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Abstract

This project illustrates a process of designing curriculum for the study of quadratics
in Algebra 1, in alignment with the Common Core State Standards in mathematics.
The process incorporates the body of research on student conceptions of quadratics
and available techniques and technologies for the enhancement of student
conceptions. The Algebra 1 course trajectory recommended by the Common Core is
analyzed in light of the existing research, unpacked into learning objectives, and
restructured to address key conceptual roadblocks synthesized from the research. The
resulting curriculum capitalizes on technology, rich problem contexts, and students’
prior knowledge of linear relationships in order to build student concepts of quadratic
relationships. The curriculum is sequenced from graphical to symbolic
representations, wherein visual and dynamic models provide meaning to symbolic
structures and manipulations. A six week instructional calendar and supporting

materials are provided to support implementation of this curriculum project.



Chapter One: Introduction

This curriculum project was designed with practical purposes in mind. The
demanding pace of the algebra curriculum makes it difficult to transition from the
National Council of Teachers of Mathematics (NCTM) standards to the Common
Core State Standards (CCSS) while personalizing plans with high integrity. Thus the
purpose in designing this curriculum project is to offer students learning experiences
that will allow them to put their own signatures on mathematics.

With the advent of the CCSS in Mathematics, there is more focus on essential
understandings. The CCSS Movement is a nationwide initiative to increase
performance in United States (US) schools, which requires rigorous learning
standards with greater coherence and conceptual depth (National Governors
Association Center for Best Practices; Council of Chief State School Officers, 2010,
Webpage). Once the new standards are put into place, classroom practice should be
aligned more closely to the best research-based methods.

High school teachers’ unfamiliarity with the new standards presents a new
challenge in designing instruction. High school mathematics teachers may find the
algebra Common Core Revision of an Algebra unit exceedingly difficult to work
with. Thus this thesis provides as an opportunity to explore the algebra Common Core
standards in greater detail, which may help teachers to successfully implement these
standards into their classroom instruction.

The topic of study is quadratic equations and functions, referred to more

generally as quadratics. A quadratic function is represented graphically as a parabola.
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A parabola is a more complicated curve than the straight line graph that students have
previously worked with in Algebra. Real world phenomena modeled by quadratic
functions are also more complicated. These applications involve rates of change that
increase or decrease over certain intervals, as opposed to the constant rates of change
that students are familiar with. The associated algebra techniques are rigorous.
Computations involve more advanced arithmetic, more symbolic abstraction, and
many more steps to reach solutions.

Quadratics is widely considered, by teachers and students alike, to be the most
difficult topic encountered in Algebra 1 (Almy, 2011). The study of quadratics in
Algebra may provide roadblocks for many students who are interested in science,
technology, engineering and mathematics (STEM) careers. Proficiency in algebra is
required in most general college entrance exams and in certification exams for many
vocational fields. Algebra inefficiency may also be the gate keeper that keeps

students out of STEM education and career fields.

Effective curriculum may allow students to further appreciate the beauty of
mathematics and to gain a deeper understanding of the world around them. An
understanding of quadratic functions may allow students to explore monumental
concepts like motion and gravity, instantaneous rates of change, and be better
prepared to learn the fundamental ideas of calculus. Quadratic functions are a
gateway into understanding increasingly dynamic and applicable mathematical

models (Eraslan, 2005).



The goal of this project is to develop effective unit plans for teaching
quadratics. The unit design is aligned with the CCSS in Mathematics, the existing
research on how students learn quadratics, and considers what techniques and
technologies are available to improve student learning. It is imperative that the new
standards are viewed in light of student conceptions of quadratics. With the increased
conceptual rigor of the Common Core, it is also crucial to research the best methods
and resources available to illuminate concepts for students.

In designing this unit plan, the intended audience is for teachers of
mathematics. Therefore the instructional implications of the unit plans will be
discussed. The plan will match specific problem situations, solution techniques, and
student conceptions with target objectives. Implications of the unit design process
will be discussed throughout the paper, as they unfold through the various
components of the contributing research. This way, the reader can generalize my

design process to other topics in mathematics education.

