19.842	DM 5.53 2.08 2.92 5.18 2.74 <i>Average</i> 2.1052 3.6908 3.9684	UM 5.75 4.11 3.09 2.37 4.52 <i>Variance</i> 2.834771 2.427125 1.710261		
Raw Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM ANOVA	1 2 3 4 5 	MM 40.29 42,22 53.08 37.04 20.56 Sum 193.19 242.27 249.21	DM 57.65 ** 40.39 44.61 55.92 43.70 Average 38.638 48.454 49.842	UM 58.75 50.57 45.45 41.83 52.61 <i>Variance</i> 138.3747 60.67813 42.75652			Scaled Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM UM	1 2 3 4 5 5 <i>Count</i> 5 5 5	MM 2.06 2.44 4.62 1.41 0.00 <i>Sum</i> 10.526 18.454 19.842	DM 5.53 2.08 2.92 5.18 2.74 <i>Average</i> 2.1052 3.6908 3.9684	UM 5.75 4.11 3.09 2.37 4.52 <i>Variance</i> 2.834771 2.427125 1.710261		
Raw Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM Anova Source of Variation	1 2 3 4 5 	MM 40.29 42.22 53.08 37.04 20.56 Sum 193.19 242.27 249.21 df	DM 57.65 * ³ 40.39 44.61 55.92 43.70 Average 38.638 48.454 49.842 MS	UM 58.75 50.57 45.45 41.83 52.61 <i>Variance</i> 138.3747 60.67813 42.75652 <i>F</i>	P-value	F crit	Scaled Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM UM ANOVA Source of Variation	1 2 3 4 5 5 5 5 5 5 5 5 5 5 5	MM 2.06 2.44 4.62 1.41 0.00 <i>Sum</i> 10.526 18.454 19.842 <i>df</i>	DM 5.53 2.08 2.92 5.18 2.74 <i>Average</i> 2.1052 3.6908 3.9684 <i>MS</i>	UM 5.75 4.11 3.09 2.37 4.52 <i>Variance</i> 2.834771 2.427125 1.710261 <i>F</i>	P-value	F crit
Raw Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM AnoVA Source of Variation Between Groups	1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MM 40.29 42.22 53.08 37.04 20.56 Sum 193.19 242.27 249.21 df 2 2	DM 57.65 * ³ 40.39 44.61 55.92 43.70 <i>Average</i> 38.638 48.454 49.842 <i>MS</i> 186.5083	UM 58.75 50.57 45.45 41.83 52.61 <i>Variance</i> 138.3747 60.67813 42.75652 <i>F</i> 2.31391	<i>P-value</i> 0.1413	<i>F crit</i> 3.88529	Scaled Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM UM ANOVA Source of Variation Between Groups	1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MM 2.06 2.44 4.62 1.41 0.00 Sum 10.526 18.454 19.842 df 2	DM 5.53 2.08 2.92 5.18 2.74 <i>Average</i> 2.1052 3.6908 3.9684 <i>MS</i> 5.052253	UM 5.75 4.11 3.09 2.37 4.52 <i>Variance</i> 2.834771 2.427125 1.710261 <i>F</i> 2.173898	<i>P-value</i> 0.156434	<u>F crit</u> 3.88529
Raw Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM Source of Variation Between Groups Within Groups	1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MM 40.29 42.22 53.08 37.04 20.56	DM 57.65 * ³ 40.39 44.61 55.92 43.70 <i>Average</i> 38.638 48.454 49.842 <i>MS</i> 186.5083 80.60312	UM 58.75 50.57 45.45 41.83 52.61 <i>Variance</i> 138.3747 60.67813 42.75652 <i>F</i> 2.31391	<i>P-value</i> 0.1413	<i>F crit</i> 3.88529	Scaled Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM UM ANOVA Source of Variation Between Groups Within Groups	1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MM 2.06 2.44 4.62 1.41 0.00 Sum 10.526 18.454 19.842	DM 5.53 2.08 2.92 5.18 2.74 <i>Average</i> 2.1052 3.6908 3.9684 <i>MS</i> 5.052253 2.324052	UM 5.75 4.11 3.09 2.37 4.52 <i>Variance</i> 2.834771 2.427125 1.710261 <i>F</i> 2.173898	<i>P-value</i> 0.156434	<i>F crit</i> 3.88529
Raw Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM AnoVA Source of Variation Between Groups Within Groups	1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MM 40.29 42.22 53.08 37.04 20.56 Sum 193.19 242.27 249.21 df 2 12	DM 57.65 * ³ 40.39 44.61 55.92 43.70 <i>Average</i> 38.638 48.454 49.842 <i>MS</i> 186.5083 80.60312	UM 58.75 50.57 45.45 41.83 52.61 <i>Variance</i> 138.3747 60.67813 42.75652 <i>F</i> 2.31391	<i>P-value</i> 0.1413	<i>F crit</i> 3.88529	Scaled Pecent Model Affinity Anova: Single Factor SUMMARY Groups MM DM UM UM ANOVA Source of Variation Between Groups Within Groups	1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MM 2.06 2.44 4.62 1.41 0.00 Sum 10.526 18.454 19.842	DM 5.53 2.08 2.92 5.18 2.74 <i>Average</i> 2.1052 3.6908 3.9684 <i>MS</i> 5.052253 2.324052	UM 5.75 4.11 3.09 2.37 4.52 <i>Variance</i> 2.834771 2.427125 1.710261 <i>F</i> 2.173898	<i>P-value</i> 0.156434	<i>F crit</i> 3.88529

the second se											and the second		
NCO							NCO						
Raw		MV	DV	UV			Scaled		MV	DV	UV		
	1	16	13	13				1	10.00	9.10	9.10		
	2	15	18	13				2	10.00	10.00	9.10		
	3	15	17	10				3	10.00	10.00	7.40		
	4	16	10	21				4	10.00	7.30	10.00		
·	5	16	16	7				5	10.00	10.00	6.00		
Anova: Single Factor							Anova: Single Factor					I	
					,								
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
MV	5	78	15.6	0.3			MV	5	50	10	0		
DV	5	74	14.8	10.7			DV	5	46.4	9.28	1.377		
UV	- 5	64	12.8	27.2			UV	5	41.6	8.32	2.567		
			or the second										
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	20.8	2	10.4	0.816754	0.464988	3.88529	Between Groups	7.104	2	3.552	2.70182556	0.1074596	3.88529031
Within Groups	152.8	12	12.73333				Within Groups	15.776	12	1.31466667			
Total	173.6	14					Total	22.88	14				
NCO		MM	DM	UM									
Raw	1	1	9	6									
	2	7	7 *	8									
	3	12	3	8									
	4	7	6	8									
	5	5	9	7									
Anova: Single Factor											,		
SUMMARY													
Groups	Count	Sum	Average	Variance									
MM	5	32	6,4	15.8									
DM	5	34	6.8	6.2									
UM	5	37	7.4	0.8									
ANOVA			· .										
Source of Variation	SS	df	MS	F	P-value	F crit							
Between Groups	2.53333	2	1.266667	0.166667	0.848408	3.88529							
Within Groups	91.2	12	7.6										
Total	93 7333	14									······		1

Appendix B. Location (U, M, D = upstream, midstream, and downstream) comparison (both raw and scaled) among habitats (G, V, M = gravel, vegetation, mud) for NCO richness using 1-way ANOVA.

