
The College at Brockport: State University of New York
Digital Commons @Brockport

Physics School of Science and Mathematics

7-1986

Semirelativistic Potential Model for Heavy
Quarkonia
Suraj N. Gupta
Wayne State University

Stanley F. Radford
The College at Brockport, sradford@brockport.edu

Wayne W. Repko
Michigan State University, repko@pa.msu.edu

Follow this and additional works at: https://digitalcommons.brockport.edu/phs_facpub

Part of the Physics Commons

Citation/Publisher Attribution:
© 1986 The American Physical Society
URL:http://link.aps.org/doi/10.1103/PhysRevD.34.201 DOI:10.1103/PhysRevD.34.201

This Article is brought to you for free and open access by the School of Science and Mathematics at Digital Commons @Brockport. It has been
accepted for inclusion in Physics by an authorized administrator of Digital Commons @Brockport. For more information, please contact
kmyers@brockport.edu.

Repository Citation
Gupta, Suraj N.; Radford, Stanley F.; and Repko, Wayne W., "Semirelativistic Potential Model for Heavy Quarkonia" (1986). Physics. 5.
https://digitalcommons.brockport.edu/phs_facpub/5

https://digitalcommons.brockport.edu?utm_source=digitalcommons.brockport.edu%2Fphs_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.brockport.edu/phs_facpub?utm_source=digitalcommons.brockport.edu%2Fphs_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.brockport.edu/scimath?utm_source=digitalcommons.brockport.edu%2Fphs_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.brockport.edu/phs_facpub?utm_source=digitalcommons.brockport.edu%2Fphs_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.brockport.edu%2Fphs_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.brockport.edu/phs_facpub/5?utm_source=digitalcommons.brockport.edu%2Fphs_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kmyers@brockport.edu


PHYSICAL REVIEW D VOLUME 34, NUMBER 1 1 JULY 1986 

Semirelativistic potential model for heavy quarkonia 

Suraj N. Gupta and Stanley F. Radford* 
Department of Physics, Wayne State University, Detroit, Michigan 48202 

Wayne W. Repko 
Department of Physics, Michigan State University, East Lansing, Michigan 48824 

(Receive9 9 August 1985) 

The cc, bo, and t 1 spectra are investigated with the use of a semirelativistic potential model 
described in an earlier paper. Results for the energy levels, leptonic widths, and E1 transition 
widths are compared with the experimental data for cc and bo and predicted for t 1. We also find 
that the quark-antiquark interaction can best be described by a quasistatic rather than a 
ptomentum-dependent potential, and propose a theoretical justification for this surprising con
clusion. 

I. INTRODUCTION 

Recently we described a semirelativistic potential 
model1 for quarkonia to improve upon the more common
ly used nonrelativistic models. We found that the semi
relativistic treatment considerably differs from the non
relativistic treatment2 for cc, while the difference between 
the two treatments is less significant for bb. We, there
fore, provided results only for the cc system. 

Spectroscopy of heavy quarkonia is particularly suitable 
for a confrontation of quantum chromodynamics with the 
experimental data. Therefore, we have now carried out a 
more rigorous investigation of the cc and bb systems with 
the use of the semirelativistic treatment, and we have also 
extended our treatment to t 1 in view of the current 
enhanced interest in the top quark. 3 As in our earlier pa
per, we have used a quark-antiquark potential consisting 
of a perturbative part, which includes the complete one
loop radiative correction to the one-gluon-exchange in
teraction, and a linear scalar-exchange confining part. 
Moreover, in order to clarify the role of momentum 
dependence in the quark-antiquark potential, we have ex
plored both the quasistatic and the momentum-dependent 
forms of our potential, and our conclusions are interesting 
as well as unexpected. 

Besides giving our results for the cc, bb, and t 1 spectra 
in Sees. 11-IV, we discuss the correlation of quarkonium 
parameters in Sec. V and compare the quasistatic and 

momentum-dependent potentials in Sec. VI. Our con
clusions and the significance of our results are summa
rized in Sec. VII. 

