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1. Introduction 

1.1 Surfactants 

 Surfactants (surface activating agents) are frequently used for industrial and 

domestic applications1. These applications include, but are not limited to soaps and 

detergents, a multi-billion dollar industry worldwide that includes both man-made and 

naturally occurring surfactants. In addition to their widespread use as cleaning agents, 

surfactants are also part of the markets for paints, food, and explosives, among others10. 

Needless to say, surfactants are everywhere, and it is their unique bilateral structure that 

makes them so versatile. 

In general, surfactants are molecules containing both hydrophobic and hydrophilic 

regions. There are three categories of surfactants including nonionic, ionic, and zwitter 

ionic, but for this study we are only concerned with nonionic surfactants. For nonionic 

surfactants, each molecule has a polar head group and a non-polar hydrophobic carbon 

chain. This unique structure allows multiple surfactant molecules to aggregate in aqueous 

solutions to form micelles. The structure of a micelle is such that the long hydrophobic 

chains arrange themselves along the interior of the aggregate, with the polar head groups 

comprising the outer shell of the micelle. The hydrophobic nature of the interior of a 

micelle allows for the inclusion of similar hydrophobic organic compounds in the interior 

of the micelle. A sketch of the formation of typical micelles in water is shown in Figure 1. 
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Figure 1, Sketch of micelle formation in water 

In Figure 1, the surfactant molecules are shown as ball-and-stick models. The 

black, circular ends represent the polar head groups of the surfactant molecules, while the 

long thin tails represent the extended hydrocarbon chains. The circular representation of 

micelles in the right image in Figure 1 represents a cross section of a spherical micelle. 

While this typical model of a micelle appears spherical and rigid, with all of the 

hydrocarbon tails facing the interior of the micelle, it is important to note that this is not 

indicative of the complexity of micelle structure. The structural arrangement of a micelle 

is highly dynamic, with surfactant molecules shifting within an individual micelle, as 

well as leaving to join other micelles2. 

This structure is very favorable energetically because there are significant 

hydrophobic-hydrophobic interactions between the long carbon chains on the interior, 

dipole-dipole interactions between the polar head groups, and dipole-dipole interactions 

between the surrounding water molecules and the polar head groups of the surfactants. 

 The surfactant used in this study was a polydisperse branched alkyl-

polyethoxy/propyloxy alcohol, so in a sample of this surfactant, molecules were of 

Micelle 
Formation 
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varying polyethoxy chain lengths. The key structural elements of the most common form 

of this surfactant molecule include a branched alkyl chain containing a total of ten carbon 

atoms, followed by 7 repeating ethoxy units, 2 propyloxy units and a terminal hydroxyl 

group. The acronym C10E7P2OH was chosen to represent the surfactant in order to 

highlight the key structural features. Figure 2 shows the structure of the surfactant 

C10E7P2OH with the most common polyethoxy chain length (7).  

 

Figure 2, Structure of C10E7P2OH Surfactant 

In aqueous solution the lowest energy place for an added foreign hydrophobic 

molecule to reside is on the interior of the surfactant micelles due to favorable 

hydrophobic-hydrophobic interactions. The foreign molecule must be sufficiently small 

to fit inside of the surfactant micelles. Also, the concentration of this foreign hydrophobic 

molecule must be sufficiently small so that all of the molecules can be contained inside of 

the micelles. If either of these conditions is not met, the foreign molecule will partition 

between inside the micelles and the bulk water solvent. Unfavorable hydrophobic-

hydrophilic interactions will result until depending on its vapor pressure and 

concentration in solution, it either exits the solution by evaporating from the surface, or 

forms aggregates of its own in order to alleviate most of the unfavorable interactions. It is 

important to note that even for extremely hydrophobic compounds like D-limonene, there 

is still an equilibrium between its residence inside of micelles and within the bulk water 

CH3      C        C      C   CH2     CH2     (O    CH2     CH2)7     (O    C    CH2)2  OH 

H 

H H CH3 

CH3 CH3 

CH3 

CH3 



 

 8 

solvent. These hydrophobic compounds therefore still have a very small, but finite 

solubility in water.  

 In this study, D-limonene was introduced to C10E7P2OH/water solutions and 

compared with those solutions that contained only the surfactant C10E7P2OH and water. 

The structure of D-limonene is shown in Figure 3. 

 

 

 

 

 

    Figure 3, Structure of D-limonene 

D-limonene’s solubility in water is extremely low because it is very hydrophobic. 

We intended to determine the average radius of the surfactant aggregates in these 

solutions, as well as the aggregate number (the number of surfactant molecules 

comprising an average micelle). Also, we sought to answer the question, “Once D-

limonene is introduced to the surfactant/water system, where does it associate?” These 

specific questions can be answered using data obtained from Nuclear Magnetic 

Resonance (NMR) spectroscopy of the surfactant systems. Specifically, T1 relaxation, T2 

relaxation, and Diffusion-Ordered Spectroscopy (DOSY) are the experiments that 

provide data that help describe the molecular arrangement of surfactant micelles and 

association of D-limonene. This is an experimental approach that has been used 

previously by Kato5 and Gerardino1 among others. 

CH3

H C CH3

H2C
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 The micelle arrangement was studied through comparison of measurements 

across a specific temperature range for three specific concentrations of surfactant in the 

presence and in the absence of D-limonene. The three surfactant concentrations were 2%, 

3.5%, and 5% by mass of C10E7P2OH in water and the concentrations of D-limonene, 

when present, were fixed at 2% by mass. In total, six solutions were studied and 

compared across a specific temperature range. 

 

1.2 NMR Spectroscopy 

 Some nuclei possess a property called spin which is observed in NMR 

Spectroscopy. These spin-bearing nuclei are precessing at a specific Larmor frequency 

which creates a magnetic vector pointing perpendicular to the plane of the rotational 

motion. A superconducting electromagnet, the crucial part of an NMR instrument, applies 

a large external magnetic field to the sample, which forces the magnetic vector of each 

precessing nucleus (spin) in the sample to align along the external magnetic field.  The 

magnetic moments of each nucleus point either with or against the direction of the 

magnetic field. More then 50% of the spins align with the external magnetic field, 

thereby creating a net vector which is termed the bulk magnetization. Figure 4 illustrates 

this alignment process within the NMR instrument. 
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Figure 4, The effect of the magnetic field on the magnetic vectors of the nuclei in a 
sample 

The nuclei are represented in Figure 4 by showing their rotation as well as the 

magnetic moment vector, indicated by the black arrow perpendicular to the plane of their 

rotation. In a sample tube outside of the magnet, the nuclei align randomly as shown on 

the left of Figure 4. Within the static magnetic field of the NMR instrument, the magnetic 

moments align vertically and the net vector in the upward direction is established3, as 

shown on the right of Figure 4. 

 

1.3 T1 and T2 Relaxation 

One can manipulate the net vector, also referred to as bulk magnetization, by 

introducing magnetic radio frequency (rf) pulses. The rf pulse is caused by a second 

external magnetic field perpendicular to the static magnetic field which is created by a 

coil within the instrument and functions to tilt the bulk magnetization vector from its 

resting axis. The longer the magnetic pulse is maintained, the further the net vector of the 

 

 

Spins outside magnet 

 
 

 
Sample is 
placed in 
magnet 

The magnetic 
moments of the 
nuclei align 
themselves with 
the direction of 
the magnetic field 

Static magnetic field 

 

  

 

  

Spins inside magnet 

Net Vector 



 

 11 

bulk magnetization is moved. A longer pulse therefore causes the bulk magnetization to 

shift further from the z-axis. 

Because each of the nuclei are rotating with their magnetic moments aligned 

along the z-axis, when the bulk magnetization is tilted from the z-axis by a pulse, the 

relaxation that follows is very complex because each magnetic moment is precessing 

around the z-axis while relaxing. This complex motion is best analyzed in the “rotating 

frame” coordinate system. The rotating frame is a coordinate system which helps to better 

visualize the relaxation that occurs after an rf-pulse within the NMR instrument. The 

coordinate system of the rotating frame rotates with the nucleus so that the only motion 

observed is the relaxation towards the z-axis3. 