Appendix B. Location (U, M, D = upstream, midstream, downstream) comparison (both raw and scaled) among habitats (G, V, M = gravel, vegetation, mud) for Shannon-Weiner Diversity and Dom-3 metrics using 1-way ANOVA.

Raw		MM	UM	DM			Scaled		MM	UM	DM		
DIV	1	1.39	2.44	1.41			DIV	1	0.00	4.70	0.00		
	2	1.95	1.87	0.82				2	2.25	1.85	0.00		
	3	1.97	1.32	0.9				3	2.35	0.00	0.00		
	4	2.01	2.34	1.65				4	2.55	4.20	0.75		
·	5	1.95	2.2	0.9				5	2.25	3.50	0.00		
Anova: Single Factor							Anova: Single Factor		<u>×</u>				
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
MM	5	9.27	1.854	0.06788			MM	5	9.4	1.88	1.1195		
UM	5	10.17	2.034	0.20568			UM	5	14.25	2.85	3.6975		
DM	5	5.68	1.136	0.13763			DM	5	0.75	0.15	0.1125		
						· · · · · · · · · · · · · · · · · · ·							
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	2.257213	2	1.128607	8.234198	0.005609	3.88529	Between Groups	18.70633	2	9.353167	5.692159	0.018262	3.88529
Within Groups	1.64476	12	0.137063				Within Groups	19.718	12	1.643167			
Total	3.901973	14					Total	38.42433	14				
Raw		MM	UM	DM		-	Scaled		ММ	UM	DM		
DOM3	1	89.22	54.69	86.47			DOM3	1	2.63	8.39	3.09		
	2	66.67	73.98	94.7			· · · · ·	2	6.39	5.17	1.33		
	3	68.22	88.72	92.88				3	6.13	2.71	1.78		
	4	67.31	53.28	74.73				4	6.28	8.62	5.05		
	5	63.53	63.06	93.72				5	6.91	6.99	1.57		
Anova: Single Factor							Anova: Single Factor						
SUMMARY					-		SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
MM	5	354.95	70.99	106.9656			MM	5	28.34167	5.668333	2.971265		
UM	5	333.73	66.746	218.8636			UM	5	31.87833	6.375667	6.079544		
DM	5	442.5	88.5	69.65165			DM	5	12.80833	2.561667	2.392018		
	1												
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1329.747	2	664.8735	5.043533	0.025719	3.88529	Between Groups	41.16382	2	20.58191	5.396021	0.0213	3.88529
Within Groups	1581.923	12	131.8269				Within Groups	45.77131	12	3.814276			
Total	2911.67	14					Total	86.93513	14				
			1		L	L	1			1	1	1	

	Raw	0.05	0.01	0.01	Midstream	Downstream	Upstream	M-D	D-U	M-U
Gravel	37.07	5.93	7.94	8.80	29.80	25.40	37.80	4.40	12.40	8.00
Veg	33.13	5.60	7.51	8.32	25.60	16.60	24.60	9.00	8.00	1.00
Mud	13.07	3.52	4.71	· 5.23	19.40	14.80	19.20	4.60	4.40	0.20
	Scaled									
Gravel	0.97	0.96	1.28	1.42	8.35	7.192	9.28	1.16	2.09	0.93
Veg	4.26	2.01	2.69	2.99	9.40	5.20	7.74	4.20	2.54	1.66
Mud	2.91	1.66	2.22	2.47	7.37	5.17	7.38	2.20	2.21	0.02
		Midstream	Downstream	Upstream	M-D	D-U	M-U	- I		
Gravel	Raw	29.80	25.40	37.80	4.40	12.40	8.00		*	<.05
0.05	5.93				ns	*	*		**	<.01
0.01	7.94				ns	**	**		***	<.005
0.01	8.80				ns	***	ns	ns	***	ns
Gravel	Scaled	8.35	7.19	9.28	1.16	2.09	0.93			
0.05	0.96				*	*	ns			
0.01	1.28				ns	**	ns			
0.01	1.42				ns	***	ns	*	***	ns
Veg	Scaled	9.40	5.20	7.74	4.20	2.54	1.66			
0.05	2.01				*	*	ns			
0.01	2.69				**	ns	ns			
0.01	2.99				***	ns	ns	***	*	ns

Appendix B. Student Neuman-Keuls (raw vs scaled) comparing locations (U, M, D = upstream, midstream and downstream) within the same habitat (gravel, vegetation and mud) for taxa richness.

	Raw	0.05	0.01	0.01	Midstream	Downstream	Upstream	M-D	D-U	M-U
Gravel	4.90	2.15	2.89	3.20	9.80	3.40	8.80	6.40	5.40	1.00
Veg	1.17	1.05	1.41	1.56	9.80	0.00	4.40	9.80	4.40	5.40
Mud										
	Scaled									
Gravel	1.72	1.28	1.71	1.90	7.33	3.58	6.78	3.74	3.20	0.55
Veg	0.95	0.95	1.27	1.41	9.84	0.00	6.08	9.84	6.08	3.76
Mud										`
		-			-					
		Midstream	Downstream	Upstream	M-D	D-U	M-U			
Gravel	Raw	9.80	3.40	8.80	6.40	5.40	1.00		*	<.05
0.05	2.15				*	*	ns		**	<.01
0.01	2.89				**	**	ns		***	<.005
0.01	3.20				***	***	ns	***	***	ns
Gravel	Scaled	7.33	3.58	6.78	3.74	3.20	0.55			
0.05	1.28				*	*	ns			
0.01	1.71				**	**	ns			
0.01	1.90				***	***	ns	***	***	ns
Veg	Raw	9.80	0.00	4.40	9.80	4.40	5.40			
0.05	1.05				*	*	*			
0.01	1.41				**	**	**			
0.01	1.56		5 P		***	***	***	***	***	***
Veg	Scaled	9.84	0.00	6.08	9.84	6.08	3.76			
0.05	0.95	· · · · · · · · · · · · · · · · · · ·			*	*	*			
0.01	1.27				**	**	**			
0.01	1.41				***	***	***	***	***	***

Appendix B. Student Neuman-Keuls (raw vs scaled) comparing locations (U, M, D = upstream, midstream, and downstream) within the gravel and vegetation habitats for EPT richness.

	Raw	0.05	0.01	0.01	Midstream	Downstream	Upstream	M-D	D-U	M-U
Gravel	0.43	0.64	0.86	0.95	6.06	6.87	5.88	0.81	0.99	0.19
Veg	0.69	0.81	1.08	1.20	5.83	4.74	4.08	1.09	0.66	1.75
Mud	0.87	0.91	1.22	1.35	7.34	7.83	6.78	0.49	1.05	0.56
	Scaled									
Gravel	0.67	0.80	1.07	1.19	6.06	6.87	5.88	0.81	0.99	0.19
Veg	1.13	1.04	1.39	1.54	6.92	8.80	9.04	1.88	0.24	2.12
Mud	5.15	2.21	2.96	3.28	6.66	5.39	7.97	1.27	2.59	1.32
		Midstream	Downstream	Upstream	M-D	D-U	M-U		*	<.05
Veg	Raw	5.83	4.74	4.08	1.09	0.66	1.75		**	<.01
0.05	0.81				*	ns	*		***	<.005
0.01	1.08				**	ns	**			
0.01	1.20				ns	ns	***	**	ns	***
Veg	Scaled	6.92	8.80	9.04	1.88	0.24	2.12			
0.05	1.04				*	ns	*			
0.01	1.39				**	ns	**			
0.01	1.54				***	ns	***	***	ns	***

Appendix B. Student Nueman-Keuls (raw vs. scaled) comparing locations (U, M, D = upstream, midstream and downstream) within the same habitats (gravel, vegetation and mud) for the Hilsenhoff Biotic Index.

