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Abstract 

The prevalence of obesity in the United States of America has 

increased over the last twenty years. This prevalence has led to an increase 

in the study of the hormones involved control of metabolism and satiety to 

further understand the factors involved in obesity. One of these hormones is 

melanin-concentrating hormone (MCH). Many of the studies of MCH focus on 

the brain, while little work is done on the peripheral tissues. In adipose cells 

stimulation with MCH causes a release of leptin through activation of melanin­

concentrating hormone receptor-1, a G-protein coupled receptor. MCHR1 

becomes desensitized after activation with MCH, but the method of 

desensitization is unknown. ELISA studies show that internalization of the 

receptor is low unless proteins in the clathrin pathway are incorporated, so 

another method of desensitization must be occurring. Through sucrose­

gradient centrifugation MCHR1 co-localizes with caveolin-1, suggesting a role 

for lipid rafts in receptor dynamics. This thesis will examine the extent of 

interaction between caveolin-1 and MCHR1. The first aim will be to determine 

the degree of co-localization of receptor and caveolin-1 under varying 

conditions. The second aim will be to analyze the dynamics of the MCHR1 

within caveolae after MCH stimulation and with expression of the arrestins. 

The goal will be to better understand the interaction between caveolae and 

MCHR1 and possibly provide insight into MCHR1 's mode of desensitization. 
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Introduction 

Obesity: a Growing Epidemic in the United States 

Obesity is a growing epidemic throughout the United States. According 

to the Center for Disease Control and Prevention (CDC), one third of all adults 

and a staggering 17 percent of children are obese (Flegal et al., 2010). In 

i 985, oniy 8 states had a high obesity incidence of 10 to 15 percent. Twenty­

five years later, 12 states have an obesity incidence over 30 percent (Flegal, 

2012). This dramatic increase is detrimental to the overall health of the nation. 

Overweight and obese individuals have a greater propensity to develop 

serious diseases, which include coronary heart disease, type 2 diabetes, 

hypertension, respiratory problems, various cancers and reproductive 

disturbances (Must, 1999; Pasquali et al., 2003). 

This increase in obesity incidence has spurred numerous companies to 

attempt to develop an easy cure. Weight-loss pills containing stimulants and 

crash diet plans offer quick results with unhealthy side effects. One example 

of a risky diet pill is fenfluramine/phentermine (nicknamed fen/phen), which 

caused pulmonary hypertension and heart valve problems in users; some of 

these complications proved to be fatal (Berg, 1999). Healthy eating habits and 

exercise have shown results for those willing to do the work. But, what if an 

individual does put in the time and effort and a healthy lifestyle still does not 

work? In these cases, it is possible that hormonal imbalance is causing 
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decreased metabolism and weight gain. Is there a safer way of developing a 

drug to boost an individual 's weight loss? 

Hormone pathways are complex and depend on numerous inputs from 

the body and external feedback to maintain balance (Jehan et al. , 1993; 

Alkemade et al., 2005; Wintermantel et al., 2006). Hormones monitor 

numerous functions in the body, one of which is the drive to take in food. The 

regulation of food intake and metabolism is complex, with numerous 

hormones and signaling pathways contributing to the overall process (Wang 

et al., 2002 ; Berthoud, 2008). The proteins that control hormonal pathways 

are broken down into four distinct subgroups: tyrosine-derivatives, steroids, 

peptides and proteins. While there are different types, each hormone acts 

basically in the same way: by attaching to a receptor and causing a cellular 

change within the targeted ceiis. As hormones and their receptors are 

studied, they provide an important method of targeting diseases through 

treatment with hormones themselves or with receptor blockers to inhibit 

hormonal action. 

One well-known and effective hormonal drug is the oral contraceptive 

pill, used by 10.7 million women in the United States (Mosher et al. , 2010). 

Hormonal contraception works by overriding the natural cycle of hormones in 

a woman's body and prevents pregnancy from occurring. The main type of 

contraception is a combination of estrogen and progesterone that ensures no 

egg maturation and no ovulation (Hatcher, 1998; Rivera al., 1999). In 

3 



contrast, examples of treatments that block receptors include a- and r3-

blockers, which act upon the a- and r3- adrenergic receptors. These receptor 

agonists help to treat numerous diseases from cardiac arrhythmias and 

hypertension to post-traumatic stress and social anxiety disorders (Frishman 

et al. , 2005). 

Since both administration of hormones and receptor blockers have 

been used successfully, it is possible that there are parts of the satiety 

pathway that could be targeted as a treatment for obesity. There are 

numerous hormones involved in hunger and satiety, making targeting in this 

way a complex task. Understanding how each hormone that contributes to 

metabolism and food intake works is vital to successfully treating the growing 

numbers of obese individuals. This thesis will focus on one hormone in the 

pathway, melanin-concentrating hormone, its function and behavior within the 

cell membrane. 

G-Protein Coupled Receptors 

Many hormones utilize G protein-coupled receptors (GPCRs) for 

signaling. GPCRs have seven hydrophobic a-helix trans-membrane domains 

with an internal carboxyl-terminal end, and external amino-terminal end. They 

interact internally with guanine nucleotide binding proteins or G-proteins. 

are numerous types of GPCR families, where the external sections of 
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the receptor interact with specific hormones to cause a cellular response 

(Rosenbaum et al., 2009). 

Internally, G-proteins function in a similar way, with signal specificity 

produced by the types of G-protein subunits used (Figure 1 ). The G-protein is 

a heterotrimer that is comprised of two protein subtypes, the a, and �Y 

obligate dimer and each plays a part in the activation of the GPCR. The a-

subunit is a GTPase that acts upon guanosine diphosphate (GDP) when the 

G protein is inactive. The GTP is bound to the a-subunit when the GPCR is in 

a resting state (Figure 1 A). After the receptor is activated through ligand 

binding, the a-subunit becomes activated and releases GDP then binds to 

guanosine triphosphate (GTP) (Figure 1 B). The conformational change in the 

a-subunit after ligand binding also causes the �y-subunit to dissociate. After 

dissociation both the a-subunit and the fjy-subunit initiate various internai 

signaling cascades through interactions with effector molecules (Figure 1 C). 

After this interaction, the a-subunit catalyzes the hydrolysis of GTP to GDP, 

which restores the association between the a-subunit and the r3v-complex 

(Figure 1 D). This returns the GPCR to its resting state, where it can begin the 

process again if hormone is available (Boguski and McCormick, 1993). 

Depending upon the type of a-subunit, the GPCR can act in many 

different ways. The three well-known pathways are Gila, Gs and Gq and each 

activates a different internal signaling pathway depending on its a-subunit 

(Figure 2). The cyclic AMP (cAMP) pathway is either stimulated by Gs 
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signaling or inhibited by Gila· Through adenylyl cyclase, these two G-proteins 

can change the generation of cAMP and indirectly effect the activity of protein 

kinase A (PKA) (Figure 2A&B). The Gq pathway works not on cAMP but uses 

Phospholipase C (PLC) to cleave membrane bound PIP2 into inositol 

triphosphate ( IP3) and diacylglycerol (DAG) (Figure 2C). Once cleaved, DAG 

stays in the membrane and activates Protein Kinase C (PKC) with the 

assistance of calcium, while the IP3 acts upon the IP3 receptors in the 

endoplasmic reticulum to release Ca2+ stored there. Finally, the G0 type of 

receptor also activates the PKC pathway. For both the Gq and G0 pathways, 

the activation of PKC causes RAS to be phosphorylated and signal to RAF 

and activates the MAPK pathways (Figure 2C&D) (Marinissen and Gutkind, 

2001 ). These internal signaling cascades can cause numerous biological 

responses, the most common being a change in the transcription of targeted 

genes within the cell. 

Due to the different nature of GPCR's, hormones can have both short­

and long-term effects. In the short term, increases in cellular calcium can 

cause endocytosis of stored hormone, much like the release of thyroid­

stimulating hormone (TSH) from the pituitary in response to the Gq pathway of 

the thyrotropin-releasing hormone (TRH) receptor. This release of TSH 

causes the thyroid to release thyroid hormone into the bloodstream (Blake, 

1974). In the long term, cells can alter transcription due to hormone 
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stimulation. One example is the stimulation of the adrenal glands with 

adrenocorticotropic hormone (ACTH), which uses a Gs pathway to cause 

release of cortisol from the adrenal glands. The cortisol released causes an 

increase in blood sugar due to a change in the transcription of glucagon and a 

suppression of the immune system (Marieb and Hoehn, 2010). 

The cyclic activation of a GPCR means that it can be continuously on. 

This continuous stimulation would be counterproductive for the cell, so there 

are numerous methods of terminating receptor signaling. First, having 

hormones that degrade allows for physical removal of the stimulus. Second, 

the receptor can be modified to become unresponsive. These modifications 

can be through phosphorylation, or ubiquination or even interactions with 

other moiecuies that can inactivate the receptor. Third, removai of the 

receptor from the membrane can cause desensitization, as there is no 

receptor to signal present on the membrane (Ferguson et al., 1998). 

Clathrin-mediated Endocytosis 

most characterized pathway for receptor internalization is clathrin­

mediated endocytosis. Thomas Roth and Keith Porter took the first electron 

micrograph images of clathrin-coated pits in 1964 (Roth and Porter, 1964). In 

1975, Barbara Pearse discovered and characterized the clathrin molecule that 
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was the cause of the pits seen by Roth and Porter (Pearse, 1976). The basic 

pathway of the clathrin-coated pit is simple: a pit (or invagination) is formed on 

the surface of the membrane coated in target proteins, and then the pit is 

physically removed from the membrane (Figure 3A). There are quite a few 

molecules that facilitate this type of removal from the membrane. One is 

clathrin, which forms a defined coat on the internal side of the invagination. 

There are over fifty other proteins that can be involved in the three-step 

process of internalization. The first step involves proteins that select the 

membrane area targeted for internalization and facilitate the attachment of 

clathrin and the coat proteins to the membrane (Traub, 2003). In the second 

step, proteins are involved in attaching the internalizing vesicle to actin and 

maintaining the energy dynamics needed to move the vesicle within the cell 

(Quaimann et ai., 1999). The proteins invoived in the third step help remove 

the protein coat from the clathrin-vesicle so that it can fuse with an endocytic 

vesicle which will then break down the targeted molecules (Masso I et al., 

2006). 

To identify these endocytic vesicles, certain G-proteins, unrelated to 

the heterotrimeric G-proteins previously mentioned, that are localized to 

specific vesicles are targeted. For identification of clathrin-coated vesicles and 

early endocytic vesicles, RAS-related protein 5 or Rab5 is used (Stenmark et 

al., 1995). Late endosomes are identified by RAS-related protein 7 or Rab? 