An illustrative analogy to the rotating frame is the motion of a carousel. Two 

simultaneous motions are occurring on a carousel: the rotation of the entire carousel, as 

well as the up and down motion of each individual horse on the carousel. To an observer 

on the ground who was tracking the motion of one particular horse, the motion would be 

very complex and hard to visualize. If the same observer were to stand on the carousel as 

it rotated and then observe a particular horse, the motion would only appear as a simple 

up-down oscillation. This concept is identical to the rotating frame coordinate system 

applied to the relaxation of each nucleus3. An example of a 90º pulse within the rotating 

frame coordinate system is shown in Figure 5. 
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Figure 5, 90º rf-pulse 

The bulk magnetization is represented in Figure 5 by the thick black arrow within 

the rotating frame coordinate system, which is aligned with the z-axis before the rf-pulse 

is introduced. During the rf-pulse the bulk magnetization is rotated away from the z-axis 

and in the case of a 90 degree y-pulse brought along the x-axis, i.e., into the x-y plane, as 

shown on the right in Figure 5. Once the pulse is released, the bulk magnetization is 

actually allowed to relax in two distinct ways. T1 relaxation is characterized by the bulk 

magnetization relaxing back towards the z-axis, that is, back to its original orientation. T2 

relaxation occurs within the xy-plane. In T2 relaxation, the individual magnetic moments 

separate across the xy-plane. Each type of relaxation can be measured and a time constant 

describing the rate of this relaxation can be determined for each using experiments 

described in Section 1.6. 
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1.4 Detection 

After an rf-pulse has been introduced and the bulk magnetization begins to relax, 

the same coil that delivered the magnetic pulse then becomes the antenna for detection. 

The precessional magnetization that was created induces a current in the same coil that 

was used to introduce the rf-pulse. This coil, now acting as an antenna, detects a current, 

which is recorded as the free induction decay (FID). Because the vector is rotating while 

it is relaxing to the z-axis, the radius that the magnetic vector carves becomes smaller as 

the vector nears its resting position on the z-axis. The decreased radius is observed as the 

fading oscillatory signal, i.e., the FID3. A typical FID is shown in Figure 6. 

 

 

 

 

 

 

 

 

Figure 6, Example of a typical FID 

 Figure 6 shows the decay of the signal over time due to spreading of the net 

vectors in the xy plane and also due to inhomogeneity in the magnetic field within the 

NMR instrument.  
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1.5 Fourier Transformation 

 The FID is the raw data collected from the NMR instrument. The Fourier 

transformation is a mathematical operation which allows one to convert the FID into a 

more readable spectrum. The method of the Fourier transformation begins by multiplying 

trial cosine waves of many different frequencies with the FID. At each frequency, a 

unique product function is obtained. This operation is applied to the very same FID data 

for all frequencies specified by the frequency spectral width and resolution parameters of 

the NMR experiment. The operation is shown at three different frequencies in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7, Fourier transformation 

Figure 7 shows three different trial functions, all of differing frequencies being 

multiplied by the FID for a random experiment. Along the bottom row are the product 
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functions that result from each of the three combinations. Note that the same FID is used 

for each operation and the varying frequencies of the trial cosine wave functions are what 

determine the variation in the product functions3. 

Once this operation has been performed at every frequency specified by the 

parameters of the experiment, the product functions are integrated and the resultant 

values are plotted against the frequency of the trial cosine wave that was used to create 

that product function. This conversion is illustrated in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8, Conversion of the product functions to the final spectrum 

Figure 8 shows the integration of the product functions and the resulting spectrum. 

These are just three examples of product functions obtained from a series of operations 

that would include trial functions of frequencies spanning the entire range 0-15 Hz for 

this experiment.  

(Hz) 
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 The Fourier transformation is useful in many spectroscopic applications to obtain 

a spectrum that is more easily interpreted than the time-domain function (FID). 

  

1.6 Advanced NMR Experiments  

 For this study, a series of more complex NMR experiments were used to obtain 

useful information about the surfactant systems. These experiments rely upon all of the 

concepts already introduced. The three experiments that were used in this study are 

inversion-recovery for obtaining T1 time constants, CPMG (named for its inventors Carr, 

Purcell, Meiboom, and Gill) for obtaining T2 time constants, and diffusion measurements 

for obtaining the diffusion coefficient, D, of the aggregates. 

  

1.6a Determining T1 Time Constant 

The inversion-recovery program allows for measurement of the T1 time constant 

for the nuclei in the sample. It begins with a specific time period during which the bulk 

magnetization is allowed to settle to its resting position along the z-axis. The program 

then introduces a 180º pulse to invert the bulk magnetization. This pulse is followed by a 

variable delay time during which the bulk magnetization relaxes back towards the z-axis 

by T1 relaxation. Next, the program introduces a 90º pulse to inspect how far the 

magnetization has relaxed back and then the detection of the FID begins. This standard 

pulse program is illustrated in Figure 9. 
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Figure 9, standard pulse program 

At point “a” in Figure 9, the bulk magnetization is aligned along the z-axis. The 

180º pulse, shown as a rectangle, rotates the bulk magnetization away from the axis as 

shown by the nuclei across the time axis at point “b.” During the variable delay time 

between point “b” and “c,” T1 relaxation occurs. The final 90º pulse moves the bulk 

magnetization again. The FID is read and recorded beginning at point “d.” This FID is 

shown in the background to the pulse program in Figure 9.  This sequence is repeated 16 

times, each with a different delay time between points “b” and “c,” as designated in the 

pulse program parameters. Each of the 16 FID corresponding to each variable delay time 

is Fourier transformed and phased using identical phase settings to yield readable, phased 

spectra, also termed slices. For each signal of interest, the area under the signal is 

integrated and the integrated values for each peak, also referred to as the magnetizations, 

are plotted against the corresponding delay time. This plot, shown on the right in Figure 
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10 can be fitted to yield the relaxation rate 1/T1 which allows the derivation of the rate at 

which the bulk magnetization relaxes (T1 time constant). This rate is unique for every 

nucleus type. A waterfall plot of the 16 T1 slices and the associated Inversion Recovery 

plot are shown in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10, T1 slices and T1 time constant plot 

Figure 10 shows the sixteen slices for a sample of pure water on the left arranged 

in a waterfall plot. Arrows are shown to relate the 1st and 16th slices with their 

corresponding data points along the curve on the right for magnetization vs. delay time. 

The number of slices, or delay times, that are to be taken is variable. For this study 

sixteen was an optimal number, given the desired precision and time constraints for the 

instrument. 
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1.6b Spin Echo  

 Spin Echo is a phenomenon that occurs following a 90º rf pulse, which tilts the 

bulk magnetization onto the xy plane, and a 180º rf pulse, which reverses the polarity of 

the magnet and direction of spread in the xy plane. The spin echo results from the 

refocusing of the magnetic vectors after the polarity of the magnetic field in the NMR 

instrument is reversed. Following a pulse, the vectors begin to relax according to their T2 

relaxation constants. This relaxation causes the vectors to spread across the xy-plane as 

described in section 1.3. An additional contributor to this spread across the xy-plane is 

inhomogeneity in the magnetic field. In order to remove this contribution to T2 and 

determine what portion of the spread is due only to T2 relaxation, after a certain time, τ, a 

180º inversion pulse is introduced which reverses the direction of spread due to the 

magnet inhomogeneity. As the magnetic vectors refocus, the FID essentially reappears 

after another identical time period, τ. Because of the virtual reappearance of the FID 

showing the spin-spin relaxation, the phenomenon is termed spin echo3. This 

phenomenon is observed in the T2 experiment described in section 1.6c. 