	Raw	0.05	0.01	0.005	Midstream	Downstream	Upstream	M-D	D-U	M-U
Gravel	95.99	9.54	12.77	14.17	47.42	36.00	58.22	11.42	22.22	10.80
Veg										
Mud	80.60	8.74	11.71	12.98	38.64	48.45	49.84	9.82	1.39	11.20
	Scaled			· · · · · · · · · · · · · · · · · · ·						
Gravel	2.26	1.46	1.96	2.18	4.70	2.79	6.27	1.90	3.48	1.57
Veg					-					
Mud	2.32	1.48	1.99	2.20	2.11	3.69	3.97	1.59	0.28	1.86
		Midstream	Downstream	Upstream	M-D	D-U	M-U		*	<.05
Gravel	Raw	47.42	36.00	58.22	11.42	22.22	10.80		**	<.01
0.05	9.54	-			*	*	*		***	<.005
0.01	12.77				ns	**	ns			
0.01	14.17				ns	***	ns	*	***	*
Gravel	Scaled	4.70	2.79	6.27	1.90	3.48	1.57			
0.05	1.46				*	*	*	-		
0.01	1.96		-		ns	**	ns			
0.01	2.18				ns	***	ns	*	***	*
Mud	Raw	38.64	48.45	49.84	9.82	1.39	11.20			
0.05	8.74				*	ns .	*			
0.01	11.71				ns	ns	ns			
0.01	12.98				ns	ns	ns	ns	ns	ns
Mud	Scaled	2.11	3.69	3.97	1.59	0.28	1.86			
0.05	1.48				*	ns	*			
0.01	1.99				ns	ns	ns			
0.01	2.20				ns	ns	ns	ns	ns	ns

Appendix B. Student Neuman-Keuls (raw vs. scaled) comparing locations (U, M, D = upstream, midstream, and downstream) within the same habitat (gravel and vegetation) for Percent Model Affinity.

	Raw	0.05	0.01	0.01	Midstream	Downstream	Upstream	M-D	D-U	M-U
Gravel										
Veg	12.73	3.47	4.65	5.16	15.60	14.80	12.80	0.80	2.00	2.80
Mud	7.60	2.68	3.59	3.99	6.40	6.80	7.40	0.40	0.60	1.00
	Scaled									
Gravel										
Veg	1.13	1.04	1.39	1.54	10.00	9.28	8.32	0.72	0.96	1.68
Mud					nd	nd	nd			
		Midstream	Downstream	Upstream	M-D	D-U	M-U		*	<.05
Veg	Raw	15.60	14.80	12.80	0.80	2.00	2.80		**	<.01
0.05	3.47				ns	ns	ns		***	<.005
0.01	4.65				ns	ns	ns			
0.01	5.16				ns	ns	ns	ns	ns	ns
Veg	Scaled	10.00	9.28	8.32	0.72	0.96	1.68	<u></u>		
0.05	1.04				ns	ns	*			
0.01	1.39				ns	ns	**			
0.01	1.54				ns	ns	***	ns	ns	ns
ì										
Mud	Raw	6.40	6.80	7.40	0.40	0.60	1.00			
0.05	2.68				ns	ns	ns			
0.01	3.59		مغ تجنع		ns	ns	ns			
0.01	3.99		•		ns	ns	ns	ns	ns	ns

Appendix B. Student Neuman-Keuls (raw vs. scaled) comparing (U, M, D = upstream, midstream, and downstream) within the same habitat (vegetation and mud) for the metric NCO richness.

	Raw	0.05	0.01	0.01	Midstream	Downstream	Upstream	M-D	D-U	M-U
Mud	0.14	0.36	0.48	0.54	1.85	1.14	2.03	0.72	0.90	0.18
	Scaled									
Mud	1.64	1.25	1.67	1.85	1.88	0.15	2.85	1.73	2.70	0.97
	• :	Midstream	Downstream	Upstream	M-D	D-U	M-U		*	<.05
Mud	Raw	1.85	1.14	2.03	0.72	0.90	0.18		**	<.01
0.05	0.36				*	*	ns		***	<.005
0.01	0.48				**	**	ns			
0.01	0.54				***	***	ns	***	***	ns
Mud	Scaled	1.88	0.15	2.85	1.73	2.70	0.97			
0.05	1.25				*	*	ns			
0.01	1.67				**	**	ns			
0.01	1.85				ns	***	ns	**	***	ns

Appendix B. Student Neuman-Keuls (raw vs. scaled) comparing locations (U, M, D = upstream, midstream, and downstream) within the mud habitat for the Shannon-Weiner Diversity metric.

Appendix B. Student Neuman-Keuls (raw vs. scaled) comparing locations (U, M, D = upstream, midstream, and downstream) within the mud habitat for DOM-3.

	Raw	0.05	0.01	0.01	Midstream	Downstream	Upstream	M-D	D-U	M-U
Gravel		0.00	0.00	0.00				0.00	0.00	0.00
Veg		0.00	0.00	0.00				0.00	0.00	0.00
Mud	131.83	11.18	14.97	16.60	70.99	88.50	66.75	17.51	21.75	4.24
	Scaled									
Gravel		0.00	0.00	0.00				0.00	0.00	0.00
Veg		0.00	0.00	0.00				0.00	0.00	0.00
Mud	3.81	1.90	2.55	2.82	5.67	2.56	6.38	3.11	3.81	0.71
		Midstream	Downstream	Upstream	M-D	D-U	M-U		*	<.05
Mud	Raw	70.99	88.50	66.75	17.51	21.75	4.24		**	<.01
0.05	11.18				. *	*	ns		***	<.005
0.01	14.97				**	**	ns			
0.01	16.60				***	***	ns	***	***	ns
Mud	Scaled	5.67	2.56	6.38	3.11	3.81	0.71			
0.05	1.90		-		*	*	ns			
0.01	2.55				**	**	ns			
0.01	2.82				***	***	ns	***	***	ns

APPENDIX C.

Habitat (gravel, vegetation and mud) comparisons (both raw and scaled) among locations (upstream, midstream and downstream) for the metrics Taxa Richness, Ephemeroptera-Plecoptera-Trichoptera Richness, Hilsenhoff Biotic Index and Percent Model Affinity using 1-way ANOVA and Student Newman-Keuls.

2

Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scale) for the upstream sample location, Cheese Factory Road, using 1-way ANOVA.