(Cantalupo et al., 2001 ). The proteins associated with vesicle internalization 
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are quite efficient, and the process of internalization can occur within a minute 

of the first clathrin molecule joining with the membrane. This can occur at 

rates of 0.35-0.45/minute-measured as the ratio of external radioactivity to 

internal radioactivity with iodinated EGF (Huang et al., 2004). 

Two molecules that are part of the clathrin-mediated pathway are r3-

Arrestin 1 and (3-Arrestin 2. These are proteins that are involved in alternative 

cargo adaption specific to internalization of certain types of receptors, such as 

the r3r adrenergic receptor. They bind to phosphorylated forms of the GPCR's 

and uncouple them from signaling pathways (Shenoy and Lefkowitz, 2003). 

The two r3-Arrestins help initiate the clathrin-mediated endocytic pathway that 

efficiently internalizes the receptor. These proteins have been more broadly 

linked to the facilitation of internalization of many more types of GPCR's. 

interactions between the arrestins and ERKi /2 and parts of the JAK/STAT 

pathway help facilitate cooperation between the signaling cascades and the 

GPCR (Luttrell and Lefkowitz, 2002). Overall, clathrin-mediated endocytosis is 

a complex pathway that efficiently removes receptors from the membrane and 

facilitates desensitization (Oakley et al., 1999). This is not the only method of 

desensitization, however, and interaction of receptor with lipid rafts can affect 

the dynamics of the receptor's activation and desensitization (Gustavsson et 

al., 1999). 
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Lipid Rafts 

Lipid rafts were first noticed in electron micrographs in the 1950's by 

Palade, seeing what were described as invaginations in the plasma­

membrane that were 'flask-shaped' (Palade, 1953). The invaginations were 

distinguishable from the clathrin-coated pit because they lacked a coat 

molecule, and the name caveolae was adopted, which is Latin for 'little caves'. 

These areas on the membrane are classically lighter in density than the rest 

of the lipid membrane due to high levels of cholesterol and sphingolipids 

(Fridriksson et al., 1999). They are characterized as being detergent insoluble, 

and so will resist being broken down like the rest of the membrane when a 

non-ionic detergent is applied to cells (Brown and Rose, 1992). 

There are three structural proteins, caveolin 1, 2, and 3, that are 

invoived in maintaining the stabiiity of caveoiae on the membrane. The most 

prominently expressed of the three is caveolin 1, which is present in 

endothelial, f ibrous and adipose tissues. Caveolin-1 oligomerizes to help form 

an invaginated structure with both the C and N termini intracellular (Parton, 

1996; Smart et al., 1999). Caveolin 2 is co-expressed with caveolin 1, but the 

loss of caveolin 2 does not affect the formation of caveolae, whereas the loss 

of caveolin 1 would affect formation of caveolae (Fujimoto et al., 2000). Finally, 

caveolin 3 is expressed only in skeletal and smooth muscle cells. The loss of 

caveolin 3 causes cardiac myopathy, which indicates a regulatory or signaling 

role for caveolin 3. In cases where the caveolin proteins are knocked out in 
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mice, there is normal fetal development but a decrease in life span due to 

issues with angiogenic responses, hypertrophic lungs and the aforementioned 

cardiomyopathy (Tang et al., 1996; Figarella-Branger et al., 2003). 

Caveolae and Internalization 

Caveolin is synthesized as a membrane protein in the endoplasmic 

reticulum, is sent to the golgi and is eventually packaged into lipid rafts. It is 

important to note that the pool of caveolin in the golgi is detergent soluble; the 

insoluble nature of caveolae arises when the cholesterol, sphingolipids and 

caveolin complex together (Monier et al., 1995). On the membrane itself, the 

caveolin proteins within caveolae are immobile: fluorescence recovery after 

photobleaching intracellular caveolin has a high mobile fraction, but caveolin 

associated with the membrane has a very low mobile fraction, about 5 to 1 O 

percent (Thomsen et al., 2002). Caveolae have been shown to internalize in 

response to administration of okadaic acid (a phosphatase inhibitor) and in 

response to infection with the Simian virus 40 (Parton et al., 1994; Pelkmans 

et al. , 2001 ) . After internalization, the structures remain as a stable unit, and 

they can either fuse with a caveosome, independently from a Rab5, or they 

can shuttle the membrane segment to an early endosome dependent upon 

Rab5. A caveosome is a large internal endosome containing caveolin-1. In 

either case the oligomerized caveolin can be shuttled back to the membrane, 

to maintain the caveolae structure (Figure 3B)(Nichols, 2003). 
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Caveolae and Signaling 

Caveolae play an important function in cellular signaling. Numerous 

cellular receptors have been immunoprecipitated in conjunction with caveolin 

proteins. Certain pathways like eNOS and Src kinase are dependent on the 

presence of caveolins and caveolae domains for proper function (lgarashi et 

al., 1999). Interestingly, caveolin-1 is known to interact with Ga subunits (s,o 

and i), H-RAS and Src kinases, but only when they are inactive. If the 

receptors are mutated so that they cannot signal, they do not associate with 

caveolin-1. This indicates that caveolins preferentially associate with inactive 

receptors and are dissociated from activated receptors (Li et al., 1995, 1996; 

Song et al., 1996). 

Caveolae, or caveolin, also interact with insulin receptors in adipocytes. 

In adipose tissue, insulin receptors move into and out of caveolae. The 

receptors move into caveolae to signal, and a decrease in signaling is seen 

when choiesterol is inhibited (Gustavsson et al., 1999). This means that the 

interaction between caveolae and the insulin receptor facilitates proper 

signaling for the receptor. In the cases of vascular endothelial growth factor 

(VEGF) and epidermal growth factor , they do not move into and out of 

caveolae. For these receptors, instead of a reduction in signaling due to 

cholesterol depletion, there is an increase in activation if caveolae domains 

are removed (Furuchi and Anderson, 1998; Labrecque et al., 2003). 
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Finally, an important function of caveolin lies in its effect on lipid 

regulation, through interactions with lipid molecules. There is a large amount 

of caveolin present in adipose tissue, with an almost a ten-fold difference 

between undifferentiated adipose cells and fully differentiated adipose cells 

(Fan et al., 1983). Adipose cell membranes are thought to be comprised of up 

to 40 percent caveolae domains (Parton and Simons, 2007). Caveolin has 

been shown to interact with cholesterol, fatty acids and lipid droplets in cell 

culture and in vivo (Sleer et al., 2001 ). It has a role in the uptake of fatty acids 

into the cells, along with the transport of cholesterol within the cell (Pol et al., 

2001, 2004). It is possible that for different receptors, the interaction between 

each of the caveolae components-cholesterol, sphingolipids and caveolin­

can regulate the activation of the receptor to produce the most effective 

signaiing potentiai required for the cell type (Chini and Parenti, 2004). 

Hormonal Regulation of Obesity: Leptin 

Leptin is an adipose-derived hormone that plays a very important part 

in the satiety pathway. In 1994, Jeffery M. Friedman discovered that loss of 

functional leptin was the cause of an obese strain of mice that had developed 

in the Johnson Laboratory's mouse colony in the 1950's (Zhang et al., 1994). 

Leptin is now known to signal from the adipose tissue into the hypothalamus 

in the brain, crossing the blood-brain barrier (Banks et al., 1996). It acts upon 
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neuropeptide Y neurons to inhibit the release of neuropeptide Y (an appetite 

stimulator) and by doing so, decreases food intake (Morrison et al., 2005). 

After the discovery of leptin, the obese mice in the Johnson 

Laboratory's colony could be classified into two different subgroups. The first 

is an ob/ob genotype that has either a loss of leptin production or a knockout 

of the gene and a db/db genotype that has a !oss of function of a knockout of 

the leptin receptor (Orel et al., 2006). Leptin ob/ob knockout mice show a 

dramatic increase in weight compared to wild-type that is largely the result of 

increased adipose tissue, which is due to hypometabolic rates and 

hyperphagia. Leptin knockout mice also showed an insulin intolerance and a 

reduction in reproductive abilities, both of which have also been seen in 

obese individuals as mentioned previously (Berg, 1999; Pasquali et al., 2003). 

After the discovery of leptin and its functional role in appetite control, it 

seemed that leptin might be the cure for obesity, so work was done to try to 

counteract the effects that leptin loss had on the ob/ob mice. After 

administration of leptin, knockout mice showed a decrease in body weight and 

a corresponding loss of fat tissue. They also regained their insulin sensitivity 

(Cohen et al. , 2001 ). Initially, it was thought that leptin could be the much 

sought-after cure for obesity in humans, producing a 'magic pill' to treat 

obesity. Using leptin as an anti-obesity treatment, however, only worked in an 

extremely small number of cases, which aptly corresponded to those who had 

a deficiency of leptin as the cause of their obesity. Leptin was successfully 
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used to treat a congenital leptin deficient child; she displayed marked 

hyperphagia at the age of 4 months, and at age 9 weighed 94.4 kilograms 

(99.9 percentile). Two weeks after leptin administration, she started losing 

weight, for a total of 15.6 kg within the year (Farooqi et aL, 1999). While leptin 

treatment worked in this case, it does not for the majority of the population 

(Bell-Anderson K.S. and Bryson J.M., 2004). 

Leptin is produced in the adipose tissue and the amount of leptin 

secreted in the blood is proportional to the amount of fat that is in the body 

(Klein et al., 1996). This means that obese individuals are producing more 

leptin, which would be acting on the same number of receptors. Obese 

individuals have a limited number of receptors available. There are also 

higher quantities of leptin in obese individuals' bloodstreams compared to thin 

individuais. This limits the number of available receptors to respond when 

there is an increase in leptin in response to food intake, which causes the 

negative feedback pathway to be less efficient, and eating continues 

(Rahmouni et al., 2002). This issue can lead to an even greater increase in 

weight, making correction of the imbalance important for successful weight 

regulation. 

Leptin has turned out to not be the magic drug that it was originally 

though to be. The hormonal control of satiety is much more complex than 

originally assumed, and each part of the pathway acts in a different manner. 

Therefore, it is important to understand the entire feedback pathway used to 
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produce leptin in order to more fully treat the imbalance occurring in obese 

individuals. This has led to an investigation into another hormone in the 

satiety pathway: melanin-concentrating hormone (MCH). 