 

1.6c Determining T2 Time Constant 

 The standard pulse program used to determine the T2 time constant is slightly 

more complex then the standard pulse program for determining T1 constants. Initially, a 

90º pulse is applied to align the bulk magnetization in the xy-plane. There is a specific 

time period, τ, following the initial 90º pulse during which T2 relaxation occurs, causing 

the individual magnetic vectors to spread across the xy-plane. During this time, τ, 

inhomogeneity in the magnetic field inside the NMR instrument also contributes to this 
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d

d)

a

Spin echo

Repeat spin echo forming sequence b) – d)

d

d)

a

Spin echo

Repeat spin echo forming sequence b) – d)

spread, as previously described. In order to remove this coherent contribution to the 

spread, a 180º pulse in the xy-plane is then applied to reverse the magnet polarity. After 

an identical time period, τ, the spread due to magnetic field inhomogeneity refocuses and 

the spin echo is formed.  The remaining spread of the magnetic vectors across the xy-

plane is due only to the random T2 relaxation process that has occurred during the 2τ time 

period. This sequence is illustrated in Figure 11. 

 

 

 

 

 

 

 

 

 

Figure 11, T2 standard pulse program 

Figure 11 shows the bulk magnetization initially aligned with the z-axis at point 

“a.” At point “b,” a 90º pulse is introduced, which aligns the magnetic vectors in the xy-

plane. The individual magnetic vectors spread along the xy-plane between point “b” and 

point “c” due to inhomogeneity in the NMR magnet and also due to T2 relaxation. At 

point “c,” a 180º pulse is introduced to reverse the magnet polarity. By point “d,” the 

remaining spread of the vectors in the xy-plane is due only to T2 relaxation. The spin 

echo forming sequence (“b” to “d”) is repeated a variable amount of times and the net 
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vector is measured and recorded as one slice, which becomes one data point for a plot of 

spin echo intensity vs. total time of the n times Tau – 180º pulse – Tau sequence, which is 

then fitted to determine the T2 time constant. When more spin echo sequences occur, 

there is more spread due to T2 relaxation because more time is given for the relaxation to 

proceed. Therefore, the resultant net vector will be of decreasing magnitude when more 

spin echo sequences are repeated. For each successive slice, the number of spin echo 

sequences (“b”-“d”) is increased in this way. An example of the sixteen slices after they 

have been Fourier transformed and phased with identical phase settings, and their 

associated plot to determine T2 are shown in Figure 12. 

 

 

 

 

 

 

 

 

 

Figure 12, T2 slices and their associated plot 

 In this figure, the T2 slices for a sample of C10E7P2OH in water with D-limonene 

are arranged in a waterfall plot on the left. Each individual signal in the spectra can be 

integrated across all sixteen slices to yield a T2 value specific to that peak.  Arrows are 

used to correlate the first and sixteenth slice, with the corresponding integration value 
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plotted against the number of spin echo sequences for that slice, for the largest surfactant 

signal. The significance of the ability to integrate any number of peaks is further 

described in Section 2.5. 

 

1.7 Diffusion-Ordered Spectroscopy (DOSY) 

The fundamental difference between standard NMR experiments including T1 and 

T2, and DOSY is the presence of a magnetic field gradient during a DOSY experiment. In 

T1 and T2 experiments, the magnetic field is of uniform strength. Positions within the 

sample tube can be differentiated based upon their position in the gradient and the 

movement (diffusion) of individual molecules within the solution can be tracked. Based 

on these principle ideas, the NMR instrument can determine diffusion coefficients for the 

different molecules present in a solution. 

The pulse program for DOSY is principally based upon the same general spin 

echo sequence shown in Figure 12, but is further refined to optimize the accuracy of 

diffusion measurements by eliminating sources of error such as eddy currents and 

convection currents caused by gradient pulses. The pulse program for obtaining diffusion 

coefficient, D, was even slightly more complex, as pulsed field gradients were used in 

place of static field gradients. However, the effect of the magnetic field gradient 

manifests itself in the bulk magnetization after the τ – 180º - τ time length. For example, 

nuclei that reside in a strong part of the gradient at the beginning of the pulse sequence 

will experience a lot of spread along the xy-plane of their magnetic moments. If these 

nuclei diffuse to a position of weaker magnetic field strength within the gradient after the 

180º pulse, which reverses the direction of spread of the magnetic vectors, then they will 
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not be allowed to refocus completely. For the experiments in this study, a total of sixteen 

different field gradient strengths were applied, and the resultant FID is obtained from 

each sequence using the different gradient field strengths. A stronger field gradient will 

yield a weaker spin echo. For DOSY, these sixteen trials provide, after Fourier 

transformation of the spin echo and consistent phasing, the resulting sixteen spectra. Any 

signal can be integrated across all sixteen slices and used to determine D for the molecule 

that is represented by that signal. An example of such a plot is shown in Figure 13. 

 

Figure 13, Plot for determining D from 16 slices in a DOSY experiment 

The equation of fit for this plot is Equation 1, 

)3/(222 δδγ −∆−= gD
oeII  (1) 
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D
kTr
πη6

=

where I is the observed intensity (arbitrary units), Io is the reference intensity (arbitrary 

units), D is the diffusion coefficient (m2/s), γ is the gyromagnetic ratio (Hz/G), g is the 

amplitude of the applied gradient (G/m), δ is the duration of the applied gradient (s), and 

Δ is the diffusion time (s). All of the factors in this equation are known and declared in 

the parameter set for the pulse program except Io, and D, which is determined from the fit. 

Equation 1 can be rearranged to show that the observed intensity units are indeed 

irrelevant: 

)3/(222 δδγ −∆−= gD

o

e
I
I

 (2) 

In this form, it is obvious that the observed and relative intensities cancel making their 

units irrelevant. 

 It is clear from Equation 2 that there is a dependency of the intensity of the signal 

integration, I, on the magnetic field gradient, g. Therefore, by altering the gradient field 

strength across sixteen spectra, the plot shown in Figure 13 can be obtained and fitted to 

Equation 1 in order to determine the diffusion coefficient. 

 

1.8 Theory on Diffusion 

Determining D is important for examining the structure and activity on a 

molecular level of surfactant aggregates in solution. By assuming spherical micelles, one 

can calculate the surfactant aggregate radius using the Stokes-Einstein Equation7, 

Equation 3. 

 

(3) 
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In Equation 3, r is the aggregate radius (m), k is the Boltzmann constant 

(1.380x10-23 J/K), T is temperature (K), η is viscosity of the solution (Pa*s), and D is the 

diffusion coefficient (m2/s). The Stokes-Einstein equation, Equation 3, is limited for use 

only as it applies to media of high fluidity, where the diffusing particle is a large entity 

moving through a continuous medium, as is the case in this study. 

In order to determine if the foreign fragrance molecule D-limonene associates 

either within or outside these aggregates, one can compare the values of D in each sample. 

For instance, if D is significantly different for each species, then it is evident that the two 

molecule types do not migrate together in solution. This would eliminate the possibility 

of mixed aggregates forming which include both surfactant and D-limonene. Similar D 

values for each molecule would indicate that they are probably diffusing as one entity in 

the solution, confirming the presence of mixed aggregates.  

  In addition to this analysis, T1 relaxation and T2 relaxation experiments can also 

yield information regarding the environment of the aggregates in solution. Comparisons 

of T1 and T2 relaxation values can describe whether the entity is large (> 500 FM), and 

therefore within the spin-diffusion limit, or small (FM < 500), and therefore described by 

the extreme narrowing limit (where T1= T2)9. For larger entities described by the spin- 

diffusion limit, there is magnetic shielding of nuclei in any cluttered molecular 

environment, called the chemical shift anisotropy (CSA). At sufficiently high external 

magnetic field strength, this shielding leads to fluctuating magnetic fields because the 

CSA depends upon the orientation of the molecule in the external field, which is 

dynamic8. These fluctuations influence the relaxations of the nuclei, causing T1 and T2 to 



 

 26 

be unequal. Therefore, if T1 and T2 values are significantly different for the same 

component, their difference is evidence of an environment described by the spin-

diffusion limit. Large aggregates, as opposed to individual small molecules, are present.  