Chapter Two: Literature Review

The Common Core

The mission statement of the CCSS initiative commits to a clear plan for

students’ college and career readiness at a globally competitive level, and reads:



The Common Core State Standards provide a consistent, clear understanding
of what students are expected to learn, so teachers and parents know what they
need to do to help them. The standards are designed to be robust and relevant
to the real world, reflecting the knowledge and skills that our young people
need for success in college and careers. With American students fully
prepared for the future, our communities will be best positioned to compete
successfully in the global economy. (National Governors Association Center

for Best Practices; Council of Chief State School Officers, 2010, Webpage)

The CCSS initiative is a combined effort of politicians, corporate leaders,
research groups, educators, and academic organizations across the nation. The
Common Core follows the principles of the standards-based movement launched by
the National Council of Teachers of Mathematics (NCTM) back in 1989 (revised in
2000). This new leap in the evolution of education standards is, as expressed, in
response to the demands of a global economy. Over the last decade, students in the
United States have performed below average on international achievement tests in
mathematics, as measured by mean scores (National Center for Education Statistics,
Webpage). The percentage of U.S. students scoring at advanced levels also falls
below average ranking in international comparisons (Hanushek, Peterson,
Woessmann, 2010). In both measures, U.S. students rank about average on
comparative science tests. These statistics raise concern about how well our students
will be prepared for a STEM major or to perform in the STEM fields after graduation;

and consequently, how our nation will be prepared to compete in a global market.
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Currently, forty eight states, including New York, have adopted the CCSS.
States must follow the common set of learning standards for grades K-12 in English
Language Arts and Mathematics, but may add up to 15% more standards to each
subject. Participating states are currently phasing into the new standards and full
implementation is expected by 2015 (National Governors Association Center for Best
Practices; Council of Chief State School Officers, 2010, Webpage).

The Common Core Standards in Mathematics are committed to promote both
procedural and conceptual learning, as established by the preceding NCTM standards.
In addition, the Common Core aims for “greater focus and coherence” (National
Governors Association Center for Best Practices; Council of Chief State School
Officers, 2010, p. 3) of standards around key mathematical content and practices.
This later goal targets deeper understanding and real world application of the key
topics, rather than cursory study of “mile wide, inch deep” curriculum. The aim
towards greater focus and coherence is supported by research of mathematics
programs in higher performing countries (National Governors Association Center for
Best Practices; Council of Chief State School Officers, 2010).

The Common Core specifies eight general mathematical practices that
students are expected to develop across the curriculum. These are based on the
existing NCTM process standards, plus the mathematical proficiency strands
developed by the National Research Council. When the word “understand” appears in
the content standards, it is a cue to incorporate one or more of these mathematical

practices.
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There are eight standards for mathematical practice, and they are: (1) For
students to make sense of problems and to persevere in solving them; (2) for students
to reason abstractly and quantitatively; (3) for students to construct viable arguments
and critique the reasoning of others; (4) for students to model with mathematics; (5)
for students to use appropriate tools strategically; (6) for students to attend to
precision; (7) for students to look for and make use of structure; and (8) for students
to look for and express regularity in repeated reasoning. (National Governors
Association Center for Best Practices; Council of Chief State School Officers, 2010,
p. 5) Also, the CCSS outline Key Points in the mathematics standards which stress
both procedural and conceptual learning within meaningful contexts. Thus students
should gain proficiency in applying techniques and may retain what they have learned
(Calais, 2006). The CCSS requires students learn to apply mathematics and to model
real world problems and use the results to inform decisions. Similarly, students are
challenged to apply mathematics to novel situations, as is expected in math related
careers (National Governors Association Center for Best Practices; Council of Chief
State School Officers, 2010, Webpage).

Rather than being organized into course trajectories, the NCTM high school
mathematics standards are organized into six conceptual domains: number and
quantity, algebra, functions, modeling, geometry, and statistics and probability
(National Council of Teachers of Mathematics, 2000). The primary domains that

pertain to the unit of study in this paper are the algebra standards and the functions
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standards. Some standards in the number and quantity domain also apply. See Table
2 on p.57 for these standards.

The intention of organizing the standards by concept, rather than by course, is
to promote coherence. These concepts are developed across all grades and courses.
Specific standards may even be practiced in more than one course. For example, the
quadratic formula might be used in both Algebra 1 and Algebra 2. Here is an example
standard that would span both courses:

A.REIL4 Solve quadratic equations in one variable:

a. Use the method of completing the square to transform any quadratic

equation in x into an equation of the form (x - p)? = ¢ that has the same

solutions. Derive the quadratic formula from this form.

b. Solve quadratic equations by inspection (e.g., for x? = 49), taking square

roots, completing the square, the quadratic formula and factoring, as

appropriate to the initial form of the equation. Recognize when the quadratic

formula gives complex solutions and write them as a + bi for real numbers a

and b (National Governors Association Center for Best Practices; Council of

Chief State School Officers, 2010, p.56).

