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Preface 
 
Physical, chemical, and biological stressors have caused profound changes in the Lake Ontario 
ecosystem and its fish community during the last three decades. In the offshore, cultural 
eutrophication has been reversed and water quality has improved, but the resulting 
oligotrophication coupled with invasive species impacts has lowered the carrying capacity of 
offshore fisheries.  Cultural eutrophication remains a problem in the coastal zone possibly 
exacerbated by altered nutrient cycling related to invasive species.   Lake Ontario will likely 
experience additional ecosystem stress from invasive species, habitat alteration, new 
contaminants and increasing human populations, particularly in the western basin.     
 
These on-going disruptions in Lake Ontario’s ecosystem, coupled with declines in funding 
available for monitoring programs, poses a threat to our ability to understand and manage these 
changes.   The U.S. – Canada Lake Ontario Lakewide Management Plan (LaMP) and its partner 
the Great Lakes Fishery Commission’s Lake Ontario Lake Committee (LOC) have responded by 
promoting collaborative monitoring approaches recognizing that the scale of multi-trophic level 
monitoring needed to fully characterize the status of the ecosystem is beyond the resources 
available to any one organization.   The LaMP and LOC began by bringing together a wide range 
of government and university experts in 2003 to carry out the binational Lake Ontario Lower 
Aquatic Food Web Assessment project (LOLA), the first lakewide assessment performed since 
dreissenid mussels had become established.   
 
A fall 2005 workshop held to discuss LOLA’s results developed recommendations on how to 
improve collaborative Lake Ontario monitoring efforts.  This 2008 Intensive Monitoring Year 
planning workshop is structured around these LOLA recommendations.  The International Joint 
Commission’s Council of Great Lakes Research Managers’ financial support has been key to 
maintaining the momentum of these initial collaborative efforts. The findings of the LOLA 
project are available on the web at http://epa.gov/glnpo/lakeont/lola/lola2006.pdf. 
 
The U.S. Environmental Protection Agency and Environment Canada have established a long 
term five-year rotating cycle of special monitoring years for each of the Great Lakes with 2008 
designated as the next intensive monitoring year for Lake Ontario.  Ideally monitoring 
approaches and collaborative partnerships developed for 2008 could be maintained at a lower 
level of effort on an annual basis as well.  Some of the major 2008 planning topics to be 
addressed in this workshop include:     
 

1) Reassessing Lake Ontario’s lower food web. 
2) Improving nearshore monitoring approaches. 
3) Conducting a lakewide assessment of lake trout. 
4) Coordinating lower food web and fishery assessments. 
5) Exploring the use of new technologies to augment traditional sampling approaches.   
6) Developing creative funding mechanisms and multi-party funding proposals.  
7) Building new collaborative partnerships. 

 
It is unrealistic to think that these issues can be fully addressed in one workshop.  However the 
workshop can be judged a success if key data needs, willing partners and broad sampling 
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approaches are identified as a first step in developing a cooperative binational monitoring plan 
for 2008.  
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Food web disruption:  current and future outlook 
Edward L. Mills and Kristen T. Holeck, Cornell Biological Field Station 

Marten A. Koops, Department of Fisheries and Oceans Canada 
 
Introduction.  The Lake Ontario food web has been permanently altered by invasive species and 
continues to undergo ecosystem change and ecological disruption (Mills et al. 2003).  Ecological 
disruptions have been common in Lake Ontario over the past two centuries but the pace at which 
these disruptions have occurred has increased over the past three decades.  Certainly, the sea 
lamprey and alewife have been associated with ecological disruptions since the late 1800s but 
numerous other management actions, socio-political influences, and unplanned events have 
changed the Lake Ontario ecosystem since the 1970s.  For example, offshore phosphorus levels 
have declined, piscivorous Chinook salmon have become naturalized, a suite of invaders has 
become established including dreissenid mussels, predatory cladocerans, and the round goby, 
native species such as Diporeia are in a state of collapse, double-crested cormorants expanded 
dramatically once toxic chemicals were outlawed, and alewife have shifted from a nuisance 
species to a valued prey fish supporting a multi-million dollar recreational fishery.   
 
Scientists continue to chase ecological change in the Lake Ontario ecosystem and food web 
disruptions continue to challenge our understanding of the system.  For example, dreissenid 
mussels modify and facilitate energy transfer from the pelagia to the benthic zone, modify the 
environment directly by increasing water clarity and providing substrate, kill native mussels 
through competition for food and shell fouling, promote transfer of toxic substances, promote 
blue-green algal blooms through selective rejection of filamentous and blue green algae, alter 
nutrient ratios, and facilitate colonization by co-evolved species such as round goby and the 
amphipod, Echinogammarus ischnus.  It has been hypothesized that dreissenids are associated 
with the decline of the native amphipod, Diporeia, an important food source for fish.  Round 
gobies enhance transfer of toxic substances, consume native fish eggs, and have been linked to 
outbreaks of botulism in Lake Ontario and Lake Erie, resulting in the deaths of several species of 
waterfowl.  The predatory cladocerans, Bythotrephes longimanus and Cercopagis pengoi, 
compete with fish for zooplankton prey.  Scientists are often charged by society to provide 
answers to what are the ecological impacts of these disruptions and how can they be mitigated.  
One approach to help scientists provide such “answers” is to develop long-term datasets that 
provide long-term views of ecosystems both spatially and temporally.  The Lake Ontario 2008 
Intensive Sampling Year will build upon earlier lake-wide efforts and contribute significantly to 
defining the current and future state of Lake Ontario.   
 
The most recent lake-wide effort in Lake Ontario to assess the state of the lake and current 
ecological disruptions was the Lake Ontario Lower Aquatic Food Web Assessment or LOLA.  
Some of the major findings of this effort were:  1) Dreissenid mussels (quagga mussels in 
particular) are causing food web disruption.  Few zebra mussels remain and quagga mussels 
now dominate the benthic community in Lake Ontario waters < 90 meters deep.  Quagga mussels 
are expanding into waters >90 meters deep, now considered a fragile refuge for native Diporeia 
spp.  This expansion by quagga mussels may be putting Diporeia spp. at risk of extirpation.  
Diporeia spp. populations are no longer found in their preferred habitat (30 m to 60 m bottom 
depth) and are now relegated to bottom depths of >100 m.  Diporeia spp. is a key organism in 
the historic Lake Ontario food web and an important high-energy food source for Lake Ontario 
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fish; 2)  Low nutrient levels (translating to low phytoplankton biomass) combined with an 
increase in the relative biomass of blue-green algae (attributed to selective filtering by 
dreissenids) has resulted in an impaired food supply for zooplankton;  and 3)  Two large invasive 
cladocerans, Cercopagis pengoi and Bythotrephes longimanus, are major predators of small 
zooplankton species and therefore compete with other invertebrates (e.g. Mysis) and fish for 
zooplankton prey.  These species accounted for up to 10% of the zooplankton biomass in 2003. 
 
Food web disruptions in Lake Ontario.  The following are several ecological disruptions that 
are currently impacting the Lake Ontario ecosystem:  
  
Oligotrophication.  
Mandated policies resulting 
from the Water Quality 
Agreement between the 
United States and Canada 
have resulted in significant 
reductions in phosphorus from 
the offshore waters of Lake 
Ontario (Figure 1).  Despite 
such changes in the offshore, 
embayment and shoreside 
areas have not experienced 
such reductions in 
phosphorus.  In the offshore, 
nitrate concentrations have 
increased leading to changing 
N:P ratios in excess of 50:1.  
Diatoms have shown a 
general decline with silica 
increasing. 
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Figure 1.  Spring total phosphorus trend in Lake Ontario, 1969-2003.  
Source: LOLA final report http://epa.gov/glnpo/lakeont/lola/lola2006.pdf 
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Phytoplankton and 
microbial food web.  
Recent lake-wide spring and 
summer phytoplankton 
biomass appear to be among 
the lowest ever reported in 
offshore waters of Lake 
Ontario.  The low biomass 
in summer 2003 was 
accompanied by an increase 
in the relative biomass of 
Cyanophyta (Figure 2), a 
poor quality food source for 
zooplankton.  Summer 
biomass of Cryptophyta, a Figure 2.  Relative summer biomass of Cyanophyta in Lake Ontario, 1970 – 2003. 

Source: LOLA final report http://epa.gov/glnpo/lakeont/lola/lola2006.pdf 
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high quality algal food resource for zooplankton, declined to 0.05 g/m3, a level less than one-
third of that reported in 1995 (Johannsson et al. 1998).  With increased oligotrophication of Lake 
Ontario, the microbial food web has now become the essential pathway of energy to 
zooplankton. 
 
Toxic algal blooms.  In the Lake Ontario watershed, 
urbanization and agricultural practices are two major 
factors contributing to the deterioration of water 
quality through high nutrient inputs from runoff and 
point source pollution.  Excess nutrients, primarily 
nitrogen and phosphorous, are causing an increase in 
the occurrence of cyanobacteria algal blooms 
(Figure 3) in Lake Ontario’s coastal waters.  These 
blooms can produce toxins, and are therefore often 
referred to as Harmful Algal Blooms (HABs).  The 
production of toxins has raised concerns about 
negative effects to both human and ecosystem 
health.  Sediment cores can be used to examine the 
historical presence of cyanobacterial toxins making 
them a useful tool in the evaluation of long-term 
algal bloom dynamics in Lake Ontario. 

Figure 3.  Microcystis bloom in Hamilton Harbor, 
Lake Ontario, August 18, 2006.  Source: NOAA 

 
Alewife dynamics and Chinook salmon.  Alewife is both the primary prey of salmonines and 
important prey on zooplankton.  Chinook salmon is the primary predator on alewife impacting 
the population dynamics of this planktivore.  Both wild and stocked populations of Chinook 
salmon now exist in the lake, factoring heavily on the uncertainty of alewife population 
dynamics (Figure 4).   

 

0

500

1000

1500

2000

2500

3000

3500

4000

1979 1984 1989 1994 1999

A
bu

nd
an

ce

0

20000

40000

60000

80000

100000

120000

B
io

m
as

s 
(k

g)
CPE (Biomass)
CPE (Abundance)

DRAFT 6

Figure 4.  Indices of alewife abundance and biomass in US waters of Lake Ontario, 1979 – 2003.  
Source:  Bob O’Gorman, USGS. 



Dreissenid mussels.  Quagga mussels have largely replaced zebra mussels in all benthic habitats 
of Lake Ontario (Figure 5).  The dominance of quagga mussels may be due to several factors 
including a lower thermal tolerance, ability to colonize soft substrate, and lower nutrient 
requirement.  Quagga mussels have expanded into the deep basin of the lake and were even 
observed at the deepest site (219 m bottom depth).  Quagga mussels (Dreissena bugensis) now 
cover more substrate and have attained higher densities than zebra mussels (Dreissena 
polymorpha) ever did in Lake Ontario, even during the early 1990s when concern for the 
negative effects of zebra mussels were great.  In contrast, D. polymorpha has decreased in 
abundance since 1995, particularly on the south shore and the Kingston Basin where large 
populations were well established.    
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Figure 5.  Dreissenid density in 1995 (October), 1997 (September), and 2003 (August), at 
three depth intervals in Lake Ontario. Source: LOLA final report 
http://epa.gov/glnpo/lakeont/lola/lola2006.pdf 
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Round Goby.  Round 
goby was first observed 
in western basin of Lake 
Ontario in 1998 and in 
the Bay of Quinte in 
1999.  Round goby 
numbers are high in the 
western basin of Lake 
Ontario (Figure 6) and 
the St. Lawrence River 
and have the potential to 
cause further disruption 
to the lake’s food web.  
Gobies are associated 
with outbreaks of 
botulism, mobilizing 
contaminants from the 
benthos to pelagic waters, 
and negatively impacting 
native species like lake 
trout.   
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Figure 6.  Index of round goby abundance in Lake Ontario, 2002 – 2006.  
Source:  USGS and NYSDEC 

 
Diporeia spp.  The native amphipod Diporeia historically represented 60%-80% of the benthic 
community.  It is a burrower that depends on organic matter that settles to the bottom from 
surface production, particularly from diatom blooms.  Diporeia is an important food source for 
native benthivorous fish and is therefore considered an important environmental indicator of the 
benthic community.  In 2003, Diporeia disappeared from most of the 30-90 m depth interval, 
with a population averaging only 63/m2.  Diporeia were only abundant within the deep central 
basins (>90 m bottom depth), at densities averaging 545/m2. 
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The expansion of D. 
bugensis has accompanied 
a progressive decline of the 
native amphipod Diporeia 
spp (Figure 7).  During the 
time period 1964 to 1994, 
Diporeia was most 
abundant in depths from 
30-90 m, averaging 
densities 2,000 – 5,000 m2.  
By 1997 Diporeia density 
had declined from > 
5000/m2 to 1380/m2.  This 
density decrease has 
continued, and by 2003, 
Diporeia was absent from 
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Figure 7.  Diporeia spp. abundance (#/m2) for three depth intervals in 
Lake Ontario: 1964 to 2003.  Error bars are +1 SE.  Source:  LOLA final 
report http://epa.gov/glnpo/lakeont/lola/lola2006.pdf 



most of the 30-90 m depth interval, with a population averaging only 63/m2.  The deep central 
basins represent a fragile refuge for Diporeia.  The low density observed in 2003 is significantly 
lower than high densities observed from 1990-1995, but not significantly different from densities 
reported in depths >90 m between 1964 and 1977 (Hiltunen 1969; Nalepa and Thomas 1976; 
Golini 1979). 
 
A negative association of quagga mussels with Diporeia is clear but how quaggas have 
negatively impacted Diporeia is unclear.  Pathogens, food competition, and other factors in 
association with quagga mussels have been considered in the decline of Diporeia but, to date, no 
smoking gun has been identified.  Clearly, science has not provided an answer to the Diporeia 
decline which suggests we do not understand the Lake Ontario ecosystem in its current state.   
 
Predatory Invasive Cladocerans.  Two large invasive predatory cladocerans, Cercopagis pengoi 
and Bythotrephes longimanus, are major predators of small zooplankton species and therefore 
compete with other invertebrates (e.g. Mysis) and fish for zooplankton prey.  In addition, 
Cercopagis may depress small zooplankton as with evidence of an inverse relationship between 
Cercopagis and bosminids, Diacyclops, and nauplii (Figure 8).   
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Figure 8.  Changes in Lake Ontario zooplankton and Cercopagis.  Source:  Warner et al. 2006. 



Rise of Fish-eating Birds.  Population trends of double-crested cormorants have shown 
resurgence in the last two decades in response to reduced contaminant levels.  While impact of 
these birds on lake-wide fish populations is likely low, they can impact fish at local levels. 
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Figure 9.  Numbers of double-crested cormorant nests on Little Galloo Island (dark shading) and elsewhere 
(light shading) in Lake Ontario, 1974-2001.  Source: Mills et al. 2003. 

 
STRATEGY:  2008 INTENSIVE YEAR RECOMMENDATIONS 
 

1. Field Sampling Program.  Field sampling strategies for 2008 should include the 
transects and parameters assessed in LOLA.  Benthic-pelagic coupling in both the 
nearshore and offshore habitats should be emphasized.  Sites should include long-term 
Bioindex Canadian stations 41 and 81, USGS south shore 2km and 20km sites, and 
SUNY Brockport sites.  Shoreline habitat and embayment habitats should be included to 
provide a more comprehensive assessment of lake habitat and food web changes. 

 
2. Assessment of Food Web Disruptions.  An understanding of the Lake Ontario food web 

both spatially and temporally is critical if we are to assess impacts and offer options for 
mitigation.  Stable isotopes and fatty acid analysis are commonly used in food web 
studies both in the laboratory and the field.  More specifically, stable isotope sampling 
and analysis identifies the relative source of energy (watershed vs embayment vs shore vs 
nearshore vs offshore δ13C) and the trophic structure of the food web (δ15N).  A major 
study of the carbon and nitrogen stable isotope patterns in Lake Ontario in the mid-1990s 
by Dr. Michael Leggett (Ph. D. thesis) provides a valuable baseline against which food 
web change can be evaluated.  Stable isotope sampling in 2008 would provide a logical 
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extension of this work.  Sites, replication, sample size, timing of sample collection, and 
key species for study need to be identified.  The answers to these questions might be best 
answered by a panel of expert scientists with interests in the Lake Ontario food web and 
stable isotopes.  For discussion purposes, we have identified a list of key species or 
functional groups that could be targeted in the stable isotope and fatty acid analysis.  
These include:  spring diatoms, cyanobacteria, benthic algae, Diporeia, copepod 
zooplankton, small sized cladocerans, Cercopagis, Bythotrephes, Mysis, quagga mussels, 
round goby, alewife, rainbow smelt, three-spine stickleback, lake trout, Chinook salmon, 
lake whitefish, sculpins, walleye, and double-crested cormorants.   

 
3. Field Sampling Support and Analysis.  Large and small vessel platforms to cover time 

and space will be needed to make collections for the 2008 intensive Lake Ontario field 
effort.  The collection of organisms for stable isotopes and fatty acids will require an 
organized effort and individuals on field crews that are responsible for the collections and 
their preservation.  Samples need to be collected, sorted to component 
(zooplankton/phytoplankton size or functional groups: muscle of fish etc), frozen, dried, 
pulverized, weighed, and submitted for analysis.  A reputable laboratory is also necessary 
to perform the analyses.  Sample analysis costs depend on whether one uses a 
commercial or university laboratory and who does the preparation of samples. 
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Lake Ontario Binational Lower Food Web Task Force 
Fred Luckey, USEPA 

Vi Richardson, Environment Canada 
 
Background 
 
The US – Canada Lake Ontario Lakewide Management Plan (LaMP) coordinated a major 
binational evaluation of the status of Lake Ontario’s lower aquatic food web in 2003 in order to 
better understand the dramatic changes that have occurred over the previous decade.  The 
development of this effort, known as the Lake Ontario Lower Aquatic Food Web Study (LOLA) 
recognized that the scale of multi-trophic level monitoring needed to fully assess the impacts of 
invasive species in Lake Ontario was beyond the resources available to any one organization. 
The LaMP’s partners on the LOLA project included U.S. Environmental Protection Agency, 
Environment Canada, Department of Fisheries & Oceans Canada, National Oceanic & 
Atmospheric Administration, Cornell University, University of Toronto, SUNY College of 
Environmental Science & Forestry, Ontario Ministry of Natural Resources, Ontario Ministry of 
the Environment, and the New York State Department of Environmental Conservation.  
 