Melanin-concentrating Hormone 

Melanin-concentrating hormone was first discovered in Teleost fish 

where it concentrates melanin and causes a lightening of the scales 

(Kawauchi et al., 1983). When it was identified in mammals, however, it was 

discovered that it has little to do with melanin control and much to do with the 

satiety pathway (Trites et al., 2001 ) . Melanin-concentrating hormone is 

composed of 19-amino acids and forms a ring (Figure 4). A disulfide bond 

between two centrally placed cysteine residues (Cys7 and Cys16) defines this 

ring structure, which is essential for proper hormone function (Lebl et al., 

1988). MCH expression is highly concentrated in the perikarya of the lateral 

hypothalamus and the zona incerta. Release of MCH from the perikarya can 

be stimulated through administration of potassium and calcium (Naito al., 

1985). Additionally, expression of the receptor is distributed throughout the 

body-which points to a neurotransmitter or a neuromodulator type role for 

the hormone (Bittencourt et al. , 1992). It is possible that MCH has many 

functions throughout the body, in both behavioral and physical responses. 

Physiologically, rats with high expression of, or treated with MCH were mildly 
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obese and had significant insulin resistance. Pancreatic islets were 

hypertrophied, indicating that MCH might be an activator of insulin production 

(Ludwig et al., 2001 ). Additionally, the receptor for MCH is found in beta-cells 

in the pancreas, further supporting a larger role for MCH in metabolism 

(Pissios et al., 2003). Treating rats with a MCH receptor inhibitor mimicked 

treatment with an antidepressant drug and eased social anxiety (BorrnNsky et 

al., 2002; Chen, 2002). 

MCH is known to be an appetite activator, and when administered 

orally it causes an increase in food consumption within the hour and the 

effects last up to six hours (Qu et al., 1996). Mice given MCH for long periods 

of time show increased weight, and if there is a universal overexpression of 

MCH in mice obesity and insulin resistance is observed (Ludwig et al., 2001 ) . 

interestingiy, ieptin obiob mice show an increase in MCH expression in the 

hypothalamus, possibly as an attempt to signal a greater response for leptin 

(Figure 5). Additionally, when mice are in a fasting state they have an 

increase in expression of MCH. After fasting for 24 to 48 hours there is an 

increase in mRNA for MCH to three times normal expression rates (Bertile et 

al., 2003). It is possible that leptin secretion, in addition to stimulating NPY 

and melanocyte-stimulating hormone, also feeds back negatively upon MCH 

secretion, forming an efficient feedback pathway to regulate satiety control 

(Figure 5). 
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Melanin-Concentrating Hormone Plays a Role in Appetite 

When MCH is knocked out in mice, there is a lean phenotype observed 

due to hypophagia and a corresponding hypermetabolic rate (Trites et al., 

1998). When the receptor for MCH is knocked out in mice, a lean phenotype 

is also observed and the mice are also resistant to diet-induced obesity. 

These knockout mice display hyperphagic and hypermetobolic symptoms 

(Chen, 2002). Work done on an antagonist for MCH receptor has shown that 

when antagonist is administered over a long period of time there is a dramatic 

decrease in the weight of diet-induced obese mice (Takekawa et al., 2002). 

This supports a role for MCH in the regulation of metabolism despite food 

intake. If this could be successfully applied in humans, it could effectively help 

obese individuals lose weight without serious side effects like the cardiac 

complications seen after use of fen-phen (Berg, 1999). There are two 

receptors for MCH, the first is present in all mammals while the second is 

found in only dogs and primates (Tan et al., 2002). 

Melanin-Concentrating Hormone Receptors 

The original MCH receptor was an 'orphan' receptor dubbed 

SLC1 /GPR24, which was identified as the specific GPCR for MCH, and was 

called MCHR1 (Chambers, 1999; Lembo, 1999). MCHR1 is present in all 

mammals, with human MCHR1 being highly homologous with rodent MCHR1, 
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with a protein BLAST relationship of 96% identities and 98% positives, 

meaning that 98% of the amino acids in each protein have the same 

functionality, and 96% are exactly the same (Blast1 ) . After the discovery of 

MCHR1, it was determined that humans have a second MCH receptor which 

shares sequence homology with the core of MCHR1 (Hill et al., 2001; Mori et 

al., 2001 ) . Comparing the human MCHR1 with MCHR2, a protein BLAST 

showed that MCHR2 is comparable to 70% of MCHR1, with 37% identities 

within that region and 57% positives (Blast 2). 

Studies done in rats show that the MCHR1 acts as both a Gi- and a Gq­

coupled receptor. Stimulated cAMP was suppressed and a change was seen 

in intracellular calcium levels, both of which were caused by MCHR1 

activation (Hawes et al., 2000; Pissios et al., 2003). In contrast, MCHR2 is 

thought to be exclusiveiy coupied to the Gq pathway (Hiil et ai., 2001; 

Rodriguez et al., 2001 ) . As there are numerous tissues that MCH acts upon, 

from adipose to neural tissue, it is quite possible that this stimulation causes 

different effects on each tissue type, as it could activate different 

transcriptional and cellular changes in each type of cell. 

The majority of work performed studying MCHR1 has been performed 

in the brain. Effects of MCH include mood control and regulation of the 

voiding-reflex (Borowsky et al., 2002; Hegde et al., 2009). Very little work has 

been done to examine the effects of MCH on the peripheral tissues in the 

body. As mentioned previously, there are MCHR1 receptors in �-cells in the 



pancreas, and MCH treatment of those cells may cause changes in insulin 

production (Pissios et al. , 2003). Little is known about how MCH enters the 

blood, if it can cross the blood-brain barrier, or if it is produced from another 

source in the body. 

Desensitization to Melanin-Concentrating Hormone 

MCH causes a release of leptin in adipose tissue. Having a high level 

of leptin in the bloodstream reduces the ability to sense, in the brain, an 

increase caused by food consumption. Adipose cells would need to become 

unresponsive to MCH after the initial release of leptin to reduce the amount of 

leptin produced. As stated previously, there are a few methods that a cell can 

use to keep a receptor from continuously activating. These include: 1) 

degradation of hormone, 2) conformationally changing the receptor through 

modification or interaction with another protein, and 3) physical removal of the 

receptor from the membrane. G-protein receptor kinases, or GRK's, 

specifically phosphorylate the substrate bound form of the receptor. This 

phosphorylation increases affinity for inhibitory proteins, or arrestins, which 

inhibits further signaling by the receptor (Lefkowitz and Freedman, 1996). 

Additionally , interactions between and regulators of G protein-

signaling (RGS) cause a decrease in the activation of the receptor by 

essentially increasing the rate of GTP to GDP conversion by the G protein 

Vries et al., 2000). Interactions between specific RGS's and MCHR1 have 



been identified, and may also play a role in receptor desensitization. 

Specifically, RGS2 causes MCHR1 inhibition of the Gaq pathway and RGS8 

causes inhibition of the Gaito and Gaq pathways (Miyamoto-Matsubara et al., 

2010). There has been work done that has shown internalization of receptor 

after stimulation with MCH (Saito et al., 2004; Miyamoto-Matsubara et al., 

2010). !t \"las also shown that if clathrin-mediated endocytosis was inhibited, 

there was only partial inhibition of endocytosis, pointing to an alternative 

method of internalization (Saito et al., 2004). What is unclear, however, is the 

length of time MCHR1 is desensitized, and if endocytosis is truly the cause of 

desensitization, or if there is more involved in the process. 

Recent Advances in MCHR1 Signaling 

MCH causes a release of leptin from adipose cells, and as there is 

desensitization to the hormone over a period of time, it needs to be 

determined which of the possible mechanisms is causing desensitization. 

Desensitization work being done by our lab has shown that after an initial 

increase in activated ERK in response to treatment, there is not a similar 

response seen after a second treatment was administered thirty minutes later. 

As stated previously, work done by Saito et al. has shown that in response to 

MCH treatment, there is an internalization of the receptor via the clathrin­

mediated endocytosis pathway. They determined that there was 

internalization of 21.9% seen in as little as five minutes, and a greater 
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internalization rate of 44.2% seen after 30 minutes of treatment (Saito et al., 

2004). Attempts by our lab to replicate their internalization process have 

shown that internalization of receptor without overexpression of components 

in the clathrin pathway only occurs at 15 percent (Maden, 2012). This is 

contradictory, and may be because of the addition of arrestins and GRKs by 

Saito. If these parts of the clathrin pathway are not overexpressed, then our 

work shows that there is not a high level of internalization. Tetsuka et al. also 

looked at mutations in the C-tail of the receptor and the effect of these 

mutations on activation. They found that if certain phosphorylation sites 

(Arg319 or Lys420) on the tail were mutated, cellular signaling was attenuated 

(Tetsuka et al., 2004). 

Work performed by our lab showed that if one of the Arrestins (� 1 or 

�2) is co-expressed with the receptor, the internaiization rate increases 

dramatically up to 40 percent (Maden, 201 This points to an inefficient 

method of internalization via the clathrin-mediated endocytosis pathway. This 

leads to the hypothesis that clathrin-mediated endocytosis is not the way that 

desensitization to MCH is occurring. If the cells were using clathrin-mediated 

endocytosis only to desensitize MCHR1, it would be expected that without 

transfection of other proteins in the pathway, a significant amount of receptor 

would be removed from the membrane in direct response to hormone 

treatment. As mentioned previously, internalization can still occur if the 

clathrin pathway is inhibited. 



So, caveolins could be interacting with MCHR1 to desensitize signaling. 

This was substantiated by Cook et al. through isolation nf lipid rafts via 

sucrose gradient centrifugation. They showed that caveolin-1 and MCHR1 are 

co-localized within the lipid raft fractions. Additionally, MCHR1 

immunoprecipitates with caveolin-1, suggesting that caveolin-1 complexes 

with MCHR1 within the ce! !  (Cook et al., 2008). This interaction could be 

influencing the desensitization of MCHR1 after MCH treatment. Insulin 

receptors move into caveolae to facilitate efficient signaling, so it seems that 

MCHR1 could be using some sort of version of this to change its signaling 

reactivity (Gustavsson et al., 1999). Also, the receptor could be moving into 

the caveosome after activation at a lower rate than would be seen if the 

clathrin pathway was being used. The method of MCHR1 desensitization is 

unclear, and this thesis wiii attempt to answer some of these questions. 

Specific Aim 1 

Localization of MCHR1 within caveolae has been shown by Cook al. 

in CHO cells (Cook al., 2008). However, the isolations were performed in a 

singular cell type, with one method of isolation and utilizing an epitope tag to 

blot for the receptor. Modifying any these parameters could cause the 

receptor location to change, although it is hypothesized that the interaction 

between MCHR1 and caveolin-1 will be seen regardless of isolation 

28 



conditions. To further study this hypothesis, the following experiments were 

designed: 

1.  Multiple cell types will be examined to determine if lipid raft isolation 

with MCHR1 co-localization can be reproduced. 