II. cc SPECTRUM 

Our semirelativistic model1 is based on a Hamiltonian 
of the form 

(2.1) 

where r, and rc are the perturbative and the confining 
potentials. It should be noted that while this Hamiltonian 
includes the relativistic kinetic energy of the system, both 
r, and rc represent nonrelativistic potentials, which 
will be discussed in Sec. VI. 

The mathematical formalism required for obtaining the 
quarkonium energy levels and wave functions with the 
semirelativistic treatment is fully described in Ref. 1. Our 
revised results4 for the cc energy levels below the charm 
threshold as well as the values of the parameters are 
given5 in Table I. The splittings of the energy levels are 

M(t/l)-M(l{/)=589 MeV, 

M(l{/)-M('Jlcl=ll6 MeV, 

M(l{/')-M('J7~)=96 MeV, 

M(Xc.o.g.l-M(l{/)=429 MeV, 
(2.2) 

TABLE I. ccspectrum with mc=l.32 GeV, JL=l.94 GeV, a,=0.36, and A=0.15 GeV2• Theoreti
cal and experimental masses are given in MeV. 

State Mass Mass (expt) State Mass Mass (expt) 

13S1(1(J) 3097 3097 2 3P2(X2l 3558 3556±1 
11So( 17c) 2981 2981±6 2 3P.<x.> 3510 3510±1 

2 3Po<Xo) 3414 3415±1 
2 3S.(t{/) 3686 3686 2 1PI 3528 
2 1So<17~) 3590 3594±5 
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TABLE II. cc leptonic widths in keV without and with radi
ative correction. 

State 

IS 
2S 

7.17 
4.12 

M(X2)-M(X1)=48 MeV, 

M(X1l-M(X0)=96 MeV, 

r. 
4.47 
2.57 

r .. (expt) 

4.6±0.4 
2.0±0.2 

which are in excellent agreement with experiments.6 

The leptonic widths, obtained with the use of the for
mula7 

(2.3) 

are given in Table II, and they are larger than the experi
mental values. It is possible to reduce them by including 
the radiative correction, which leads to the modification 
of (2.3) to8 

(2.4) 

However, the lowest-order correction term in (2.4) is so 
large that the unknown higher-order terms evidently can
not be neglected. We have found that if we assume the 
higher-order corrections to be such that (2.4) becomes 

rw> 
r = "" 

"" 1 + 16a,/31T ' 
(2.5) 

our results, shown in Table II, are in good agreement with 
experiments. 6• 9 

Our theoretical El transition widths 

3 3 4 2J+l 2 31 12 rEI( St-+ P,)=9--3-aea k, rfl • 
(2.6) 

rEleP,-3St >=fae,/ki I rfi 1 2 ' 

are given in Table III. They are about twice as large as 
the experimental values, 10 which may indicate11 the inade
quacy of the unperturbed wave functions for the treat
ment of El transitions in cc. 

III. bli SPECTRUM 

The S and P levels of bb below the bottom threshold, 
obtained with the use of the semirelativistic model, are 
given in Table IV, while the leptonic widths, the matrix 
elements ( P I r I S), and the El transition widths are 
given in Tables V-VII. We also note that, according to 
Table IV, 

and 

M(Y')-M(1")=553 MeV, 

M(1"")-M(1")=896 MeV, 

M(Xb,c.o.g.l-M(1")=441 MeV , 

M(Xb2)-M(Xb 1)= 16 MeV, 

M(Xbtl-M(Xbo)=25 MeV, 

M(Xi.,c.o.g)-M(1")=800 MeV, 

M(Xi, 2)-M(Xi, 1)=14 MeV, 

M(Xi, 1)-M(Xi,0 )=21 MeV, 

(3.1) 

(3.2) 

The only striking difference between the semirelativistic 
results and the earlier nonrelativistic results2 for bb is that 
the semirelativistic model yields larger values for wave 
functions at the origin. This leads to larger hyperfine . 
splittings, and it also becomes necessary to use the lepton
ic width formula with radiative correction in the form 
(2.5) to obtain reasonable theoretical values. 

Considering the fact that we are dealing with strong in
teractions, the overall a1.reement between the theoretical 
and experimental results · 12 is gratifying. 