Four sampling cruises were conducted in Lake Ontario in 2003 using U.S. EPA’s R/V Lake 
Guardian and the Canadian Coast Guard’s vessel Limnos. LOLA transects and stations were 
selected to allow for the comparison of results to historical lower aquatic food web sampling 
efforts. In particular, the Department of Fisheries and Oceans Canada performed lake wide 
surveys during the Lake Ontario Trophic Transfer (LOTT) program of the early 1990s. The 
LOTT survey results provided a point of comparison to help assess the impact that exotic species 
and other factors may have had on native benthos and zooplankton communities. The timing of 
the sample collection efforts was selected to assess the same seasonal events captured by earlier 
LOTT surveys.  Finally, the sampling and analytical methods used in LOTT for total 
phosphorus, soluble reactive phosphorus, silica, chlorophyll a, microbial food web, zooplankton 
and mysids were identical to those used in LOLA.   Optical plankton counters were tested as a 
potentially cost effective method to collect information on planktonic food web communities.   
 
Formation of the Binational Lower Food Web Task Force 
 
The LOLA project results were presented at a binational workshop held at Cornell’s Shackelton 
Point Biological Field Station on November 16 & 17, 2005.   The workshop included 
participants from a wide range of active government and academic monitoring programs and 
resulted in a set of recommendations for how to improve the coordination of Lake Ontario 
monitoring efforts.   These recommendations were reviewed and adopted by the Lake Ontario 
LaMP Management Committee who then directed the LaMP Work Group to develop a terms of 
reference for a Lake Ontario Binational Lower Food Web Task Force charged with 
implementing these recommendations (Attachment 1).  
 
The Task Force will serve the Lake Ontario Lakewide Management Plan and the GLFC Lake 
Ontario Lake Committee in an advisory capacity by providing information and recommendations 
to be considered in the development of cooperative monitoring approaches.  According to the 
terms of reference, the Task Force consists of representatives from each of the LaMP agencies in 
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addition to others who are nominated by LaMP agencies.   The initial set of Task Force members 
include:  
 
 
 Lakewide Management Plan (LaMP) Agency Task Force Representatives 
 
Department of Fisheries & Oceans Canada  – Mohi Munawar 
Environment Canada – Violeta Richardson 
Ontario Ministry of the Environment – Todd Howell 
Ontario Ministry of Natural Resources – Ted Schaner 
US Environmental Protection Agency, Region 2  – Frederick Luckey 
New York State Dept. of Environmental Conservation – Michael Connerton 
US Fish & Wildlife Service – Betsy Trometer 
 
Additional Task Force Members Nominated by LaMP Agencies 
 
Ed Mills, Cornell University 
Dawn Dittman, U.S. Geological Survey 
Glenn Warren, U.S. EPA Great Lakes National Program Office 
 
 
--------------------------------------------------------------------------------------------------------------------- 

 
Attachment 1 

 
 
 
 

Lake Ontario Binational Lower Food Web Task Force 
 

Terms of Reference 
 

Lake Ontario Lakewide Management Plan 
in cooperation with the 

Great Lakes Fishery Commission Lake Ontario Lake Committee 
 

June 2006 
 
Background  
 
The introduction of non-native mussels, zooplankton and fish to the Lake Ontario aquatic 
ecosystem has significantly disrupted the lower aquatic food web. These disruptions are 
continuing, and their ultimate impact of Lake Ontario aquatic communities and water quality 
cannot be predicted at this time.   Strong binational lower aquatic food web monitoring programs 
will be needed if environmental and natural resource managers wish to understand and attempt to 
manage these ecological changes in order to minimize any potential negative impacts.  A Lake 
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Ontario Lower Food Web Task Force will be formed to: 1) better coordinate binational 
monitoring efforts, 2) provide needed information to environmental and natural resource 
managers on the status of the lower aquatic food web, and 3) provide a stimulus for funding. 
 
The 2003 intensive monitoring year effort on Lake Ontario provided a comprehensive 
assessment of how greatly Lake Ontario’s lower aquatic food web has been altered since 
dreissenid mussels came to dominate the ecosystem.  The full report, Status of the Lake Ontario 
Food Web in a Changing Ecosystem: the 2003 Lake Ontario Lower Aquatic Food Web 
Assessment (LOLA) is available on the web at: http://epa.gov/glnpo/lakeont/lola/lola2006.pdf.  
The report’s recommendations, developed by experienced binational lower food web experts, 
will serve as a starting point for the Lake Ontario Lower Food Web Task Force’s efforts to 
expand binational partnerships and incorporate new technologies to meet the monitoring needs of 
Lake Ontario. 
  
Purpose  
 
The Lake Ontario Lower Food Web Task Force will work to improve the coordination and 
effectiveness of U.S. & Canadian lower food web monitoring efforts in order to meet the 
information needs of environmental and natural resource managers.   
 
Specific Tasks  

 
1)  Improve the coordination of existing lower food web monitoring programs to provide 
a more complete and comprehensive annual reporting on the status of the lower food 
web. 
 
2) Serve as the lead in the planning for lower aquatic food web monitoring information 

needs and monitoring approaches.   Lake Ontario Cooperative Monitoring Years are 
held every five years.  

 
3) Promote the incorporation of new technologies into routine monitoring programs in 
order to provide more cost effective and comprehensive assessments.  Examples of the 
kinds of technologies to be considered include: 
           -  Remote buoy systems; 
           -  Satellite imagery; 
           -  Stable isotopes to better understand changing food web dynamics; 
           -  High-resolution methods such as optical plankton counters and fluorometry. 
 
4) Mesh field assessments with experimental studies to help understand cause-effect 
relationships. 
 
5) Consider new approaches to better define nearshore conditions and problems that are 
not adequately addressed by traditional open lake monitoring programs. 
 
6) Identify opportunities to coordinate lower food web and fishery assessments. 
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7) Address specific questions from Lake Ontario Lakewide Management Plan (LaMP) 
and Lake Ontario Committee (LOC) regarding status of lower food web. 

 
 
Membership   
 
The Task Force will consist of representatives from agencies participating in LaMP and the 
Great Lakes Fishery Commission’s LOC having experience and knowledge related to lower 
aquatic food web monitoring issues.  Additional members from other government agencies, 
academia and individuals may also be included as agreed to by Task Force members. 
 
Reporting  
 
The task force will report to LaMP and LOC managers twice a year: 
 

Spring – A summary of key findings from the prior year including suggestions for future 
monitoring and coordination activities will be provided at the annual Great Lakes Fishery 
Commission’s annual LOC Meeting.    
 
Fall – A summary of planned monitoring activities for the next year including identified 
resource needs, opportunities for increased coordination and proposed use of new 
technologies. 
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Field Sampling Design and Coordination 
W. Gary Sprules, University of Toronto 

Jack Kelly, USEPA  
 

• Must first identify key objectives for the program.   
 
Is the emphasis on large-scale estimates of seasonal biomass of component organisms or is 
the emphasis on process-oriented measures such as productivity, and/or seasonal development 
of certain biological communities/populations?  Is there an objective to make an overall and 
integrative statement on the condition (“health”) of the system, or is the main emphasis to 
make statements on the distribution, biomass, and productivity of important components?   
 
Is the goal:  To obtain the best lakewide estimates? To partition spatially into different zones 
(e.g., offshore, nearshore, embayments)?  Or to nest spatial components in a lakewide design?  
 
Should the intensive year involve landscape characterization and some design for tributary 
sampling in conjunction with lakewide sampling? 
 
Objectives will help determine the balance of effort between spatially extensive efforts to 
describe the whole lake (or parts), a desire or need to resolve seasonal patterns through 
repeated sampling over time at intensive sites, and/or efforts to resolve not only what 
conditions exist but also factors that may be influencing them. 
 

• Balancing objectives also means balancing station-specific sampling with underway 
survey sampling.  The former requires frequent stops and time on station whereas the 
latter is more continuous with fewer stops. 

• It makes sense to incorporate at least some historical fixed stations into the survey design 
for continuity with past observations.  New fixed stations would need to be considered if a 
survey design seeking to statistically represent morphometric and biological gradients is 
adopted.  A mix between a historical set and a statistically-based set can be achieved.   

• Discussion as to whether sampling will be limited to “the lower food web” is required. 
There is a need to ensure parallel programs on the “upper food web” for information on 
the complete food web and also associated water and sediment quality measures. 

• The use of continuous sensors such as an OPC, fluorometer, CTD, hydroacoustics and 
others as recommended in the LOLA 2003 report should be emphasized.  Study design 
should permit comparisons of data from these instruments with more traditional 
approaches. 

• Continuous sampling with towed instruments needs to be done along towpaths that reflect 
study objectives.  These could be multiple in nature and include: 

 
1. Linear cross-lake transects that cover all regions and depth zones of the lake.  

Apportioning effort in accordance with morphometric/biological gradients could mean 
something less than complete cross-lake transects. 

DRAFT 16



 
2. Directly assess the nearshore and attempt to link to landscape/tributary influences, by 

following a fixed, shallow depth contour around some or the entire lake perimeter to 
collect data on a consistent habitat across the geographic extent of the lake. 

 
3. Use semi-synoptic towing strategies to “connect the dots” between some fixed 

stations.  This might involve a directed attempt to understand representativeness of 
fixed station data and allow confidence in spatial or temporal extrapolations. 

 
4. Use a repeated towing strategy at select sites to show seasonality and, again, perhaps 

put fixed stations in a broader regional context. 
 

• To the extent that night sampling is required, attention must be paid to the varying length 
of the night across seasons.  Limited hours in the night are available around the summer 
equinox. 

 

• Realistic workloads must be set for the scientific and technical crew with built-in time for 
the inevitable weather disruptions or equipment malfunction.  The priority should be to 
complete all planned activities, and lost time should be subtracted from each activity.  No 
aspect of the survey design should take precedence over any other.  Maybe this means 
defining specific Data Quality Objectives that define whether or not a partial set of the 
intended collection is sufficient to meet the objectives.   

 
Aside:  The portions of the sampling that are inflexible, comparable to those that may be 
designed to have built-in flexibility (perhaps to sample interesting features), need to be 
identified so that vessel and science crews are not at odds with how surveys should be 
conducted. 

 

• Near real-time processing of data should be planned as much as possible.  This is 
obviously more possible for continuous sensor data than traditional information such as 
taxonomic data.  Real-time analyses can provide immediate feedback on 
physical/biological gradients that might justify modifications to survey design.    

 

• The use of satellite observations providing spatial observations on such measures as 
surface chlorophyll concentration and temperature as recommended by LOLA 2003 
should be considered.  Discussion of whether such data could alleviate the need for more 
time-consuming observations of these variables while under way (except for ground-
truthing) is required.  The use of sensors on moorings or buoys could provide time series 
of observations to complement the less intensive, large-scale survey data, and could 
facilitate ground-truthing of remote observations.  Siting of buoys should be done in a 
manner that supports field sampling in the most appropriate way. 
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Some thoughts on project design (from Fred Luckey) 
 

Projects should be binational and collaborative and build on existing efforts rather than 
being stand alone projects by an individual.  From the Lake Ontario LaMP and GLFC LOC 
perspective the following types activities are considered high priorities:  a) a lower food web 
assessment similar in scope to LOLA;  b) developing better approaches to 
characterizing/understanding the "near-nearshore" conditions;  c)  lakewide lake trout assessment 
and;  d) exploring new technologies such as remote buoys. 
 
Questions for consideration by potential collaborators: 
 

a) What is your particular area of interest? 
b) Do you have some specific ideas on how existing programs/efforts could be better 

coordinated in 2008 or on an annual basis? 
c) What type of monitoring do you routinely perform on an annual basis? 
d) Describe sampling location and frequency. 
e) What groups or individuals do you, or could you, collaborate with on this issue? 
f) Would you be interested in harmonizing your sampling efforts with other 

investigators as part of a lakewide assessment? 
g) Do you have access to ships or other sampling platforms?  If so how much time might 

be available for this effort in 2008? 
h) What types of funding opportunities are you aware of that could support our 

cooperative efforts in 2008? 
 

Some preliminary resource considerations 
 
◊ LIMNOS may be conducting a November 2008 mysid and Diporeia whole-lake survey if 

resources allow. 
◊ If it occurs, a summer OMNR acoustic survey for mysids could complement the 

November LIMNOS survey. 
◊ A USGS/OMNR/NYSDEC whole-lake September lake trout survey would require 

dedicated use of the vessels Kaho, Seth Green and Steelcraft for approximately 17 days 
each. 

◊ Some coastal and “near” offshore survey work could be done on SUNY Brockport's small 
vessel "the R.V. Madtom” (28') 

◊ The LIMNOS and Guardian will be in dry dock in November 2007 for major overhauls 
and may not be ready for their first 2008 cruise traditionally in April. 

◊ Do the sampling approach and number of stations from LOLA 2003 need to be 
reconsidered?   

◊ Is it reasonable to assume many of the same LOLA 2003 partners would be involved? 
Will there be new ones? 

◊ Can we tie together a number of "near-nearshore monitoring" efforts being conducted 
around the lake by academics and municipalities to provide a more lakewide assessment? 
Are sampling techniques sufficiently uniform among groups? 
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The Lake Ontario offshore zone:  Status and assessment needs 
Ora Johannsson, Department of Fisheries and Oceans Canada  

David Rockwell, USEPA 

 

 
The basic roles of monitoring are to determine the state of a system, to detect change in that 
system, to promote research linking change with causative factors, and to provide advice.   
 
Status of Lake Ontario Offshore in 2003 
 

Numerous physical, chemical, and biological stressors have caused profound changes in 
the ecosystem of Lake Ontario and its fish community during the last three decades.  In the 
offshore, cultural eutrophication has been reversed with the Great Lakes Water Quality 
Agreement’s Annex 3 target phosphorous loads being attained and with the establishment of 
dreissenid mussels.  The water quality has improved, but the resulting reduction in nutrients and 
alterations in phytoplankton composition has lowered the carrying capacity of the Lake for 
offshore fisheries.  The LOLA 2003 study confirmed that the offshore ecosystem had changed 
dramatically. Key findings include:  
 
1)  Ecosystem breakdown, native amphipod Diporeia spp. at risk of extirpation.  Diporeia spp. 
populations are no longer found in their preferred habitat (30 m to 60 m bottom depth) and are 
now relegated to bottom depths of >100 m. 
 
2)  Invasive quagga mussels causing food web disruptions.  Few zebra mussels remain and 
quagga mussels now dominate the benthic community in Lake Ontario waters < 90 meters deep.  
Quagga mussels are expanding into waters >90 meters deep, now considered a fragile refuge for 
native Diporeia spp. 
 
3)  Nutrient starved offshore fish community.  Target concentrations of total phosphorus in 
offshore waters of Lake Ontario (10 µg/L) have been exceeded.  Current levels are 5 µg P/L 
resulting in phytoplankton and zooplankton populations at historic lows, limiting offshore 
fisheries. 
 
4)  Impaired food supply for zooplankton.  Low phytoplankton biomass has been exacerbated by 
an increase in the relative biomass of blue-green algae (a poor quality food source for 
zooplankton) combined with a decrease in biomass of cryptophytes (a preferred food source for 
zooplankton). 
 

In order to determine the state of the lake in 2008 and test for possible changes, the 
sampling strategy and methods employed must be consistent with and build on those of the past, 
particularly LOLA 2003.  LOLA 2003 consisted of 4 spatially extensive cruises during which 30 
stations were sampled in spring (ice out conditions), summer (stable stratified conditions), and 
fall (prior to overturn) for all lower trophic level, nutrient and physical parameters, and 50 sites 
were sampled  in late fall (after overturn) for mysids (Figure 1).  The cruises were planned to 
coincide with organism life cycles and provide a spatial component of the season cycle.  Spring 
is the time of isothermal water temperatures and provides the initial chemical conditions for the 
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year prior to significant uptake of nutrients by the biota. The spring survey provides a picture of 
the amounts of nutrients available for the biological activity that will occur during the year. 
Summer and fall surveys (August and September) characterize the summer and late summer 
zooplankton production and community structure.  Mysid biomass and reproductive effort peak 
later than that of the zooplankton and is tracked by the late fall survey in November.  Benthic 
sampling is not time sensitive so samples are collected during the summer stratified period. 

Fig. 1.  Lake Ontario 2003 sample locations. Sampling vessels: April & August R/V Limnos, 
September – R/V Lake Guardian.  Additional sites were added to the empty transects and deep 
hole (near station 64) for the mysid November survey. 
 
 
Assessment Needs 
 

Factors capable of altering the offshore ecosystem include direct management actions, 
indirect anthropogenic behaviour and natural events. Depending on the factor, the impacts may 
alter spatial patterns or seasonal extent, timing or patterns in the lake.  We could expect change 
in, and therefore, should monitor the following components on both spatial and seasonal scales: 
habitat, food web structure, food web productivity and food quality. 
 
Habitat: Physical - temperature, thermal structure, light regime, oxygen levels, upwelling.  With 

increases in storm frequency and duration associated with climate change, we 
should measure the resultant upwelling extent, duration and intensity through 
the year as these events affect the biota. 

              Chemical – nutrient supplies and ratios (TP, SRP, Si, TN, NO2NO3, Ca?, Fe) 
                 - toxins (microcystins) when suspected to be present and not covered by other 

programs 
 
Food Web Structure:   

A number of metrics or measures should be examined in order to ‘quantify’ food web 
structure.  Biomass size spectra (BSS), especially the un-normalized curves, provide 
considerable information on the structure of the food web in a generalized form.  Changes in 
BSS are generally related to shifts in predator-prey relationships going down to the herbivore-
phytoplankton level. One metric to come out of these analyses would be an assessment  of the 
match between zooplankton size and the needs of planktivorous fish.   
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Stable isotopes would provide more specifics on shifts in predator-prey relationships.  
The possible use of stable isotopes is discussed in detail in the white paper on ‘Use of new 
approaches to assess predator/prey linkages’. Other more specific indices could include: 

 
1. The relative proportion and seasonal timing of the various groups of algae and 

cyanobacteria are key metrics. Phytoplankton determine the potential biomass and 
productivity of the food chain and each group differs in its role and nutritional qualities.  
Cyanobacteria are a poor source of nutrition and some can produce toxins.  Increases in 
this group, either in relative proportion or length of period of abundance, can be 
detrimental to the growth of zooplankton.  Chrysophyta, Cryptophyta and many of the 
small Chlorophyta are excellent food for summer cladocerans while Bacilliophyceae are 
important for larger zooplankton and benthos. 