 

2. Results and Discussion 

2.1 Phase Behavior 

 There is an optimal range of temperatures in which reliable NMR experiments can 

be conducted for the surfactant systems we have studied,. In solutions of C10E7P2OH in 

water, there is a phase change from a single-phase, clear solution to a cloudy two-phase 

system beyond a certain temperature. This phenomenon exists because at low 

temperatures and high concentrations, surfactant micelle formation is favored and 

therefore a single-phase, clear solution results. As an individual, unassociated molecule 

though, C10E7P2OH is not very soluble in water because it is nonionic and has a long 

hydrophobic carbon tail. As temperature increases then, there is enough thermal energy to 

break apart the surfactant micelles and segregate the surfactant in solution into a separate, 

surfactant-rich phase12. Experimentally, the double-phase cloudy solutions yield bizarre, 

unreadable spectra when analyzed in the NMR spectrometer, so it is essential to 

determine the temperature range at which the solutions were always clear and single-

phased. The data for this phase behavior investigation are shown in Figure 14. 
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Figure 14, Phase behavior of C10E7P2OH solutions 

The two-phase state exists above the curve and the one phase state below the 

curve. Figure 14 shows that the cloud point temperatures for the composition range 2% 

to 5% by mass C10E7P2OH in water used for the NMR studies are between 

approximately 50-60º Celsius.  Mixtures containing only 2-5% by mass D-limonene and 

water are cloudy at room temperature because D-limonene is completely hydrophobic 

and therefore the mixture is bi-phasic. For solutions containing C10E7P2OH and D-

limonene in water, the cloud point is observed around 35º Celsius using identical 

surfactant concentrations, with 2% by mass D-limonene added. The presence of the 

surfactant aggregates in these solutions allows the D-limonene to be incorporated within 

the micelles and a single-phase state is maintained below 35º Celsius. However, beyond 

this temperature there is enough thermal energy again to cause a break-up of the 
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aggregate and a change to two phases. The existence of a single-phase state below the 

cloud point is also corroborated by the NMR spectra obtained at these temperatures. 

These spectra were normal and yielded good, observable data. 

The temperature range for the NMR experiments is reflective of the phase 

behavior study. Because of the lower cloud point temperature of solutions containing D-

limonene, NMR spectra were only obtained at temperatures of 308K and below. 

 

2.2 Viscosity 

In order to determine the aggregate number for C10E7P2OH in the surfactant 

systems of interest using the Stokes-Einstein equation of Equation 2, it was necessary to 

also determine the viscosities of each solution at the various temperatures of the study. 

The data for the viscosities are shown in Figure 15. 

 

 

 

 

 

 

 

 

 

  

Figure 15, Viscosity of C10E7P2OH solutions at various temperatures  
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In Figure 15, viscosity is plotted along the y-axis and Temperature along the x-

axis. The data for the solutions containing D-limonene are shown in white with black 

outline and the solutions without D-limonene in solid black. Viscosity decreases with 

temperature for all of the solutions between 298 Kelvin and 318 Kelvin. This behavior is 

expected because as temperature increases, there is more thermal energy present within 

the system to overcome the frictional forces present that contribute to the viscosity. 

Beyond 318 Kelvin, there is an unexpected upward trend in the viscosities for the 3.5% 

by mass and 5% by mass solutions of C10E7P2OH. This unexpected trend may be 

explained by a size increase of the surfactant aggregates with temperature, which 

increases the friction within the solution. The larger aggregate size at higher temperatures 

begins to outweigh the increase in thermal energy helping to overcome these frictional 

forces6. 

 

2.3 DOSY Results 

 Using diffusion-ordered spectroscopy (DOSY), the diffusion coefficient, D, for 

each component of each solution could be determined across an effective temperature 

range. This temperature range was previously determined from the cloud point 

measurements of C10E7P2OH/water solutions of different concentrations. Figure 16 

shows the values of D determined for each component of each solution (excluding water) 

across the effective temperature range. 
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Figure 16, Diffusion Coefficients determined from DOSY for C10E7P2OH Solutions 

 The diffusion data in Figure 16 and the viscosity data in Figure 15 provide 

essentially all of the important data necessary for a complete analysis of the C10E7P2OH 

surfactant system on a molecular level. The solid black data points in Figure 16 represent 

D for C10E7P2OH in C10E7P2OH solutions without D-limonene. The white points with 

thin black outline represent D for C10E7P2OH in C10E7P2OH solutions that also 

contain D-limonene, while the grey data points represent D for D-limonene in these same 

solutions. It is important to note that when comparing solutions of equal concentration of 

C10E7P2OH with and without D-limonene, the value of D is significantly lower for those 

solutions containing limonene. This indicates that when D-limonene is included in 

solution, the aggregates swell as the D-limonene is incorporated inside of them, thus 

causing them to diffuse more slowly. 
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 Also, D for the component D-limonene is very similar to D for C10E7P2OH 

within the same solution, although D for the D-limonene component is consistently 

slightly lower. The similarity in these two values indicates that indeed they are diffusing 

as one entity. If D-limonene were forming its own independent aggregates within the 

water phase, separate from the surfactant aggregates, then one would expect to see two 

completely different values of D for C10E7P2OH and D-limonene. D is however 

consistently slightly lower for the D-limonene component, which cannot be ignored.  

One explanation for the slightly lower D values relies on the consideration that D-

limonene must slide in and out of the surfactant aggregates regularly. Also, the 

qualitative observation of the strong lemon odor given off by these solutions indicates 

that D-limonene is evaporating from solution regularly, and thus not every D-limonene 

molecule is enclosed permanently by the surfactant aggregates. These D-limonene 

molecules, when they are in the continuous water phase outside of the surfactant micelles, 

likely aggregate to microemulsions, which are perhaps even larger than the surfactant 

micelles, and therefore diffuse at a slower rate then the micelles themselves. Since the D 

value calculated by the pulse program is an average of all of the Ds for each molecule of 

that component in solution, an average D value for all D-limonene molecules in solution 

will be lower then D for the C10E7P2OH component in the same solution. 

  

2.4 Determining Aggregate Size 

 With viscosity and diffusion coefficients known as a function of concentration 

and temperature, it is possible to determine the average aggregate radius for each solution 
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using the Stokes-Einstein Equation, Equation 2. A plot of the aggregate sizes calculated 

from the diffusion and viscosity results is shown in Figure 17. 

 

 

 

 

 

 

 

 

 

 

Figure 17, Aggregate Size for C10E7P2OH solutions 

 This upward trend observed across each data set in this plot indicates that as 

temperature increases, so too does the aggregate size. The solid black data points 

represent solutions containing no D-limonene, while the solid white data points outlined 

in black represent solutions with D-limonene. These data clearly show that as D-

limonene is incorporated in solution, the aggregate size approximately doubles at each 

concentration. This provides further evidence that D-limonene is incorporated into the 

C10E7P2OH micelles, causing them to swell.  

 Concentration seems to have an uncertain effect on aggregate size, indicating that 

perhaps the surfactant micelles do not significantly change in size across the various 
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concentrations, but rather the concentration of aggregates in solution must actually 

increase. 

 

2.5 T1 and T2 Data  

 The most useful information is obtained from comparing the T1 and T2 time 

constants. For the surfactant systems studied, a significant difference between T1 and T2 

time constants indicates that the environment in which the molecule of interest resides is 

constrictive, and there are outside interactions occurring which prevent unrestricted 

relaxation. This evidence would support the hypothesis that surfactant aggregates are 

forming, and that D-limonene exists within these aggregates. 