			Upstream							Upstream			
Raw	-		Gravel	Veg	Mud		Scale-Converted			Gravel	Veg	Mud	
Taxa Richness		1	41	27	19		Taxa Richness		1	10.00	10.00	7.27	
		2	48	33	15				2	10.00	10.00	5.45	
		3	27	16	21		4		3	7.78	4.80	8.27	
8		4	43	33	22				4	10.00	10.00	8.65	
		5	30	14	19				5	8.61	3.90	7.27	
Anova: Single Factor							Anova: Single Factor			<u> </u>			
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
Gravel	5	189	37.8	79.7			Gravel	5	46.39	9.278	1.06352		
Veg	5	123	24.6	83.3			Veg	5	38.7	7.74	9.678		
Mud	5	96	19.2	7.2			Mud	5	36.923	7.384569	1.535823		
ANOVA						·····	ANOVA						
Source of Variation	22	df	MS	F	P-value	F crit	Source of Variation	22	df	MS	F	Prvalue	E crit
Between Grouns	915.6	2	457.8	8 06933	0.006015	3 88529	Between Groups	10 1281	- 49	5 064046	1 237413	0 324644	3 88520
Within Groups	680.8	12	56 73333	0.00755	0.000010	5.00525	Within Groups	49 1094	12	4 092448	1.237413	0.524044	5.00525
Wildin Groups	000.0	12					Willin Oroups	47.1074	14	4.072440			
Total	1596.4	14					Total	59.2375	14				
	1		Upstream							Upstream			1
Raw			Gravel	Veg			Scale-Converted			Gravel	Veg		
EPT Richness		1	10	7			EPT Richness		1	7.27	8.50		
· · · · · · · · · · · · · · · · · · ·		2	7	4					2	5.91	6.00		
		3	7	3					3	5.91	4.50		
8		4	11	5					4	8.00	7.00		
		5	9	3					5	6.82	4.50		
Anova: Single Factor							Anova: Single Factor						
CID O (ADV							CID & (ADV						
SUMMARI		G		17.			SUMMARI		C		17		
Groups	Count	Sum	Average	variance			Groups	Count	Sum	Average	variance		
Gravel	5	44	8.8	3.2			Gravel	3	33.909	6./81818	0.812397		
veg	3	22	4.4	2.8			veg	3	30.5	0.1	2.925		
							· ·						
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	48.4	1	48.4	16.13333	0.003859	5.31764	Between Groups	1.16219	1	1.16219	0.621925	0.453067	5.31764
Within Groups	24	8	3				Within Groups	14.9496	8	1.868698			
Total	72.4	9					Total	16.1118	9				

,

Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scale) for the upstream sample location, Cheese Factory Road, using 1-way ANOVA.

			Upstream							Upstream			
Raw		Gravel	Veg	Mud			Scale-Converted		Gravel	*Veg	Mud		
HBI	1	5.26	5.57	6.16			HBI	1	6.55	7.4	9.61		
	2	5.69	5.23	7.37	,		,	2	6.01	7.8	6.59		
	3	6.77	2.83	8.03				3	4.66	10	4.93		
	4	6.32	3.59	5.86				4	5.23	10	10.00		
	5	5.35	3.19	6.50				5	6.44	. 10	8.74		
Anova: Single Factor							Anova: Single Factor						
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
Gravel	5	29.383	5.876515	0.421246			Gravel	5	28.897	5.779356	0.658198		
Veg	5	20.404	4.080723	1.536566			*Veg	5	45.2	9.04	1.748		
Mud	5	33.91	6.781948	0.804435			Mud	5	39.865	7.973077	4.636646		
ANOVA				ويعارفه ويستعديا القرائل			ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	18.9022	2	9.451083	10.26456	0.00252	3.88529	Between Groups	27.6376	2	13.81878	5.886307	0.016543	3.88529
Within Groups	11.049	12	0.920749				Within Groups	28.1714	12	2.347615			
i			·										
Total	29.9512	14					Total	55.8089	14				
a a construction of the second se			Upstream							Upstream			
			Gravel	Mud						Gravel	Mud		
Raw	+	1	37.17	58.75			Scale-Converted		1	3.01	5.75		
PMA	1	2	46.94	50.57			РМА		2	4.59	4.11		
		3	69.69	45 45					3	8.05	3.09		
		4	62 34	41.83					4	7.15	2.37		
		5	74.96	52 61					5	8.55	4 52		
Anova: Single Factor			71.50	52.01			Anova: Single Factor			0.00	1.04		
Thiova. Shigie I detor							Thiota, Single Factor						
SUMMARY	+						SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
Gravel	5	291.1	58 22	249 776			Gravel	5	31.351	6.270192	5.650671		
Mud	5	249.21	49.842	42.75652			Mud	5	19.842	3.9684	1.710261		
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	175.477	1	175.4772	1.199711	0.305256	5.31764	Between Groups	13.2456	1	13.24562	3.598897	0.094392	5.31764
Within Groups	1170.13	8	146.2662				Within Groups	29.4437	8	3.680466			
							<u> </u>	1					
Total	1345.61	9					Total	42.6893	9			<u> </u>	1
									1				

Appendix C.	Habitat (gravel,	vegetation and mud)	metric comparisons	(both raw and scale	e) for the upstream	sample location,	Cheese Fa	ctory Road,	using 1-way
ANOVA.									

			Upstream								
			Veg	Mud							
Raw		1	13	6							
NCO		2	13	8							
		3	10	8	,		t				
2		4	21	8							
		5	7	7							
Anova: Single Factor									<u>``</u>		
· ·											
SUMMARY											
Groups	Count	Sum	Average	Variance							
Veg	5	64	12.8	27.2							
Mud	5	37	7.4	0.8							
ANOVA											
Source of Variation	SS	df	MS	F	P-value	F crit		1			
Between Groups	72.9	1	72.9	5.207143	0.051916	5.31764					
Within Groups	112	8	14								
			•								
Total	184.9	9									

Midstream Midstream Gravel Raw Veg Mud Scale-Converted Gravel Veg Mud **Taxa Richness** 1 38 27 15 **Taxa Richness** 1 10 10.00 5.45 2 23 19 25 2 7.06 8.50 7.27 3 30 23 26 3 8.611 8.50 10.00 22 4 28 28 4 8.055 10.00 8.65 5 28 27 15 5 8.055 10.00 5.45 Anova: Single Factor Anova: Single Factor SUMMARY SUMMARY Average Variance Count Sum Variance Groups Count Sum Groups Average Gravel 5 149 29.8 24.2 41.781 8.3562 1.157145 Gravel 5 Veg 5 128 25.6 5.8 Veg 5 47 9.4 0.675 Mud 5 97 19.4 22.3 Mud 5 36.83566 7.367133 3.978129 ANOVA ANOVA MS F Source of Variation SS df P-value F crit Source of Variation SS df MS P-value F F crit Between Groups 273.7333 2 136.8667 7.85086 0.006608 3.88529 Between Groups 10.33387 2 5.166934 2.667827 0.110014 3.88529 Within Groups 209.2 12 17.43333 Within Groups 23.24109 12 1.936758 482.9333 14 33.57496 Total Total 14 Midstream Midstream Raw Gravel Veg Scale-Converted Gravel Veg **EPT Richness** 14 9 **EPT Richness** 9.50 9.60 1 1 2 8 10 2 6.36 10.00 3. * 12 10 3 8.50 10.00 8 11 4 4 6.36 10.00 5 7 9 5 5.91 9.60 Anova: Single Factor Anova: Single Factor SUMMARY SUMMARY Groups Groups Count Sum Average Variance Count Sum Variance Average Gravel 5 49 9.8 9.2 Gravel 5 36.63636 7.327273 2.491116 49 0.7 Veg 5 9.8 Veg 5 49.2 9.84 0.048 ANOVA ANOVA Source of Variation SS MS Source of Variation df FP-value F crit SS df MS F P-value F crit 1 5.317645 Between Groups 15.7845 15.7845 12.43307 0.007777 5.317645 Between Groups 0 1 0 0 1 Within Groups 39.6 8 4.95 Within Groups 10.15646 8 1.269558 39.6 9 Total 25.94096 9 Total

Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scaled) for the midstream sample location, Powder Mill Park, using 1-way ANOVA.