2. The relative balance between the microbial food web and the direct zooplankton grazing 
food chain has been considered a measure of the efficiency of utilization of primary 
production. The microbial food web normally increases in importance as a system 
becomes more oligotrophic. The ratio of rotifer biomass or of cyclopoid copepodid 
biomass to that of herbivorous cladoceran, calanoid and naupliar biomass may be indices 
of the relative strength of these two food web streams.  Although the direct grazing chain 
is considered more efficient because energy passes through fewer trophic levels, the 
presence of both may be more efficient for the system as a whole because the MFW has 
the capability of utilizing dissolved carbon (Dinoflagellates) and decaying material to 
build new biomass and recycle nutrients. 

3. The diversity and abundance of predatory invertebrates relative to their 
herbivorous/detritivorous prey within both the zooplankton and the benthos are indices of 
the potential resilience of the invertebrate predator trophic guild and their ability to 
monopolize lower trophic production.  Small planktivorous fish usually compete with 
these invertebrate predators (as well as consume them).  To date, the optimum balance 
between invertebrate and planktivorous fish biomass, which would lead to the greatest 
transfer of energy to fish or the most stable system has not been determined. 

4. Exotic invertebrates have invaded the Lake Ontario food web, particularly over the past 
25 years.  Their influence on food web structure could be roughly assessed by 
determining the proportion of biomass at each ‘trophic level’ that is composed of these 
exotics and which other components of the food web are dependent on their presence (or 
absence).   

5. The last component of food web structure that requires assessment is the degree of 
benthic-pelagic coupling.  In the offshore of Lake Ontario that coupling is mediated 
through the sinking of material, largely diatoms, to the benthos.  Now much of it is 
utilized by dreissenids and less by the native benthos.  Some of that material is returned 
to the pelagia, primarily by Mysis, although other pelagic food sources constitute the 
majority of its diet. To assess this component of food web structure one could put out 
sediment traps and/or compare the biomass of benthic and pelagic animals, weighting for 
size which is related to metabolic rates.    
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Food Web Productivity and Food Quality 
 
 A monitoring program undertaken for the LaMP and LOC will be interested in 
productivity of the lower trophic levels because that is the base for the fish and fishery.  The 
ability to measure productivity is dependent on how the system is sampled. Biomass is a rough 
substitute for productivity. If the biota are sampled once in each season and the estimates 
extrapolated to the ice-free period based on some knowledge of the manner in which the biomass 
at the sampling time represents the average biomass for that season, production can be estimated 
from pre-determined P/B ratios.  Although P/B ratios are often used to estimate production, they 
may not be the best method if one is trying to detect change because they will only reflect 
changes in biomass not reproductive effort.  The variability associated with P/B estimates is 
large and they should be tailored for the system in which they are used.  This means that several 
direct estimates of production should be made for the organism of interest and the P/B estimates 
weighted accordingly. Direct measures of production will require more frequent sampling and 
are best undertaken over the season at fixed sites.  These corrected P/Bs could then be applied to 
whole lake estimates of biomass in order to calculate whole lake production. 
 Do we need production estimates for more than the animals directly eaten by fish: 
namely, zooplankton, mysids, and Diporeia? Dreissenids are also eaten by fish, but at the 
moment their populations would not appear to be limiting consumption. The only other 
exception might be phytoplankton, which forms the base of the food web.  Seasonal estimates of 
primary productivity from one or two key sites are needed occasionally to understand how shifts 
in phytoplankton composition and in their nutrient/light regimes might be affecting rates and 
properties of primary productivity. Extensive baseline data exists for earlier periods (87-95).   
 Production is not enough.  The nutritional quality of food has significant impacts on 
health, behaviour and performance of fish (and other organisms).  We should monitor the 
essential fatty acid content of key fish prey; such as, Mysis, Diporeia and zooplankton.  This is 
discussed more fully in the white paper ‘Use of new approaches to assess predator/prey 
linkages’. 
 
Monitoring Approaches 
 
 Given the assessment needs, we strongly recommend a program which combines key 
stations, sampled at two week intervals, annually from April-May until the end of October, with 
spatial cruises in spring, summer and fall every fifth year.  The key stations would provide the 
backbone of the biological data, estimates of inter-annual variability, seasonal context for the 
spatial surveys, and improved sensitivity to detect change.  The spatial cruises would define and 
track spatial patterns in the lake, link the nearshore and offshore, and provide the basis for whole 
lake estimates of biomass and production.   
 With intensive biological sampling at two to four key sites in the lake, could we drop 
phytoplankton and zooplankton sampling from the spatial surveys, except for that done by other 
monitoring programs (EPA).  The OPC (and eventually acoustics) and the Fluoroprobe could be 
used to get spatial estimates of zooplankton and phytoplankton biomass and composition for the 
offshore.  One could envisage intermittent towing paths along the LOLA 2003 transects for the 
OPC.  The Floroprobe is under calibration – could we use it between stations or only at specific 
sites? Do we still need chlorophyll a measures? Could we get that information from satellite data 
instead?  We would still need some zooplankton and phytoplankton samples to calibrate the OPC 
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and Fluoroprobe data and rotifers and other MFW components from the integrated water 
samples.   
 With this scenario, spring, summer and fall cruises would be undertaken along the LOLA 
2003 transects for nutrients (TP, SRP, Si, TN, NO2NO3, Ca?, Fe), physical parameters (light, 
temperature and oxygen), small plankton, and the OPC and Fluoroprobe, and calibration data.  
Benthos would be collected in summer and fall. The OMNR does an acoustic survey of mysids 
(as well as fish) in mid-summer which compliments DFO’s annual early November cruise to 
assess mysids across the lake and Diporeia and dreissenids at set locations.  At the annual, key 
sampling locations, physical conditions, zooplankton, phytoplankton, rotifers, and the MFW 
would be sampled every two weeks from April-May until the end of Oct.  Nutrients would be 
sampled three times: on the first cruise, just after stratification and in late July. Benthos would be 
sampled on 4 occasions. Mysids would not be sampled as they need to be collected at night.  In 
the best of all possible worlds, primary productivity would be measured at one offshore site.  
These stations would provide information on inter-annual variability, production of benthos, 
zooplankton, rotifers and MFW components, weighted P/B ratios for use with the spatial data, 
species diversity and indices of food web structure.   
 Why can we not depend on spatial surveys every five years?  Our ability to detect change 
(response to management actions) is very low with this monitoring strategy, especially for the 
biological parameters.   Measures of the larger biota (zooplankton and benthos) can be highly 
variable.  Zooplankton biomass would have to decline by more than 50% -60% before a 
significant difference could be detected based on the LOLA 2003 data (Table 1). This could be 
improved by increasing the number of samples collected per station and collating them before 
analysis.  For instance, in two sets of 8 replicate zooplankton samples from Lake Ontario 
(August 1986), the coefficient of variation (sd/mean) was reduced by approximately half when 
the data were collated for all possible sample pairs (Johannsson, unpublished data).  This 
indicates that collating several samples at each station would reduce the total variability by 
reducing the component due to sampling variability.  In another exercise, the ability to detect 
change in seasonal zooplankton abundance at different sampling frequencies (1 to 10 week 
intervals) was investigated assuming a 20%, 30%, 40% and 50% decline over six years using the 
15 years of DFO Bioindex data.   The probability of detecting change at a sampling frequency of 
two weeks increased from 26% to 98% over the decline scenarios of 20% to 50% in the mid-lake 
(station 41), and 58% to 100% in the Kingston Basin (station 81).  Sensitivity declined if the 
frequency was extended beyond two weeks.  Therefore, key stations to provide a more sensitive 
method of detecting change and the sensitivity of spatial sampling can be improved by collating 
replicates. 

Table 1. Percent decrease in mean epilimnetic zooplankton biomass which 
could be detected by the LOLA 2003 sampling program  
 Aug N Sept  N 
All Stations 68% 27 65% 27 
Stn Depth >100m 50% 12 56% 9 
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Logistical Needs and Cost Elements 
 
 Optimally, one would want 4 key stations: Kingston Basin, mid-lake north, mid-lake 
south-east, and south-west in the Niagara stream.  The west is not as suitable because the 
seasonal patterns can be disrupted by upwellings.  Data here (at least at station 12 south of 
Toronto) and in the open-lake south of Cobourg were very similar: the west could be a substitute 
for the north if necessary. Presently, Joe Makarewicz is sampling a station at 100-m depth in the 
Niagara stream.  Perhaps that could be one of the key sites.  OMNR and DFO are trying to set up 
sampling again in the Kingston Basin at station 81 which has a long term record of biological 
data (1981-1995).  That leaves the open lake in the south east and north.  Some creative 
collaborations need to be envisaged to include these sites. 
 The actual logistical needs for both the spatial and key station sampling are presented in 
Appendix 1.  Cost elements are listed in Appendix 2. 
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Appendix: 1 
 
  
Logistical Support: 
  Spatial Cruise  Key Station 
  3 spatial cruises 13 sampling events 
    
Equipment Ship/boat Limnos/Guardian 

multi-day vessel 
Sea worthy day boat 

 Winch x x 
 Profiling System SeaBird etc Hydrolab 
 Light system Licor, Secchi Disk Licor, Secchi Disk 
 Water sampler Rosette or Integrator Van Dorn bottles 
 Ponar x x 
 Metered Zooplankton 

Nets: 64 um 
2008 full suite later 
For OPC calibration? 

x 

 Metered Zooplankton 
Nets: 153 um 

2008 full suite later 
For OPC calibration? 

x 

 Mysid nets** x  
 OPC x  
 Flourometer x x? calibration studies 
 Filtering Apparatus 

for nutrient samples 
x On ship or on shore 

 Incubations for 
primary productivity, 
MFW 

 On shore – specific 
stations in a few 
years only 

    
Manpower Sampling Tech Ops + 4 -3 

cruises, 2 people for 
Nov cruise (104 
days)  

2 people/event-26 
people days/year 

  15 days of lab prep 
and take down - 3 
cruises 

Included in above 

 Chlorophyll analyses 5 days – 3 cruises 1.5 day  
 MFW microscope 

work 
 3.5 days 

 Primary Productivity, 
MFW incubations 

 13 days 

 Cercopagis/Leptodora 
counts from samples 

120 samples – 2 
hrs/sample = 30 days 

7 days 

 Benthic sample 
preparation – remove 
dreissenids & pick 
other organisms 

23 days for 30 
samples 

15 days for 20 
samples 

 Samples to 9 days 2 days 
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contractors and 
archiving 

Analyses Data into electronic 
finished files (put in 
Cerco and Lepto, 
check ids of phyto, 
zoo etc 

4 days 1 day 

 Data Analysis and 
writing 

Couple of months 10 days 

Total Man 
Power  

Not including Tech 
Ops or ship’s 
personnel 

230 days 79-80 days 

*do flourometry at key stations to cross calibrate 
** with out new estimates of growth rate I doubt it is worth doing mysids more than once a year 
(Nov)   
   

DRAFT 26



Appendix 2: 
 
Cost Considerations: Canadian Funds 
    
Manpower Students 8-10K - 4 months  
 Technical Personnel 40-60K - year  
 Biologists 40-60K - year  
 Scientist 80-90K - year  
    
 1 key site 15 K (@50K/yr)  
 1 spatial cruise 17K (@50+K/yr)  
    
  Key Station 1 Spatial Cruise 
    
Contracts Rotifers,Ciliates & Zoopl    

@ $80 per sample 
$4,160  
(52 samples) 

$9,600 
(120 samples) 

 Phytoplankton  
@ $250 per sample 

$3,250   
(13 samples) 

$7,500 
(30 samples) 

 Benthos 
@ $250 per sample 

$5,000  
(20 samples) 

$7,500 
(30 samples)* 

 Nutrients $2,000  
TOTAL  $29,410 $41,600 
    
Equipment & 
Supplies 

Filters, jars, chemicals 
etc, petro - maintenance 

$500-$1000  

Per diem and 
Lodging 

Depends where they 
sample 

? 0 

    
Boat and Ship Costs Guardian or Limnos for 

15 days 
210 K  

 Day Boats  Up to 2K/d  
    
Associated 
Sampling 

Nov mysid cruise 12K + 40 DFO 
personnel days 

 

 OMNR – acoustic cruise   
 Makarewicz station   
 EPA cruises (2) 300K for biology 

and chemistry 
 

    
Communication of 
Results 

LOC, LaMP, conferences   

* Assuming 90 samples over the whole season 
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The Lake Ontario Coastal Zone - Status and Assessment 
Joseph C. Makarewicz, SUNY Brockport 

Todd Howell, Ontario Ministry of Environment and Energy 
 

Introduction 

We define the coastal zone to include, but not limited to, the embayments, drowned river mouths 
and the nearshore zone; it is that portion of the lake from the shoreline to a depth of 30m (1) 
beyond which lies the offshore zone. The coastal zone is a transition zone influenced both by the 
waters of the offshore zone and by land use and drainage from watersheds.  Lake Ontario’s large 
coastal zone encompasses 1,020 km1 of shoreline.  The Canadian and the American shorelines of 
Lake Ontario are nearly equal in length (537 km Canada; 483km USA) (2).  The coastal zone 
also represents the primary zone where Canadians and Americans come in contact with the 
waters of Lake Ontario.  Lake Ontario coastal waters are a valuable resource for drinking water 
and industrial usage, recreational boating, fishing and swimming, tourism, and waste water 
processing, and are a key asset in the economies of upstate New York and Ontario Province.  
New York’s 2006 New York Ocean and Great Lakes Ecosystem Conservation Act (3) states “… 
coastal ecosystems are critical to the state environmental and economic security and integral to 
the states high quality of life and culture. Healthy coastal ecosystems are part of the state’s 
legacy, and are necessary to support the state’s human and wildlife populations…”.   
 
Despite significant water quality improvement in the open waters of the lake over the last three 
decades, Lake Ontario shoreline and embayments—bays, river and creek mouths and their 
associated wetlands—are suffering from many impairments that severely limit their recreational 
use and ultimately affect the economic development of the region (4).  These impairments 
include invasive species; habitat destruction; algae blooms; erosion, sedimentation and 
associated nutrient enrichment; turbidity; navigational impairments; beach closings, property 
loss; and fish consumption advisories due to toxicants.  For example, Ontario Beach in 
Rochester, NY, was closed 94 and 155 days in 2005 and 2004, respectively (5).  In addition, six 
Areas of Concern (Eighteenmile Creek, Oswego River, Niagara River, Hamilton Harbor, 
Toronto and Region, and the Bay of Quinte) impact the coastal zone.   Although there have been 
environmental improvements in six areas of concerns,  problems still remain.  Impairments of 
drinking water quality, shoreline property values, the attractiveness of the lakeshore to shoreline 
residents, the general public using the beaches and walking the shoreline, tourists and boaters are 
continuing concerns (6).    

 
Status 
Water Quality: Some recent chemical and biological data exist for the coastal region of the 
American and Canadian sides of Lake Ontario.  Using New York as an example, an intensive 
study of the coastal region is underway that provides unprecedented spatial coverage of the New 
York coastline ranging 483 km  from the Niagara River on the west to Chaumont Bay in eastern 
Lake Ontario (Figure 1). One goal of this study was to spatially examine water quality along the 
coastline, where the majority of the people swim, recreate and come in contact with the waters of 
Lake Ontario.   Thirty-seven embayments, streams and Lake Ontario itself were sampled at a 

                                                 
1 Does not include shoreline of islands 
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depth of 1m (swimmable depth) and are referred to here as shoreside samples.  Two sites due 
north of Hamlin Beach State Park in open water were sampled biweekly at the 
nearshore/offshore boundary (30-m depth) and offshore (100-m depth). Analyses reported here 
are total phosphorus, total suspended solids and phycocyanin. Data are also available for sodium, 
nitrate, total Kjeldahl nitrogen, turbidity, chlorophyll, pH, phycocyan, microcystins, anatoxin, 
conductivity, dissolved oxygen and light transmittance. 

 
Total Suspended Solids (TSS):  TSS at the 100-m offshore (average = 2.7 mg/L) and the 30-m 
(average = 3.0 mg/L) site were low.   In contrast, shoreside, embayment and stream TSS 
concentrations from the Niagara River to the Genesee River were often significantly higher than 
the offshore and nearshore boundary sites (Fig. 1).  Average concentrations at the shoreside of 
the Niagara River, Eighteenmile Creek, Oak Orchard Creek, Braddock Bay, Long Pond and the 
Genesee River were 124.4, 39.5, 72.3, 99.4, 98.4 and 21.1 mg/L, respectively.   Maximum TSS 
concentrations were observed at the shoreside site of the Niagara River (541.7 mg/L) and 
Braddock Bay (366.7 mg/L), Long Pond (300.7 mg/L) and Oak Orchard (257.0 mg/L).  East of 
the Genesee River, total suspend solids were generally low relative to the region west of the 
Genesee River but were still relatively high compared to the offshore and nearshore/offshore 
boundary sites.  For example, average TSS at the shoreside site of Port Bay and Sandy Pond 
were 20.0 and 17.0 mg/L – almost an order of magnitude higher than the offshore site.  
Turbidity, which is a measure of particles in the water and of concern to treatment of potable 
water supplies, was generally over 1 NTU in coastal waters.   At 22 of the 37 sites, average 
turbidity exceeded 1 NTU. Maximum turbidity observed exceeded 1 NTU at all but one site 
(Sackets Harbor) during the three-year study. 
 