The T1 and T2 time constants could therefore further support the hypothesis that 

the C10E7P2OH molecules form large aggregates in solution, and that D-limonene is 

incorporated within these aggregates. When determining these constants from the spectra 

obtained from the relevant experiments, each individual signal in the spectra can be 

integrated across all sixteen slices to give a separate time constant as introduced in 

section 1.6c. Because the different signals in a spectrum are representative of different 

nuclei within a molecule, there can be different T1 and T2 time constants for each signal 

in the spectrum. For the spectra representing C10E7P2OH/D-limonene/water solutions, 

nine signals were integrated. Five of these signals are from D-limonene and four from 

C10E7P2OH. Figure 18 shows an example of a 1D T1 slice of the longest delay time for 

a C10E7P2OH/D-limonene/water solution, and the labeled nine signals that were 

integrated across all of the slices. The sample was 3.5% by mass surfactant in D2O with 

2% by mass D-limonene. 
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Figure 18, sample T1 slice showing the signals for which T1 and T2 time constants were 
determined 

 

T1 and T2 experiments were conducted on solutions of 2%, 3.5 % and 5% by 

mass solutions of C10E7P2OH in water containing no D-limonene, as well as solutions 

of identical C10E7P2OH concentration but containing x% D-limonene. The data for T1 

time constants for all 9 signal peaks of solutions containing no-D-limonene are shown in 

Figure 19. 
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Figure 19, T1 time constants for solutions containing no D-limonene 

Those data points which are significantly removed from the general trend are 

from peak 9, which is the peak that represents the end methyl group in the structure for 

C10E7P2OH. The larger T1 time constant indicates that there is slower relaxation for this 

nucleus because of the environment in which it resides. The environment that inhibits 

relaxation must be rigid and allow for less movement. The data is supportive of our 

hypothesis, since this area of the surfactant molecule should be hypothetically contained 

well within the aggregate, and therefore inhibited in movement by its crowded 

environment.  

 T1 time constant data for solutions containing D-limonene are shown in Figure 

20a, 20b, and 20c. 
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Figure 20a, T1 time constants for 2% by mass surfactant solutions containing D-limonene 
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Figure 20b, T1 time constants for 3.5% by mass surfactant solutions containing D-

limonene 
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Figure 20c, T1 time constants for 5% by mass surfactant solutions containing d- limonene 

For these solutions containing D-limonene, the T1 values are all considerably 

higher then those for solutions that do not contain D-limonene. The range of the y-axis 

increases from 0-2.5 s to 0-4.5 s to include all of the data after the inclusion of D-

limonene in solution. This indicates that the environment of the nuclei represented by 

each of the nine peaks is more hindered. This corresponds with the prediction that D-

limonene associates within the surfactant micelles, making the interior of the micelles 

more crowded and rigid. The elevation of the T1 time constants for solutions containing 

D-limonene supports this assumption.  
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 T2 time constants were determined for all nine peaks of the same solutions used 

previously. The data for these experiments on the solutions containing no D-limonene are 

shown in Figure 21. 
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Figure 21, T2 time constants for solutions containing no D-limonene 

 The data for the T2 experiments conducted on the 3 solutions containing D-

limonene are shown in Figure 22a, 22b, and 22c. 
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Figure 22a, T2 time constants for 2% by mass surfactant solutions containing D-limonene 
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Figure 22b, T2 time constants for 3.5% by mass surfactant solutions containing D-

limonene 

 



 

 42 

0

0.5

1

1.5

2

2.5

3

296 298 300 302 304 306 308 310

Temperature (K)

T2
 (s

)

Peak 1

Peak 2
Peak 3

Peak 4

Peak 5
Peak 6

Peak 7

Peak 8
Peak 9

 

Figure 22c, T2 time constants for 5% by mass surfactant solutions containing D-limonene 

There is a similar trend for T2 time constant values in these solutions: when D-

limonene is added, the values increase. This again supports the existence of aggregates in 

solution which hinder relaxation of the nuclei. It is also important to note the difference 

in values for T2 compared to T1. The values for T2 time constant are all within the range 

0s to 1.2s, while the values for T1 extend in the range of 0s to 2.5s for these solutions. To 

clearly illustrate this difference, a comparison of all data points corresponding across 

temperature and solution type was conducted. One of these comparisons showing the 

exact T1 and T2 values for the 3.5% by mass solution containing D-limonene is shown in 

Table 1. 
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Table 1, T1 and T2 values in seconds for 3.5% by mass C10E7P2OH in water with D-
limonene at 308K 
Peak 1 2 3 4 5 6 7 8 9 

T1 3.961 2.568 0.642 2.072 3.066 2.068 0.879 0.697 1.838 

T2 0.743 2.030 0.511 1.218 2.410 1.330 0.217 0.301 0.668 

 

T1 and T2 are distinctly different for these solutions. This is evidence that 

aggregates are forming that restrict the molecular motion in the surfactant and D-

limonene molecules because T1 and T2 should be equal in normal liquid solutions where 

no aggregates are forming. Because the T1 and T2 values differ for peaks that represent 

nuclei in both surfactant and D-limonene, we can say that both molecules are included in 

the aggregates in these solutions. This is strong evidence to support the prediction that D-

limonene is included within the surfactant micelles. 

 

2.6 Interpretation of Aggregate Size 

Using all of the data we have collected, especially the values for the aggregate 

radius, it is possible to determine the aggregate number (average number of surfactant 

molecules that form an aggregate) for each solution and relate it to the concentration of 

these molecules in solution. Given that in actuality the surfactant aggregates are in 

constant flux with respect to chemical exchange and size, the word average here means 

an ensemble average as well as a time average of the values for the aggregate size and 

corresponding aggregate number. Thus, in order to determine aggregate numbers using 

the radius values, it was necessary to establish a few representative models, all 

representing rigid states for the surfactant micelles. These models were chosen in part to 
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represent extreme cases to establish upper and lower boundaries for aggregate numbers.  

This approach is reasonable and ?. A diagram of the principle model of the C10E7P2OH 

micelles without any D-limonene included, which has been used before in other 

investigations2, is shown in Figure 23. 

 

Figure 23, Model for surfactant micelle without D-limonene 

This image in Figure 23 is a cross-section of the hypothetical model which 

assumes the micelle to be a perfect sphere where the surfactant molecules are packed as 

tightly as possible in a single layer without overlapping their long hydrophobic tails. In 

order to use values already determined for aggregate radii to determine aggregate 

numbers, three different arithmetic methods were established by considering extreme 

cases to determine upper and lower bounds for aggregate number, as well as a more 

reasonable middle case. For each method, we gave surface area and volume different 

weights in determining how the surfactant molecules can pack as tightly as possible into a 

single layer, spherical micelle like the one shown in Figure 23. 

In order to calculate the aggregate number from Method 1 we used the following 

ratio: 

Effective 
Interior Diameter 

Exterior  
Diameter 
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 _______Micelle inner pocket surface area ________  
Surfactant molecule surface area at end methyl group 

 

This method assumes that the surfactant molecules are packed as tightly as they possibly 

can be at their ends in the interior of the micelle, and that the surfactant molecules do not 

overlap. This model represents an extreme case where the surfactant molecules are the 

least dense they could possibly be in the aggregates, therefore providing an underestimate 

of the actual aggregate number.  

 Method 2 can be used to determine aggregate number by the following ratio: 

 

 ___________Micelle outer surface area ________________  
Surfactant molecule surface area at terminal hydroxyl group 
 

This method assumes the surfactant molecules to be packed as tightly as possible along 

the outside surface of the micelle. In order for this to be possible, the long hydrophobic 

tails must overlap considerably more than they possibly could in the smaller interior of 

the micelle. This is an extreme case where an exorbitant number of C10E7P2OH 

molecules must overlap and squeeze into a small micelle interior, therefore providing an 

overestimate of the actual aggregate number 

 Method 3 can be used to determine the aggregate number by the following ratio: 

 

 (Total micelle volume – inner pocket volume)  
Volume of one C10E7P2OH surfactant molecule 
 

This method assumes that the surfactant molecules are packed tightly into a single layer 

without overlap. Also, this model accounts for the “empty” inner pocket by subtracting 
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its volume from the total volume of the micelle. It is important to note that there cannot 

actually be a true empty pocket in the micelle at any given time. This pocket can instead 

be considered a less dense region, as the micelle is fluid, with surfactant molecules 

shifting towards and away from the interior of the micelle. The single layer model with 

the empty pocket provides a static model of an average state for a micelle.  This model 

provides a reasonable estimate of aggregate number because it accounts for the volume of 

the micelle that should be occupied by a single layer of tightly packed C10E7P2OH 

molecules, which is indeed the general model represented in Figure 23. 