			Midstream						Midstream				
Raw		Gravel	Veg	Mud	- and the second se		Scale-Converted		Gravel	*Veg	Mud		
HBI	1	5.99	6.64	7.88			HBI	1	5.64	5.5	5.30		
	2	6.67	5.89	7.53				2	4.79	6.9	6.17		
	3	5.89	5.22	7.95	1		· · · · · · · · · · · · · · · · · · ·	3	5.76	7.9	5.11		
	4	5.54	5.50	6.85		· · · · · · · · · · · · · · · · · · ·		4	6.19	7.5	7.88		
	5	6.22	5.92	6.47				5	5.34	6.8	8.82		
Anova: Single Factor							Anova: Single Factor						
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
Gravel	. 5	30.31459	6.062918	0.173217			Gravel	5	27.73176	5.546353	0.270651		
Veg	5	29.15065	5.83013	0.287617			*Veg	5	34.6	6.92	0.832		
Mud	5	36.68562	7.337123	0.425491	······		Mud	5	33.28596	6.657192	2.659321		
							ΑΝΟΥΔ						
Source of Variation	22	df	MS	F	P-value	Forit	Source of Variation	22	df	MS	Ē	P-value	Forit
Between Groups	6 581362	<u> </u>	3 200681	11 13817	0.001841	3 88570	Between Groups	5 316564	- 49	2 658282	2 110959	0 162786	2 88520
Within Groups	3 545302	.12	0.205442	11.15017	0.001041	5.00529	Within Grouns	15 04780	12	1 252001	2.119030	0.102/00	
within Oroups	5.545502	12	0.293442				within Groups	15.04769	12	1.233991			
Total	10.12666	14					Total	20.36445	14				
			Midstream							Midstream			
			Gravel	Mud						Gravel	Mud		
Raw		1	48.83	40.29			Scale-Converted		1	4.89	2.06		
РМА		2	45.12	42.22			PMA		2	4.29	2.44		
· · · · · · · · · · · · · · · · · · ·		- 3	51.27	53.08					3	5.37	4.62		
		4	40.83	37.04					4	3.60	1.41		
		5	51.03	20.56					5	5.33	0.00		
Anova: Single Factor							Anova: Single Factor						
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
Gravel	5	237.08	47.416	19.64018			Gravel	5	23.48065	4.696129	0.561451		
Mud	5	193.19	38.638	138.3747			Mud	5	10.526	2.1052	2.834771		
ANOVA					· · · · · ·		ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	192.6332	1	192.6332	2.438165	0.157038	5.317645	Between Groups	16.78228	1	16.78228	9.882912	0.013728	5.317645
Within Groups	632.0596	8	79.00745				Within Groups	13.58489	8	1.698111			
Total	824.6928	9					Total	30.36717	9				
			1										

Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scaled) for the midstream sample location, Powder Mill Park, using 1-way ANOVA.

							والمراجع	 		 	
			Midstream								
			Veg	Mud							
Raw		1	16	1							
NCO		2	15	7	,	1	······································				
		3	15	12							
		4	16	7							
		5	16	5							
Anova: Single Factor											
							······································		· ·		
SUMMARY											
Groups	Count	Sum	Average	Variance			· · · · · · · · · · · · · · · · · · ·				
Veg	5	78	15.6	0.3				 		 	
Mud	5	32	6.4	15.8						 	
ANOVA											
Source of Variation	SS	df	MS	F	P-value	F crit					
Between Groups	211.6	1	211.6	26.28571	0.000899	5.317645					
Within Groups	64.4	8	8.05								
Total	276	9									

Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scaled) for the midstream sample location, Powder Mill Park, using 1-way ANOVA.

			Downstream							Downstream			
Raw		Gravel	Veg	Mud			Scale-Converted		Gravel	Veg	Mud		
Taxa Richness	1	25.00	15.00	18.00			Taxa Richness	1	7.06	4.30	6.82		
	2	30.00	20.00	14.00				2	8.61	6.80	4.72		
	3	25.00	19.00	10.00				3	7.06	6.40	2.50		
-	4 -	24.00	12.00	17.00		1		4	6.76	3.00	6.36		
	5	23.00	17.00	15.00				5	6.47	5.50	5.45		
·													
Anova: Single Factor							Anova: Single Factor		×				
SUMMARY		والمتحديدة والمتقاصي والمتعادي والمتعادين					SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
Gravel	5.00	127	25.40	7.30			Gravel	5	35.96405	7.19281046	0.68809005		
Veg	5.00	83	16.60	10.30			Veg	5	26	5.2	2.435		
Mud	5.00	74	14.80	9.70			Mud	5	25.85859	5.17171717	2.88790685		
· · · · · ·													
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	321.73	2	160.87	17.68	0.000	3.89	Between Groups	13.4282	2	6.71409292	3.35090487	0.069789	3.88529
Within Groups	109.20	12	9.10	<u>.</u>			Within Groups	24.044	12	2.00366563			
Total	430.93	14					Total	37.4722	14	.*			
			Downstream							Downstream	-		
Raw			Gravel	Veg			Scale-Converted			Gravel	Veg		
EPT Richness		1	1.00	0.00			EPT Richness		1	1.25	0.00		
		2	5.00	0.00					2	4.72	0.00		
		3	4.00	0.00					3	4.17	0.00		
		4	• 4.00	0.00				-	4	4.17	0.00		
Υ		5	3.00	0.00					5	3.61	0.00		
Anova: Single Factor							Anova: Single Factor						
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
Gravel	5.00	17	3.40	2.30			Gravel	5	17.91667	3.58333333	1.85570988		
Veg	5.00	0	0.00	0.00			Veg	5	0	0	0		
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	Fcrit
Between Groups	28.90	1	28.90	25.13	0.001	5.32	Between Groups	32.1007	1	32.1006944	34.5966736	0.000369	5.31764
Within Groups	9.20	8	1.15				Within Groups	7.42284	8	0.92785494			
Total	38.10	9					Total	39.5235	9				
							1						

Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scaled) for the downstream sample location, Ellison Park, using 1-way ANOVA.