Total Phosphorus (TP) and Soluble Reactive Phosphorus (SRP): Coastal concentrations of TP 
along the American side of Lake Ontario often surpassed the NYSDEC Ambient Water Quality 
Guideline of 20 µg/L. For example, the average concentration of TP exceeded the NYSDEC 
guideline at 29 of 37 sites over the three-year study (Figure 2).  Maximum TP values reached as 
a high as 1.09 and 1.57 mg/L at the shoreside of Lake Ontario at the Niagara River and Oak 
Orchard Creek sites, respectively. TP concentrations at the 30m nearshore/offshore boundary 
(30-m depth) and at 100-m depth offshore site averaged 9.0 and 10.0 µg/L, respectively, for the 
same period. As comparison, Figure 3 provides a snapshot of total phosphorus levels near Ajax, 
Canada, on one day in 2006.  TP concentrations near the shoreline often exceeded 100 µg P/L 
(maximum of 306 µg P/L); however, 600 meters from the shoreline, TP concentrations at Ajax 
dropped to the 10 to 20 µg P/L range. Average soluble reactive phosphorus (SRP) exceeded the 
NYSDEC Guidelines at 11 of 37 sites.   Maximum SRP values of 213.3, 172.2, 163.0, 157.9, 
154.6 and 147.4 µg/L were observed at the shoreside at Oak Orchard Creek, Irondequoit Bay, 
Eighteenmile Creek, Port Bay, Long Pond and Sandy Creek.  Spatially, shoreline TP 
concentrations were generally higher west of the Niagara River than east of the Genesee River 
(Figure 1). Also, shoreside concentrations were substantially higher than concentrations in 
embayments/creeks west of the Genesee River while east of the Genesee River, embayment and 
creek concentrations were similar or slightly higher than concentrations in the shoreside sites 
(Figure 2).   
 
Phycocyanin:  Cyanobacteria are often considered nuisance species and indicative of high 
nutrient concentrations. Cyanobacteria and chlorophyll levels along the coastal zone can reach 
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fairly high levels.  For example, average shoreside levels of phycocyanin, a pigment 
characteristic of cyanobacteria,  in Lake Ontario near Oak Orchard Creek and Braddock Bay 
were 46.98 (Chl a=27.6 µg/L) and 51.04 µg/L (Chl a =24.4 µg/L )(Figure 4) with maximum 
concentrations reaching 393.60 (Chl a =199.8 µg/L) and 244.80 µg/L (Chl a = 131.6 µg/L), 
respectively.  Phycocyanin level in embayments and rivers can also be very high.  In Long Pond 
and the Genesee River, average phycocyanin levels were 99.1 (Chl a = 59.5 µg/L) and 70.5µg/L 
(Chl a=3.0 µg/L), respectively.  In general, cyanobacteria levels were higher in stream, 
embayment and the shoreside waters than at the nearshore/offshore boundary (6.9 µg/L, Chl a = 
2.6 µg/L) and offshore (6.6 µg/L, Chl a= 2.3 µg/L) waters of Lake Ontario. Overabundance of 
cyanobacteria in Ontario appear to be limited to Hamilton Harbour and the Bay of Quinte (7).    
Thus the potential for production of cyanotoxins exists along the shoreline of Lake Ontario. Of 
the 418 samples taken along coastal Lake Ontario from 2003 to 2005, 93% had detectable levels 
of microcystins (>0.003 µg/L) (8).  At the Lake Ontario offshore (100-m depth) and the 
nearshore offshore boundary (30-m depth) sites, the maximum level of microcystins observed 
never exceeded 0.023 µg/L (mean = 0.005 and 0.004 µg/L, respectively) while maximum levels 
along the shoreline (lake side), bays and rivers were often higher, by an order of magnitude (e.g., 
0.225 µg/L [Braddock Bay shoreside]; 0.435 µg/L [Genesee River]; 0.795 µg/L [Long Pond 
North]; 0.325 µg/L [Niagara River shoreside]; 0.123 µg/L [Sandy Pond shoreside] (Figure 4) but 
still significantly lower than the World Health Organization guidelines of 1.00 µg/L.  
 
Cladophora: Striking changes in the nearshore ecology of Lake Ontario have occurred since the 
arrival of dreissenid mussels in 1989.  Dreissenid mussels, mostly quagga mussels (Dreissenia 
bugensis), carpet large areas of the lake bottom in the nearshore including areas of hard and soft 
substrate (9) (Figure 5).  The high density of filter-feeding mussels has demonstrated and further 
hypothesized the potential to affect lake-wide ecological processes and aquatic resources, with 
enhanced effects in coastal areas.  Hecky et al. (10) presented a conceptual framework, termed 
the nearshore shunt, which describes the implications of dreissenids in the retention of particulate 
matter in the nearshore areas and the re-focusing of energy and particulate matter from the open 
water to the lake bottom.  The effects of dreissenid mussels on the disruption of established 
patterns of energy flow and particle flux, and particle retention in the nearshore present a 
substantial challenge to understanding and managing water quality in the coastal zones of Lake 
Ontario.  Depression of phytoplankton levels and increases in water clarity associated with dense 
communities of dreissenid mussels are well-appreciated phenomena. However, the consequences 
of enhanced retention and deposition of particulate material laden with nutrients, contaminants 
and microorganisms are less well understood.  Tributary, municipal and industrial outfall and 
non-point source inputs to the shoreline of Lake Ontario are numerous and in many cases are 
expected to have elevated levels of particulates enriched in nutrient and other compounds of 
interest.  A key question is to what extent has the retention (and accumulation) of nutrients and 
pollutants increased in the nearshore and conversely has the supply to the offshore declined.  
This question is particularly relevant to phosphorus since much of the total phosphorus inputs to 
the lake are in particulate form, originate from the nearshore, and are now more susceptible to 
being retained in the nearshore than prior to establishment of dreissenid mussels.  It can also be 
hypothesized that nearshore areas where inputs of nutrients and contaminants are more extensive 
(e.g. urban areas) would be at greater risk of deteriorating conditions.  
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There is a strong potential for dreissenid mussels to enhance benthic algal growth.   Increases in 
water clarity attributable to dreissenid mussels extends the depth to which benthic algal 
colonization can occur and thereby increases habitat availability. Dreissenid mussels may also 
enhance nutrient supply directly through excretion or indirectly through the accumulation of 
particulate material in the mussel beds.  From the late 1970’s to the mid-1980’s Painter and 
Kamaitis (11) noted a declining trend in the biomass and tissue phosphorus concentrations in the 
nuisance benthic algal species Cladophora glomerata.  In departure from this trend, it now 
appears that Cladophora is once again widely distributed across the rocky shorelines of Lake 
Ontario and is achieving high biomass levels especially in western Lake Ontario.  Along the 
Canadian shorelines of Lake Ontario, Wilson et al. (9) estimated that 57% of the lake bottom, at 
5m depth, was covered by Cladophora mats with an average mat thickness of 4.7 cm, and that in 
some areas Cladophora was noted as deep as 20m.  Areas along the north shore with 
Cladophora beds of up to 10 cm in height were observed (Figure 3).  Several groups in Ontario 
are actively studying Cladophora, (e.g. University of Waterloo, Ontario Water Works Research 
Consortium see owwrc.com); however, there has yet been limited documentation of the 
occurrence of Cladophora in the literature.  The occurrence of Cladophora in Lake Ontario has 
features similar to that reported recently for the north shore of eastern Lake Erie (12).  Wash-up 
of Cladophora resulting in fouling of shoreline has been observed in diverse locations ranging 
from St. Catharines, Oakville, Newcastle, Presqu’ile, Kingston, Ontario, and Rochester and 
Hamlin, NY.   
 
Summary:  
*Embayment, shoreside and stream water in New York coastal waters have greater sediment 
loads, have higher nutrient levels (TP, TKN, nitrate), have greater amounts of Cyanobacteria and 
algae, and have higher levels of cyanotoxins than offshore waters. 
* Coastal New York phosphorus levels generally exceed the NYSDEC Ambient Water Quality 
Guideline for phosphorus.  In the Province of Ontario, TP levels do not generally exceed the 
Provincial Water Quality Objective (10/20 µgP/L). However, there are many locations in the 
coastal zone such as embayments, river mouths and locations near the shoreline where TP will 
periodically, if not frequently exceed 10 or 20 µg/L (7).   
*There are spatial differences along the New York coastal zone.  Sediment loads, nutrient 
concentrations and Cyanobacteria appear to be higher in the streams, embayments and at 
shoreside sites compared to offshore sites west of the Genesee River.  
*In general, water quality of the coastal zone is generally poorer than water from the offshore 
zone. 
* Other coastal ecosystem impairments include an over abundance of aquatic weeds, shoreline 
erosion, invasive species, and habitat destruction.  Dreissenids have altered nutrient cycling and 
increased water clarity resulting in a rebound of the benthic green alga Cladophora (13).  It is 
possible that the pods or mats of algae, often several meters in diameter floating into beaches, are 
associated with Cladophora scouring during wind events and seasonal die-back.   
* Public beaches are often closed or posted due to elevated levels of fecal pollution indicators 
and poor water quality.  Elevated levels of fecal indicator may result from factors other than 
strictly poor water quality in a conventional sense (e.g. beach sediments, gulls). 
* Structure and function of the coastal zone are influenced by the proximity of the shoreline, 
localized sources of meso-scale variability (e.g., tributaries, land-use in the watershed, 
embayments, geology, effluent pipes) and variations in the current regime (wind direction, 
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upwellings, etc.).  Current regime, in turn, controls transport and distribution of temperature, 
nutrients, contaminants, and planktonic organisms, as well as bottom shear stress and erosion 
potential.  

* Environmental integrity and sustainable use of coastal habitats are threatened by anthropogenic 
forces including rapid population growth - especially in the Greater Golden Horseshoe region 
(Lake Ontario’s western basin).  One hypothesis suggests that the high levels of nutrients 
observed along the New York coastal zone from the Niagara River to the Genesee River may be 
related to land use within the “Golden Horseshoe” area of Canada.  

*Coastal zone waters receive large amounts of anthropogenic inputs, and associated ecological 
responses likely reflect the character of the adjacent watersheds.  Such responses in water quality 
and plankton in the coastal zone may foreshadow lake ecosystem change. 

In conclusion, portions of the coastal zone continue to be plagued by cultural eutrophication with 
high nutrient levels leading to the unwanted growth of Cyanobacteria and Cladophora (?) and 
other water quality problems.  Until the significance of habitat extension and internal nutrient 
supply mediated by dreissenids is evaluated using growth models and experimentation, it will be 
to difficult to demonstrate that further controls on point and non-point P sources will have the 
desired effect of substantially reducing nearshore growth of Cladophora.   The principal nutrient 
of concern, phosphorus, comes from a variety of point and non-point sources, including domestic 
animal waste, fertilizers, soil loss, combined sewer effluent, leaky septic systems, and sewage 
treatment plant effluent.     

Assessment:  
Programs: Several important federal and state plans, strategies and policy initiatives address 
restoration and prevention of adverse impacts, including the Lake Ontario Management Plan 
(LaMP), the Great Lakes Water Quality Agreement, the Great Lakes Regional Collaboration, 
The Lake Ontario Coastal Initiative, NYS’s Clean Water Act, the Comprehensive Wildlife 
Conservation Strategy, the Finger Lakes - Lake Ontario Watershed Protection Alliance, Local 
Waterfront Development Plans, local watershed protection plans and community-based 
initiatives and more.  Most recently, through the New York Ocean and Great Lakes Ecosystem 
Conservation Act of 2006, the “policy of the State of New York shall be to conserve, maintain 
and restore coastal ecosystems so that they are healthy, productive and resilient and able to 
deliver the resources people want and need”.  However, the remediation efforts recently 
proposed through the New York Ocean and Great Lakes Ecosystem Conservation Act are limited 
to one watershed in the eastern half of Lake Ontario (Sandy Pond) and fail to tackle the issues of 
coastal region through an integrated ecosystem planning process developed through careful 
science and an adaptive management approach. Research and remediation efforts of the 
coastal zone continue to be fragmented, with projects, communities, and counties 
competing for attention for state, provincial and federal agencies and limited funds 
 
Data:  The Lake Ontario offshore zone has been intensively studied for decades via the Great 
Lakes National Program Office of EPA, the Bioindex program of Fisheries and Oceans Canada 
as well as state and provincial programs.   Some data comparing offshore phosphorus and 
chlorophyll levels to a limited number of embayment and nearshore sites on the south shore of 
Lake Ontario are available for the 1995-97 period (14).   Some loading data are also available for 
watersheds. For example, programs of various NY County Soil and Water Conservation Districts 
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primarily funded through the Finger Lakes Lake Ontario Watershed Protection Alliance have 
developed nutrient loading data for several of the watersheds.  In Canada, Lake Ontario 
nearshore environmental conditions are periodically (1990, 1994, 1997, 2000 and 2003) 
monitored by the OMOE at a network of approximately 70 sites throughout the Great Lakes.  
Sites selected for study are located in shallow water (<30 m) and are removed from the direct 
influence of point sources. In general, the stations are sufficiently deep and removed from the 
shoreline so as not to be acutely affected by wind-induced resuspension of sediments and 
shoreline erosion.  The information collected is intended to describe the more spatially wide-
ranging conditions in the nearshore and will not represent the extremes of conditions in an area.   
 
As discussed above, a limited systematic set of environmental data, mostly nutrient and 
biological, exists for the south shore of Lake Ontario only. No such data set exists for the entire 
coastal region of Lake Ontario.  For the coastal zone of Lake Ontario, information gaps are 
readily apparent.  Water quality and biological data that do exist are spatially limited, are 
often not comparable due to different sampling designs between Canada and the U.S., and 
are generally focused on the offshore region rather than the coastal zone of the lake.   
 
Recommendations: 

*Determine and evaluate the ecological status of the coastal zone of Lake Ontario.  Coastal 
monitoring of total phosphorus, soluble reactive phosphorus, nitrate, organic nitrogen, sodium, 
total suspended solids, turbidity, chlorophyll, phycocyanin, cyanotoxins, and coliforms should 
include coastal waters of the Canada and the United States.  The sampling design should be 
spatially extensive with a minimum of monthly sampling from May through October to include 
embayments, drowned river mouths, and the nearshore zone of the coastal zone.  An element of 
the work plan should focus on documenting the occurrence levels of Cladophora at limited 
nearshore suite of sites spatially at or near peak abundance. 

Other aspects of this recommendation should include: 
1) a unified assessment over the U.S./Canadian shoreline; 
2) a sampling design/framework to stratify natural habitats, anticipated scales of variability in 
water quality, and types of anthropogenic influence on environmental conditions to allow spatial 
integration of results and appropriate comparisons (note discussion in Appendix A); 
3) an element focusing on collection of the physio-chemical information needed to run existing 
Great Lakes Cladophora growth models;  and 
4) an element of the work plan to evaluate the spatial distribution of cyanobacteria and 
phytoplankton in the coastal zone with the objective of linking distribution patterns to local or 
lakewide drivers.   
 
* Develop new approaches to evaluating the coastal zone. Geo-positioned continuous 
monitoring with a CTD (temperature, fluorometer, conductivity, light transmittance) and a laser 
optical plankton counter (LOPC) coupled with a Towfish along selected transects parallel (100 
km in length) to the shoreline and perpendicular (depth of 40m) to the shore are recommended 
(15).  The continuous high-resolution data will provide an image of spatial variability for each 
parameter at local, meso-scale and regional scale.  Spatial patterns not easily detected by 
traditional sampling methods are likely to be revealed which may be related to landscape 
characteristics along the coastline.  Such spatially intensive information would allow us to 
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evaluate/characterize scales of effect of a suite of recognized anthropogenic influences on the 
coastal zone (STPs, storm water, tributaries stratified by land-use and size).  

 * Develop an Integrating Coastal model to explore the relationships between the physical 
environment, modified by local chemical conditions, on the biological response of the 
ecosystem, and feedbacks from the biota to the physical and chemical environment form. The 
development of an integrating coastal ecosystem (ICE) model should be developed to synthesize 
data and evaluate system responses to multiple stressors (physical, chemical, and biological) 
acting in concert, as well as to provide predictive capabilities for further hypothesis formulation 
and testing. If development of a new model is not practical, an integrated project utilizing one of 
the current generation of 3D hydrodynamic models, tributary (possibly other source types) 
discharge modeling and spatially detailed field-based water quality surveys, is suggested.  With 
this combined approach, we can evaluate water quality over three types of shoreline: 1) urban, 2) 
agricultural, and 3) relatively limited development.  We can then assess the degree to which the 
unified framework can be used to interpret and predict coastal water quality.  The desired 
product would be a demonstration of an approach that could be used to better understand coastal 
water quality. 

* Long-term monitoring of selected sites is recommended to evaluate remediation and 
restoration and to employ an adaptive management strategy.  Monitoring efforts should  track 
conventional water quality (nutrients, fecal indicators, chlorophyll, phycocyanin, macro ions, 
DOC, solids, transparency) at a limited number of locations dispersed around the open shores 
and embayments of the lake on an ongoing basis.  These sites will have to be selected carefully 
based on yet undeveloped criteria.   
Resources Available for Nearshore Work (U.S.): 

1. SeaBird CTD equipped with the following sensors: Temperature, turbidity, pH, 
chlorophyll a, dissolved oxygen, and conductivity. 

2. Hydrolab with temperature, oxygen, pH, chlorophyll a, and phycocyanin. 
3. R.V. Madtom (27’ vessel) equipped with motorized winch and crane, GPS, etc. 
4. NELAC Certified Water Quality lab with Bran Luebbe Auto Analysers, Atomic 

Absorption Spectrometer, G.C., Mass Spec, etc. 
Cost Estimates:  

1. Determine Ecological Status of the Coastal zone  
            Canada: $170K Canadian 

                  USA:     $200K  American (Year 1: $150K, Year 2:$50,000) 
2. Develop new approaches to evaluating the coastal zone. Geo-positioned continuous    
      monitoring with a CTD, LOPC and Towfish along a 100km transect, etc. 

                                 Equipment: LOPC: $60K, Towfish/V-Fin  $12K 
                                 Sampling and Analysis:  $15,000 per transect 
3. Model Development: No cost developed. 
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Figure 1.  Ambient levels of total suspended solids in the coastal zone of Lake Ontario. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Ambient levels of total phosphorus in the coastal zone of Lake Ontario. 
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Figure 3.  Total phosphorus (µg/L) concentrations at the Town of Ajax waterfront on 29 August 
2006. Samples sites are 0, 100, 200, 200, 600 and 1000 m from the shoreline.  Samples taken by 
the Metro Toronto Region Conservation Authority and the Town of Ajax.  Data courtesy of Gary 
Bowen, MTRCA ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  Ambient levels of phycocyanin along the south shore of Lake Ontario. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 5.  Mean bed height of benthic algae, predominately Cladophora, at 5-m depth on the 
Canadian shores of Lake Ontario in late August to early September 2003. Estimates are based 
on diver-observation of five 0.25-m2 quadrants OMOE unpublished data (see Wilson et al. 
2006 for study background). 
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Appendix A.  Sampling design issues in the coastal zone.  
 