The layout-by-concept may be very difficult to work with in designing a
quadratics unit. This type of instruction design requires the mapping of standards
from three different areas, without knowing which of the standards are intended for
Algebra 1 and which are intended for Algebra 2, while also trying to incorporate the

standards for mathematical practice. Since all states are using a common set of
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standards, traditional trajectories that once varied by state cannot be addressed
specifically by topic. So it can be expected that some topics will be added and some
will disappear, but without much certainty of what topics those might be.

Be aware that there is a separate document that can help. Common Core State
Standards for Mathematics Appendix A: Designing High School Mathematics
Courses Based on the Common Core State Standards (National Governors
Association Center for Best Practices; Council of Chief State School Officers, 2010)
outlines the recommended course trajectories for implementing the Common Core
Standards. For example, the recommended pathway for Algebra 1 is mapped out into
five units with quadratics appearing in the fourth and fifth units. A summary of the
pathway also indicates that the quadratic formula and completing the square to solve
quadratic equations, both traditionally taught in Algebra 2, are now recommended for
inclusion in Algebra 1 (National Governors Association Center for Best Practices;
Council of Chief State School Officers, 2010).

The quadratics units of the recommended pathway may be considered as
rigorous (Zaslavsky, 1997; Bossé and Nandakumar, 2005; Eraslan, 2005; Hutchings
and McCuaig, 2008; Zakaria, 2010). The standards effectively incorporate modeling
and comparisons of functions to build the concepts of quadratic relationships
(National Governors Association Center for Best Practices; Council of Chief State
School Officers, 2010). However, students might have difficulty learning some of the
skills that are embedded in these standards, without those skills being practiced in

isolation. Factoring, which takes considerable practice to master, is combined with
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the techniques of completing the square and the quadratic formula to solve equations.
Also, abstract techniques are presented before supporting graphical models are used
in the recommended pathway.

NCTM (2010) did release a public statement supporting the implementation of
the Common Core Standards. The statement was also endorsed by the National
Council of Supervisors of Mathematics (NCSM), the Association of State Supervisors
of Mathematics (ASSM), and the Association of Mathematics Teacher Educators
(AMTE). These organizations embraced the vision of a more focused and coherent
set of standards, the blend of procedural and conceptual learning, and the
development of standards at the national level. They did make a note, however,
encouraging ongoing “research on specific learning trajectories and grade placement
of specific content and their implementation, as well as periodic review and revision
based on such research.” (NCTM, 2010, Webpage) This implies that NCTM does see
some rough spots in the pathways.

NCTM (2006) produced a guide, Curriculum Focal Points for
Prekindergarten through Grade 8 Mathematics: A Quest for Coherence, which
identifies the most important topics and concepts per grade level from the 2000
NCTM standards. The guide also illustrates how the concepts should be vertically
developed across grade levels. This publication influenced and supported the
development of the Common Core Standards for grades K-8 (Achieve, Inc; 2010).
Forthcoming supports from NCTM, for the Common Core high school standards

should be a great help.
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Hekimoglu and Sloan (2005) point out that the main criticisms of the NCTM
standards have been for their departure from traditional instruction to the inclusion of
more concept, inquiry, and technology-based learning. As can be seen throughout the
Common Core standards, this is the movement that mathematics education must take
in order to suit the demands of a more technology-based world. Another important
point regards the criticism of the breadth of NCTM standards. The principles and
standards were intended to be guidelines, not mandates. It was not an imperative that
all the standards must be covered.

Many perceived problems with the old standards do not have much to do
with the standards themselves, but with how they are taught and assessed. In both
ways, the process strands of the NCTM standards have been largely ignored and the
content strands alone have become the basis of practice (Hekimoglu and Sloan,
2005). Successful implementation of the Common Core standards will also depend on
how they are assessed. That is what drives instruction. As long as traditional
assessments are the primary measure of learning, traditional instruction will likely
pervade mathematics education (Hekimoglu and Sloan, 2005). Process goals are
intrinsic in the language of many of the Common Core standards. This should provide
a safeguard. It is questionable though, at this point, whether the new standards are
indeed more focused. The standards will need to be unpacked to levels of similar
practicality to the NCTM standards in order to find out.