The method of raft extraction will be examined through use of multiple 

lysing solutions with varying mechanisms for membrane perforation. 

3. Finally, the possibility that the epitope tag is influencing receptor 

localization will be addressed through isolation of the wild-type receptor. 

Specific Aim 2 

The dynamics of MCHR1 signaling and desensitization is still unclear. 

There are conflicting reports of the level of receptor internalization in response 

to agonist treatment, with prior work showing internalization occurs in small 

amounts (Moden, 2012). Addition of arrestins increases the amount of 

internalization, but they are highly expressed. It is hypothesized that there is 

very little internalization of the receptor. Additionally, the localization of 

receptor within caveolae may change in response to agonist administration or 

with the addition of the arrestins. The following experiments were devised to 

determine the validity of these hypotheses: 

1. Visualization of internalization of receptor will be attempted without the 

addition of the arrestins or GRKs to support the ._._,;\,J,.. data showing 

low internalization. 



2. Localization of the receptor on a sucrose gradient isolation will be 

examined before and after agonist administration to determine if 

receptor location within lipid rafts changes. 

3. The effect of addition of the arrestins will be determined through 

gradient isolations incorporating each arrestin individually to determine 

if the addition causes a change in receptor localization on the 

membrane. 
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Mat�rials & Methods 

Cell Culture 

Cell Lines and Passaging 

Three cell lines were used for this study. The first were CHO-K1 cells, 

or Chinese Hamster Ovary cells (ATCC), stably transfected with VSVg­

MCHR1 by Laurie B Cook. These cells were grown in F12K media (CellGro) 

containing 5% FBS (Atlanta Biological). The second cell line was Baby 

Hamster Kidney (ATCC) cells grown in DMEM (CellGro) and 10% FBS. 

Finally the last cell line was a pre-adipocyte 3T3L 1 cell line grown in 

DMEM+ 10% BCS (Atlanta Biological). All cells were passaged using trypsin 

EDTA (Thermo Scientific) and were passaged at 80-90% confluence for BHK 

and CHO lines and 50% confluence for 3T3-L 1 s. All cells were incubated at 

37° C, 90% humidity, and with 5% C02 maintained continuously. 

Differentiation of 1 s 

To differentiate s into full adipocytes, the cells were plated on 

1 Ocm dishes and allowed to grow to 80% confluency, with the media being 

changed as needed. On day O of differentiation, the cells were given 

DMEM+ 10%FBS +5% Penicillin/streptomycin (CellGro) containing 1:100 

Methlyisobutylxanthine (11.5mg/ml) (Acros Organix), 1:1000 Dexamethasone 

(0.4 mg/ml) (Sigma) and 1 :100 Insulin (1 mg/ml) for a final concentration of 1 O 

µg/ml (Sigma). On day 2 of differentiation, the cells were given 

DMEM+ 10%FBS +5% Pen/strep containing 1:100 Insulin, and on day 4 the 
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cells were given DMEM+ 10%FBS +5% Pen/strep containing 1 :400 Insulin for 

a final concentration of 4 µg/ml. On day 6 of differentiation, the cells were 

given DMEM+ 10%FBS +5% Pen/strep and allowed to grow until day 1 O when 

differentiation was complete. 

Cellular Transfection 

To insert desired DNA into the CHO-K1 and BHK-570 cell lines, 

LipoD293 (SignaGen) was used. The protocol recommended by SignaGen 

was followed, the media was changed 24 hours post transfection and 

experiments were run 48 hours post transfection. DNA concentrations for 

each of the plasmids used was 1 µg/ml. 

Fluorescent Microscopic Analysis 

lmmunocytochemistry 

Cells were plated on glass cover slips, and transfected with VSVg­

MCHR1 (From G.Milligan). After complete transfection 48 hours later, the 

cells were treated with Melanin-concentrating Hormone (American Peptide). 

To do this the media was aspirated off and one ml of DMEM- was added to 

each dish. After an hour the DMEM- was removed and one ml of 1 µm MCH 

solution was added to the dishes, which were allowed to sit for the desired 

time. The control plates were given new DMEM- instead of the MCH solution. 

The cells on cover slips were put on ice and the media aspirated. The cells 
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were washed twice with 2 ml of cold Phosphate Buffered Saline (PBS), 

treated with one ml of 4% Paraformaldehyde for 1 O minutes in PBS then 

washed three times with cold PBS. 

Humidifying chambers were made using glass Petri dishes, parafilm 

and damp paper towels. The cover slips were moved to the humidifying 

chamber and 250 µI of blocking buffer (of PBS \Nith 0.1 % Triton 

(BioReagents) and 5% Goat Serum) was added drop-wise to each cover slip. 

The coverslips were incubated for one hour, and then 250 µI primary antibody, 

rabbit VSVg-MCHR1 (Sigma) at 1:1000 concentration or mouse RAB7 (BO 

Biosciences) at 1:1000 concentration in blocking buffer was added to each 

cover slip and allowed to sit overnight at 4° C. After incubation, the solution 

was removed and the cover slips replaced in their dishes. Each cover slip 

was washed for five minutes with PBS a total of three times and rocked on an 

orbital shaker for the duration. The cover slips were then placed back in the 

humidifying chambers and 250 µI of secondary antibody, goat anti rabbit 

AlexaFluor 488 (lnvitrogen) at a 1 :5000 ratio, rabbit anti goat AlexaFluor 594 

(lnvitrogen), and DAPI (1.0µg/ml, Roche) at a 1 :5000 ratio, in blocking buffer 

was added to each cover slip and allowed to incubate for 45 minutes. The 

solution was removed and the slides transferred back to the dishes, and 

washed again for five minutes with PBS a total of three times on the orbital 

shaker. 
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The finished cover slips were mounted on slides using Prolong Gold 

(lnvitrogen) and clear nail polish was used to affix them to the slides. 

Microscopy 

Fluorescent microscopy was performed using a Zeiss Axiocam MRm 

fluorescence microscope with AxioVision imaging software. Image formatting 

was performed in Adobe Photoshop and assembled into figures in Microsoft 

PowerPoint. 

Cell Lysis for Caveolae Isolation 

Lysing 

For each gradient, two 1 Ocm dishes of the desired cell line were grown 

to a confluency of at least 80%, treated with 1 µM MCH for the desired time 

points, and then placed on ice. Each was quickly washed twice using 5 ml of 

different lysing solutions were used: 

1. Basic pH 1 1  Procedure: lysate is produced using 2 ml of 500 

mM Na2COs at a pH of 11. 

2. Neutral pH 7 Procedure: lysate is produced using 2ml of 

25mM TRIS and 250mM sucrose. 

Triton Procedure: lysate is produced using 2ml of MBS with 

1 % Triton at a cold temperature. 
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After the addition of the lysing solution to one of the two dishes, the 

cells were scraped off the dish using a squeegee, and the liquid transferred to 

the next dish. The scraping procedure was repeated for the second dish and 

then the solution was placed in a ?ml dounce homogenizer that had been 

chilled on ice, and 1 :1000 of protease inhibitor (Sigma) was added to each 

homogenizer. This solution was left to swell for 30 minutes. After swelling, the 

solution was homogenized 1 O times and allowed to swell for two minutes, 

after which this process was repeated 3 more times, for a total of 40 strokes. 

To the bottom of an ultracentrifuge tube (Beckman), two ml of the 

lysate was added, along with a 90% sucrose solution made in MES buffered 

saline (MBS; pH6.5, 25 mM Mes, 0.15 M NaCl). The tubes were then 

vortexed to thoroughly mix the lysate and the sucrose solution, making a 45% 

sucrose iayer. To the top of this iayer, 4 mi of 35% sucrose in MBS with 

250mM Na2C03 was carefully added. On top of the 35% sucrose layer, 4 ml 

of 5% sucrose in MBS with 250mM Na2C03 was added-ensuring no 

disturbance to the layer. Using a scale, two gradients were balanced to each 

other. The gradients were then placed on the SW41 rotor, and ultra­

centrifuged for 18 hours at 4° C at a speed of 39,000 rpm. The day after 

centrifugation, the tubes were removed from the buckets and one ml fractions 

were taken from the gradient, for a total of twelve fractions. The fractions were 

pulled from the top of the gradient right at the meniscus. The fractions were 

placed in microfuge tubes and frozen at -20°c. 



SOS-PAGE 

Gel Preparation 

SOS-PAGE gels were made according to the following chart. 

Table 1: Running Gel Recipes 

Running Gels 
10% Gel 12% Gel 

40% Bis-Acrylamide 2.5 ml 3.0 ml 

4X Tris-HCI /SDS �H 8.8 2.5 ml 2.5 ml 
10% APS 33 µl 33 µl 

dH20 5.0 ml 4.46 ml 
TE MED 6.6 µl 6.6 µl 

Table 2: Stacking Gel Recipes 

Stacking Gel 
4% Gel 

40% Bis-Acrylamide 488 µl 
4X Tris-HCI /SDS pH 

6.8 1.25 ml 
10% APS 25 µl 

dH20 3.21 ml 
TEMED 5.0 µl 

The desired fractions were removed from the freezer and allowed to thaw. 

sample, 100 µI was added a new microfuge tube, and to each 

was added 25 µI of 5X lamelli sample Buffer. The tubes were placed in a 

circular rack with caps placed on top and boiled for 2 minutes. They were 

removed and centrifuged at 13000 rpm for five minutes. The gels were placed 
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in the running apparatus and it was filled with 1 X Running Buffer. To the first 

well, 5 µI of EZRun ™ pre-stained rec protein ladder (Fisher) was added and 

then the samples were added subsequently. For the 12% gels, there was 5 µI 

of sample loaded to blot for Caveolin-1 and to the 10% gels; 15 µI of sample 

was loaded to blot for the VSVg-MCHR1 or MCHR1. After the samples were 

loaded, the gels vvere run at 100 V for about 70 minutes, or until the sample 

buff er reached the bottom of the gel. 

Semi-Dry Transfer 

After the gels were run, they were removed and placed in Towbins 

buffer (Appendix 1) for 1 O minutes. Along with the blot, two sponges (Bio Rad) 

and a nitrocellulose membrane (BioRad) of the same size were incubated. 

After incubation, the semi-dry transfer apparatus was set up so a sponge was 

on the bottom, followed by the membrane then the gel and then the final 

sponge. The top plate was placed over this, ensuring no bubbles and 

complete contact. The transfer was run at approximately 16V for 30 minutes, 

or until the ladder was no longer visible on the gel. 