			Downstream							Downstream			
Raw		Gravel	Veg	Mud			Scale-Converted		Gravel	*Veg	Mud		
HBI	1	6.11	4.30	7.48			HBI	1	5.48	9.60	6.30		
айтаны _{н мар} алуунун колонологиялан колонологиян колонологиян колонологиян колонологиян колонологиян колонология	2	6.62	4.48	8.72	,			2	4.85	9.22	3.20		
	3	7.68	4.46	8.59		,		3	3.52	9.40	3.53		
· · · · · · · · · · · · · · · · · · ·	4	7.82	4.92	5.92				4	3.35	8.40	10.00		
· · · · · · · · · · · · · · · · · · ·	5	6.10	5.52	8.44				5	5.50	7.40	3.90		
									````				
Anova: Single Factor							Anova: Single Factor						
SUMMARY							SUMMARY						
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
Gravel	5.00	34.34086	6.87	0.70			Gravel	5	22.69893	4.53978558	1.09272859		
Veg	5.00	23.68	4.74	0.25			*Veg	5	44.02	8.804	0.82408		
Mud	5.00	39.15	7.83	1.38			Mud	5	26.925	5.385	8.143625		
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F ·	P-value	F crit	Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	25.07	2	12.54	16.19	0.000	3.89	Between Groups	50,9791	2	25,4895609	7,6009331	0.00737	3,88529
Within Groups	9.29	12	0.77				Within Groups	40.2417	12	3.35347786			
	1									0.000 11100			
Total	34.36	14					Total	91.2209	14	-			
an da ana amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr' Ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'			Downstream							Downstream			
			Gravel	Mud						Gravel	Mud		
Raw		1	37.42	57.65			Scale-Converted		1	3.05	5.53		
РМА		2	* *37.46	40.39			PMA		2	3.06	2.08		
	1	3	37.38	44.61					3	3.05	2.92		
······································		4	28.43	55.92					4	1.45	5.18		
		5	39.29	43.7				1	5	3.35	2.74		
······································	1												
Anova: Single Factor	1			·····			Anova: Single Factor						
SUMMARY		[					SUMMARY			· · · · ·			
Groups	Count	Sum	Average	Variance			Groups	Count	Sum	Average	Variance		
Gravel	5.00	179.98	36.00	18.55			Gravel	5	13.95806	2.7916129	0.57955437		
Mud	5.00	242.27	48.45	60.68			Mud	5	18.454	3.6908	2.4271252		
											والمعاقدة ويواكا الألافة المعاملات		
ANOVA							ANOVA						
Source of Variation	SS	df	MS	F	P-value	Fcrit	Source of Variation	SS	df	MS	F	P-value	Fcrit
Between Groups	388.00	1	388.00	9.80	0.014	5.32	Between Groups	2.02134	1	2.02134359	1.34456868	0.279666	5.31764
Within Groups	316.89	8	39.61				Within Groups	12.0267	8	1.50333979			
Total	704.00	0					Total	14 0481	۵			·	
1000	107.90		L		Lauranter and the second	1		10701	7				

Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scaled) for the downstream sample location, Ellison Park, using 1-way ANOVA.

	1.		1		1		,					
							· · · · ·					-
			Downstream							\$ .		
			Veg	Mud							-	
Raw		1	13	9								
NCO		2	18	7		<i>i</i>						
.*		3	17	3								
	1	4	10	6								
		5	16	9					×			
Anova: Single Factor							·				 	
SUMMARY												
Groups	Count	Sum	Average	Variance								
Veg	5.00	74	14.80	10.70							 	
Mud	5.00	34	6.80	6.20								
					]							
ANOVA	++				+		· · · · · · · · · · · · · · · · · · ·			*	 	
Source of Variation	SS	df	MS	F	P-value	F crit						
Between Groups	160.00	1	160.00	18.93	0.002	5.32		1				
Within Groups	67.60	8	8.45									
Total	227.60	9										

3

Appendix C. Habitat (gravel, vegetation and mud) metric comparisons (both raw and scaled) for the downstream sample location, Ellison Park, using 1-way ANOVA.

Appendix C. Student Newman-Keuls test comparing raw and scaled taxa richness values among habitats (gravel, vegetation and mud) within the same location.

an a	Raw	0.05	0.01	0.01	Gravel	Veg	Mud	G-V	V-M	G-M
Downstream	9.10	2.94	3.93	4.36	25.40	16.60	14.80	8.80	1.80	10.60
Upstream	56.73	7.33	9.82	10.89	37.80	24.60	19.20	13.20	5.40	18.60
Midstream	17.43	4.06	5.44	6.04	29.80	25.60	19.40	4.20	6.20	10.40
	Scaled									
Downstream	2.11	1.41	1.89	2.10	7.19	5.20	5.12	1.99	0.08	2.07
Upstream	4.09	1.97	2.64	2.93	9.28	7.74	7.38	1.54	0.36	1.89
Midstream	1.94	1.35	1.81	2.01	8.36	9.40	7.37	1.04	2.03	0.99
		Gravel	Veg	Mud	G-V	V-M	G-M			
Downstream	Raw	25.40	16.60	14.80	8.80	1.80	10.60		*	<.05
0.05	2.94				*	ns	*		**	<.01
0.01	3.93				**	ns	**		***	<.005
0.01	4.36				***	ns	***	***	ns	***
Downstream	Scaled	7.19	5.20	5.12	1.99	0.08	2.07			
0.05	1.41				*	ns	*			
0.01	1.89				**	ns	**			
0.01	2.10				ns	ns	ns	**	ns	**
Upstream	Raw	37.80	24.60	19.20	13.20	5.40	18.60			
0.05	7.33				*	ns	*			
0.01	9.82				**	ns	**			
0.01	10.89				***	ns -	***	***	ns	***
Upstream	Scaled	9.28	7.74	7.38	1.54	0.36	1.89			
0.05	2.64				ns	ns	ns			
0.01	2.93				ns	ns	ńs			
0.01	9.28				ns	ns	ns	ns	ns	ns
Midstream	Raw	29.80	25.60	19.40	4.20	6.20	10.40			
0.05	4.06				*	*	*			
0.01	5.44				ns	**	**			
0.01	6.04				ns	***	***	*	***	***
Midstream	Scaled	8.36	9.40	7.37	1.04	2.03	0.99			
0.05	1.35				ns	*	ns			
0.01	1.81				ns	**	ns			
0.01	2.01				ns	***	ns	ns	ns	ns
								2		
	Raw	0.05	0.01	0.01	Gravel	Veg	Mud	G-V	V-M	G-M
------------	--------	--------	------	------	--------	------	------	------	------	-------
Downstream	0.77	0.86	1.15	1.27	6.87	4.74	7.83	2.13	3.09	0.96
Upstream	0.92	0.93	1.25	1.39	5.88	4.08	6.78	1.80	2.70	0.91
Midstream	0.30	0.53	0.71	0.79	6.06	5.83	7.34	0.23	1.51	1.27
	Scaled									
Downstream	3.35	1.78	2.39	2.65	4.54	8.80	5.39	4.26	3.42	0.85
Upstream	2.35	1.49	2.00	2.22	5.78	9.04	7.97	3.26	1.07	2.19
Midstream	1.25	1.09	1.46	1.62	5.55	6.92	6.66	1.37	0.26	1.11
					[]					
		Gravel	Veg	Mud	G-V	V-M	G-M		*	<.05
Downstream	Raw	6.87	4.74	7.83	2.13	3.09	0.96		**	<.01
0.05	0.86				*	*	*		***	<.005
0.01	1.15				**	**	ns			
0.01	1.27				***	***	ns	***	***	*
Downstream	Scaled	4.54	8.80	5.39	4.26	3.42	0.85			
0.05	1.78				*	*	ns			
0.01	2.39				**	**	ns			
0.01	2.65				***	***	ns	***	***	ns
Upstream	Raw	5.88	4.08	6.78	1.80	2.70	0.91			
0.05	0.93				*	*	ns			
0.01	1.25			`	**	**	ns			
0.01	1.39				***	***	ns	***	***	ns
Upstream	Scaled	5.78	9.04	7.97	3.26	1.07	2.19			
0.05	1.49				ns	*	*			
0.01	2.00				ns	**	**			
0.01	2.22		d		ns	ns	ns	ns	**	**
Midstream	Raw	6.06	5.83	7.34	0.23	1:51	1.27			
0.05	0.53				ns	*	*			
0.01	0.71				ns	**	**			
0.01	0.79				ns	***	***	ns	***	***
Midstream	Scaled	5.55	6.94	6.66	1.39	0.28	1.11			
0.05	1.09				*	ns	*			
0.01	1.46				ns	ns	ns			
0.01	1.62				ns	ns	ns	ns	ns	ns