High levels of variability in physical, chemical and biological features have been a persistent 
impediment to the realistic characterization of conditions and to efforts in understanding cause-
effects relationships in the coastal zone (e.g., Figure A1).  The sources of variability are diverse 
but can be grouped to some extent as resulting from physical process (e.g. circulation, 
upwellings, and bed/shoreline erosion) within the lake, discharges to the nearshore from the 
shoreline, dreissenid related re-engineering of the lake bed, and temporal variability in weather 
and biological activity.  Some of the dimensions of the challenge and several features of 
variability that are typical of Lake Ontario are illustrated in Figure A2 using spatial patterns in 
turbidity and total phosphorus (TP) measured over a 10 km stretch of the Toronto waterfront in 
late spring 2000 (OMOE unpublished data).  Areas of moderately high and low turbidity 
occurred in relatively close proximity; turbidity was unrelated to distance from the shoreline.  
Turbidity plumes associated with mixing gradients of two small rivers were oriented parallel 
with the shoreline moving to the northwest.  Shore-parallel flow is characteristic of the nearshore 
of the Lake Ontario (Rao and Murthy 2001) and frequently serves to move shore discharges 
along and often directly onto the shoreline.  The onshore-offshore and along-shore gradients 
account to some extent for the apparent discrepancy in results between surveys conducted by 
vessel with those conducted from the shoreline in very shallow water.  Small-volume discharges 
may not move into water deep enough for a survey vessel to access but may be readily apparent 
from the shoreline.  Acute concentration gradients extending from the shoreline over the first 
several meters depth of water are environmentally relevant but a difficult feature to evaluate.  
However, issues concerning recreational water quality and aspects of nutrient supply to benthic 
algae require resolution of conditions on this scale.  
 
The area of low turbidity along the rocky, and dreissenid infested, shoreline south of Mimico 
Creek (Figure A2) illustrates the potential influence of dreissenid filtration on water column 
particulate concentrations and water clarity.  Support for this interpretation of low turbidity along 
the shoreline is provided by the variation in chlorophyll a concentrations over the survey area as 
a function of depth.  Minimum concentrations increase from 3 to 18 m depth reflecting the 
greater removal of particulate material from the water column by dreissenids at shallow depth. 
The wide variability in concentration in the shallow depth illustrates the challenge in separating 
the enrichment-related effects of inputs from the shoreline from the particulate-stripping effects 
of dreissenids.   
 
The spatial variability in TP concentrations in the vicinity of Mimico Creek illustrates the 
difficulty in obtaining an accurate representation of nearshore conditions using mean or 
integrated values.  Over a relatively limited area, TP values ranged from 6 to 28 µg/L (with the 
exception of a high value within a river mouth).  While some of the variability can be ascribed to 
river discharges (in one case proximity to a STP discharge: SW corner), there remains moderate 
variability away from areas of elevated turbidity.  While it is not immediately testable using the 
data presented here, it is tempting to speculate that the low TP values along the immediate 
shoreline result from the hypothesized nearshore shunt effect of dreissenid mussels (Hecky et al. 
2004).   
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In 2000 the OMOE conducted limited experimental surveys in Lake Ontario in efforts to develop 
a field-based approach capable of describing fine-scale patterns in water quality adjacent to 
shoreline.  The basic approach is to track a suite of sensors along the shoreline collecting 
spatially-detailed field measurements.  The field data is supplemented with more limited 
laboratory-based data on the day of survey and through-time information from deployments of 
ADCPs, temperature recorders, and other sensors.  Since 2000 the development of survey 
methods continues largely in other areas of the Great Lakes.  The approach is used as part of the 
OMOE nearshore monitoring program in studies in which resolution of local-scale linkages 
between features of the shoreline and water quality is an objective.  Two areas of method 
development are ongoing: integration of the field survey approach with hydrodynamic modeling 
to extend the depth of interpretation particularly with respect to time; acquisition and setup of a 
towed undulating vehicle with a more diverse sensor payload and potential for wider spatial 
coverage.  Lake Ontario has specifically been targeted in the later activity.   
 
Despite the appreciable variability in environmental conditions encountered in the nearshore, 
monitoring initiatives attempt to achieve a useful representation of conditions with limited 
resources.  Future monitoring designs should select the features of variability to be highlighted or 
downplayed consistent with the questions that monitoring is meant to inform.  In the nearshore, 
this is invariably a compromise because of the wide diversity of scales on which environmental 
conditions are affected.   
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Figure A1:  Near surface chlorophyll a concentrations over the area of Toronto waterfront 

depicted in Figure 2 on 24 May 2000 plotted against lake depth.   Extracted-equivalent 
chlorophyll a concentrations were estimated from field measurements of chlorophyll a 
fluorescence based on a linear regression of paired lab-field measurements for the day of 
survey.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A2:  Turbidity on 24 May 2000 over a section of the Toronto waterfront extending from 
NE of Mimico Creek to SW of Etobicoke Creek.  Turbidity was empirically estimated from field 
measurements of beam attenuation coefficient (660 nm) at 1.5 m below lake surface.  The 
coloured layer is a kriged surface based on 8.2 K measurements over the track shown in grey.  
The numeric values indicate total phosphorus concentrations in point samples collected at 1.5-m 
depth.   
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The Lake Ontario fish community is increasingly dominated by non-native species, and many 
formerly abundant native species are extirpated or reduced to rarity (Casselman and Scott 2003; 
Owens et al. 2003).  Until recent years, however, native fishes still comprised the bulk of the fish 
community in the shallow, warmer nearshore waters, with non-native alewife (Alosa 
pseudoharengus) and rainbow smelt (Osmerus mordax) only abundant seasonally when 
spawning (O’Gorman and Burnett 2001; Eckert 2006a).  In 1998, round goby (Neogobius 
melanostomus) invaded Lake Ontario and their numbers are presently increasing in the 
nearshore.  Although some round gobies migrate to offshore waters in winter (Walsh et al. in 
press), others apparently remain near shore.  Moreover, the latest native fish to suffer an extreme 
population decline is American eel (Anguilla rostrata), a nearshore resident (Casselman and 
Scott 2003).  In offshore waters, the fish community has been dominated by non-native alewife 
and rainbow smelt since the mid-20th century disappearance of lake trout (Salvelinus 
namaycush), deepwater ciscoes (Coregonus spp.), and deepwater sculpin (Myoxocephalus 
thompsonii) (Christie 1973; Mills et al. 2005).  Although deepwater sculpin have recently 
reappeared in assessments, they are still rare and their recovery to former levels of abundance is 
uncertain (Lantry et al. in press). 
 
Alewives have been shown to negatively impact a variety of native fishes by predation on larvae 
and, for lake trout and Atlantic salmon (Salmo salar) which have alewife rich diets, by lowering 
thiamine levels in eggs thereby reducing survival of early life history stages (Fitzsimons et al. 
1999, 2005; Madenjian et al. in review).  To reduce nuisance levels of alewife, create an 
economically valuable sport fishery, and restore lake trout, the New York State Department of 
Environmental Conservation (NYSDEC), Ontario Ministry of Natural Resources (OMNR), 
Department of Fisheries and Ocean (DFO), and the U.S. Fish and Wildlife Service (USFWS) 
began large scale releases of hatchery reared salmon and trout, including lake trout, and initiated 
a program to suppress sea lamprey (Petromyzon marinus).  Vigorous populations of piscivores 
were established in the 1980s and by the early 1990s, alewife numbers had declined to such an 
extent that concern about the ability of prey fish populations to support the salmon and trout and 
the economically valuable sport fishery led to reductions in stocking (Jones et al. 1993; 
O’Gorman and Stewart 1999).  Since then, alewife numbers have continued to decline, due to 
predation and reductions in phosphorus levels which decreased system productivity (Mills et al. 
2005). 
 
Maintaining societal and ecological benefits from expensive management programs like fish 
stocking and sea lamprey control demands a continuous flow of current information to managers.  
This is particularly true for Lake Ontario where a recent influx of invasive species has severely 
disrupted the food web.      
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Ongoing Fishery Assessments 
 
Nearshore - Assessments of the nearshore fish community are concentrated in the relatively 
shallow northeastern basin of Lake Ontario where about 42% of water <30 m deep in the lake is 
located.  The OMNR has conducted a fish community indexing program in the northeastern 
basin since 1958 (Casselman and Scott 2003).  As part of this indexing program, annual 
assessments of nearshore waters have been conducted with bottom trawls since 1972 and with 
gill nets since 1977.  The NYSDEC has conducted a warmwater assessment in the northeastern 
basin with gill nets each year since 1976 (Eckert 2006a).  More recently, the NYSDEC began 
conducting bottom trawling for young-of-year yellow perch (Perca flavescens) in northeastern 
bays each fall in a program modeled after a study conducted by O’Gorman and Burnett (2001) 
during 1978-1997.  Ongoing assessments of the nearshore zone in northeastern Lake Ontario are 
sufficient to detect changes in the fish community particularly since most of the assessments 
have been conducted for decades and thus have measures of “normal” interannual variability. 
 
The nearshore fish community in most of the main lake basin lacks a targeted annual assessment. 
The only exception is along a 70 km stretch of the northeastern shore between Brighton and 
Long Point, where annual index gillnetting has been conducted since 1988 (OMNR 2006).  Other 
assessments have occurred sporadically over the years (Eckert and Pearsall 2002) and there have 
been short-term localized assessments associated with industrial water use projects such as 
power plants.  Much of the nearshore is rocky, prohibiting bottom trawling, but the major factor 
confounding the conduct of, and interpretation of data from, nearshore assessments is the 
relatively unstable thermocline which changes fish density as it rises and falls.    
 
Offshore - A considerable amount of effort is aimed at assessing the fish community in the 
offshore waters of Lake Ontario, by far the largest area of the lake.  In U.S. waters, three bottom 
trawl surveys are conducted annually to assess prey fishes, one survey each for alewife, rainbow 
smelt, and slimy sculpin (Cottus cognatus; Owens et al. 2003).  Canadian waters are mostly 
unsuitable for bottom trawling due to rough bottom except for limited areas in the extreme west 
and east ends of the lake.  In the west, a bottom trawl assessment for rainbow smelt and juvenile 
lake trout (see below) was conducted each year during 1986-1993 (Schaner and Schneider 1994).  
In the east, bottom trawls are conducted annually in the northeastern basin as part of OMNR’s 
community indexing program (Casselman and Scott 2003).  A hydroacoustic assessment of prey 
fishes that encompasses the entire lake has been conducted annually in midsummer by OMNR 
and NYSDEC since 1991 (OMNR 2006).  Trends in alewife abundance from the spring trawl 
survey in U.S. waters are in general agreement with those of whole lake estimates of alewife 
abundance from the midsummer hydroacoustic survey. 
 
Assessment of the relative abundance of most salmon and trout is difficult in offshore waters 
because the fish are widely and unevenly dispersed and at mid depths.  For Pacific salmon 
(Oncorhynchus spp.), biological information is collected when the fish ascend streams to spawn 
(Bishop and Prindle 2006; OMNR 2006).  Biological information on piscivores is also collected 
during creel surveys which track angler catch rates and harvest in both jurisdictions (Eckert 
2006b; Prindle et al. 2006).  Sea lamprey, an important member of the offshore community, are 
also assessed when they ascend streams to spawn by a trapping program that covers both shores 
of the lake (Young and Klar 2006).  An early spring gillnet assessment conducted in nearshore 
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U.S. waters during the 1980s, was successful at tracking growth of brown trout (Salmo trutta) 
and coho salmon (Oncorhynchus kisutch) (O’Gorman et al. 1987).  However, springtime 
distribution of these piscivores apparently shifted offshore after water clarity increased following 
dreissenid colonization in the mid 1990s and so it seems doubtful that the results from a similar 
assessment today could be compared to that of the 1980s.  
 
Lake trout, the focus of a binational restoration program (Elrod et al. 1995), can be assessed in 
offshore waters with conventional bottom trawls and bottom set gill nets.  Juvenile lake trout 
have been assessed annually since 1981 with bottom trawls in midsummer from the west side of 
the Niagara Bar eastward into the northeastern basin (Elrod et al. 1993; Lantry and Prindle 
2006).  Bottom trawling for juvenile lake trout in extreme western waters (Grimsby-Hamilton-
Toronto) during 1986-1993 caught very few lake trout except at the mouth of the Niagara River 
and was generally viewed as an unsuccessful assessment.  In contrast, gill netting adult lake trout 
was a successful assessment technique throughout the lake and gill nets were fished lakewide 
during 1985-1995 (Bowlby et al. 1996; Schneider et al. 1996) but only in N.Y. waters during 
1980-1984 and 1996-2006 (Elrod et al. 1995; Lantry and Prindle 2006).  
 
Fishery assessments are rarely conducted in the mid-lake profundal zone.  However, since the 
disappearance of native deepwater fishes, the area has generally been thought devoid of fish for 
much of the year (Christie 1973) and a recent survey with trawls and gill nets confirmed that few 
fish are there in midsummer (Strang et al. 2006). 
  
Assessment Needs  
 
Important fishes lacking sufficient assessment efforts are those that are difficult to capture 
(salmon in the open lake) and those for which catch data is difficult to interpret (nearshore fishes 
in the main lake basin).  The one exception is adult lake trout.  Although there are regional lake 
trout assessments, there is a need for conducting an integrated, whole lake assessment such as 
was done during 1985-1995.  Restoration of a self-sustaining lake trout population is a goal of 
New York and Ontario resource managers and gauging progress towards the goal should be done 
on a whole lake basis.  Since the cessation of whole lake assessment, stocked lake trout have 
begun reproducing (O’Gorman et al. 1998), and regional differences in occurrence of naturally 
produced juveniles have been documented (Lantry and Prindle 2006).  An important measure of 
progress towards restoration would be the proportion of naturally produced fish in the spawning 
population.  A whole lake assessment, aside from collecting valuable demographic information, 
could also be used to collect information on the genetic makeup of naturally produced fish, 
thiamine status of mature females, and general population health.  We herein outline the 
resources needed to conduct a comprehensive whole lake assessment of adult lake trout in 
September 2008 by the USGS, NYSDEC, and OMNR.          
 
 Sampling sites –  The whole lake assessment of lake trout was last completed in 1995 and 
consisted of nets fished at random sites in 14 geographic regions in N.Y. waters and at 10 fixed 
stations in Ontario waters (Fig 1.).  At a minimum this level of sampling effort should be 
repeated and, if resources allow, one or more sites should be added along the north shore. 
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Figure 1 – Lake Ontario showing the 14 geographic regions in U.S. waters (regions 2-23) and the 
10 fixed sites in Canadian waters (stations 30-65) where gill nets were fished to assess adult lake 
trout.  
 

Vessels – Three vessels, one each from USGS, NYSDEC, and OMNR were used to 
conduct whole lake assessments of adult lake trout during 1985-1995 and a minimum of three 
vessels would be needed in 2008.  In calculating the additional vessel days needed to expand the 
annual assessment, we assumed that geographic deployment of agency research vessels would be 
similar to that of the past – USGS (Kaho) in the west, NYSDEC (Seth Green) in the southeast, 
and OMNR (Keenosay) in the northeast.  For the Kaho, ten additional vessel days would have to 
be devoted to adult lake trout assessment (assuming that the Kaho would sample the western half 
of the lake).  For Seth Green, five additional vessel days would have to be added to the schedule 
and for the Keenosay, eight vessel days would have to be added to the schedule. 
 
 Field personnel – At least, one additional person would be needed on each vessel if 
studies are conducted on thiamine status of mature females and fish health.  Additional shore 
support would be needed to co-ordinate transfer of fish health samples to the laboratory. 
 
 Identification of Naturally Produced Fish - Concentrations of stable isotopes of carbon 
and oxygen in the region of the otolith that is deposited during the first year of life, can be used 
to distinguish fish that spent their first year in a hatchery from those that spent their first year in 
the lake. Assuming processing costs $30 per fish (includes mounting, micromilling and isotope 
analysis) and 125 fish (only those without any marks would need to be examined), the total cost 
would be $3,750 (CAD).  Additionally, fish identified as wild would be aged, using the otolith, 
at a cost of $10 (CAD) per fish. 
   
 Thiamine status of females -   A portion of the ovary from each mature female would be 
taken and frozen on dry ice for determination of thiamine status.   Assuming a total catch of 150-
200 mature females and the current cost of thiamine determination ($70), total cost would be 
$10,500 to $14,000 (USD).  Emerging techniques for thiamine determination could reduce costs 
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by 50% or more by 2008.  Additional costs include $2,000 for dry ice and field supplies plus 
funding for technicians to collect ovaries in the field (40 days).   
 
 Fish health - Bacteriology, virology, and parasitic samples would be collected, placed on 
ice and shipped next day air to the laboratory for processing.  Samples would consist of bacterial 
cultures from the kidney and external lesions, kidney and spleen tissue, and gill arches.  These 
samples would be screened for a variety of fish diseases including, but not limited to, bacterial 
kidney disease, furunculosis, infectious pancreatic necrosis virus, viral hemorrhagic septicemia, 
and whirling disease.  Ideally, we would collect samples from 20-60 fish collected at each of the 
24 sites gill netted.  Assuming that we process 60 lake trout per site and the current cost of 
disease screening of $1000/60 fish/site, total cost would be $24,000 (USD).  Additional costs 
include supplies and shipping expenses of approximately $2,000 per vessel, plus funding for a 
technician to collect the samples in the field (40 days).  The same technician who collects ovaries 
could collect the fish health samples to reduce personnel costs.    
 