Western Blot 

After the transfer, the nitrocellulose paper was placed in 5% Milk in 

(Appendix 1 ) . This blocking step occurred for 60 minutes, and after 

incubation 1 O ml of primary antibody in TBS-T was added for each specific 

blot. For both Caveolin-1 (BO Biosciences) and VSVg (Sigma), the primary 

antibody was made at a concentration of 1 
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blots were allowed to incubate in primary antibody overnight. blots were 

washed three times for five minutes in TBS-T. After washing, the blots were 

incubated for one hour in secondary antibodies, both in goat-anti rabbit HRP 

(BioRad) conjugated at a concentration of 1 :5,000. The blots were then 

washed three times for five minutes each in TBS-T to remove excess 

secondary. A 1 :1 ratio from a Western Lightning™ Chemiluminescence 

Reagent Plus kit (Perkin Elmer) was used; the blots were incubated for one 

minute in the solution, wrapped in saran-wrap and taken to the dark room. 

The film (Kodak) was exposed to the blots for a range of times to achieve the 

best exposure, then developed (Kodak) for 30 seconds, fixed (Kodak) for a 

minute and then dried thoroughly. 

Bradford Analysis 

For each gradient, Bradford analysis was performed. In a 96-well plate, 

a standard curve was prepared with 20 µI Bovine Serum Albumin (BSA) (0-

100 µg) Biotech). To each well, 20 µI of each sample was added, and 

to all of the wells, 200 µI of the Bradford solution was added. entire 

experiment was run in duplicate, and the plate was read at 595 nm on the 

BioTek Synergy™ H1 Hybrid Reader plate reader and Gen 5 1.11 Software. 

Densitometry 

Using Adobe Photoshop, the desired blots were scanned in, converted 

to grayscale and inverted. The density was measured with a background 

reading used as the baseline. 
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Results 

Lipid raft isolation using CHO cells 

To determine possible changes of gradients performed in different cell 

types, a gradient was produced from Chinese Hamster Ovary cells. Chinese 

Hamster Ovary cells that had previously been stably transfected with VSVg­

MCHR1 by Laurie B. Cook were lysed and a sucrose gradient was performed 

using a detergent-free isolation method with a pH of 11, as previously 

published (Cook et al. ,  2008). The isolated fractions were run on a 12% SDS­

PAGE gel and after transferring the proteins on the gel to nitrocellulose paper, 

the nitrocellulose was cut below the 40-kDa molecular weight marker. A 

'vvestern blot was then pertormed on each half of the membrane, the top half 

was blotted for VSVg-MCHR1 and the bottom half for caveolin-1 (Figure 6) . 

The a-VSVg blot showed bands localized to fractions 4, 5 and 6 at the 

molecular weight of approximately 55 kDa (Figure 6A) . The band at fraction 4 

contains the highest density of protein compared to the other two bands. For 

the a-caveolin-1 western blot, there was a large quantity of caveolin seen in 

fractions 4, 5, and 6 with a molecular weight of approximately 24 kDa (Figure 

68) . The caveolin in fractions 4 and 5 has a higher molecular weight band 

nearer to 50 kDa, possibly representing an oligomerized set of caveolin with 

the lipid raft. There was a smaller amount of caveolin present in fractions 3, 
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9 and 12. The localization of caveolin-1 and MCHR1 to fractions 4 and 5 is 

consistent with the previously published work, performed in this lab (Cook et 

al., 2008). 

Isolation of lipid rafts using alternative lysing methods 

While the detergent-free basic pH isolation method has been 

successful in isolating caveolae and has shown a co-localization between 

caveolae and MCHR1, there are other methods of isolating caveolae from the 

lipid membrane (Hooper, 1999). If only one method is examined, such as the 

previously described basic pH method, there is a possibility that the lysing 

solution, specifically the high pH, is the cause of the co-localization between 

receptor and lipid raft. Therefore, multiple methods were examined to verify 

that the isolation method does not affect localization of receptor on the 

gradient. To do this, current literature was reviewed and two other lysing 

methods were discovered. first involved a lysing solution that contained 

1 % Triton in MBS performed at 4°C, utilizing the non-ionic detergent to lyse 

the cellular membranes. The second contained 250mM Sucrose in a TR IS 

buffer-using a slight osmotic gradient to help lyse the cells (Liu al. , 1998). 

The TritonX-100 method was used because lipid rafts are known to be 

detergent insoluble at very cold temperatures, so they will remain 

structurally intact after isolation (Macdonald and Pike, 2005). second was 

used as a simple membrane disruptor, with the lipid rafts being held intact by 

high density of lightweight lipids, and it has been proposed that the 



glycosphingolipids form hydrogen bonds to further stabilize the membrane 

(Anderson, 1998). These two experiments were performed using the 

transfected Baby Hamster Kidney (BHK) cell model, to obtain a high level of 

VSVg-MCHR1 within the cells. If MCHR1 is truly localized within caveolae, 

then the isolation method will not change the co-localization. 

The gradients were performed for each method, and twelve fractions 

were isolated. Lysate from each of the gradients was also kept to determine 

overall protein concentration from the lysing of the cells. The fractions were 

run on 10% SOS-PAGE gels to determine the distribution of receptor, and on 

12% SOS-PAGE gels to determine the distribution of caveolin 1. The two 

different densities were used to ensure that the smaller caveolin molecule did 

not run off of the gel, and so that both gels could be run at the same rate. 

Additionai iy, by not cutting the biot, a i i  of the avaiiabie protein could be 

visualized.  

The corresponding blots were treated with either a-VSVg antibody or 

a-caveolin 1 antibody. In both new isolation methods, distribution 

caveolin is less localized than when using the basic pH detergent-free 

isolation method (Figure 7 A&B). In both cases, instead of having a large 

amount of caveolin in fractions 4-6 ,  as seen in the CHO isolation (Figure 68) ,  

there is caveolin present from fraction 4 to the bottom of the gradient. For the 

neutral isolation, there is a slight increase in the density of the bands for 

fractions 4 and The distribution of the receptor changed as well, with more 
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of VSVg-MCHR1 present at the bottom of the gradient (Figure 7 A&B). The 

band weights for VSVg also changed, with a band at approximately 48 

kDa present in fractions 4 and 5, and large molecular weight bands 

corresponding to a 75-80 kDa which could possibly be a dimerized version of 

the receptor. In fractions 10-12, there are lower weight bands around 30 kDa 

that could correspond to a cleaved form of MCHR1 within the ce! ! .  

Interestingly, the density of the VSVg-MCHR1 blot follows the 

distribution seen in the caveolin-1 blots, even appearing to be in a density 

proportional to the amount of caveolin. This supports the previously published 

results by our lab, where there is a co-localization between caveolin-1 location 

and VSVg-MCHR1 location (Cook et al., 2008). To analyze this association, 

densitometry was performed that showed corresponding increases and 

decreases in the density of the fractions when comparing caveoiin to MCHRi 

(Figure 7C&D). Bradford analysis of both of the gradients shows that there is 

little overall protein at the top of the gradients, and that at fraction 5 there is 

which 

the bottom of both gradients (Figure 8). 

This relationship supports the hypothesis that there is an interaction 

between caveolin-1 and MCHR1. While these methods of isolation are not as 

successful in isolating lipid rafts as the basic pH isolation method, they do 

show a correlation between the presence of caveolin 1 and VSVg-MCHRi .  



45 



For this reason, the lysing procedure that used the detergent-free basic 

pH solution was used in future experiments. 

Distribution of MCHR1 without an Epitope Tag 

In order to continue to determine the effect of co-localization of MCHR1 

to caveolae, the receptor was studied without the VSVg epitope tag. While it 

is easier to blot for the receptor with the epitope tag, it could influence the 

placement of receptor on the membrane. Adding an epitope tag to a targeted 

molecule allows for easy targeting of the desired protein. Antibody quality and 

purity are better for epitope tags, as they are used quite often to label proteins 

that lack quality antibodies. To complete the gradient, BHK cells were 

transfected with MCHR1 without the VSVg tag, and a basic pH detergent-free 

sucrose gradient isolation was performed. The twelve fractions obtained after 

centrifugation were run on a 10% SOS-PAGE gel to blot for receptor and a 

12% SOS-PAGE gel to blot for caveolin-1. 

Caveolin distribution is at the highest density in fractions 4 ,  5 and 6 at a 

molecular weight of approximately 24 kDa (Figure 9A). MCHR1 distribution is 

from fraction 4 to the bottom of the gradient, but there is a density increase 

seen in fractions 5 and 6 .  As with the blots seen for the different lysing 

solutions (Figure 7 A&B), there are multiple bands of MCHR1 present in each 

fraction. The lowest molecular weight marker is present in only fractions 5 and 

6,  and corresponds to a molecular weight of approximately 44 kDa. In the rest 
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of the fractions, there are bands corresponding to a molecular weight of 

approximately 50 kDa, with higher weight smears above all the fractions. 

Bradford analysis shows that there is little protein at the top of the 

gradient, and fractions 4-6 contain 33% of the total protein (Figure 9B). 

There is a decrease in protein for fractions 6 and 7, then the largest amount of 

protein from fractions 9-12-a total of 49% for those fractions. 

Determination of internalization of MCHR1 

Initially, work was performed to determine the end location of receptor 

internalization. This was studied by staining BHK cells for the receptor and 

one of the Rab proteins. Two Rab proteins were studied, Rab5 and Rab?, 

Rab5 is known to associate with early endonucleases and Rab 7 with late 

endonucleases (Stenmark et al., 1995; Bucci et al., 2000). These experiments 

were not successful, however, due to poor staining of the receptor. Very few 

changes in distribution were seen in response to treatment, even with the 

inefficient staining. This indicated that the internalization of the receptor 

needed to be studied more directly. 

To determine if internalization could be visualized, overall expression 

of receptor was studied in a BHK model system over varying hormonal 

treatments. To do this, cells were transfected with VSVg-tagged MCHR1 and 

then plated onto cover slips; the VSVg tag was used due to the higher quality 
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antibody for VSVg over that of MCHR1. The transfected BHK cells were 

treated with 1 µM MCH in DMEM- for either 0, 30 or 60 minutes. The control 

group of no treatment (0 time point) was given DMEM- for 60 minutes. They 

were then fixed and stained using fluorescent antibodies to mark VSVg­

MCHR1. Cells were observed (Figure 10) to have a widespread distribution of 

VSVg; with slightly higher localization near the nucleus. The distribution 

visualized does not clarify whether the receptor is within the cytosol or on the 

membrane. There was visually little difference in receptor distribution between 

the various treatment times, and no distinct internalization of the receptor from 

the membrane. There is no concrete internalization seen, unlike systems that 

have co-transfection with arrestins. This low internalization is substantiated by 

the internalization seen in the ELISA data performed by our lab, and showed 

U1at there was intemaiization of receptor of 15 percent (Maden, 2012). 