IV. t1SPECTRUM 

There is some indication that the mass of the top quark 
is in the range 30~m,~50 GeV, and we give the low
lying Sand Penergy levels of t7for m1 =40 and 45 GeV 
in Tables VIII and IX. For m1 =40 GeV, we also give the 

TABLE III. E1 transition widths for ccin keV. 

Transition (PI r IS) (OeV- 1) J rEI rEI (expt) 

2S-+2P1 -2.54 2 32.0 17±5 
1 50.5 19±5 
0 62.0 21±6 

2Pr-+1S 2.15 2 652.7 330±170 
1 468.1 <700 
0 212.5 97±38 
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TABLE IV. bo spectrum with mb=4.78 GeV, ~L=3.65 GeV, a, =0.28, and A=0.18 GeV2. 
Theoretical and experimental masses are given in MeV. 

State Mass Mass (expt) 

1 3StCY'l 9460 9460 
1 1So(7Jb) 9416 

2 3Sd'Y"l 10013 10023 
2 1So(7]i,) 9987 

3 3St(Y") 10356 10356 
3 1So(7Ji,') 10336 

leptonic widths, the matrix elements (P I r IS), and the 
El transition widths in Tables X, XI, and XII. 

According to Table VIII, the splittings among the S 
and P energy levels, for m, =40 GeV, are 

M(2 3S 1)-M(1 3S 1 )=755 MeV, 

M(3 3S 1 )-M(2 3S 1)=299 MeV, 

M(4 3StJ-M(3 3S 1)=206 MeV, 

M(2 3S 1 )-M(2 3Pc.o.g.l=64 MeV, 

M(3 3S 1 )-M(3 3Pc.o.g. )=48 MeV, 

M(4 3St )-M(4 3Pc.o.g. )=43 MeV, 

(4.1) 

which show that the 1S level is well separated from all 
other levels. The 1 S state also differs from other states 
with regard to spin splitting since its hyperfine splitting is 

M(1 3S 1 )-M0 1S0 )=32 MeV, (4.2) 

while the hyperfine and fine-structure splittings of other 
states are from 3 to 9 MeV. The changes in the energy
level splittings when m, increases from 40 to 45 GeV can 
be seen by comparing Tables VIII and IX. 

It is hoped that t 1 might provide a sensitive test for the 
validity of various potential models at short range, and it 
is interesting to compare our results with those obtained 
by others with the use of different potential models. We 
note that our energy-level splittings and E1 transition 
widths are considerably smaller than those obtained re
cently by Moxhay and Rosner,13 while our leptonic widths 
are in reasonable agreement with theirs. Our energy-level 
splittings are also smaller than those of Buchmiiller and 
Tye14 corresponding to Am=500 MeV (where MS is the 
modified minimal subtraction scheme), while the leptonic 

TABLE V. bo leptonic widths in keY without and with radi
ative correction. 

State 

lS 
2S 
3S 

1.64 
0.84 
0.61 

r ... 
1.11 
0.57 
0.41 

r .. (expt) 

1.22±0.07 
0.53±0.04 
0.40±0.03 

State Mass Mass (exptl 

2 3P2(Xb2l 9910 9913±1 
2 3Pt(Xbtl 9894 9893±1 
2 3Po(Xbo) 9869 9865±2 
2 1Pt 9901 

3 3P2<Xi.2l 10268 10271±5 
3 3Pt(Xj,,) 10254 10254±3 
3 3Po(Xi.ol 10233 10233±3 
31Pt 10260 

widths are again in reasonable agreement. When com
pared with the Buchmiiller-Tye results corresponding to 
Am=200 MeV, neither our energy levels nor our leptonic 
widths agree with theirs. 

Our results are subject to some uncertainty because of 
the need for extrapolation of the values of as and A for t 1 
from those for cc and bb as described in Sec. V, but this 
uncertainty cannot account for the differences between 
our results and those of earlier authors. 

V. CORRELATION OF QUARKONIUM PARAMETERS 

Besides choosing the parameters so as to make the 
overall agreement between the theoretical and available 
experimental results for cc and bb as close as possible, 
other important considerations have been taken into ac
count. 