Both the CCSS document and NCTM Standards mention that ongoing

research is necessary to effectively implement and shape the standards. In particular,
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research needs to explore the development of student understanding as it relates to the
sequencing of learning experiences and the challenges inherent in the quadratics

standards. Since the Common Core aligns the states to the same standards, there may
be greater opportunities for this type of research. The following sections of this paper

will be looking at the existing research in these areas.

Student Misconceptions

Students face many challenges in learning to interpret quadratic functions. A
key element of designing effective curriculum is to look at student thinking and
anticipate difficulties that need to be addressed. This section will outline student
reactions to specific content, procedural difficulties, conceptual obstacles, and
possible causes of student misconceptions.

Zaslavsky (1997) conducted the most comprehensive study of student
misconceptions of quadratics, with a sample size of 800 students! Zaslavsky (1997)
categorized common misconceptions into seven key areas. The first of these areas to
present a cognitive obstacle to students is the graphical representation of a quadratic
function.

Students often fail, upon visual inspection, to realize the domain of a
vertically oriented parabola is infinite; and that each point on a parabola is determined
by a specific input and output from the expression that defines the function. Students
also assume equivalence between quadratic equations and quadratic functions that

“look” the same. For example, x? + 2x — 8 = 0 is equivalent to 2x2+ 4 — 16 = 0, but
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the function y = x2 + 2x — 8 is not equivalent to y = 2x2 + 4x — 16. Students don’t
make this distinction. These misconceptions should raise major concern, since they
involve the defining aspects of quadratic functions.

Students often try to generalize procedures associated with linear functions to
quadratics. For example, students will calculate slope to find the leading coefficient
of a quadratic. This is no surprise, since both families of functions share the
coefficient symbols, a and b. Students often assume they mean the same thing,
regardless of the situation. This misconception becomes even more pervasive when
any of the coefficients is equal to zero. When a term is “missing” from the standard
form, students often fail to recognize a function as being quadratic. Students also tend
to misapply the visible coefficients in finding the vertex, the y-coordinate, and the
axis of symmetry.

Another common error is over-emphasis of the x-coordinate. Students often
fail to provide the y-coordinates of x-intercepts. Similarly, students assume from
using the vertex formula that two parabolas have the same vertex without checking
that the y-coordinates match. This habit is likely formed when students learn to
factor, since there is no y-coordinate involved until factoring is used in the context of
functions.

The greatest difficulty students have when taking on the functions perspective
is transforming a graphical representation into algebraic form. This bears great
importance to curriculum design, since the Common Core emphasizes algebraic

functions. Plus, graphical to algebraic transformations are an important means of
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analyzing real-world data. Students who cannot meet this objective will be
unprepared for successful work in math-related careers.

Finally, students are uncomfortable with the nonstandard algebraic forms of a
quadratic, despite their utility. Most students will actually expand a quadratic in
factored or vertex form at the onset of attempting a problem. This preference might
also stem from students’ familiarity with the standard form from its exposure during
initial factoring and expansion exercises.

Eraslan (2005, 2007, 2007b) has contributed in depth case studies to the
research of teaching quadratics. Aspinwall and Eraslan (2007) analyzed the work of a
tenth grade honors student to gain insight into student understanding of quadratic
functions during four essential translation tasks.

While attempting to translate from a given graph to an algebraic
representation, the student assumed the leading coefficient, a, was 1. The student
also assumed that the coordinates of the vertex translated directly to the coefficients
of b and c, respectively. When translating from an algebraic to a graphical
representation, the student simply reversed this process. Next, the student was
alternatively given the quadratic function in vertex form, and the immediate response
was to translate the problem into standard form. Next the student applied the same
strategy in graphing it as he had in the previous task. Consistency in this student’s
strategies is important with respect to instructional implications that will be discussed

later in this paper.
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For the final task, the student was prompted to translate the standard form of a
quadratic function into vertex-form. The student translated the function into the form
y = x(ax + b) + ¢, rather than the appropriate vertex-form y = a(x — h)? + k. In
representation, the student conceived (b, c) to be the vertex. Here, the student
illustrates again consistent evidence of linear-quadratic confusion.

Aspinwall and Eraslan (2007) attribute the student’s misconceptions to “his
tendency to make an unfamiliar idea more familiar.” (p. 237) It is clear that the
student was trying to utilize techniques that pertain to linear functions when faced
with quadratic translations. This helps to explain the key misconception of linear-
quadratic confusion found by Zaslavsky (1997). In fact, many of the key
misconceptions are illustrated by this student’s work.