Effect of treatment with MCH on localization of MCHR1 to Caveolae 

As previously described (Figure 10), there does not seem to be 

internalization of receptor due to MCH treatment. In addition, co-localization 

between MCHR1 and caveolin-1 has been verified using multiple isolation 

methods. It is possible that the interaction between the receptor and caveolin-

1 is the cause of receptor desensitization. determine if there is a change in 

receptor localization on the membrane due to hormone treatment, cells 
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were transfected with VSVg-MCHR1. One set was treated for thirty minutes 

with 1 OOnM Melanin-Concentrating Hormone in serum free media, and the 

other was given serum free media as a control. The cells were lysed using the 

detergent-free basic pH isolation method, in collaboration with 

Laurie B. Cook. The isolated fractions were run using a 10% SOS-PAGE gel 

for the VSVg-MCHR1 blot and a 12% SOS-PAGE gel for the caveolin-1 blot. 

Both blots were treated with the VSVg antibody and the caveolin-1 antibody 

correspondingly. 

For the caveolin-1 blots, there were distinct bands seen in fractions 4 

and 5 in each blot (Figure 11 A). Trial run 1 shows more caveolin-1 in the 

lower fractions, but this can be attributed to the pipetting during production of 

that sucrose gradient. For the VSVg blots, there is a greater density seen in 

fractions 4 and 5 (Figure i 1 A), with the muitipie higher molecular weight 

bands seen in previous blots (Figure 7 A and Figure 11 A). For each of the 

gradients, there is a distribution of VSVg across the bottom of the gradient. 

could be receptor being produced or those in transport to membrane, 

but it does not seem to be highly associated with caveolin-1. 

There seems to be a MW shift in the upper band of the VSVg-MCHR1 

blot that corresponds with the treatment of hormone, as depicted in the 

turquoise boxes (Figure 11 A). There appears to be a change in the 

distribution of the receptor smear above 50kDa in weight. These blots suggest 

that some of the receptor is disappearing from this high molecular weight. 
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This could be caused by a change in the receptor, either a dimerization loss 

or a modification due to phosphorylation or ubiquitination. 

Bradford analysis shows that there is little protein in the top of the 

gradients, with concentration increasing at fractions 4 and 5, decreasing 

through fractions 6 to 8 and then increasing again to the highest levels at the 

bottom of the gradient, as is normal for a !ipid raft isolation (Figure 11 B). In 

response to treatment of MCH, there is no visible change in localization of 

receptor within lipid rafts. This means that it  is not the transition of receptor in 

to or out of lipid rafts that is causing the desensitization, as it is not occurring. 

Desensitization could occur though one of the other methods previously 

mentioned, such as receptor modification, which is suggested by the MW shift 

seen in these blots. What exactly is happening is unclear, however, and more 

work must be done. 

Effect of {J-Arrestin co-expression on localization of MCHR1 

further examine the dynamics of MCHR1 and caveolin-1 interaction, 

the effect of arrestin expression was studied. Work performed by our lab 

shows that there is a decrease in the surface expression of receptor if �­

Arrestin 1 is present, and that both of the arrestins cause a greater increase 

in the internalization of MCHR1 (Moden, 201 It was theorized that if the 

addition the arrestins caused internalization, they might affect the 

interaction of caveolin-1 and MCHR1. 



In order to determine the effects the arrestins had on gradient location 

of MCHR1, BHK cells were transfected with VSVg-MCHR1 and either 

pCDNA3 (as a control for the arrestin plasmids), fj-Arrestin 1 or f3-Arrestin 2. 

The cells were treated with either 1 OOnM MCH in serum free media, or serum 

free media as a control, and then the cells were lysed using the basic pH 

detergent-free method. Initially, the collected fractions \J\Jere pooled to reduce 

the number of western blots that had to be performed. This pooling was 

performed by combining fractions 1 to 3, fractions 4 to 6 ,  fractions 7 to 9 and 

finally fractions 1 O to 12. Western blots were performed for caveolin 1 and 

VSVg-MCHR1 as previously described. To look at the specific changes 

between the treated and untreated gradients, untreated and treated pooled 

fractions were run side-by-side. There is no protein in the top pooled fraction, 

and very iittie in the bottom two pooied fractions, so these were omitted. 

In the pooled fraction containing fractions 4-6, there is an increase in 

the amount of caveolin-1 and in the VSVg-MCHR1 (Figure 12). There is much 

more receptor displayed in the pCDNA3 isolations, with less for each of the f3-

Arrestins. Each of the VSVg blots show the three distinct weight bands as 

described previously. What is clearer here, however, is the change in the 

density of the upper weight of the VSVg-MCHR1 (Figure 13). is less 

protein in the upper band after treatment, which is approximately at 80 kDa. 

There is also a shift up of about 10 kDa from untreated to treated cells 

(depicted by the turquoise lines), possibly signifying a modification of 
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MCHR1 -possibly a phosphorylation of the receptor. Bradford analysis shows 

that there is the same amount of protein in each of the gradients and that 

each gradient follows the normal isolation amounts for isolation of caveolae at 

fractions 4 and 5 (Figure 14)" 
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Hormonal regulation of metabolism and satiety is a complex system 

that has many inputs and feedback system. Understanding each step of this 

path is very important, as it can provide possibilities for hormonal treatment of 

obesity. One of these hormones is melanin-concentrating hormone. Most of 

the current literature on MCH focuses on its effects in the brain, and few 

studies are performed in peripheral tissues. This thesis focuses on MCH and 

its receptor MCHR1 and the dynamic regulation of receptor function and 

desensitization. 

Lipid raft isolation using CHO cells 

Lipid raft domains are known to be detergent insoluble due to high 

levels of cholesterol, GPl-anchored proteins and glycosphingolipids (Hooper, 

1999). The presence of these lighter weight lipids causes the lipid raft 

sections of the membrane to be isolated from the rest of the membrane via a 

sucrose density gradient (Smart, 1995). Various lysing methods can be used 

to isolate caveolae from the membrane, and each varies in the solution used 

to lyse the cells (Liu, 1998). Song et al. showed that a sodium carbonate 

void of was effective isolating Gi2a and G�v co-

localize with caveolae (Song, 1996). Prior work performed by our lab showed 

that MCHR1 was localized within caveolae while clathrin was at the bottom of 

gradient (Cook, 2008). 
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In order to determine whether the detergent-free isolation could again 

be performed successfully, stable CHO-K1 cells were lysed and lipid rafts 

were isolated. As seen from the blots (Figure 3) , there is normal distribution of 

caveolin-1 and a corresponding distribution for VSVg-MCHR-1, with 

enrichment occurring in fractions 4 and 5 ,  as was published by our lab and 

also observed by Song et al. in their aforementioned work (Song et al. ,  1996). 

Bradford analysis shows that there is a small increase in the amount of 

protein in these fractions, but that the majority of the protein in the gradient is 

at the bottom. This implies that the floating of the lipid rafts is not due simply 

to a large amount of protein at fractions 4 and 5 ,  but in fact due to successful 

isolation of the lipid raft domains from the rest of the cellular debris. 

Isolation of iipid rafts using aiternative iysing methods 

As mentioned previously, isolation of lipid rafts can be performed in a 

few different ways. The original method used was the detergent-free basic pH 

isolation as reported by Cook and Song (Song, 1996 ; Cook, 2008). It is 

conceivable, however, that isolation of the receptor to the lipid rafts was 

caused by the lysing method due to molecular changes caused by the lysing 

solution (Anderson, 1998).The insulin receptor is co-localized with caveolae 

when isolated with the basic pH method, but that localization is lost when the 

isolation is performed with detergents (Gustavsson et al., 1999). It is theorized 

that the method of membrane perforation could cause molecules to 
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unintentionally cluster with the impermeable lipid rafts, causing unnatural co­

localization (Mayor and Maxfield, 1995). Triton X-100 addition to free-floating 

lipids causes them to aggregate and form micelles, suggesting that the 

addition of the detergent to the membrane may cause aggregation of lipids 

(Heerklotz, 2002). As there are pros and cons to each isolation method, more 

than one must be examined to determine the extent of co-localization. 

The two other methods used were a detergent isolation using Triton X-

100 and a different detergent-free isolation using an osmotic gradient created 

with sucrose for lysis, both previously reported by Liu et al. and Smart et al. 

(Smart , 1995; Liu , 1998). The Triton X-100 isolation was performed in a cold 

room and on ice to get the coldest temperature possible, as this helps to 

maintain the stability of the lipid rafts. Triton X-100 isolates lipid rafts best 

when at a 4° C temperature, whiie at 37° C the isoiation becomes imperfect 

(Brown and Rose, 1992). As can be seen from the gradients, the distribution 

of caveolin-1 along the gradient is much greater in both methods of isolation 

then seen in the CHO cell isolation (Figure There are a few reasons for 

this, for the Triton X-100 isolation, it is imaginable that the gradients and cells 

were not kept cold enough. If the cells were not kept at the optimum 4°C, the 

stability of the lipid rafts would have been compromised. In the case of the 

osmotic isolation, there was already sucrose in the lysing solution. This could 

have caused a change in the densities of the gradient, and changed the 

distribution of the caveolin-1. Also, the lysing procedure could have been less 



effective as the only method of isolation was through a slight osmotic gradient 

and pulverization. Despite the inefficient isolation of caveolae, it appears that 

there is a correlation between the amount of caveolin-1 and VSVg-MCHR-1. 

Isolating caveolae via Triton X-1 00 is more delicate than other methods, 

and the molecules that are maintained within the domains via this method can 

vary and can depend on the amount and type of detergent present (Pike, 

2003) . It is possible that for the detergent isolation, too much detergent was 

used, which compromised the isolation abilities. Isolations done isolating Ras 

with caveolin-1 showed high amounts of Ras and cav-1 at fractions 4/5 with a 

slight amount of protein from fraction 8 to the bottom of the gradient (Kawabe 

et aL , 2001 ) . Also, isolations performed on matrix-metaloproteases (MMP's) 

showed similar distribution of both the MMP's and caveolin-1, with slightly 

more of each at the bottom of the gradient (B et al., 2001 ). These are 

comparable to the originally performed CHO-K1 isolations (Figure 3) , and to 

the previously published work performed using the basic pH solutions (Cook 

et al., 2008) . gradients performed here, however, show greater 

distribution of both caveolin-1 and receptor across the bottom of the gradient 

(Figure 4) , and the isolation methods were not as exact as hoped. 