 Each method was applied to the aggregate radii data and values for aggregate 

number were determined for each solution across the temperature range previously 

analyzed. A comparison of the values for a 3.5% by mass solution of C10E7P2OH in 

water without D-limonene is shown in Table 2. 

Table 2, Aggregate Numbers in 3.5% C10E7P2OH in water without D-limonene 

Solution 
Temperature 
(K) 

Aggregate # 
Low 
Estimate 
(Method 1) 

Aggregate # 
High 
Estimate 
(Method 2) 

Aggregate # 
Middle Estimate 
(Method 3) 

3.5% 
C10E7P2OH in 
D2O without 
D-limonene 

298 9 806 301 
303 37 987 405 
308 47 1035 434 
313 97 1237 560 
318 207 1577 785 
323 392 2037 1108 
328 714 2710 1605 

 

 This data in Table 2 show that Method 3 is indeed the most reasonable method, 

yielding values which fall almost directly in between the two boundary values determined 

using Method 1 and Method 2. Also, a study on similar non-ionic surfactant micelles 
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forming in solution with water indicates that the aggregation number for these surfactant 

types is between 50 and 100 at 298K15. This indicates that method 1, which estimates an 

aggregate number ~10 is an underestimate, while method 2, which estimates ~1000, 

provides an overestimate of the true aggregate number. A value that better corresponds 

with previous literature is obtained from method 3 (~300)15. Once Method 3 was 

determined to be a reasonable estimate of aggregate number, the values across all 

solutions at every temperature analyzed were determined. These data are shown in Figure 

24. 

 

 

 

 

 

 

 

 

 

Figure 24, Surfactant aggregate number for all solutions  

The solid data points represent aggregates in solutions not containing D-limonene, 

while the white data points with black outline represent aggregates in solutions with D-

limonene. These data clearly support the previous observation that aggregate size 

increases as D-limonene are added. There is no significant observable trend in aggregate 

size across solutions of varying concentration for solutions not containing D-limonene. 
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For solutions containing D-limonene however, as surfactant 

concentration decreases, aggregate size increases. This 

indicates that as more surfactant is present in solution, the D-limonene molecules can be 

distributed over more micelles, therefore decreasing the average micelle size. As D-

limonene is included in solution, the aggregate number increases significantly. This 

means that if D-limonene is not included in the actual walls of the micelle, more  

molecules must gather to form a bigger micelle that includes D-limonene within its 

interior.  

 

2.7 Determining Where D-limonene Associates 

 Additional models were established to predict how D-limonene was associating 

within the surfactant micelles, and how many D-limonene molecules on average could be 

part of the micelle. The two models that were considered to be valid are shown in Figure 

25. 

 

Figure 25, Two models predicting the association of D-limonene within micelles 

Model B: Limonene dispersed between 
surfactant molecules and in inner pocket 

Model A: Limonene contained 
in inner pocket only 

OR 

C10E7P2OH 
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Model A assumes that D-limonene molecules are not included in the walls of the 

surfactant micelle, but instead are contained entirely within a tightly packed interior 

formed by the surrounding surfactant molecules. Model B considers that the D-limonene 

molecules, being hydrophobic, may be included within the walls of the micelle, among 

the long hydrophobic tails of the surfactant molecules. In a manner similar to the analysis 

done to determine aggregate number, two arithmetic methods were establish to estimate 

the number of D-limonene molecules included in the micelles. 

 Method A was established to represent the scenario where all of the D-limonene 

molecules are contained in an inner pocket and not associated within the walls of the 

micelle. It is represented by the following ratio: 

 
 _____Volume of inner pocket_____   
 Volume of one D-limonene molecule 
 

This model assumes no overlap of D-limonene molecules, and no overlap of D-limonene 

with the surfactant molecules that form the aggregate, and therefore should provide a low 

boundary for an estimate of the number of D-limonene molecules included within the 

micelles. 

 Method B was established to represent the scenario where D-limonene can also be 

part of the aggregate wall. It is represented by the following ratio: 

 

Change in volume of aggregate after D-limonene is added (constant solution 
__________________concentration and temperature)__________________  

Volume of one D-limonene molecule 
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This model accounts for the possibility of the D-limonene molecules associating 

anywhere within the interior of the micelle, including amongst the surfactant molecules 

in the micelle wall. It considers the swelling of the surfactant aggregates once D-

limonene is added to solution to be due entirely to the inclusion of D-limonene within the 

aggregates. It also assumes that the volume of the aggregate increases by the volume of 

the D-limonene molecules included exactly, and therefore the aggregate is no more or 

less compact after the inclusion of the D-limonene molecules than it was before. Since it 

is more probable that the D-limonene being included actually causes the micelle to 

become more compacted, this estimate provides an upper boundary for the number of D-

limonene molecules enclosed. 

 For the 3.5% by mass solution of C10E7P2OH in water with D-limonene, the 

values for number of D-limonene enclosed within the aggregates are shown in Table 3. 

Table 3, Estimate of the number of D-limonene enclosed within a surfactant aggregate 
 

Solution 
Temperature 
(K) 

Aggregate # Low 
Estimate (Model A) 

Aggregate # High 
Estimate (Model B) 

3.5% by mass 
C10E7P2OH in water 
with D-limonene 

298 24 84 
303 30 59 
308 37 164 

 

 It is important to note that the number of D-limonene molecules included within 

the micelles is relatively low compared to the number of surfactant molecules contained 

in the sample. If, for example, standard 2g samples of each solution were made and used 

for NMR analysis and if the solution was 3.5% by mass C10E7P2OH in water with D-

limonene, then 

• The number of surfactant molecules = 1.18 x 10-4 mol 
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• The number of D-limonene molecules = 2.94 x 10-4 mol 

• The ratio of D-limonene molecules / surfactant molecules = 2.49/1 

The same ratio of D-limonene molecules to surfactant molecules for the aggregates 

within this solution can be determined across various temperatures, and even using the 

upper boundary estimate, it is certain that there are too many D-limonene molecules in 

solution to be entirely contained within aggregates. These data are shown in Table 4. 

Table 4, Estimated composition of aggregates in 3.5% by mass solution of C10E7P2OH 
in water with D-limonene, using upper boundary estimate for D-limonene included 

Temperature (K) 

# Surfactant Molecules/ 
Aggregate(best estimate) 

# D-limonene 
Molecules/ Aggregate 
(high estimate) 

Limonene / Surfactant 
Molecules 

298 301 84 0.28 / 1 

303 405 59 0.15 / 1 
308 434 164 0.38 / 1 
 

 The data show that across the three temperatures for this one solution, between 

85% and 94% of the D-limonene molecules in solution are not included within the 

surfactant aggregates using the upper boundary estimate. This trend is consistent across 

all of the solution concentrations analyzed, therefore the D-limonene must be elsewhere 

in solution, or the composition of the aggregates must be more complex then the models 

exhibit. The data obtained from the DOSY experiments and also T1 and T2 experiments 

support the hypothesis that the D-limonene is incorporated into the micelles, so there 

must be an explanation for the remaining D-limonene molecules in solution. 

 It was observed during the study that D-limonene is substantially volatile because 

of the strong lemon odor it exudes. This would indicate that there are D-limonene 

molecules readily evaporating from solution and therefore temporarily contained in the 
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water phase, outside of the surfactant aggregates. Since D-limonene incorporates itself 

into the surfactant micelles when added to solution, but also must be present in the water 

phase before it evaporates, then it must be able to pass readily through the walls of the 

surfactant micelles. If, however, the majority of the D-limonene molecules resided within 

the water phase of these solutions and does not exchange rapidly with the D-limonene 

molecules within the micelles, then the DOSY results should show two distinctly 

different diffusion coefficients for D-limonene and surfactant, as the D-limonene 

molecules may form separate aggregates. The data showed very similar diffusion 

coefficients though, indicating a fast D-limonene exchange with the micelles.  