Our values of as for cc, bb, and t 1 satisfy the 
quantum-chromodynamic transformation relation 

• as 
as= l+(as/121T)(33-2n/)ln(JL'2/JL2) ' 

(5.1) 

and since our perturbative potential includes only the 
one-loop radiative correction, we have used the one-loop 
formula for the transformation of as. Moreover, the 
value of JL for each quarkonium is subject to the condi
tion2 that for all S states 

151 <<1' (5.2) 

where 

(5.3) 

TABLE VI. bo matrix elements (PI r 1 S) in Gev- 1• 

lS 
2S 
3S 

2P 

1.16 
-1.62 

0.04 

3P 

0.22 
1.93 

-2.56 
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TABLE VII. EI transition widths for bli in ke V. 

1=2 1=1 

2S-+2P1 1.71 1.59 

3S-+3P1 2.68 2.49 
3S-+2P1 0.09 0.06 

2P1 -+1S 44.38 39.79 

3P1 -+2S 22.18 18.78 
3P1 -+lS 8.84 8.40 

which puts a reasonable restriction on the value15 of f.L· 
It should be noted that the radiative correction included 

in our perturbative potential corresponds to the Gupta
Radford (GR) renormalization scheme, 16 which is a 
momentum-space subtraction scheme equally applicable 
to light and heavy quarks. According to the parameter 
values in Tables I, IV, and VIII, the values of the QCD 
parameter 

A=f.LeXp [- (33-6;,/)as (5.4) 

for n1 =3, 4, and 5 are given in the GR scheme by 

A~~=279 MeV, A~k=247 MeV, A~k=198 MeV. 

(5.5) 

The corresponding values in the modified MS scheme, ob
tained from the relation 

[ 
49/2-5n1/3] 

AMs=AGRexp - 33-2nt ' (5.6) 

are 

TABLE VIII. tT spectrum with m1=40 GeV, f.L=l7 GeV, 
a,=0.184, and A=0.22 GeV2• 

State Mass (GeV) State Mass (GeV) 

1 3St 79.113 2)Pz 79.808 
11So 79.081 2 3Pt 79.802 

23Po 79.795 
2 3St 79.868 ztpt 79.805 
2 1So 79.859 

33Pz 80.121 
3 3St 80.167 33PI 80.118 
33So 80.162 3 3Po 80.113 

3 1Pt 80.119 
43St 80.373 
4 1So 80.369 43Pz 80.332 

43Pt 80.329 
43Po 80.326 
4tPt 80.330 

1=0 Total Total (expt) 

0.94 4.24 4.9± 1.0 

1.47 6.64 8.4±1.4 
0.02 0.17 

33.30 117.47 

14.22 55.18 
7.74 24.98 

A~= 136 MeV, Affi= 121 MeV, Alli=98 MeV, 

(5.7) 

which are consistent with the generally accepted values of 
A. 

Despite our best efforts we were unable to equalize the 
values of A for cc and bli. Our rigorous semirelativistic 
treatment leads to the conclusion that Ace is smaller than 
Ab7i· Since A depends on n1 , it is not surprising that A is 
also n 1 dependent. In order to estimate the value of A for 
t7, we observe that when n1 increases from 3 to 4, A in
creases by a factor Abli I Ace= 1.2. Assuming that a simi
lar increase occurs when n1 increases from 4 to 5, wear
rive at our value A11 ~0.22 GeV2. We have also verified 
that a small ambiguity in the value of A17 does not 
present a serious problem because the energy level split
tings of t 7 are not very sensitive to variations in A. 

VI. COMPARISON OF QUASISTATIC 
AND MOMENTUM-DEPENDENT POTENTIALS 

Quark-antiquark nonrelativistic potentials have been 
used by various authors either in the momentum-

TABLE IX. t 7 spectrum with m1 =45 GeV, f.L=l9 GeV, 
a,=O.I79, and A=0.22 GeV2• 

State Mass (GeV) State Mass (GeV) 

1 3St 89.045 2 3Pz 89.776 
11So 89.013 23Pt 89.771 

2 3Po 89.764 
2 3St 89.834 2 1Pt 89.773 
2 1So 89.825 

3 3Pz 90.091 
33St 90.135 33Pt 90.088 
3 1So 90.130 3 3Po 90.084 

3 1Pt 90.089 
4 3St 90.338 
4 1So 90.335 4 3Pz 90.300 

4 3Pt 90.297 
4 3Po 90.294 
4 1Pt 90.298 
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TABLE X. tt leptonic widths in keY, for m,=40 GeV, 
without and with radiative correction. 