Eraslan (2007) later released a more detailed study of interviews with this
student to investigate the phenomenon of compartmentalization in his conception of
quadratic functions. Compartmentalization is defined as a conflict of two different
cognitive schemes representing a single concept. For example, a conflict is clearly
evident between situation-specific procedures involved in working with linear and
quadratic functions when this student tries to generalize those procedures to any
function. Erasalan (2007) found that this phenomenon was especially present in the
student’s difficulty in making connections between algebraic and graphical
representations of a single function.

In some instances, the student did display the correct intuitive reasoning in the

graphical representation of a problem, but could not translate this reasoning
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algebraically. The student also focused only on the x-coordinate of the vertex in
comparing the vertices of two parabolas (by graphing them), after correctly writing
the formula for finding both coordinates of each vertex. This shows difficulty in
moving from a correct algebraic representation to a graphical one. Hence, the student
has difficulty moving back and forth between graphical and algebraic thinking, in
either direction, adding a significant detail to Zaslavsky’s (1997) findings.

In an earlier case study of another student, Eraslan (2005) found that the
student tried to translate a function from graphical form by using the factored form,
y = a(x — x1)(x — x,). However, the student used the wrong sign for the roots and
did not know how to expand the result into standard form. Not knowing to substitute
another point in to find a, the student resorted to finding the slope, consistent with the
linear-quadratic compartmentalization found in Eraslan’s other case studies. The
student later applied linear techniques in attempting to find the vertex, axis of
symmetry, and intercepts.

In graphically representing another problem, this student envisioned a vertical
asymptote to the parabola. This is consistent with the first key misconception
described by Zaslavsky (1997). Another consistency was present in this student’s
avoidance of using the vertex-form, even to find the vertex. The student did
successfully use factoring and the quadratic formula to solve quadratics, but made no
attempt to solve real world application problems using any method.

As opposed to Zaslavsky’s (1997) focus on content-related misconceptions,

Zakaria (2010) categorizes errors into different levels of general problem solving.
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Zakaria (2010) conducted interviews and diagnostic tests to 30 algebra students in a
secondary school in Indonesia to gain insight into the types of errors students make
specifically during tasks involving factorization, completing the square, and the
quadratic formula.

Zakaria (2010) found that most students were unable to apply the method of
completing the square. Students produced errors at the transformation level, meaning
they failed to initiate the necessary procedures. Errors also involved vocabulary,
prerequisites skills, and comprehension of the problems. Errors in applying the
quadratic formula were purely computational. Students made errors multiplying,
dividing, replacing signs, and adding and subtracting negative numbers. These were
categorized as process errors.

Errors in factorization were primarily rooted in transformation and
computational fluency (process). Computation errors involved multiplication,
especially that which involved negative numbers; and failure to copy negative signs
from step to step. These errors compounded with student difficulties in expanding
polynomials into quadratic form. Zakaria (2010) also noted student difficulties in
comprehending the meaning of the roots of an equation.

The study found that most errors were at the transformation and process
levels, with the greatest number of transformation errors occurring during
factorization. This can be attributed to the fact that there are three different types of
factoring problems, as well as the cognitive demand placed on students by the

intuitive approach required during the factorization process.
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Kotsopoulos (2007) describes problems students in her classroom have had
with learning quadratics as they relate to cognitive theory. She notes that students
have difficulty retrieving multiplication facts necessary for factoring quadratics.
Through the lens of cognitive science, she suspects this difficulty relates to a lack of
procedural facts in the long-term semantic memory.

For students to successfully store multiplication facts into long-term memory,
Kotsopoulos (2007) argues that order matters. For example, a teacher cannot assume
that teaching the commutative property of multiplication will automatically result in
students achieving proficiency with the other half of their multiplication tables.
Rather, students need to learn multiplication facts explicitly in order to build up to the
concept of the commutative property.

Similarly, students have difficulty understanding the symbolic relationships
within and between the factored form, the standard form, and the vertex form of
quadratic expressions. Order matters. Take the quadratic equation, x% + 2x — 3 = 0.
A student may have no problem with solving it. When encountered with the
equivalent expression, x + 3x + 1 = x + 4, the same student will likely not know
what to do. Students have particular difficulty finding the roots of the function y = (x
— 1)(2 — x), because it is out of standard order (Kotsopoulos, 2007).