 

2.8 Number of Micelles in Solution 

 To provide a general idea of the concentration of micelles in a standard solution 

like the ones analyzed in this study, a standard 2g, 3.5% by mass C10E7P2OH in water 

solution containing D-limonene was considered. Table 5 shows the calculated 

concentrations for this sample across the three temperatures analyzed. 

Table 5, Concentration of surfactant micelles in 3.5% by mass C10E7P2OH in water 
solution containing D-limonene 

Temperature 
(K) 

# Surfactant 
Molecules/Aggregate 
(best estimate) 

# of 
Aggregates 

Concentration of 
Aggregates in 
solution (mM) 

298 301 2.36 x 1017 0.196 
303 405 1.75 x 1017 0.145 
308 434 1.64 x 1017 0.136 
 

The data show that the typical micelle concentration of these solutions is in the 

tenth millimolar range. In the same 3.5% by mass surfactant solution, since D-limonene 

was added at 2% by mass as well, the concentration of D-limonene molecules is 147 mM. 
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This means that D-limonene molecules exceed surfactant micelles by a factor of about  

1000. A single micelle cannot incorporate nearly this many D-limonene molecules, as the 

NMR data has shown in this study. 
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3. Experimental 

3.1 Preparation of NMR Samples 

 The origin of the surfactant C10E7P2OH that was used to prepare all of the 

samples is shown in Table 9.  

Table 9, Surfactant Information 

Label Chemical name (vendor 
name) CAS # Vendor 

29 

Poly(ethylene oxide, 
propylene oxide) 
alcohol, branched 
(Antarox LA-EP-16) 

37251-67-
5 Rhodia 

 

Pure D-limonene and D2O were used in combination with this surfactant to prepare 

samples. Any H2O contamination of the samples would cause the presence of an 

extraneous water peak in the NMR spectra which could interfere with the data. For this 

reason, great care was taken to ensure minimal water contamination in the samples. Also 

any paramagnetic oxygen gas impurities in the samples would potentially damage the 

accuracy and precision of the T1 and T2 data, so precautions were taken to avoid this as 

well.  

The procedure for preparing these samples began by vacuum pumping the 

surfactant sample overnight, as to remove any water impurity already in the sample. The 

sample was immediately sealed after being removed from the vacuum, and transported 

into a nitrogen glove box, where it is separated from atmospheric moisture. Mixing of the 

samples was performed inside of the glove box in 10mL Erlenmeyer flasks, and a portion 

was withdrawn (~1 mL) and inserted into a glass NMR tube and capped. Once inserted 

into NMR tubes, samples were removed individually from the glove box for freeze-

pump-thawing to remove any gas impurities. All contact with the atmosphere outside of 
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the glove box was limited to brief (less then one second) exposures, for example when 

the cap was removed to attach the sample to the vacuum pump for freeze-pump-thawing. 

The procedure for freeze pump thawing begins by first attaching the NMR tube to 

a vacuum pump using vacuum tubing. The sample is frozen using a Styrofoam cup filled 

with liquid nitrogen by introducing the cup around the NMR tube slowly ensuring that 

the tube does not crack. Once the sample is completely frozen, the vacuum is turned on, 

and a vacuum is established inside the tube. The tube is then backfilled with nitrogen gas 

to around -10 PSI relative to atmospheric pressure. The sample is allowed to thaw by 

surrounding it with a cup of room temperature water (ensuring it does not crack the tube 

because of sudden thermal shock). Once thawed, the procedure is repeated for a total of 7 

freeze-pump-thaw sequences. After the seven cycles, the still frozen sample is flame 

sealed with a blow torch about an inch from its insertion into the vacuum tubing, so that it 

never is exposed to the atmosphere.  

The compositions of the entire sample portions for each of the 6 samples are 

shown in Table 10. Note that only a portion of these samples (~1mL) were inserted into 

each NMR tube. 

Table 10, Composition of 6 final sealed samples 
CHEM 29 (g) D2O (g) D-limonene (g) Total mass (g) % by mass 

CHEM 29 in 
solution (%) 

0.038 1.897 0 1.935 1.964 (2.0) 
0.073 1.987 0 2.060 3.545 (3.5) 
0.109 2.097 0 2.206 4.95 (5.0) 
.045 2.233 0.040 2.318 1.98 (2.0) 
.069 1.891 0.040 2.000 3.52 (3.5) 
.098 1.894 0.041 2.029 4.92 (5.0) 
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The mass percentage of D-limonene in each of the solutions in containing d-limonine was 

around 2% by mass.  

 

3.2 NMR Experiments 

 All of the DOSY, T1 and T2 experiments were conducted on a Bruker Avance 300 

NMR Spectrometer. It is important to note that the pulse program that was used to obtain 

diffusion coefficients had designed into it compensation for eddy currents and convection 

currents that would otherwise adversely affect accuracy. Various parameters for the pulse 

programs were explored and optimized. These parameters include the relaxation delay 

time (D1) in seconds, the field strength range across which the scans are made (Initial and 

Final Field Strength) which was determined to be optimally 10%-100%, the number of 

scans (NS), the number of dummy scans (DS), the diffusion time (D20) in seconds, and 

the gradient pulse duration (P30) in microseconds, the size of the FID (# of slices), the 

pre-scan delay (DE) in microseconds as well as parameters D21 and P19 (in seconds and 

microseconds respectively). The final optimized parameters are listed in Table 6. 

Table 6, Optimized parameters for the experiments T1, T2, and DOSY 
 T1 T2 DOSY 
Size of FID (# 
slices) 

12 12 16 

DS (dummy scans) 0 0 0 
NS (# scans) 8 8 16 
DE (pre scan delay, 
µs) 

6 6 6 

D1 (relaxation 
delay, s) 

20 15 15 

D20 (echo time, s) N/A 0.001 0.5 
D21 (s) N/A N/A 0.005 
P19 (µs) N/A N/A 200 
P30 (µs) N/A N/A 6000 
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Also important for T1 and T2 experiments are the parameter lists: VDlist (T1 delay times 

in seconds) and VClist (T2 delay in spin echo sequences). These lists represent the delays 

allowed for each successive slice and are shown in Table 7 and Table 8. 

Table 7, VDlist for T1 Experiment  
Delay Time (s) 

0.01 
0.02 
0.05 
0.1 
0.3 
0.5 
0.7 
1 
3 
6 
9 
25 

 
Table 8, VClist for T2 experiment  

Delay Time (# spin echo 
sequences) 

2 
8 
20 
50 
100 
200 
400 
800 
1000 
1500 
2500 
5000 

 

 Once optimal parameters had been established, automated data acquisition was 

done overnight. When the results from automated acquisition were compared against 

those from experiments run manually there was no discrepancy, indicating that precision 

and accuracy was not lost in automation. An annotated version of the syntax for one of 



 

 58 

the automation setup programs (for the DOSY experiments) is shown in Appendix A. It is 

important to note that the samples were not rotated during the experiments, because 

rotation would disturb the sample and possibly impact diffusion coefficient or relaxation 

results. The automation setup programs for the T1 and T2 experiments were the same, 

except the code line “XAU("dosy 10 100 32 l y")” which initiated the DOSY pulse 

program was replaced with an initiation of the T1 and T2 pulse programs. 

 The automation was performed overnight on all six surfactant samples. In total, 

18 experiments were performed every night for one particular temperature. Changing 

temperature during automation introduced complications for the automated programs and 

erratic results. For this reason, experiments were only run at one temperature each night. 

  

3.3 Temperature Calibration 

 It was necessary to evaluate the accuracy of the temperature setting within the 

Bruker software TOPSPIN 1.3 which was used to conduct all of the experiments on the 

NMR instrument. This is because the “set temperature” parameter in the program is not 

the actual temperature at which the sample is kept during the scans of an experiment. A 

calibration curve already existed for the instrument, but it was one year old, and a new 

calibration curve was established to ensure measurement accuracy.  