State r~) r. r ..,(nSl/r .( lSl 

IS 7.70 5.87 1 
2S 2.06 1.57 0.27 
3S 1.25 0.95 0.16 
4S 0.94 0.72 0.12 

dependent form by retaining terms to order p2 or in the 
quasistatic form. In particular, the linear scalar-exchange 
confining potential in the momentum-dependent form is 
expressible as17 

Yc=Ar--- -+2rp2+-L·S , A [ 1 I ] 
2m 2 r r 

(6.1) 

while in the quasistatic form 

A rc =Ar- --L·S . (6.2) 
2m 2r 

In our earlier papers, 1·2 only the quasistatic form of the 
scalar-exchange confining potential was employed, but we 
have now investigated the ce and bb spectra by using both 
the quasistatic and the momentum-dependent forms of 
the quark-antiquark potential in the Hamiltonian (2.1). 
We were surprised to find that while the quasistatic po
tential yields very good overall results for the energy lev
els, this is not the case with the momentum-dependent po
tential.18·19 We have, therefore, provided the results only 
with the use of the quasistatic potential in Sees. 11-IV. 

Recently it has been shown by Gupta and Radford20 

that quark confinement can be understood as a conse
quence of the fact that quarks and antiquarks can ex
change only hard gluons. We believe this also helps to ex
plain the success of the quasistatic quark-antiquark poten
tial even when p2 /m 2 is appreciably large for a quarkoni-

TABLE XI. t I matrix elements (PiriS) in GeV- 1 for 
m,=40GeV. 

2P 3P 4P 

IS 0.28 0.10 0.06 
2S -0.62 0.57 0.15 
3S 0.04 -1.10 0.85 
4S -0.02 -0.07 1.52 

um21 as in the case of cc. Let us consider the scattering of 
a quark and an antiquark in the center-of-mass frame, 
and let p and p' be the initial and the final momenta of 
the quark. For this quark-antiquark system, the Fourier 
transform of the momentum-dependent potential can be 
converted into the quasistatic form by putting 

(6.3) 

where 

k=p' -p, s=p' +p , (6.4) 

and then dropping the 82 term. But, according to (6.3), if 
k2 is allowed to take only large values, 82 can be treated as 
small, which provides a justification for the quasistatic 
approximation. 

VII. CONCLUSION 

By using a semirelativistic potential model, we have 
presented results of experimental interest for heavy quar
konia as well as analyzed the nature of the quark
antiquark potential. 

Considering the fact that we are dealing with strong in
teractions, our overall results for cc and bb are gratifying 

TABLE XII. El transition widths in keY for t I with m, =40 GeV. 

J=2 J=1 J=O Total 

2S-2P1 0.20 0.15 0.07 0.42 

3S-3P1 0.29 0.21 0.09 0.59 
3S-2P1 0.20 0.13 0.04 0.37 

4S-4P1 0.38 0.27 0.11 0.76 
4S-3P1 0.18 0.11 0.04 0.33 
4S-2P1 0.13 0.08 0.03 0.24 

2P1 -1S 38.62 37.72 36.59 112.93 

3P1 -2S 7.68 7.39 7.02 22.09 
3P1 -1S 13.96 13.82 13.65 41.43 

4P1 -3S 4.70 4.49 4.22 13.41 
4P1 -2S 3.37 3.32 3.25 9.94 
4P1 -1S 8.33 8.27 8.21 24.81 
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with the exception that our El transition widths for cc 
are about twice as large as the experimental values. For 
t 1, our results for the energy levels and the El transition 
widths are considerably smaller than those obtained ear
lier by others, but our leptonic widths are in agreement 
with their findings. 

We have also found that the quark-antiquark interac
tion can best be described by a quasistatic rather than a 

*Present address: Dynamics Technology, Inc., Arlington, Vir
ginia 22209. 
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