The isolations show that there is a correlation between the density and 

localization of caveolin-1 and VSVg-MCHR-1. The detergent-free basic pH 

isolation method previously published seems to be the best at maintaining the 

caveolae structure for proper isolation (Cook et al. , 2008) .  The correlation 
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between receptor amount and caveolin is maintained for each isolation 

method, but the type of lipid rafts isolated through the basic isolation method 

are the most defined. 

Verification of distribution of untagged MCHR- 1 

It is conceivable that adding the VSVg tag to MCHR1 causes a change 

in the localization of the receptor on the membrane. To further investigate this 

potentiality, a western blot was performed for MCHR1 without the VSVg tag. 

Epitope tagging was performed by genetically inserting a well-characterized 

antigen into a plasmid of the desired protein. During transfection, the tag was 

added onto the desired molecule (in this case MCHR1) and provided an easy 

way to target for the molecule. While the VSVg tag is small-11 amino acids 

in size-it couid interact with surrounding moiecuies on the membrane 

surface. Epitope tags have been used previously due to the higher quality of 

the antibody for the VSVg molecule in comparison to the MCHR-1 antibody. If 

the blots for VSVg and MCHR1 are compared (Figure 11 and Figure 9), it can 

be seen that the background of the MCHR1 blot is dirtier. Numerous attempts 

were run of the MCHR1 blot, and the one reported showed the best antibody 

blotting. The correlation seen in these blots show that there is co-localization 

between MCHR-1 and caveolin-1. This interaction is present regardless of the 

type of isolation, or the tag that is placed on the receptor. 
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Determination of internalization rate of MCHR 1 

I n  o rder to determine the i nternal izat ion of MCHR1  after agon ist 

treatment ,  f luorescent microscopy was performed . After analysis of the 

d istribut ion of MCHR1  over the cel l  surface at g iven treatment t imes , very l ittle 

internal izat ion is seen (F igu re 1 0) .  There is uniform d istribution across the 

entirety of the membrane and the cytoso l ,  with s l ightly h igher concentration 

around the nucleus, possibly i n  the E R  or  Golg i .  Th is d istribution has also 

been seen for other receptors such as insu l in  in ad ipose and P2X receptors in 

neurons (Khakh , 200 1 ; Hunker, 2006) . After treatment, however ,  there is l ittle 

d ifference in the d istribut ion of the receptor .  The same patterns are seen after 

1 O and even 60 minutes of 1 µM M C H  treatment .  This treatment amount was 

used to ensure that complete saturation of the receptor was ach ieved . The Kd 

of M C H R 1  is 3 . 1  ± 0.4 n M ,  and th is experiment was performed i n  an 

overexpression model , so by treati ng with 1 µM MCH complete saturation was 

ensured (An , 2001 ) .  

Th is lack of i nternal ization i s  i n  contrast t o  work performed by Saito et 

al. who determined that there was internal izat ion of . 9% seen in as l itt le as 

five m inutes , and a greater internal izat ion rate of seen after 30 minutes 

of treatment (Saito , 2004) . Past work performed by Katr ina Haude ,  an 

undergraduate in  our  lab ,  shows that i f  either �-Arrestin is i ncluded in 

transfect ion ,  there is an internal ization of receptor from the membrane (F igure 
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1 5) (Maden,  20 1 2) . By comparing th is marked i nternal izat ion with the resu lts 

provided of MCHR1  i nternal izat ion (F igu re 1 0) ,  it can be seen that if there are 

no add it ional parts of the clathri n pathway added , i nternal ization does not 

visibly occur .  Th is does not mean that there is not i nternal ization ,  however,  as 

there cou ld be very low internal izat ion that cannot be visual ized . Using 

fluorescent m icroscopy i n  th is way would not show other changes occurr ing  

on the membrane. As  th i s  is a transfected receptor mode l ,  there cou ld be an  

overwhelm ing amount o f  receptor on the  membrane, and  so  the  sheer 

number of receptors present wou ld  cause the movement of receptors on the 

membrane or  i nteract ions between receptors to change. 

Effect of treatment with MCH on localization of MCHR- 1 to caveolae 

If desens it ization is caused by interact ions with caveolae ,  the effect of 

treatment with M C H  on local ization with i n  l ip id rafts must be examined . After 

analysis of the g radients, there is l ittle change in the overal l location of 

receptor with i n  caveolae (Figu re 1 1  ) . is not unusual . There are examples 

l ike the EGF and PGDF receptors that are associated with caveolae without 

agonist ,  but after agonist add it ion are on ly transiently associated (Matveev 

and Smart, 2002) . Another examp le is the angiotensin I I  type 1 A receptor (a 

Gaq GPCR) wh ich is associated with caveolae regard less of agon ist add it ion 

( lsh izaka et a l . ,  1 998) . This lack of change in the local izat ion of receptor 

with i n  l ip id rafts may mean that i nternal izat ion is not the reason that there is 
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desensitization occurring with M C H R i , possib ly supported by the results of 

the f luorescent images reported earl ier ( Figure 1 0) .  

There have been reports o f  i nternal izat ion o f  caveolae t o  either 

endosomes or to an i nternal structure known as a caveosome. Work done 

looking as low-density l ipoprote ins u ndergoing transcytosis across endothel ial 

cel ls  showed that the LDL's crossed through the caveosome structures 

through caveolae endocytosis (Candela et al . ,  2008) . So if there is the same 

level of LDL's in  the caveosome as in the membrane caveolae, the 

caveosome should be approximately the same weight as membrane domains. 

If there was i nternal ization  to a caveosome,  there is the potential that 

the smal l  amount of receptor i nternal ized cou ld not be visual ized i n  the 

fluorescent i mages (F igu re 1 0) .  While caveosomes are large structures, there 

wou ld  h ave to be a large quantity of i nternai ized receptors to visual ize the 

caveosome. Pre l im inary work done by our lab using confocal and electron 

m icroscopy performed on d ifferent iated 3T3L 1 cel ls showed large vesicu lar 

bodies that cou ld  have been large membrane caveolae or even i nternalized 

caveolae. It is  imaginable that there are i nternal caveosomes shutt l i ng 

caveolae and receptors to and from the membrane, and that the activated 

receptor is removed from the membrane via th is pathway, but that it cou l d  not 

be visual ized due to the low amount of i nternal izat ion .  I t  is also l i kely that 

there is  a conformational change occurring of the receptor with i n  the l ipid rafts . 
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This change cou ld be switch ing off the activity of the receptor wh i le 

maintain ing the overal l concentrations with in caveolae .  

Effect o f  /J-Arrestin co-expression o n  localization o f  MCHR- 1 

Work done previously by Katrina  Haude shows that there is visual 

internal ization due to M C H  treatment when one of the J3-Arrestins is 

incorporated into the cel l u lar model (F igure 1 4) (Mode n ,  20 1 2) . So the effect 

that t ransfect ion with either J3-Arrestin  1 or J3-Arrestin2  has on the co­

local ization of receptor to l ip id rafts was stud ied. As was seen in the western 

blots , there is a decrease of the receptor seen when an arrest in is 

incorporated (F igu re 1 2) .  This is interest ing ,  as there is sti l l  normal expression 

with the pCDNA3 transfection ,  and as the Bradford analysis of each set of 

fract ions is essential ly the same. 

So there is some sort of h indrance occurring when the arrestins are 

present i n  the packag ing of receptor with in  the l i pid rafts , o r  there is a change 

in  the activity of the receptor with arrest ins ,  requ i ri ng less receptor to be 

present. When comparing th is i nformation with work performed by Jay Maden 

using EL ISA analysis of surface expression of receptor,  there are some 

corre lat ions. When the cel ls  were transfected with J3-Arrest in 1 , there was less 

receptor visual ized on the external surface of the receptor .  This corresponds 

to the decreased expression seen on the �-Arrestin  1 g radient ,  and so there 

may be some h indrance occurr ing due to the arrestin  recru itment, less 
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transfect ion of the receptor itself or even more degradation of the receptor 

due to the p resence of the arrestin .  I n  the instance of cel l  surface expression 

for (3-Arrestin 2, there was approximately the same amount of receptor seen 

as for the pCDNA3 model .  Th is cou ld s ignal a better relat ionship between 

MCHR- 1  and (3-Arrest in 2 ,  a theory that has been studied previously by Evans 

et al. They reported that i n  cel ls vvere tr iple-transfected with tagged-MCH R1 , 

GRK2 and either (3-arrest in 1 or 2 .  I n  the cel ls  expressing (3-arrest in 2 ,  there 

was selective recruitment to the p lasma membrane .  This association with 

receptor was transient, and i nternal izat ion of both (3-Arrestin 2 and the 

receptor i n  conjunct ion did not occur ( Evans et al . ,  2001 ) . I t  is important to 

note that their work was performed with GRK,  and experiments done by our  

lab  d id not h ave th is  trip le-transfection protocol ,  and transfect ion with either (3-

Arrest in showed internal izat ion.  When neither of the  arrest ins are present, 

however,  there is increased expression seen throughout the g radient and co­

localizat ion with caveolae is more pronounced . 