÷

7

Appendix C. Student Newman-Keuls test comparing raw and scaled HBI values among habitats (gravel, vegetation and mud) within the same location (upstream, midstream and downstream).

## APPENDIX D.

Comparison among random, haphazard and whole sample metrics including Taxa Richness, Ephemeroptera-Plecoptera-Trichoptera Richness, Hilsenhoff Biotic Index and Percent Model Affinity using 1-way ANOVA and Student Newman-Keuls.

2

Appendix D. 1-way ANOVA metric comparison (TR, EPT, HBI and PMA) among haphazard and random 100 counts and whole counts.

		TAXA F	RICHNESS		ىرىنىڭ تىلىكى مىي سىرىي ئانىڭ توغى تەركى						HBI			1	
Sample		Нар СС	Rand CC	Rand NB	Whole NB	1		Sample	1	Нар СС	Rand CC	Rand NB	Whole NB	1	
	1	14	17	16	26				1	2.22	1.36	4.97	5.83	1	
	2	12	10	12	. 18				2	2.08	1.04	6.53	6.47		
	3	16	15	17	20				3	2.93	2.07	4.1	5.49		
	4	15	13	16	20				4	2.5	2.09	4.4	5.47		
	5	14	13	14	18				5	3.32	2.5	5.5	4.36		
Anova: Single Fa	cto	r		SUMMARY	Ý			Anova: Single Fac	tor			SUMMARY	(	<b>-</b>	
Groups		Count	Sum	Average	Variance			Groups		Count	Sum	Average	Variance	1	
Hap CC		5	71	14.2	2.2			Hap CC		5	13.05	2.61	0.2629	]	
Rand CC		5	68	13.6	6.8			Rand CC		5	9.06	1.812	0.35437		
Rand NB		5	75	15	4			Rand NB		5	25.5	5.1	0.92795		
Whole NB		- 5	102	20.4	10.8			Whole NB		5	27.62	5.524	0.58688		
ANOVA								ANOVA						-	
Source of Variation	on	SS	df	MS	F	P-value	F crit	Source of Variation	n	SS	df	MS	F	P-value	F crit
Between Groups		146	3	48.66667	8.179272	0.0016	3.2389	Between Groups		50.1225	3	16.70749	31.344656	6E-07	3.2389
Within Groups		95.2	16	5.95				Within Groups		8.5284	16	0.533025			
Total		241.2	19					Total		58.6509	19				

		l	EPT							F	РМА	in an			
Sample		Нар СС	Rand CC	Rand NB	Whole NB			Sample	1	Нар СС	Rand CC	Rand NB	Whole NB		
	1	5	6	9	14			·	1	41	50	61	51.17		
	2	5	- 4	5	8				2	37	50	63	54.88		
	3	5	- 7	10	12				3	41	33	44.98	48.73		
	4	6	7	6	8				4	31	31	40.83	59.17		
	5	4	7	5	7				5	55	55	46.56	48.97		
Anova: Single Fa	acto	-		SUMMAR	Y	•		Anova: Single Fac	ctor			SUMMARY			
Groups		Count	Sum	Average	Variance			Groups		Count	Sum	Average	Variance		
Hap CC		5	25	5	0.5			Hap CC		5	205	41	78		
Rand CC		5	31	6.2	1.7			Rand CC		5	219	43.8	120.7		
Rand NB		5	35	7	5.5			Rand NB		5	256.37	51.274	100.75188		
Whole NB		5	49	9.8	9.2			Whole NB		5	262.92	52.584	19.64018		
ANOVA								ANOVA						•	
Source of Variat	ion	SS	df	MS	F	P-value	F crit	Source of Variatio	n	SS	df	MS	F	P-value	F crit
Between Groups	5	62.4	3	20.8	4.923077	0.0131	3.2389	Between Groups		477.899	3	159.2998	1.9969136	0.1551	3.2389
Within Groups		67.6	16	4.225				Within Groups		1276.37	16	79.77302			
Total		130	19					Total		1754.27	19				

promotion and an											·····			
Таха									HCC-	нсс-	HCC-	RCC-	RCC-	RNB-
Richness	Raw	0.05	0.01	0.005	нсс	RCC	RNB	WNB	RCC	RNB	WNB	RNB	WNB	WNB
TR	5.95	2.55	3.28	3.58	14.20	13.60	15.00	20.40	0.60	0.80	6.20	1.40	6.80	5.40
EPT	4.23	2.15	2.76	3.02	5.00	6.20	7.00	9.80	1.20	2.00	4.80	0.80	3.60	2.80
HBI	0.53	0.76	0.98	1.07	2.61	1.81	5.10	5.52	0.80	2.49	2.91	3.29	3.71	0.42
PMA	79.77	9.35	12.00	13.12	41.00	43.80	51.27	52.58	2.80	10.27	11.58	7.47	8.78	1.31
· · · · · · · · · · · · · · · · · · ·	Scale													
TR	0.57	0.79	1.02	1.11	3.74	3.51	3.97	5.65	0.23	0.23	1.91	0.46	2.14	1.68
EPT	1.17	1.13	1.45	1.59	4.76	5.47	5.80	7.33	0.71	1.04	2.57	0.33	1.86	1.53
HBI	0.64	0.84	1.08	1.18	9.39	9.87	6.73	6.21	0.48	2.67	3.18	3.14	3.66	0.51
PMA	2.26	1.58	2.02	2.21	3.62	4.09	5.32	5.55	0.46	1.70	1.92	1.23	1.46	0.23
						HCC-	HCC-	HCC-	RCC-	RNB-	RCC-			
		HCC	RCC	RNB	WNB	RCC	RNB	WNB	RNB	WNB	WNB		*	<.05
TR	Raw	14.20	13.60	15.00	20.40	0.60	0.80	6.20	1.40	5.40	6.80		**	<.01
0.05	2.55					ns	ns	*	ns	*	*		***	<.005
0.01	3.28				ļ	ns	ns	**	ns	**	**			
0.005	3.58					ns	ns	***	ns	***	***			
TR	Scale	3.74	3.51	3.97	5.65	0.23	0.23	1.91	0.46	1.68	2.14			
0.05	0.79					ns	ns	*	ns	*	*			
0.01	1.02					ns	ns	**	ns	**	**			
0.005	1.11					ns	ns	***	ns	***	***			
EPT	Raw	5.00	6.20	7.00	9.80	1.20	2.00	4.80	0.80	2.80	3.60			
0.05	2.15					ns	ns	*	ns	*	*.			
0.01	2.76					ns	ns	**	ns	**	**			
0.005	3.02					ns	ns	***	ns	ns	***			
EPT	Scale	4.76	5.47	5.80	7.33	0.71	1.04	2.57	0.33	1.53	1.86			
0.05	1.13					ns	ns	*	ns	*	*			
0.01	1.45					ns	ns	**	ns	**	**			
0.005	1.59					ns	ns	***	ns	ns	***			
HBI	Raw	2.61	1.81	5.10	5.52	0.80	2.49	2.91	3.29	0.42	3.71			
0.05	0.76					*	*	*	*	ns	*			
0.01	0.98					ns	**	**	**	ns	**			
0.005	1.07					ns	***	***	***	ns	***			
HBI	Scale	9:39	9.87	.6.73	6.21	0.48	2.67	3.18	3.14	0.51	3.66			
0.05	0.84					ns	*	*	*	ns	*			
0.01	1.08					ns	**	**	**	ns	**			
0.005	1.18					ns	***	***	***	ns	***			