These difficulties cannot justifiably be attributed to a lack of conceptual
knowledge if the situation is novel to the student and the underlying procedures
haven’t been developed enough to justify the concept. Further, Kotsopoulos (2007)

proposes that the order (sequencing) in which the types of representations are
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presented to students may affect their storage into long-term semantic memory.
These are critically important assertions with respect to the instructional implications
to be discussed later in this paper.

In sum, students face many challenges in learning to interpret quadratic
functions. The first major challenge is the prerequisite arithmetic skills needed to
make necessary algebraic manipulations. Second, students lack a conception of what
quadratic functions are and how their different representations relate to one another.
Third, students present a lack of understanding regarding functions in general.

These are, in my interpretation of the research, the three major roadblocks that
deny students access. Without fluency in arithmetic, students lack the necessary tools
to work on quadratics. Without an elementary understanding of functions, students
cannot speak the language necessary to interpret quadratics. Without a conception of
what quadratic relationships are, students lack a clear task.

These three roadblocks need to be overcome before students are expected to
become proficient working in the abstraction of algebraic forms; and certainly before
students are expected to retain the many procedures related to the abstract forms.
These manipulations alone have long been the shortsighted focus of traditional

instruction. It is no wonder that students are running into problems.

Techniques

This section gathers information from the research on the three primary

techniques for solving quadratic equations: factoring, completing the square, and the
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quadratic formula. The research will highlight the effectiveness of each technique, the
relative importance and practicality of each technique, and ways to better utilize each

technique. Let’s begin with an honest portrayal of factoring from a teacher blog:

“I think there is value to factoring on some level, but what we do in
beginning algebra is overkill. When skills are a means to a greater end that
students will see and can appreciate, that can go a long way into making sense
of the skill and improving fluency with it. And when they’re taught in a
vacuum, learning and retention don’t usually follow. I've taught factoring for
15 years and regardless of the level, the same outcome always happens: teach
it for a couple of weeks, practice myriads of problems, they take (and most
pass) the test, and the day after the test it’s like a lobotomy happens. I see it
worse with that topic more so than any other. It’s literally like their memories
are wiped clean. We use it again in rational expressions and they don’t recall
it nor see the value. It’s just moving letters around to them so the skills don’t
stick. I’d rather do less of it and really use it for something other than problem
recognition. Show them when it can make sense and can be quite useful, like
the GCF when rewriting business or science formulas. If our goal is brain
calisthenics, there are so many more beneficial ways to get there. To me,
factoring is right up there with square roots by hand. Sure, we can do it. But

why?” (Almy, 2011, Webpage)
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Factoring of quadratic equations has been treated as perhaps the most essential
skill in algebra. It takes students a great deal of time to acquire proficiency in
factoring. So a substantial amount of class time is spent on it. Typically, factoring is
practiced during three different units in the algebra curriculum: factoring quadratic
expressions, factoring to solve quadratic equations, and factoring to simplify rational
expressions. This usually accounts for a month or more of class time. Many students
still struggle with factoring during their third encounter with it.

Bossé and Nandakumar (2005) argue that factoring is overemphasized in the
algebra curriculum in relation to its utility in real world mathematics. As Table 1
shows, the probability of a quadratic expression with integer coefficients actually
being factorable is very small, once the range of possible coefficients exceeds +10.
In a real world context, the case for factoring is far less optimistic than this. Integer
coefficients rarely occur in quadratic models of real world data, so in nearly all
situations factoring is out the window.

Table 1. Probability that a randomly generated quadratic is factorable.

Range a #0 Number of possible Number of factorable Percent of quadratics that
quadratics formed quadratics are factorable

100 36 36.00

1210 276 3281
8820 1348 15.20
8 080 200 226 912 2.81
64 320 400 1 028 860 1.60
216 720 600 2 481 820 1.14

513 280 800 4 619012 0.90
1002 001 000 7 468 652 0.74
8 008 002 000 33052872 0.41

Bossé and Nandakumar, 2005, p.146
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Despite its lack of real-world relevance, factoring remains a staple of the
algebra curriculum. In order to accommodate factoring exercises, quadratics are
grossly misrepresented in math textbooks. Bossé and Nandakumar (2005) conducted
a survey of 27 algebra textbooks and found that 94% of all quadratic expressions
represented in the texts were factorable. In some texts, all quadratics were factorable.
This representation of quadratics certainly does not match the statistics in Table 1, nor
is it consistent with the vision of the Common Core Standards that “high school
standards set a rigorous definition of college and career readiness, by helping students
develop a depth of understanding and ability to apply mathematics to novel situations,
as college students and employees regularly do.” (National Governors As