 Genetics - Samples for genetic analysis would be collected from all lake trout that do not 
have a clipped fin or a coded wire tag.  After analysis of otoliths, samples from those fish 
identified as naturally produced could be used to determine genetic origin (many genetic strains 
have been stocked in Lake Ontario).  
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Modeling the Lake Ontario Ecosystem: Next Steps 
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Introduction 
 
The Lake Ontario ecosystem has undergone many significant changes over the past thirty years 
as a result of external natural and anthropogenic perturbations.  These perturbations (or stressors) 
have led to changes in lake primary production, trophic structure and function, nearshore and 
wetland habitat, and fish production and diversity.  Among the significant stressors that have led 
to the ecological responses are: phosphorus load reduction to reverse the consequences of 
cultural eutrophication, persistent toxic chemical exposure, invasion aquatic nuisance species 
such as sea lamprey and Dreissena spp., fisheries management by stocking of exotic salmonids 
and sea lamprey control, fish harvest pressure by sport fishing and cormorants, and reduction of 
natural water level fluctuations as a result of the St. Lawrence Seaway regulation program. 
Considerable research, monitoring, and modeling have been conducted in order to support water 
quality and fishery management in Lake Ontario.  In most cases, those data-supported modeling 
efforts have led to rational and defensible management decisions; however, our quantitative 
understanding of the Lake Ontario ecosystem structure and functioning have not been able to 
keep pace with the latest stressor-induced changes that were not considered at the time 
management actions were taken for a specific issue.  Recent research has been focused on 
assessing the changes that have taken place in the structure and function of the Lake Ontario 
lower food web in order to better support management decisions in face of multiple stressors 
(Mills, et al. 2006).  The purpose of this paper is to review the history of Lake Ontario trophic 
modeling and to make recommendations for model refinements to better integrate the current 
research and monitoring and to better support Lake Ontario management that is consistent with 
an Ecosystem Approach.  

 
Previous Modeling Efforts 
 
The first major modeling of water quality in Lake Ontario was undertaken in support of 
eutrophication management that was a major goal of the Great Lakes Water Quality Agreement 
(1972).  There were three models used determine the total phosphorus loading to Lake Ontario 
necessary to achieve the target water quality objectives of 10 µgP/L of total phosphorus and 2.6 
µg/L chlorophyll a.  Of the three models, the Thomann LAKE 1 model (Thomann, et al. 1975; 
1976) was the most sophisticated from a process perspective.  The LAKE 1 model had both 
available and unavailable phosphorus and nitrogen state variables, and also modeled 
phytoplankton (as chlorophyll a) and zooplankton biomass.  Chapra’s model was a Great Lakes 
basin-wide total phosphorus dynamic model, with chlorophyll concentration computed from an 
empirical phosphorus to chlorophyll relationship (Chapra 1977; 1980a; 1980b).  The third model 
was a Vollenweider empirical model.  Based on these models, a target TP load to Lake Ontario 
of 7000 metric tonnes per year (mta) was chosen (Task Group III 1978). 
At the same time as the phosphorus load reductions to Lake Ontario were occurring, the fishery 
management community was expanding its Salmonid stocking program in response to the great 
success the stocked Salmonids were having and the rapidly expanding recreational fishery 
(O’Gorman and Stewart 1999) (Figure 1).  The accelerated stocking rates through the 1970’s and 
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early 1980’s led to a high fishery yields but also led to concern over the sustainability of the 
fishery due to decreasing alewife populations as well as other prey fish.   In the mid-1980’s New 
York and Ontario agreed to reduce Salmonid stocking to 8 million per year.  Based on continued 
data analysis and fish population dynamics and production modeling, the stocking limit was set 
to 4.5 million per year in 1993.   
 
Upper food web modeling conducted in the mid-1990s was used to support the decision to 
maintain the reduced stocking level.  An example of the management modeling that was done is 
the nutrient-trophic food web model of Jain and DePinto (1996).  This model was one of the 
initial efforts at developing an ecosystem model that quantitatively linked nutrient-primary 
production as governed by nutrient loads with top predator fish production as effected by both 
the lower food web production and stocking and harvesting forcing functions from above.  This 
modeling effort demonstrated that, under current mid-1990’s conditions, long-term Salmonid 
production was sensitive to both phosphorus loading rate and Salmonid stocking rate in a non-
linear way (Figure 2).  The model also confirmed that at the current phosphorus loading rate, 
increasing stocking will not significantly increase long-term Salmonid production but it will 
likely put undo pressure on the forage fish in the system. 
Halfon and Schito (1993) were the first to attempt to trophically balance a multi-trophic level 
food web model of Lake Ontario.  This work highlighted the challenges of quantitatively 
describing a relatively simple food web in such large system.  Additionally, tools were not 
available to dynamically link the food web model to potential management actions.   

 
Evaluation of Previous Modeling Relative to Current Lake Ontario Status 
 
Lake Ontario first achieved its target load of 7000 mta in 1983, dropping from values above 
10,000 mta prior to the mid-1970s (see Figure 1). Since 1983, the Lake Ontario TP load has 
exceeded its target value five times – in 1984, 1986, 1987, 1990, and 1991 (TP loading estimates 
are not available for Lake Ontario beyond 1991).  These excursions suggest that Lake Ontario 
has not been consistently meeting its target load (at least through 1991).  Furthermore, it seems 
that the years when the Lake Ontario target is exceeded align with those years that have a high 
load to Lake Erie (over its target load). 
Despite not consistently meeting its target TP load, the mean spring total phosphorus 
concentration has dropped from levels over 20 µgP/L prior to the mid-1970s to values well 
below its 10 µgP/L goal (Figure 3).  These current TP levels in the 4 – 6 µgP/L range indicate 
that offshore waters of Lake Ontario are very oligotrophic.  The summer average chlorophyll a 
concentrations have dropped from levels in the 4-6 µgP/L range down to the 1-3 µgP/L level 
over the past 10-15 years, thus confirming the open water is oligotrophic (Figure 4). 
Recently, Chapra applied his model to the Great Lakes to evaluate whether the previous models 
were still valid for predicting open water trophic conditions as a function of TP load.  The results 
of this analysis are shown in Figure 5 (Chapra, personal communication).  Since TP loads were 
not available after 1991, Chapra determined the rate of load reduction from 1974 – 1991 to be a 
first-order rate of 3.35% per year and decreased loads after 1991 at this rate.  Despite using what 
are probably underestimates of the load for the last 10 years or so, the model still over-predicted 
both the phosphorus and chlorophyll a levels and under-predicted the Secchi depth.  This is 
evidence that the nutrient – phytoplankton response to TP loads in Lake Ontario offshore waters 
is no longer the same as it was 20-30 years ago when the targets were being established. 
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While the offshore waters appear to have decreased in productivity beyond expectations, there is 
recent data that indicates what seems to be an inconsistent situation in the nearshore waters.  
Coastal waters, including bays, drowned river mouths, and nearshore waters up to about 30 
meters depth, seem to have returned to the conditions experienced in the 1960’s and 70’s prior to 
significant load reductions (Makarewicz and Howell 2006; Tomlinson, et al. 2006).  Mats of 
blue-green algae and dense Cladophora beds cover many nearshore areas of the lake.  Obviously 
there has been a change, perhaps as a result of Dreissena, in the way that phosphorus entering 
the lake as runoff or tributary flows is being processed in the coastal zone of the lake.  A possible 
hypothesis for this apparently anomalous behavior is that phosphorus entering the lake via 
nearshore direct runoff or tributary transport is either entering in a particulate form or is 
converted to particulate phosphorus by phytoplankton and then trapped in the nearshore by 
Dreissena filtration of particulate phosphorus where it is recycled and becomes available for 
benthic primary production. This is a phenomenon that has been called the “nearshore shunt” by 
Hecky, et al. (2004). 
From a food web perspective, major ecological changes since the last major trophic modeling  
efforts include the loss of Diporeia, continued expansion of Dreissenids and round goby in the 
offshore, the proliferation of Bythotrephes and Cercopagis as both predators and prey,  shifts in 
diet and depth distribution of prey-species, and unknown levels of wild salmon production.   
It is our opinion that lake trophic management models must be revised to better simulate these 
ecological changes.  Below we offer suggestions for future model development and the 
collection of data to support that development.  
 
Future Modeling and Data Needs 
 
Future Modeling Approach 
Given the significant ecological changes that have taken place in Lake Ontario over the past 10 – 
15 years, we believe there is a need to revise our conceptual and quantitative models of the Lake 
Ontario trophic structure and function.  There are two basic goals of proposing the development 
of a whole-system ecological model: 1) we sorely need a quantitative framework within which to 
synthesize and integrate the recent experimental and monitoring data on the Lake Ontario 
ecosystem; and 2) we need a model that can inform management decisions on how to move the 
Lake Ontario fishery toward a more healthy and diverse community in the face of the multiple 
stressors that act concurrently on this system. 
Building on the modeling that has already been conducted on Lake Ontario, we propose the 
following refinements in a Lake Ontario ecosystem trophic transfer model that can support the 
above two goals: 
 
1. Formulation of a fine-scale ecosystem model that is linked to a fine-scale hydrodynamic 

model.  This model would be able to capture the differences in nutrient inputs and cycling in 
the nearshore environment versus the offshore environment as well as the transfer of 
biogeochemically important materials between the two environments.  The approach here 
would be similar to that taken by DePinto and Atkinson (Limno-Tech, Inc. 2004) in linking a 
fine-scale hydrodynamic model – the Princeton Ocean Model (POM) run at a 5 Km grid 
resolution – to their Lake Ontario toxic chemical mass balance model, LOTOX2.  Atkinson 
is currently refining his POM application to Lake Ontario as part of the MERHAB project 
being conducted by a consortium of New York schools in the lower Great Lakes. 
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2. Incorporation of Lake Ontario coastal wetlands into the model in terms of their contribution 
to fish spawning and recruitment.  This could build on the ecological response model that 
Limno-Tech, Inc. built in order to evaluate wetland flora and fauna (including fish) responses 
to alternative water level regulation plans being considered during the IJC Lake Ontario – St. 
Lawrence River (LOSL) Study (Limno-Tech, Inc. 2005). 

3. Dreissena bioenergetics and their impact on nutrient cycling and energy flow should be built 
into the ecosystem model.  The approach for coupling Dreissena in the model would be 
similar to what was done by DePinto and co-workers in developing their Saginaw Bay 
Ecosystem Model (Bierman, et al. 2005; Kaur, et al. 2002; 2004).  This model also 
recognizes six different algal functional groups: diatoms, greens, non-nitrogen-fixing blue-
greens, nitrogen-fixing blue-greens, other phytoplankton, and a benthic green alga. 

4. Incorporation of a Cladophora sub-model using the frameworks that have been developed by 
Auer (Auer and Canale 1982; Auer, et al. 1982; Canale and Auer 1982) and Higgins 
(Higgins, et al. 2005a; 2005b, 2006) for simulating shoreline Cladophora growth. 

5. Development of a sediment diagenesis sub-model to accurately represent nutrient fluxes from 
sediments to water and how those processes may be influenced by the presence and activities 
of Dreissena. 

6. Finally, and perhaps most importantly, we need to develop a whole-system trophic transfer 
model that incorporates all of the above components with a complete lower and upper food 
web carbon (and/or energy) flow model that includes both benthic and pelagic food webs 
coupled with nutrient dynamics in both the nearshore and offshore environments.   

A diagram of the full linked hydrodynamic-ecosystem model (LOEM), along with the necessary 
input and data flow for the model is presented in Figure 6.  Each of the food web model boxes 
contains a complex structure of organisms, whose biomass would be expressed in common units 
of organic carbon content to facilitate mass balancing through the trophic transfers in the system 
as well as spatially in the lake.  This diagram also depicts the loads and boundary conditions that 
must be known in order to run this model.  Any data gathering program must measure or 
somehow specify these inputs.  In particular, we really need to measure phosphorus loads to the 
lake, especially direct runoff and tributary loads, on an annual basis with a daily time scale. 
Considerable thought has gone into the structure of the Lake Ontario offshore food web and how 
it has changed since the 1980’s to today by Stewart (2006) in proposing a study to quantitatively 
describe changes in the offshore food web and evaluate whether the re-establishment of bloater is 
ecologically possible and what the consequences might be.  The diagram in Figure 7 depicts 
Stewart’s proposed food web and the material and energy flow through the trophic system in the 
direction of prey to predator.  This food web would form the basis for the lower, upper, and 
benthic food webs identified as model boxes in Figure 6. 
 
Data Needs 
In general it would be ideal to run the above model from about 1980 – 2005 in order to 
understand why the system has evolved the way it had over the last 25 years. To accomplish this, 
we require some basic long-term trend data, including loads, stocking and harvesting, 
hydrometeorology, biomass trends of important food web species, knowledge of distribution and 
feeding interactions, and invasive species density history.  We also need to parameterize certain 
basic nutrient cycling and trophic transfer processes.  Much of the knowledge and 
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parameterization of material and energy flow processes can come from calibrating the model to 
the intense studies done in LOLA 2003 (Mills, et al. 2006) and to be done in LOLA 2008.  
Stewart (2006) has compiled a list of relevant biological data that can be used in developing this 
model, presented in Tables 1 – 3.  While it appears that much of the data is potentially available, 
there are still major technical challenges to appropriately scaling available estimates to describe 
whole-lake biomass and production of key components. 
 
As mentioned above, water quality data, both offshore and some nearshore, has been monitored 
by the Federal, State, and Provincial agencies responsible for managing the lake.  Also, TP loads 
are available for 1967 – 1991; it would however, be extremely important to do a good job of 
measure the phosphorus load to the lake during the 2008 LOLA year as a means of estimating 
the loads between 1992 and 2008, perhaps by using a flow – load relationship that can be 
developed from available data.  In addition to measuring phosphorus loads, it will be extremely 
important to focus measurements of biomass, production, and trophic transfers of key 
populations in the nearshore zone of the lake in order to better understand the role of the 
nearshore zone in the overall functioning of the Lake Ontario ecosystem. 
 
Obviously, considerable detail is needed on the development of a data collection plan for the 
2008 intensive field program; however, it is our contention that development of a conceptual 
model such as presented herein can greatly facilitate the prioritization of the elements of that 
plan. 
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Figure 0. Time trends in salmonid stocking and TP loads to Lake Ontario from the late 1960's to 
the early 1990's. 
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Figure 0. Annual salmonid production in Lake Ontario as a function of TP load and stocking 
rate. 
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Figure 1. Mean spring TP concentrations (mgP/L) for the offshore waters of Lake Ontario. The 
filled and open circles represent Environment Canada and EPA-GLNPO data, respectively. 
 
 

 

 

 
Figure 2. Mean summer chlorophyll a concentrations (mg/L) for the offshore waters of Lake Ontario. The 
filled and open circles represent Environment Canada and EPA-GLNPO data, respectively. 
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Figure 2. Plots of Chapra model simulation results for Lake Ontario and data for (a) TP (mgP/L), (b) 
chlorophyll a (mgA/L), and (c) Secchi depth (m). The water-quality objectives are shown as dashed lines.
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Ontario Ecosystem Model (LOEM).
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Table 1.  Inventory of relevant data and studies for the model period (1987-1991) 
 

Lake Ontario food web component 
 

Years 
 

Source 
 

Phytoplankton biomass and photosynthesis 1987-1992 Millard et al. 1996,1999, Johannsson et al. 
1998 

Zooplankton biomass 1981-1995 Johannsson et al. 1998 

Zooplankton biomass and production 1990 Johannsson et al. 1994, Sprules and 
Goyke 1994 

Mysid density and production 1990 Johannsson et al. 1994, 2001,2004 
Johannsson 1995. 

Benthic community biomass 1982-86, 
1992 

Dermott (2001), Owens and Dittman 
(2003), Mills et al. 1993, Haynes et al. 
2005 

Dreissenid densities and distribution 1993-1994 Bailey et al. 1999, Mills et al. 1999, Mills 
et al. 1993 

Smelt diets 1984-1986, 
1992 

Urban 1988, Urban and Brandt 1993, 
Mills et al. 1995 

Alewife diets 
1988, 1989, 
1992 
 

Iancu 1989, Mills et al. 1992, Rand et al. 
1995, Urban and Brandt 1993, Mills et al. 
1995 

Sculpin diets Pre-1991 Owens and Weber 1995 

Alewife biomass and production 1990, 
1992-94 

Rand et al. 1995, Goyke and Brandt 1993, 
Mason et al. 2005, Gal 1999, Ontario 
Ministry of Natural Resources (OMNR)/ 
New York Department of  Environmental 
Conservation (NYDEC ) Hydroacoustics 

Smelt production and consumption Generic Lantry and Stewart 1993 
Energy density of pelagic prey species 1978-1990 Rand et al. 1994 
Chinook biomass, consumption and 
production 1978-1994 Rand and Stewart (1998) 

Coho biomass, consumption and production 1978-1994 Rand and Stewart (1998) 
Lake trout biomass, consumption and 
production 1978-1994 Rand and Stewart (1998) 

Rainbow trout biomass, production, and 
consumption 1975-1990 Rand et al. 1993 

Salmonid diets 1983-1993 Summarized by Rand and Stewart 1998, 
Lantry 2001, OMNR unpublished 

Cormorant biomass, consumption, diet   Wesloh and Casselman 1992 
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Table 2.  Inventory of relevant data and studies for the model period (2001-2005). 

Lake Ontario food web component Years References 
Total phosphorus, Chlorophyll a 2003  LOLA (see Luckey 2003) 
Zooplankton biomass and production 2003  LOLA (see Luckey 2003) 
Mysid density and production 2003  LOLA (see Luckey 2003) 

Benthic community biomass  2003  LOLA (see Luckey 2003), Haynes et al. 
2005 

Dreissenid densities 2003  LOLA (see Luckey 2003) 

Dreissenid filtering rates and bioenergetics  

Madenjian (1995), Bailey et al. 1999, 
Lozano 2004 
(http://www.glerl.noaa.gov/res/Task_rpts/ai
slozano04-01.html 

Prey fish diets  2004-
2005  this study  

Alewife and smelt biomass   1997-
2005 OMNR/NYDEC Hydroacoustics 

Energy density of pelagic prey and predator 
species 

2003-
2005 this study, USGS (unpublished)  

Trout and salmon biomass 19??-
2004 

Bence et al. 2003, OMNR/NYDEC 
unpublished 

Chinook consumption  2004-
2005 this study 

Alewife consumption 2004-
2005 this study  

Salmonid diets 1998-
1999 Lantry 2001 

Cormorant biomass, production, consumption 
rate and diet  

2000-
2004 OMNR unpublished 
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Table 3.  Inventory of independent time-series of the relative abundance of biomass groups available for 
model calibration (1987-2003). 