**Appendix D**. Student Newman-Keuls metric comparison (TR, EPT and HBI) among haphazard and random 100 counts and whole sample analyses for raw and scaled values.

## APPENDIX E.

Raw and scaled metric values for Taxa Richness, Ephemeroptera-Plecoptera-Trichoptera Richness, Hilsenhoff Biotic Index, Percent Model Affinity, Non-Chironomid/Oligochaete Richness, Shannon-Weiner Diversity and Dominance-3 for upstream, midstream and downstream locations in the gravel, vegetation and mud habitats.

2

**Appendix E.** Metric Summary for Taxa Richness, EPT and NCO Richness, Hilsenhoff Biotic Index, Percent Model Affinity, Shannon-Weiner Diversity and DOM-3.

		TR	2 Y C 10(1, 1)	EPT		HBI		<b>P</b> MA	000000000000000000000000000000000000000	NCO		DIV		DOM-3	
1	Frial	Raw	Scale	Raw	Scale	Raw	Scale	Raw	Scale	Raw	Scale	Raw	Scale	Raw	Scale
Upstream	1	41	10	10	7.27	5.26	6.55	37.17	3.01	NA	NA	NA	NA	NA	NA
Gravel	2	48	10	7	5.91	5.69	6.01	46.94	4.59						
	3	27	8	7	5.91	6.77	4.66	69.69	8.05						
	4	45	10 0	0	6.82	5.35	5.25 6.44	02.54	8.55				<b>11 11</b>		
Instream	1	27	10	7	8.50	5 57	7.40	NA	NA	13	9.00	NA	NA	NA	NA
Vegetation	2	33	10	4	6.00	5.23	7.80	H H		13	9.00	H H	H H	H #	
	3	16	5	3	4.50	2.83	10.00		H #	10	7.30				
	4	33	10	5	7.00	3.59	10.00		* *	21	10.00	* *	* *	8.11	# #
	5	14	4	3	4.50	3.19	10.00			7	5.90	# #	H H	11 11	# #
Upstream	1	19	7	NA	NA	6.16	9.61	58.75	5.75	6	NA	2.44	4.70	54.69	8.39
Mud	2	15	5	** **	** **	7.37	6.59	50.57	4.11	8		1.87	1.85	73.98	5.17
	3	21	8	11 11		8.03	4.93	45.45	3.09	8		1.32	0.00	88.72	2.71
	4	10	9	# #		5.80	10.00 8 74	41.85	2.37	8 7		2.34	4.20	53.28	8.02 6.00
Midstream	3	38	10	14	9.50	5.99	5.64	48.83	4.92	NA	NA	NA	NA	NA	NA
Gravel	2	25	7	8	6.36	6.67	4.79	45.12	4.29	**		# #	H H		
	3	30	9	12	8.50	5.89	5.76	51.27	5.37		* 8	<b>H</b> A.			
	4	28	8	8	6.36	5.54	6.19	40.83	3.60	**	H H	**			
	5	28	8	7	5.91	6.22	5.34	51.03	5.33	**		H H	H N	N N	N N
Midstream	1	27	10	9	9.60	6.64	5.50	NA	NA	16	10.00	NA	NA	NA	NA
Vegetation	2	23	9	10	10.00	5.89	6.90	<u>и</u> и и и	# # # #	15	10.00	**			
	5	23	9 10	10	10.00	5.22	7.90		99 99	15	10.00				
	4	20	10	0	9.60	5.90	6.80		H H	10	10.00		16 11	11 11	
Midstream	1	15	5	NA	NA	7.88	5 30	40.29	2.06	1	NA	1.39	0.00	89 22	2.63
Mud	2	19	7	* *		7.53	6.17	42.22	2.44	7	11 37	1.95	2.25	66.67	6.39
	3	26	10			7.95	5.11	53.08	4.62	12		1.97	2.35	68.22	6.13
	4	22	9			6.85	7.88	37.04	1.41	7	# #	2.01	2.55	67.31	6.28
	5	15	5		<b>#</b> #	6.47	8.82	20.56	0.00	5		1.95	2.25	63.53	6.91
Downstream	1	25	7	1	1.25	6.11	5.48	37.42	3.05	NA	NA	NA	NA	NA	NA
Gravel	2	25	9	Э 4	4.72	6.62 7.69	4.85	37.40	3.06					11 11	
	3 4	23	7	4 A	4.17	7.00	3.32	28 43	5.05 1.45	# #			H H		
	5	23	6	3	3.61	6 10	5.50	39.29	3.35	# #			88 BF		
Downstream	1	15	4	0	0.00	4.30	9.60	NA	NA	13	9.00	NA	NA	NA	NA
Vegetation	2	20	7	0	0.00	4.48	9.22	н н	" "2	18	10.00	** **	11 11	H H	11 11
	3	19	6	0	0.00	4.46	9.40			17	10.00		н н	<del>1</del> 1 H	и и
	4	12	3	0	0.00	4.92	8.40		**,	10	7.30	**	ff 19	H H	H H
n	5	17	6	0	0.00	5.52	7.40		**	• 16	10.00	1 4 1	" "	<b>N H</b>	2.00
Downstream Mad	1	18	7	NA ""	NA	1.48	6.30	57.65	5.53 2 00	9 7	NA ""	1.41	0.00	86.47	3.09
TATRO .	2	14	3 2			0.12 8.50	3.20 3.52	40.59	2.08	3		0.82	0.00	34.70 07 88	1.33
	4	10	2 6	H H		0. <i>39</i> 5 92	3.33 10.00	55 92	5 18	5		1.65	0.00	74 73	5.05
	5	15	5	# #		8.44	3.90	43.70	2.74	9	# #	0.90	0.00	93.72	1.57