This curve was developed by using a pre-existing program in TOPSPIN called 

“calctemp”, which calculates the actual temperature of the sample at the time of the scan 

by determining the chemical shift difference in the two peaks of a proton spectrum of 

either glycol or methanol. We chose to use a sealed sample of pure glycol for this process. 
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The temperature calibration curve obtained using the program calctemp is shown in 

Figure 26. 

 

2007:
y = 1.0042x + 0.7004

R2 = 0.9997

295

315

335

355

295 315 335 355

Set Temperature (K)

A
ct

ua
l T

em
pe

ra
tu

re
 (K

)

2007 Curve
2006 Curve

 

Figure 26, Calibration curve for edte Set Temperature and Actual Temperature in NMR 
instrument 
 

Figure 26 shows a slight difference between the calibration curves for 2007 and 

2006 indicating that this is indeed a necessary step in order to ensure optimal accuracy 

for the NMR experiments. 

 

3.4 Determining Field Gradient Strength 

 Preliminary DOSY experiments indicated that the field gradient strength of the 

instrument (which is specified by the user in the Bruker software) was not correct. All of 

the diffusion coefficient values were greater than the reported values in the literature. In 
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order to ensure that the D values obtained for the trials on the surfactant systems were 

accurate, the actual true field gradient strength was calculated by running multiple trials 

on pure water, chloroform, and cyclohexane samples, all with known D values reported 

in the literature5. Thirteen experiments were run on pure water samples maintaining 

consistent parameter settings, as well as three experiments on chloroform, and two on 

cyclohexane. The determined values for D were compared to the literature values for the 

corresponding identity, and a ratio was determined (Ddetermined/Dliterature). This ratio, 

combined with Equation 1 was used to determine the error in the previously inputted 

field gradient strength, g. 

)3/(222 δδγ −∆−= gD
oeII  (1) 

It was determined that the actual field gradient strength, g, was 55.6 G/cm compared to a 

previously reported value of 53.5 G/cm. This new value was declared in the Bruker 

TOPSPIN 13 software in order to ensure optimal accuracy for D values obtained. 

  

3.5 Phase Behavior Investigation 

 In order to determine the viable temperature range for the NMR experiments, an 

investigation into the surfactant solutions was performed to determine at what 

temperature there was a phase transition from a one-phase to two-phase solution. This 

investigation was performed by slowly heating a 500mL beaker of water on a stirring-hot 

plate. Suspended in this beaker was a test tube filled with a surfactant solution (pure 

surfactant in water) of a given concentration, and inside which a mercury thermometer 

was placed. A stir vane was placed inside of the test tube, and the beaker and the stir 

function of the hot plate was turned on. The cloud point was determined by visual 
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observation, and was the first observed point at which the solution became cloudy-white 

as opposed to its initial clear appearance. The concentration of the solution was plotted 

against its corresponding cloud point temperature to obtain the phase diagram shown in 

Figure 14. 

 For solutions containing surfactant, D-limonene, and water, the phase behavior 

was slightly more complex. Cloud points were observed around 30-35 centigrade as 

opposed to 50-55 centigrade for just surfactant/water solutions. This investigation 

provided the basis for our valid temperature range because solutions containing separate 

phases yielded bizarre data upon conducting DOSY, T1 and T2 experiments. All 

experiments were therefore conducted within the temperature range which allowed for a 

single-phase solution. This range was 298.16-308.17 Kelvin for solutions containing D-

limonene, and 298.16-328.14 K for solutions that did not contain D-limonene. 

  

3.6 Viscosity Investigation 

 In order to calculate aggregate radii from the Stokes-Einstein Equation, viscosities 

needed to be determined for every solution composition at every temperature analyzed. 

This was accomplished by passing each of the six solutions (3 containing D-limonene, 3 

without) through viscosimeters kept constant at each temperature of interest in a water 

bath with automatic temperature control. Viscosimeters of gauge 100 and gauge 200 were 

used, and the viscosity values determined from the different trials were averaged. 

Equation 4 allows determination of the viscosity of each solution using the density of the 

solution (ρ), the apparatus constant (B), and the time to pass through the column of the 

viscosimeter (t). 
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η(t) = ρBt    (4) 
 
 
The density of each solution was known and the time to pass through the 

viscosimeters column was determined experimentally. The apparatus constants were 

previously determined by conducting trials at each temperature of interest on pure water 

of known density and viscosity. The apparatus constants as determined from all of the 

trials were averaged to obtain the apparatus constants to be used for calculating the 

viscosity of each surfactant solution. 

The density of each solution was determined at room temperature (25 ºC) and 

extrapolated to provide a density for every temperature up to 60 ºC in increments of 5ºC, 

by using the same trend observed in the change in density of water as temperature 

increases. 
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4. Conclusion 

 The unique bilateral structure of surfactants allows for a variety of interesting 

applications in society and industry.  In this study, we focused on one particular non-ionic 

surfactant referred to as C10E7P2OH. Six solutions were analyzed by DOSY, T1 and T2 

experiments in order to determine the structure and size of the aggregates formed in 

solution. Three of these solutions contain the surfactant C10E7P2OH in water at 

concentrations by mass of 2, 3.5 and 5%. Three solutions contain surfactant at identical 

concentrations, and also D-limonene at 2% by mass. 

It was found that the surfactant molecules formed micelles which varied in 

size according to temperature and concentration. Also, in solutions containing D-

limonene, the aggregates were much larger when compared to solutions with equal 

concentration of surfactant, but which did not contain D-limonene. When combined with 

the results from DOSY which showed very similar D values for the surfactant and D-

limonene molecules in these solutions this indicates that D-limonene incorporates within 

the surfactant micelles.  

Finally, it was determined that for the solutions studied, 2% by mass D-

limonene is far too much D-limonene to allow for complete inclusion within the 

surfactant micelles in solution. The extra D-limonene probably resides in water phase, 

forming separate aggregates like oil droplets in water, but also evaporating from solution 

quite readily. 
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Appendix A 
 
/****************************************************************/ 
/* Short Description :     */ 
/* Program to allow for diffusion measurement in automation   */ 
/****************************************************************/ 
/* Keywords :      */ 
/* DOSY    */ 
/****************************************************************/ 
/* Description/Usage :     */ 
/* Program to allow diffusion measurements in automation   */ 
/* This program stops sample spinning and then calls up the dosy au program         */ 
/* with parameters for min gradient, max gradient, #experiments, linear or logscale 
 */ 
/* and starts dosy acquisition  */ 
/*       */ 
/****************************************************************/ 
/* Author(s) :      */ 
/* Name  : Markus Hoffmann, thanks to Kurt Wollenberg  
 */ 
/* Organisation : SUNY Brockport  */ 
/* Email  : mhoffman@brockport.edu */ 
/****************************************************************/ 
/****************************************************************/ 
/* 
$Id: mmhau_dosy, v 1.5 2007/5/15 11:39:39 gsc Exp $ 
*/ 
 
GETCURDATA - Begins automation with designated 

parameters 
STOREPAR("RO",0);    - Stops the sample from rotating by  

setting rotation frequency to 0 
CPR_exec("sendgui ro acqu",WAIT_TERM); - Waits for sample to stop rotating 

completely 
TESET - Sets temperature of sample to 

designated value 
TEREADY(300, 0.1); - Once temperature is within 0.1 K of 

set value, waits 300 sec. to proceed 
XAU("dosy 10 100 32 l y"); - Begins DOSY experiment with 

settings initial field = 10%, final 
field = 100%, NS = 32, ramp type = 
linear 

QUIT       - Ends automation 


	The College at Brockport: State University of New York
	Digital Commons @Brockport
	5-2008

	NMR Diffusion and Relaxation Studies on Surfactant Systems
	Steven J. Seedhouse
	Repository Citation


	A surfactant is a molecule containing both hydrophobic and hydrophilic regions