Lake Ontario food web component Years References 

Total phosphorus, Chlorophyll-a 1995-2005  

Cornell/NYDEC/USGS bio-monitoring 
program (see Hall et al. 2003 ), Ontario 
Ministry of the Environment (OMOE) 
nearshore water quality monitoring, 
Schelske 1991 

Zooplankton biomass  1995-2005 Cornell/NYDEC/USGS biomonitoring 
program (see Hall et al. 2003 ) 

Mysid biomass 1990, 2003-
05 

Independent time series may not 
available will need to use data from 
Table 1 and 2 

Benthic community biomass   USGS unpublished  

Prey fish abundance (smelt, alewife, sculpin)  1978-2005  
USGS bottom trawl surveys 
(unpublished and  O’Gorman et al. 2000, 
O’Gorman et al. 2004) 

Salmon and trout abundance 1987-2005 

Stocking records2, 
OMNR/NYDEC/USGS unpublished 
index gillnetting , OMNR Ganaraska 
River fishway rainbow trout counts  

Cormorants   1987-2005 Canadian Wildlife Service nest counts 
 
 

                                                 
2 Need to adjust for estimates of wild production and lag time from stocking to onset of piscivory 
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Data Management (Binational Repository and Web Presence) 
Tim Johnson, Ontario Ministry of Natural Resources, Lake Ontario Fisheries Station 

 
 In preparing this white paper I visited several electronic data archives describing 
programs within the Great Lakes basin.  An excellent template for what we are trying to 
accomplish for the 2008 Lake Ontario Intensive Year would be the NOAA-GLERL website for 
the International Field Year on Lake Erie (IFYLE) (http://www.glerl.noaa.gov/ifyle/).  This 
website provides easy to find, publicly accessible information about the project as well as 
housing a password protected portal to the data archives.  The interface (website) was developed 
with ColdFusion (http://www.adobe.com/products/coldfusion/), is hosted on an external server 
($360/yr), and provides password protected links back to the GLERL ftp site where the data are 
archived.  The data retrieval interface includes fields to allow the user to narrow their search to a 
specific data type – available fields (provided as pick lists) include vessel, cruise type, month, 
Julian day, station, data type, activity type, and operations log number. The results of this query 
draw from a table which in reality provides the reference (url) to the ftp site where the data is 
located.  It is a simple, user friendly, and cost effective way to archive and provide access to the 
data. The user can view or download the data table to their local workstation for manipulation / 
analysis – there is no capacity to link data tables or query the data from the website as this would 
create tremendous complexity (slower access due to computational complexity), rigidity (trying 
to anticipate all the ways users might want to access the data), and cost (since data would now 
need to be archived with the interface on the external server). Three considerations in planning 
the site were: 1) what types of data and associated fields are needed (i.e. sample data sheets / data 
sets), 2) what the site would look like (contents and how it would be used by different users), and 
3) data standards (naming conventions, format, structure of tables, etc. to minimize pre-upload 
manipulation).  A person with some knowledge of ColdFusion could create the interface in “a 
couple of weeks”, and on-going maintenance is nil (since the server maintenance is handled by 
the owner of the server). New data is forwarded to a database technician to verify format and the 
information is uploaded upon receipt. I recommend everyone visit this site. 
 
Data Management 
 Data management is possibly the most important concept that should be addressed before 
any study is undertaken. Large volumes of dissimilar information (character, document, image, 
etc.) collected by many different agencies must be stored in a single, secure, and easily (rapidly) 
accessible repository to ensure information can be integrated and analysed. With multiple users 
spread across a vast geographic and political climate (i.e. agency firewalls), having a single 
repository for all project data that permits fast and easy access for all project members is 
necessary.  A password protected ftp site or web portal is the recommended format to address the 
multiple considerations of reliability, security, simple and rapid access, and standardisation. The 
site can be easily located (searched for and / or bookmarked) and readily accessed, but the data 
themselves remain protected (remote) so accidental or malicious corruption of the data is not of 
concern. Relational databases use key variables to link separate tables through a common 
identifier, facilitating rapid selection and retrieval of pertinent information. In contrast, a 
spreadsheet or flat file may contain a large number of fields (variables, columns of information) 
that are unnecessary to the current query (question, subset of information), and multiple 
spreadsheets containing different types of information (physical limnology, abundance of 
zooplankton data, contents of fish stomachs) necessitate considerable redundant information to 
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permit future cross-referencing (i.e. relating fish diet to available zooplankton within a given 
temperature stratum or station). Further, databases can be constructed to contain lookup tables 
(pre-programmed lists of potential values) that minimise inconsistencies in naming (i.e. 
Chironomidae, chironomid, chironomids, midges, midge larvae, etc. all intended to describe the 
same taxonomic group). Cross referencing of information (data types) requires standardisation in 
documenting, collecting, and processing samples. International and regional standards regarding 
naming and protocols can be found at various websites 
(www.iso.org/iso/en/ISOOnline.frontpage, www.itis.usda.gov, etc.). Naming conventions for 
primary (key) variables that link data tables must be agreed upon a priori and should be 
sufficiently intuitive and descriptive both when recording at time of data capture, during 
processing, and at data retrieval.  Components could include lake_name, vessel_name, year, 
Julian day, and activity type. Each of these components could be coded or abbreviated for 
example ON_LIM_07_183_ZOOP to describe a Limnos cruise on Lake Ontario on July 3, 2007 
where zooplankton were collected.   
 
Database development 
 We recommend a web-based project interface with password protected access to sensitive 
areas (data, correspondence, protocols) depending on need. Careful thought should be given to 
the purpose of the data management interface – is it to provide general information easily found 
and readily accessible to the public and media? is it to be the “single source” reference for the 
entire project (archives for protocols, contacts, historic data, as well as current data?.  What is the 
expected life expectancy of the archive (leased vs owned server space, data format)? What sorts 
of information are to be housed in the archive (data tables, images, pdf / scanned documents, 
etc.) and how much capacity (server space) is anticipated. Knowing how the interface will be 
used will influence its design and development. For the data archive portion of the interface, it is 
valuable to have sample data sheets or past data to indicate the data types and fields (variable 
names) that need to be incorporated. A priori knowledge of the type of information to be stored 
will allow agreement on standardisation, minimizing the amount of post-collection audit and 
potential duplication or errant omission of data.  A host agency and database manager must be 
identified early. All information to be uploaded to the interface / archives must go through this 
database manager to minimize risk of accidental corruption, duplication of records, etc. Pre-
defined data formats and standards will require the source provider of the information to provide 
it to the database manager in the appropriate format, increasing accuracy (the collector knows 
their data best and can conduct all validation exercises before submission), and minimizing 
workload on the database manager. Responsibility for each data table (“owner”) should be 
clearly identified in the metadata so that corrections and questions can be directed to that 
individual. The owner is the only individual authorised to request changes to an existing data 
table. A database maintenance log, accessible to all authorised users, is strongly recommended so 
that a user can view the log to determine if any updates affect their current or previous analysis. 
 There is a large distinction between a searchable database and one that can be queried to 
extract subsets of data or link data from separate sources / data types (i.e. zooplankton net hauls 
+ fish diets). We strongly recommend limiting the interface / archive to a data repository where 
users are given access to data files, but can not manipulate them. The user can easily download 
the data from one or more tables to their local workstation and then analyse them with their 
software of choice. Common fields (key variables) will allow the user to link tables during 
analysis. Building or allowing a user to construct a query within the database will substantially 
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increase the database complexity (server space) and affect performance (run time). As such all 
data tables should be created and archived in a universally acceptable format. While text files 
(*.txt, *.csv, *.tab) are more compact, they are less user friendly than a spreadsheet such as Excel 
which now resides on virtually every desktop of all anticipated users. WE therefore recommend 
having the interface serve as a searchable directory, where each data table is an Excel 
spreadsheet conforming to standard naming, data type, units, and precision.  
 
Security and Access 
 With many individuals and organisations contributing data and needing to access 
information an electronically accessible database is most appropriate.  To protect against 
corruption, a single master database, maintained by a Database Manager is essential.  Passwords 
will be used to limit access to various parts of the webpage and data archives. A publicly 
accessible interface can provide general information on the project, links to news / media items, 
lists of collaborators, etc. User specific passwords can restrict access to different areas of the 
archives depending on need. It should be reinforced that a user is only viewing a copy of the 
master dataset, and no user can edit, append, or delete any record or file online. The authorised 
user will copy the file(s) of interest to their workstation via remote ftp access where all 
manipulation and analysis occurs. The online archive is the only “official” version of the 
datasets, and the database manager will keep users informed of changes through a maintenance 
log.  A master copy of the entire interface and datasets will be backed up and stored in a secure 
location (off line, off site) to protect against critical server failure. 
 
Costs 
 Data archive costs fall into three areas: development, maintenance, and server. Costs 
have been estimated using the IFYLE project experience. Initial development of the interface is 
estimated at $3-5K (2-4 weeks programming time). After the initial development, the amount of 
time invested by the database manager is small (periodic programming changes to accommodate 
uploading data) and should be no more than 0.1 PY annually ($3-5K). Server space is expected 
to cost $1K or less per year. 
 
Summary 
• password protected website 
• data archives available from secure, searchable list downloaded to local workstation in Excel 

format 
• links to historic data, past reports, and essential publications 
• archive to include all protocols and data dictionary (definitions for codes and abbreviations). 
• capable of supporting multiple data types (character, pdf, image, etc.) 
• 0.1 PY database manager responsible for all posting and maintenance.  
• Individual responsibility for each data table; this “owner” is only person authorised to request 

changes from database manager 
• database manager to maintain maintenance log to keep users aware of updates and changes.  
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New Techniques for Environmental and Lower Food Web Monitoring 
Steve Lozano, NOAA-GLERL 

Mohiuddin Munawar, Department of Fisheries and Oceans Canada 
 
Bioassessment programs should undergo periodic evaluation, not only to reconsider 
modifications to historic sampling regimes, but also to determine the appropriateness of new 
technologies. Technological advances have the potential to enhance bioassessment programs by 
reducing sampling costs and providing new and/or more comprehensive data.  Monitoring the 
physical, chemical, and biological condition of the Lake Ontario has traditionally been conducted 
by ship board surveys.  Advances in remote sensing technologies and computer storage & 
computation offer opportunities to add new information and expand spatial and temporal 
observations of environmental and biological community condition.  Several technological 
advances related to the assessment of lower food webs of freshwater ecosystems have been 
developing over the past two decades including optical plankton counters, hydroacoustics, 
fluorometry, FlowCAM imaging, and buoy systems.  

 
 I.  Optical Plankton Counters (Peder Yurista and Jack Kelly, US EPA) 

Optical plankton counters (OPC) is an operational instrument that detects, sizes, and counts individual 
particles based on measuring the reduction in intensity of a light beam intercepted by transmitting 
particles. In many lake surveys, the optical plankton counter is used to measure zooplankton biomass 
and size spectra.  Additional sensors can be added to measure temperature, fluorescence, light 
transmittance, and conductivity.  Together they provide a more detailed snapshot of patchiness in 
spatial distributions of plankton and can improve accuracy of biomass estimates compared to those of 
traditional net hauls.  For example, the figure below (Figure 1) shows a partial optical plankton 
counter transect taken on June 14, 2003.  The distribution of zooplankton biomass is uneven both 
vertically (a condition that would be masked by use of a traditional net haul) and horizontally (a 
condition that could be masked depending on the number and location of traditional net tows on any 
given transect. The use of an OPC gives a more accurate picture of true conditions.  In many 
applications, OPC surveys are supplemented with net collection of zooplankton at discrete depths.  
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Figure 1. Optical Plankton Counter (contributed by Peder Yurista and Jack Kelly, US 
EPA Duluth)  

Laser-Optical Plankton Counter (LOPC) 
 
The Laser-Optical Plankton Counter (LOPC) is an optical plankton counter with an imaging 
capability.  Particles that are passing through a laser light beam block the light falling on an array of 
sensors positioned perpendicular to the flow direction.   For larger particles, cross-sectioned shapes 
(1.5-35 mm) can be resolved and automated classification algorithms can be applied to the shapes.  
The LOPC also has a higher processing speed and improved detection plane which provides detection 
counts at higher resolutions and higher concentrations with lower coincidence. Tow speeds are up to 
12 knots.   
 
Limitations 
 
There is a question on the accuracy of the OPC in measuring zooplankton densities especially in 
turbid or productive waters.  Several authors have measured the performance of the OPC in large 
lakes, estuaries, and oceans.  Zhang et al. (2000) found that the OPC did produce accurate estimates of 
zooplankton biovolume after correcting for the influence of background detritus but accurate 
estimates of zooplankton abundance were only possible in water with detritus <100 particles l–1.   
Liebig et al. (2006) found that the OPC overestimation of zooplankton biomass when compared to net 
zooplankton tows.  Most overestimation of biomass was associated with the presence of non-
zooplankton particles.  In conclusion, worst agreement was seen in shallow nearshore zones during 
periods of high total suspended mater.  Best agreement was found in low total suspended matter 
associated with offshore waters.  Moore and Suthers (2006) found limited success using OPC 
measurements in three Australian estuaries with high concentrations of particles smaller than 250 µm.   
 
Application:  
 
Zooplankton biomass and size spectrum -other sensors include temperature, fluorescence, 
conductivity, light transmittance  

 

Cost Estimate:  

LOPC  $46,000 
CTD  8,250

 Fluorometer  3,000
 Transmissometer  3,500

Flow meter  1,500 

 
Processing time (OPC) can be streamlined provided the data structure needed/desired has been 
defined, metrics have been fully defined, and data templates constructed.  Present processing is 
investigative to identify an appropriate analysis format and to identify useful versus peripheral data or 
metadata and more than might be needed for an assessment program.  In general, under good 
conditions, one week of data processing is required for a season’s worth of sampling to final analysis. 
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Groundtruthing: Transects are accompanied by plankton tows (153 um total water column or 63 um 
epilimnion).  
 
Potential Use in Lake Ontario:  
 
The OPC comparison in the 2003 LOLA study included both 64-µm and 153-µm nets.  OPCs 
generally cannot detect zooplankton smaller than 250 µm, so the use of both mesh sizes in the 
comparison weakened conclusions since a large proportion of the plankton from the 64-µm hauls were 
smaller than 250 µm.  We recommend using just the 153-µm nets, which sample many of the 
organisms detected by the OPC.  In future studies, we recommend towing the nets at the same depth 
interval as the OPC.     
 
 
II. Hydroacoustics (Lars Rudstam, Cornell University)  
 
Hydroacoustic technology can been used to estimate fish, mysid, and zooplankton biomass.  The 
primary application of hydroacoustics is for fish stock assessment.   Fish biomass, numerical 
abundances, and mean sizes have been measured in diverse aquatic habitats.  The use of 
hydroacoustics has several advantages over standard techniques.  Large portions of the water column 
can be sampled quickly and detailed maps of fish densities and mean sizes can be obtained over large 
areas thereby alleviating some of the problems created by the spatial patchiness of fish distribution 
(Brandt 1996). 
 
Currently, the Ontario Ministry of Natural Resources (OMNR) and NY Department of Environmental 
Conservation (NYDEC) conduct surveys of pelagic fish abundance along 7 transects and an area 
around Cape Vincent in the end of July or beginning of August. Frequencies used in the past include 
420kHx and 120kHz.  Currently, the survey uses a Biosonics Dt-X digital 120kHz split beam 
scientific echosounder.  Concurrent with the acoustic surveys, the agencies collect midwater trawl 
samples targeting aggregations observed with acoustics, and do occasional temperature profiles.  
 
 

 

Cost Estimate:  

Estimates of current ship costs are US $2,000 per day, for a total of $20,000 (8 areas plus 
transportation time.  The equipment is a one-time cost of 35-45K (either Biosonics or Simrad).  Cost 
for software to analyze data varies. Both Biosonics and Simrad supply their units with a program 
package that can analyze fish density.  Another software package (EchoView) is used by many of the 
agencies around the Great Lakes and cost 10K for fish and an additional 10K for multifrequency 
analysis. The software for multifrequency is presently at Cornell (Rudstam and Sullivan), USGS-
Great Lakes lab in Ann Arbor (Warner) and is being purchased by DFO in Burlington (Koops and 
Doka). The fish analysis versions are available at NYSDEC (Region 8 and Lake Erie Unit) and 
OMNR (Glenora – Schaner and Port Dover – Witzel).  Processing is time consuming and not 
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automated at this point.  For fish, we anticipate a processing time of at least 1 month.  We do not 
know the time necessary for multifrequency analysis.  

Limitations 
 
There are several limitations to the use of hydroacoustics.  The most severe limitation is that fish 
species cannot be identified directly (Brandt 1996). There are also restrictions on which parts of 
the habitat can be sampled.  Fish at the surface and near the bottom 0.5 m of the water column 
cannot be easily detected.  The maximum depth that fish can be detected is also limited.   
 
Potential Expansion:  

Schaner, Rudstam and Gal are funded by New York Sea Grant to develop the analysis 
techniques required to also assess mysids using the existing data collection.  They are building 
on previous work by Gal et al. (1999). By constructing various thresholds, it is possible to 
remove most fish echoes from the data collected and estimate biomass of Mysis relicta.  
(Details may be obtained from Dr. Rudstam) 

III. Fluorometry (Michael Twiss, Clarkson University)  

Equipment & Application. Traditional methods to establish the health of a phytoplankton 
community require intensive water sampling efforts and labor-intensive sample analysis 
(phytoplankton identification, pigment analysis) and experimentation, e.g. use of light:dark 
dissolved oxygen method or radioactive carbon method to measure gross photosynthesis (Ostrom 
et al. 2005), and techniques establish photosynthetic efficiency.  Recent advances in fluorometry 
enable aquatic scientists to establish qualitative and quantitative assessments of phytoplankton 
community composition (Gregor and Maršálek 2004) and photosynthesis (Smyth et al. 2004) in 
situ. The Great Rivers Center at Clarkson University possesses several instruments that are able 
to assess to map phytoplankton community composition and health of the community.  Such 
tools are also being used by the Ontario Ministry of the Environment in Georgian Bay 
Monitoring (Todd Howell) and by the University of Waterloo (Ralph Smith).  