Internalization of upper weight MCHR1 due MCH treatment 

Whi le analyzing the western b lots comparing treated cel ls  with 

untreated cel ls ,  a pattern emerged . Before treatment, the VSVg-MCH R- 1  

western b lots showed a band with a molecular weight at around 40  kDa, and 

this wou ld be the receptor without any modification or d imerization .  The 

known molecular weight for MCHR1  is at 46 kDa, which is the largest density 
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band seen on the western b lots , concurring with the normal s ize of the protei n  

(Bittencourt e t  al . ,  1 992) .  The  s l ight d ifference i n  size cou ld  be due  to  the gel 

run ,  with possible variations in the segregation .  Above th is weight is a smear 

that goes to the top of the grad ient ,  which cou ld be composed of d imers or 

even ol igomers of MCH R 1 . Work performed using Fluorescence Resonance 

Energy Transfer (FRET) of f luorescently tagged lutein izing hormone has 

shown that on  the cel lu lar surface , FRET has been detected between mu lt ip le 

hormone bound lutein iz ing hormone receptors . This suggests that the LH 

receptor is a functional d imer on  the cel l u lar surface. I nterest ing ly, FRET was 

dependent o n  the receptor's s ignal ing potential , with no FRET seen with 

mutant receptors , s ignifying  that active receptors need to interact to be 

funct ional (Roess, 2000) . With in  the Tumor-Necrosis Factor-a fami ly, it is 

bel ieved that agon ist-promoted d imerization forms an equ i l ib ri um ,  wh ich is 

thought to be an important step in receptor activat ion and deactivat ion (Weiss 

and Sch lessinger,  1 998 ; Sch lessinger,  2000) . I f  this activat ion/i nactivation 

equ i l ib ri um is true for MCH R 1 , than the loss of the upper weight d imer after  

treatment wou ld mean that the active form of  the receptor is a d imer or even 

an o l igomer, as the h ighest weight band is more then double the 46 kDa 

weight of the single receptor. 
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Mode of Receptor Desensitization Theory 

For a receptor to be desensitized,  there must be a lack of active 

receptor on the membrane. As mentioned previously, there are d ifferent ways 

that cel ls acco mpl ish th is task. This thesis considers two possible methods of 

desensitization .  F i rst, the receptor could be modified to become u nresponsive 

to hormone treatment .  Second,  the receptor cou ld  be removed from the 

membrane through an endocytosis method . Work done by our lab showed 

that MCH treatment causes an increase in activated E RK,  and that after a 

second treatment th i rty minutes later there was not the same rate of activation 

(F igure 1 6) .  I nit ial ly ,  it was thought that i nternal izat ion of the receptor via the 

clathr in pathway was the cause for th is long period of desensitization , as 

proposed by Saito et al. (Saito , 2004) . Work shown by f luorescent imag ing in  

th is  report and EUSA data reported by jay Maden (F igu re 1 7) ,  however, 

showed that without transfection with parts of the c lathrin pathway, there is 

not a large percentage of internal ization seen in response to MCH treatment. 

This means that there cou ld an alternative way in  which the cel l  is 

desensit izing to hormonal stimu lation .  The proposed alternative is through co­

localizat ion and i nteract ion with caveolae. Th is i nteract ion was present 

despite the method of isolation or the tag associated with the receptor. If part 

of the arrestin pathway is  added , then a g reater i nternal izat ion is seen ,  but i n  

the case of B-Arresti n  1 there i s  less receptor seen on  the surface . 

Add it ional ly, stud ies performed looking at co-local ization before and after 
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hormone treatment showed that there is a loss of an upper-weight band of the 

receptor ,  and a possible phosphorylat ion event is occurring (Figu re 1 3) .  No 

other lab has publ ished work showing a phosphorylated form of MCHR1 , so 

th is cou ld be an excit ing development. I t  cou ld  relate to the work showing 

inactivat ion of the receptor if certain amino acids are deleted , as d iscussed 

previously (Tetsuka et al . ,  2004) . If these are taken in conjunction ,  it can be 

theorized that M C H R 1  is local ized to caveolae and that some interaction 

occurring with in  caveolae is causing desensitization . 

Caveol in - 1  can interact with receptors with in caveolae by complexing 

with the molecule ,  and then d issociate when the receptor is activated .  If th is is 

the case for MCH R 1 , then the reactive form of the receptor cou ld be 

d issociat ing from caveolae after activat ion .  Th is i nteraction was publ ished by 

our  iab through i m munoprecip itat ion experiments showing that caveoi i n- i  and 

MCHR1  immunoprecip itate in conjunction with o ne another (Cook et al . ,  2008) . 

If th is is taken in  combinat ion with the EL ISA data showing that there is 

rough ly 1 5% internal izat ion , then it can theorized that the d issociated 

receptor is i nternal iz ing .  If parts of the arrestins  are included in th is theory, 

then the associat ion between the arrest ins and the receptor could  be more 

readi ly pu l l i ng the active receptor out of caveolae and internal iz ing it . This  

idea was d iscussed previously in  re lat ion to  the  insu l in  receptor and  its 

movement into and out of caveolae, with s ignal i ng on ly occurring when the 
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receptor is  with in  caveolae (Gustavsso n  et al . ,  1 999) . A s imi lar process could 

be occurring with MCHR1  and movement with caveolae .  

I nteresting ly, work performed by Robert Carro l l  working with an RNAi 

for caveol in - 1  and looking at leptin production in response to MCH stimu lation , 

showed that if caveol in - 1  is depleted , then there is a greater production of 

leptin .  Combining th is with the theory that d imers or o l igomers of the receptor 

are the active form of the receptor ,  then it is conceivable that the receptor 

i nteractio n  with caveol in - 1  is caus ing less of the active d imer to be avai lable. 

If caveol i n - 1  is removed , then th is h indrance d isappears , and there are more 

d imers formed and more lept in  produced i n  response to MCH t reatment .  

How cou ld th is  al l  add u p  to desensitization? I n  summary, co­

loca l izatio n  with caveolae could  cause there to be fewer of the d imerized 

receptor avai iabie on the membrane .  After activation ,  these d imerized 

receptors may d issociate from caveol i n - 1  and be removed from the 

membrane , or d issociate from one another ,  becoming inactive i n  response to 

MCH treatment. The interaction between caveol in - 1  and MCH R 1  cou ld 

potentia l ly i nh ibit the formation of  new d imers ,  and so possib ly contribute to 

the t ime requ i red to re-sensitize . This could explain why signal ing occurs at a 

larger rate without caveol in - 1  . 



Future Directions 

To further verify the proposed method of desensit ization ,  there are a 

few key experiments that cou ld  be performed . Caveo l i n - 1  does interact with 

MCHR1 , so it should be determined whether d imers of M C H R 1  form and if 

they are the active form of the receptor.  This cou ld be done us ing FRET 

analysis , tagg ing MCH with various f luorescent prote ins ,  such as Cyan­

fl uorescent protei n  and Yel low-f luorescent protein ,  and determin ing if there is 

FRET seen between two receptors on the membrane, as p reviously described 

in the Lute in iz ing Hormone example (Roess et al . ,  2000) . The FRET analysis 

cou ld be taken further, to determine if FRET is dependent on  the signal ing 

potential of  the receptor ,  and potential ly proving that the d imer is the form of 

the receptor that is activated . If possible, the kinetics of d imer association and 

disassociation cou id be determined both with in  caveolae and in an RNAi 

caveol in - 1  deficient mode l .  This could help determine why the signal ing 

potential of MCHR1  is g reater without cholesterol than with cholestero l .  

Final ly ,  more work shou ld be done with an even more physiologically 

relevant mode l ,  l i ke the 3T3-L 1 adipose cel ls .  Additional  work should be done 

to visual ize MCHR 1  in adipocytes using f luorescent  microscopy, and 

conti nuing on i nto confocal m icroscopy. Very pre l im inary work performed (not 

reported due to t ime const raints) on  the confocal m icroscope showed that 

there was co-local izat ion visu al ized between caveol in - 1  and MCHR 1 . This 

work should be contin ued to better verify the co- local izat ion and determine 
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the effects of M C H  treatment in the physio logical ly re levant 3T3 model . I f  a 

better iso lat ion method cou ld be determined , then further work with l ip id 

iso lat ions cou ld be performed . I n  attempts to perform a sucrose gradient with 

3T3-L 1 d iffe rent iated adipocytes, there was beautifu l d istribution of caveol in - 1  

seen ,  but  there was too l ittle MCHR1  to  successful ly b lot for the receptor .  

Fina l ly ,  more stud ies should be done o n  the changes seen i n  the 

receptor weight  before and after MCH treatment.  This was performed on ly 

three t imes, and more data should be col lected to verify that there is a change 

in the upper weight densities on the western b lots . 

Significance 

Treatment of obesity has become a very important goal of d rug 

companies. I n it ia l  work with MCHR- 1  i nh ib itors has shown much promise i n  

an imal  mode ls ,  bu t  there is  potential for problems to  occur i n  human tria ls .  I n  

this way, i t  i s  very important t o  understand t he  complete satiety pathway 

identify poss ible compl icat ions. Understand ing the purpose of MCHR1 i n  

ad ipose cel l s  and  t he  signal ing properties o f  t he  receptor may help i n  

understand ing t he  overal l effects o f  inh ib itors on  the h uman body. As obesity 

is a growing epidemic ,  there is a greater need for a weight-loss booster. I n  the 

cases of i nd ividuals who eat health i ly and exercise regu larly and yet sti l l  

cannot lose weight ,  understanding the hormonal pathway cou ld spur  a new 

method of treatment to correct their imbalance and help them succeed. To be 



successfu l  i n  the treatment of obesity, the entire satiety pathway, inc luding 

MCH and its effect on peripheral t issues,  must be examined . 



Appendix 1 

Solution Recipes 

1Q_X Phosphate Buffered Sal ine 
To 800 mis of  d H20, add : 

80g N aCl  
2g KCI 
1 4 .4  g Na2HP04 
2.4 g KH2P04 

p H  to 7.4 and bring  u p  to 1 l 
PBS-_I 

To 1 Liter of 1 X PBS,  add 1 m l  of Tween-20 
5X Bradford Reagent 

1 )  Dissolve 1 OOmg Coomasie Blue in  50ml of EtOH 
2) Add 1 OOm l  85% Phosphoric acid 
3) Add 50ml d H20 
4) Fi lter  i nto c lean container 

25m M  Mes (Acros Organics) 
0 . 1 5  M NaCl 
pH to 6.5 

400 ml M BS add : 
1 3 .25g Na2C03 
pH to 1 1  and fi l l  to 500 ml 

Add to  400 m l  d H20 : 
26 .6  g Na2C03 
pH to 1 1  and fi l l  to 500 ml 

To 500 ml o f  M BS add  0.5 of Triton X- 1 00 
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25m M  Tris 
250mM Sucrose 

5X Lamel l i  Sample Buffer 

3. 75m l, 1 .OM Tris HCl,  pH 6 .8  
1 .5g s os 
0 .075g Bromophenol Blue 
1 . 1 6g Dith iothreitol (Cleland 's Reagent) 
Br ing up to 7.5 ml d H20. Add 7.5 m l  glycero l .  

1 OX SOS Runni ng Buffer 

30 .3g Tris Base 
1 44g Glycine 
1 0g s o s  
Bring u p  to 1 Liter in  dH20 

Towbins Transfer Buffer 

To 1 Liter of water ,  add : 
1 1 .6 g g lycine 
23 .2 g Tr is Base 
1 .48 g SDS 
800 m l  methanol 
Br ing vol ume to 4 Liters with water 

1 OX Tris-Buffered Sal ine (TBS) 

87.669 NaCl 
1 2 . 1 1 g  Tr is Base 
4ml HCl  
p H  to  8 .0  then bring up to  1 l with d H20 

To 1 ml of TBS add 500 of Tween -20 
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