 
 
Instrument/Platform  Description   Endpoint/Purpose  
FluoroProbe, (bbe 
Moldaenke GmbH, 
Series 7) Fig. 3 

Submersible fluorometer 
that uses several excitation 
wavelengths of light to 
simultaneously detect algal 
and cyanobacterial pigments 

x_ 
 

x_ 
x_ 

Phytoplankton division pigment 
concentrations  
Water temperature  
Depth  

Fast Repetition Rate 
Fluorometer (FRRF; 
Chelsea Instruments, 
Mk I)  

Submersible fluorometer 
that uses light utilization by 
photosynthetic apparatus in 
phytoplankton  

x_ 
x_ 
 

x_ 

Photosynthetic efficiency 
Photosynthetically Active 
Radiation (PAR)  
Primary productivity  

   (photosynthesis)  
Flow cytometer 
(Guava Tech., model 
PCA)  

Analytical flow cytometer 
(to be purchased)  

x_ Measure size and count 
phytoplankton and bacteria  
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Field fluorometer, 
(Turner Designs, 
model 10-AU)  

Ruggedized instrument with 
flow-through cell  

x_ Colored Dissolved Organic Matter 
(CDOM)  

Field computer 
(Panasonic, CF-29)  

Fully ruggedized computer  x_ Integrates water quality data from 
sensors with geographic 
positioning  

R/V Lavinia  25’ Boston Whaler-
Challenger, 2 × 150 HP, 
DGPS, 25 mile radar, marine 
radio, navigational software  

x_ Stable research platform for coastal 
transects  

 
Two sampling methods can be employed: (i) vertical sampling at fixed stations using FRRF and 
FluoroProbe, and (ii) horizontal sampling uses a towed fish at depth, trace metal clean pumping 
system, and Ferrybox with in line sampling (in a laminar flow hood) for discrete sampling. The 
Ferrybox is a 9 L chamber in which water collected during underway sampling is collected, and 
passed though the fluorometers.  Data are collected at 3-30 seconds intervals. Spatial resolution 
is 0.5 km at a hull speed of 12 knots.  

Cost Estimate: FluoroProbe, $35k; FRRF Mk I, $60k; flow cytometer, $40k; 10-AU, $20k; 
CF29, $5k. Operating costs are limited to replacement of sampling tubing, laminar flow hoods, 
ancillary chemical measurements, and cartridge filters.  
Ship time requirements: We have used the R/V Lake Guardian and CCGS Limnos platforms on  
three lake wide transects in Lake Erie in 2005. A speed of 12 knots allows sampling at 1 m 
depth;  
slower speeds will provide greater depth.  An ideal sampling depth for the epilimnion would be 5 
m.  
R/V Lavinia: surface (0.4 m depth) sampling is possible at 20 knots.  Vertical profiling is 
feasible 
(100 m cable with FluoroProbe; autonomous sampling using FRRF); a heavier winch on the 
davit  
would be required.  
 
Goundtruthing: Two research cruises (June, September) were conducted on Lake Erie during 
2005, as part of the International Field Year (IFYLE) – Lake Erie program.  During these 
cruises, satellite imagery was collected and information of water quality was determined by G. 
Leshkevitch (NOAA GLERL).  In July 2005, surface water transects were conducted in fluvial 
Lake St. Lawrence in conjunction with a fly-over by aircraft borne hyperspectral instruments.  
This information was collected in collaboration with A. Vodacek (RIT).  Exercises in 2005 wait 
processing of data using light extinction parameters measured during each exercise.  

Investigative surveys for Lake Ontario. This array of instruments will allow investigative 
mapping exercises to be conducted.  These maps will increase our ability to visualize spatial and 
temporal changes in phytoplankton communities.  Such investigative mapping will allow the 
detection of the onset and movement of phytoplankton blooms, including harmful algal blooms 
(HABS). In conjunction with measurements of physical (e.g. light penetration, thermal profile of 
the water column, currents), chemical (e.g. water color, nutrients), and biological (e.g. 
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zooplankton community, bacteria, viruses) parameters, this information can be used to decipher 
the dominant forces affecting phytoplankton community structures, health and productivity.  

Full potential of this instrumentation can be realized from the use of a large stable platform 
(ship) on fixed transects and in a mode that will allow identified features, such as the apparent 
peak in cyanobacteria in the west basin of Lake Erie (Fig. 3b), to be followed or sampled at a 
higher degree of spatial resolution. A robust coastal vessel such as the R/V Lavinia can provide a 
low cost supplement for coastal transects.  Seasonal lake-wide surveys are needed to assess 
seasonal changes on phytoplankton, sources of cyanobacterial blooms, and functional changes in 
community composition and health. 

 

    
   Figure 3a: Fluoroprobe. 
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Figure 3b.  Phytoplankton community composition, photosynthetic health, and water color along 
a 27.3 km transect that was sampled continuously from a depth of 1 m onboard the CCGS 
Limnos. The transect began offshore of Sandusky Bay (41° 31.156 N, 82° 38.884) to offshore of 
Put-in-Bay, South Bass Island (41° 39.578 N, 82° 48.993).  

 
IV. FlowCAM II Fluid Imaging System (Mohiuddin Munawar, Fisheries and Oceans 
Canada)  
 
Equipment: 
The microbial and planktonic food web in aquatic ecosystems can be assessed using the state-of-
the-art FlowCAM II fluid imaging system (Fig. 4a) which combines flow cytometry, 
microscopy, and imaging techniques to provide rapid imaging and recording of micro-particles 
in a fluid stream.  The FlowCAM measures particle size, ESD, length, width, shape, fluorescence 
and other parameters; and records data in an interactive scattergram for instant display and 
analysis. The instrument captures detailed digital images of every particle sampled (2 – 2000 
µm) while also providing an array of traditional particle analysis tools. Each particle image is 
automatically collected and stored in a digital library using pattern recognition software. 
 
Application: 
Although the use of FlowCAM is common in Europe especially in marine ecosystems, its use in 
the Great Lakes has just begun.  The equipment is currently being tested by various institutions.  
The FlowCAM is being used at Laurentian University, Sudbury, ON (Dr. Ramacharan) and the 
Fisheries & Oceans Canada (GLLFAS). In the latter study, a preliminary assessment of the 
suitability of the FlowCAM for studying the planktonic communities of Hamilton Harbour, 
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Ontario is compared with taxonomic – microscopic data during the summer of 2006 (Fig. 4b).  In 
this study, Munawar et al. (unpubl.) showed that major taxonomic groups and particle size 
distributions could be identified rapidly.  Although the preliminary results are promising for 
conducting crude assessments of dominant taxa, but a lot more effort may be required to identify 
species, if at all possible.  The application of this tool is being explored for monitoring of algal 
blooms and ballast water samples for detecting alien species.  The FlowCAM was also used in 
2005 in Lake Erie by Peter Lavrentyev (University of Akron).  Phytoplankton abundance, 
including cyanobacteria and eukaryotes, and microzooplankton (ciliates and rotifers) abundance 
and composition were measured along four nearshore-offshore transects.   
 
Cost Estimate & Suitability: 
This emerging technology requires further testing and evaluation against standard microscopic 
techniques for the enumeration of planktonic food web components to ensure that the quality of 
the phytoplankton database is maintained.  The initial cost of $90 000 (US) would be offset in 
the long term by reducing the costs of individual sample analyses and the time required for 
sample processing and publishing results.  This new technique has considerable potential in the 
planktonic surveys in the Great Lakes and would be an excellent tool to add to the battery of 
emerging techniques, however groundtruthing is required.  Caution should be exercised in the 
use of FlowCAM in monitoring of aquatic ecosystems since the tool is not designed to replace 
authentic microscopic – taxonomic data which will always be needed as a standard.  
   

      
 
   Figure 4a:  FlowCAM II fluid imaging system 
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 Figure 4b:  Data collected from the >75 µm fraction of an offshore station in Hamilton 
 Harbour.  Total particle count and summary statistics for the entire run are included. (4X 
 objective with 300 µm Flow Cell). 
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V. Buoy Systems (Jim Watkins, Cornell Biological Field Station)  

Equipment & Application:  Buoys are remote environmental observatories capable of 
providing real-time observations of chemical, biological, and physical parameters, even during 
extreme weather events. Data can be transmitted wirelessly from buoys to stations on shore, so 
that boats are only necessary for routine maintenance.  
 
Planning new buoy monitoring systems in the Great Lakes falls under the jurisdiction of the 
Great Lakes Observing System (GLOS) program.  This program is a regional branch of the 
Integrated Ocean Observing System (IOOS), a primary source for observation system research 
funds. The NOAA Great Lakes Environmental Research Laboratory (GLERL) is leading the 
development of a buoy observation network.  Currently they have started demonstration projects 
using three buoys in Lake Erie in collaboration with the International Field Years on Lake Erie 
(IFYLE). There are also projects on Lake Huron at the Thunder Bay National Marine Sanctuary 
and on Lake Michigan collaborating with University of Wisconsin-Milwaukee.  
 
These demonstration projects have considerably advanced buoy technology, sensor capability 
and  
communication. Design improvements have made buoys stronger, more stable, easier to 
maintain, 
and better able to run on solar power. Sensors for temperature, oxygen, chlorophyll a, PAR,  
turbidity, conductivity and currents (ADCP) have been tested successfully.  
 
Data including high resolution images have been successfully relayed from buoys to shore based  
stations using wireless technology. None of these projects have been tested very far from shore.  
There are currently no long-term buoys on Lake Ontario with profiling capability.  Environment 
Canada maintains meteorological buoys at Grimsby, West Lake Ontario, 16 Mile Creek, and 
Prince  
Edward Point. NOAA has a meteorological buoy 20 nm NNE of Rochester NY.  These stations  
measure surface water temperature, wind speed and direction, and wave height.  The National 
Water 
Research Institute (NWRI) of Canada has a field program which set up seasonal transects of 
current 
meter and thermistor moorings offshore of Toronto (Yerubandi Rao). 
 
Cost Estimate:  Buoy costs can easily exceed $300,000 per buoy (with instruments installed for 
profiling capability).  Another configuration includes a “base station” buoy ($500,000) 
surrounded by lower cost buoys ($50,000). Data processing and buoy maintenance are not 
included.  Existing National Data Buoy Center (NDBC) meteorological buoys cost $165,000 for 
the first year of operation (including purchase, installation, and equipment) and $36,000 per year 
to operate and maintain. A GLERL buoy system with ADCP, CTD, and meteorological station 
could be built and deployed for under $150,000. 

DRAFT 



 
Suitability:  GLOS intends to improve existing buoys and deploy 3-4 new ones per lake over the 
2007-2011 time period.  IOOS intends to provide funding to support Great Lakes open water 
observing starting in 2007 on a seven year timeline.  It is not currently clear when or where the 
buoys for Lake Ontario would be.  
Key questions are- 

-where would the buoys be?  
-which institution(s) would provide support as collaborator with GLERL?    

maintenance, data download processing, scientific goals  
-what sensors would be included?  
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VI. Remote Sensing (Ricky Becker, Western Michigan University) 
  
Equipment & Application: Remote sensing technology can provide lake-wide coverage of 
surface temperature, lake color (chlorophyll), and whiting (calcium carbonate precipitation) 
events.  Satellite imagery provides a temperature regime context for LOLA 2003 sampling (see 
images at bottom of page).  There are a suite of satellite sensors which provide data for Lake 
Ontario on a daily or more frequent basis.  These include: the MODIS instrument on the Aqua 
and Terra platforms, the SeaWiFS sensor on the Orbview -2 platform, the NOAA AVHRR 
sensor on POES (polar orbiting), imager on GOES (geostationary) satellites, and TMI on the 
TRMM platform.  All of these have a resolution of 1km

2

 pixels, or larger. In addition to these, 
Landsat TM/ETM has a much higher spatial resolution (30m pixel spacing), but only a 14 day 
repeat cycle, and cannot cover the entire lake at one time.  The ESA sensor MERIS also has good 
potential for being used for ocean color parameters, as it has 300m pixels, and improved spectral 
resolution.  
 
Visible – near infra-red sensors (used for ocean color parameters) include: MODIS on Aqua and 
Terra - these images are available once per day for each satellite, and SeaWifs – available once 
per day.  MODIS and SeaWifs have a nominal resolution of 1km

2

 at full resolution.  
Thermal data sets (for SST) include: Aqua and Terra (2 times each per day total), AVHRR 
(roughly 8 times per day), GOES imager (every 3 hours), and TMI is available once per day.  
These products have spatial resolutions ranging from 1km to 6km on a side.  
 
Most of these datasets are available at no cost shortly after acquisition from the NASA 
Oceancolor website: http://oceancolor.gsfc.nasa.gov and NOAA Coastwatch website: 
http://coastwatch.noaa.gov. Delayed-mode, low resolution SeaWiFS data is available through the 
NASA oceancolor website to authorized users, as well as historical full resolution data (pre Dec. 
2004). Full resolution data can be acquired through separate agreements with Orbview.  MERIS 
data is only obtainable through the ESA, as part of a cat-1 proposal through their website: 
http://eopi.esa.int/esa/esa.  
Cloud cover can obscure a significant portion of or all data for indefinite periods (frequently 1-7 
days).  
 
NASA and the NOAA Coast Watch have developed software programs such as CDAT for 
displaying coast watch images and SeaDAS for displaying and analyzing MODIS and SEAWIFS 
temperature and color data.  These programs are free and available on the web.  Cruise data can 
be compared to satellite data easily using SeaDAS for both temperature and chlorophyll a.  
 
Groundtruthing. Surface temperature images are accurate to 1.5

o

C RMS, with a bias ranging 
from  
0.2 to 1.0

o

C (Li et al. 2001; Schwab et al. 1999).  Upwelling events, thermal bars, and 
stratification are clear features. The thermal bar’s influence on nearshore/offshore chlorophyll a 
gradients is evident in lake color.  
 
The standard chlorophyll a algorithms used for MODIS and SeaWiFS data were derived from, 
and works well for non-polar Case I (open ocean) waters (Gregg and Casey, 2004; O'Reilly et 
al., 1998). They are still very useful in showing chlorophyll distribution, but are less accurate 
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when used for the more optically complex Case II (inland and coastal waters), where they tend to 
overestimate the concentration of chlorophyll a in areas dominated by inorganic sediments 
(Lavender et al., 2004). Several models have been used to overcome this for case II waters.  
These include an algorithm developed by Carder et al. included in SeaDAS (Carder et al., 1999). 
This semi-analytic model has been found to improve the accuracy of estimates of the chlorophyll 
a concentrations in Lake Erie and Lake Ontario based on a limited data set acquired in the 
summer of 2004 (Becker et al., 2005). This is currently being expanded to include data acquired 
from cruises in 2005.  In addition, a biooptical model has been developed specifically for Lake 
Ontario (Bukata et al., 1991; Bukata et al., 2001), and compares favorably with the in-situ data.  
 
Suitability:  
How do we incorporate this technology into a real time monitoring system?  
We can design a web based GIS interface (ArcIMS or an open standard interface)  

- images to provide context  
- updated automatically from NASA, NOAA ftp data pulls  
- links to station data  
- ability to extract data either spatially or temporally  
- add calculated indices such as  

o average lake wide temperature  
o average lake wide chlorophyll a  

- make line graphs of these parameters over season  
- upwelling indices (areal coverage)  
- whiting alerts  
- harmful algal bloom alerts  

 
The spring cruise on the Limnos was from April 28 to April 30, 2003. At this time there was little 
surface temperature variability, and the water column was completely mixed.  The lake was 
isothermal until June 1, when a thermal bar formed (warming and stratification nearshore) and 
was maintained for the month of June.  Upwelling developed on the NW coast during the entire 
month of July, but a warm lake-wide epilimnion was set up by August 1. The summer Lake 
Guardian cruise in western Lake Ontario was August 10-11. The summer Limnos cruise was 
August 19-21. The stable epilimnion was existent throughout this period.  The fall Lake 
Guardian cruise was September 19-26.  By August 27 upwelling had developed on the NW coast 
from strong winds from the west.  By September 9, the winds had shifted to coming from the 
east and localized upwelling developed on the south coast. On September 18-20, the passage of a 
storm system related to Hurricane Isabel passed over the Great Lakes.  On September 19, 
sustained winds of 65 km/hr with gusts to 80 km/hr were reported.  This wind event intensified 
upwelling on the south shore.  
 
VII. Hydrography (Jim Watkins, Cornell Biological Field Station)  
 
The EPA Lake Guardian has collected hundreds of hydrographical profiles in the Great Lakes 
over the past 10 years.  These include data for temperature, fluorescence, oxygen, light 
transmittance (particle concentration), ph, conductivity, and PAR. This data collection has the 
potential to reveal a considerable amount on the status of Lake Ontario.  It could potentially 
document subtle changes  
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(e.g. changes of water temperature <1C is often significant) over time to pinpoint effects of 
climate change or oligotrophication. There is a need to access this information in an easy, 
interactive platform.  
 
We have such data for the entire lake in September and only western Lake Ontario for August 
10-11. The April and August cruises on the Limnos only have temperature data.  We have put 
this data (and an EPA data set from 1994) into a data viewing software named Ocean Data View.  
This freely distributed software program is a good way to organize and plot hydrography data.  
Its usefulness includes property-property plots and sections.   
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VIII. Evaluation 
 
The application of new technologies to the Lake Ontario 2008 Intensive Sampling/Monitoring 
Year will enhance but not replace the spatial and temporal coverage of lower trophic level 
condition and interactions as compared to traditional ship board methods.  Based on the goals 
and objectives of the study, a suitable sampling design will be established.  At this time, it would 
be important to determine which of the new techniques would enhance the ecological 
assessment.   
 
To enhance the spatial coverage, the optical plankton counter, fish acoustics, and 
fluorometry/FlowCAM could be used on the same ship.  This design was used in several 
previous studies.  A buoy system (1-??) could be established at key locations to provide 
continuous in lake measurements.  Finally, remote sensing can provide lake-wide coverage from 
spring to fall.   
 
Important questions remain: 
 

1. Costs:  Can we form partnerships and use Great Lakes equipment that has already been 
bought.  Are there personnel available for collection and analysis of the data? 

2. Sampling design: Will the equipment and personnel be available for seasonal studies? 
3. How can we maximize the return between ship board sampling and remote sensing? 
4. Can we leverage other agencies to provide logistical and financial support? 
5. Other issues….? 
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