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Abstract 

Previous simulations revealed that the sometimes competing retrieval model (SOCR; Stout & 

Miller, 2007), which assumes local error reduction, can explain many cue interaction phenomena 

that elude traditional associative theories based on total error reduction.  Here we applied SOCR 

to a new set of Pavlovian phenomena.  Simulations used a single set of fixed parameters to 

simulate each basic effect (e.g., blocking) and, for specific experiments using different  

procedures, used fitted parameters discovered through hillclimbing.  In Simulation 1, SOCR was 

successfully applied to basic acquisition, including the ‘overtraining effect,’ which is context 

dependent.  In Simulation 2, we applied SOCR to basic extinction and renewal.  SOCR 

anticipated these effects with both fixed parameters and best fitting parameters, although the 

renewal effects were weaker than those observed in some experiments.  In Simulation 3a, feature 

negative training was simulated, including the often observed transition from second-order 

conditioning to conditioned inhibition.  In Simulation 3b, SOCR predicted the observation that 

conditioned inhibition after feature-negative and differential conditioning depends on intertrial 

interval.  In Simulation 3c, SOCR successfully predicted failure of conditioned inhibition to 

extinguish with presentations of the inhibitor alone under most circumstances.  In Simulation 4, 

cue competition, including blocking (4a), recovery from relative validity (4b), and unblocking 

(4c), were simulated.  In Simulation 5, SOCR correctly predicted that inhibitors gain more 

behavioral control than excitors when they are trained in compound.  Simulation 6 demonstrated 

that SOCR explains the slower acquisition observed following CS-weak shock pairings. 

Keywords: sometimes competing retrieval; mathematical models of learning; Pavlovian 

conditioning; associative learning 
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Performance Factors in Associative Learning: Assessment of the  

Sometimes Competing Retrieval Model 

The observation that cues trained in compound often compete with each other for the 

potential to control a conditioned response was once accepted as support for an acquisition-

focused approach to associative learning.  According to this view, response deficits caused by 

treatments like simple compound training (e.g., overshadowing [Pavlov, 1927]), blocking 

(Kamin, 1968), and degraded contingency (Rescorla, 1968) reflect a failure of animals to learn 

the association between the test conditioned stimulus (CS) and the unconditioned stimulus (US).  

This view was widely accepted until the observation of retrospective revaluation (changes in the 

response potential of an absent stimulus due to further training of other stimuli; Kaufman & 

Bolles, 1981; Matzel, Schachtman, & Miller, 1985) prompted some researchers to reconsider the 

role of performance factors in associative learning situations.  The comparator hypothesis (Miller 

& Matzel, 1988) is among the more influential associative theories that emphasize performance 

factors in associative learning.  According to this model, when animals receive the test target CS 

at test, they compare the representation of the US directly activated by the target CS to the 

representation of the US indirectly activated through target CS-comparator stimulus-US 

associative linkage, where comparator stimuli are other cues present during CS-US training.  

Presumably, the strength of an animal’s response is determined not by the absolute strength of 

the target CS-US association but  by the strength of the target CS-US association relative to the 

associative strength  to the US of other stimuli that were present during training.  That is, 

responding is based on the increase in expectation of the US signaled by the target CS relative to 

the expectation of the US in the context of training without the CS.  For example, the blocking 

effect involves reduced responding to a target CS (X) after training in the presence of a well-
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established signal (A) for the US relative to a control condition in which subjects receive target 

training in compound with a neutral stimulus (B).  The comparator hypothesis explains this 

effect by asserting that pretraining A establishes a strong A-US association; thus, the US 

representation indirectly activated through the X-A-US linkage at test is stronger than the US 

representation indirectly activated through the X-B-US linkage (because the B-US association is 

weaker than the A-US association).  In other words, A blocks responding to X because the X-US 

association is weak relative to the A-US association.  Importantly, changes in associative 

strength are driven by contiguity alone; therefore, the model deemphasizes competitive factors 

during acquisition in determining the conditioned response controlled by a target stimulus.  

Instead, competition-like processes occur at test. 

 The comparator hypothesis was designed to account for the outcome of experiments in 

which a test CS is trained in the presence of one comparator stimulus.  Thus, it was unable to 

explain the results of experiments in which multiple nontarget cues are involved in training, as is 

often the case.  For example, Williams (1996) observed that the potential of a stimulus to block a 

target stimulus can be disrupted when it is blocked by a third stimulus.  In his experiments, 

subjects received either simple blocking training (Phase 1 AB+, Phase 2 AX+) or training in 

which the putative blocking stimulus was blocked by a third stimulus (Phase 1 B+, Phase 2 AB+, 

Phase 3 AX+).  Williams observed less blocking of X when B was pretrained (i.e., when B 

blocked A) than when B was associatively neutral prior to the AB compound training.  Within 

the comparator framework, this suggests that the potential of a comparator stimulus to compete 

with a target stimulus is determined not by the absolute strength of the comparator stimulus-US 

association but by the strength of the comparator stimulus-US association relative to other  

[higher-order] comparator stimuli.  This idea provided the basis for the extended comparator 
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hypothesis (ECH; Denniston, Savastano, & Miller, 2001, see Figure 1), which goes beyond the 

original comparator hypothesis by specifying the nature of competition among multiple 

comparator stimuli (i.e., comparator stimuli have their own comparator stimuli).  Stimuli that are 

directly associated with the target CS are considered first-order comparator stimuli, which 

operate exactly like the comparator stimuli in the original comparator hypothesis.  Associates of 

first-order comparator stimuli (i.e., second-order comparator stimuli) can reduce the 

effectiveness of both the target stimulus-first order comparator stimulus within-compound 

association (Link 2) and the comparator stimulus-US association (Link 3).  Applied to 

Williams’s data, the X-A-US associative linkage should be strong in both groups.  But 

pretraining of B (i.e., the B-US association)  should strengthen the US representation activated 

through the X-A-B-US associative linkage, which should down-modulate the effect of the X-A-

US linkage, thereby decreasing the blocking effect on the X-US association.  Alternatively 

stated, pretraining of B reduces the effective strength of the A-US association, which decreases 

its effectiveness as a comparator stimulus for X. 

 The ECH was limited in at least two ways.  First, it was not formalized; thus, it was not 

possible to generate quantitative predictions using ECH.  Second, it failed to predict the 

facilitative effect that compound training can have on a test CS.  For example, in second-order 

conditioning situations, pairing a test CS with a well-established signal for the US usually results 

in strong excitatory responding to the test CS.  Sometimes competing retrieval (SOCR; Stout & 

Miller, 2007) is a formalization of the ECH that allows for both competition (e.g., blocking) as 

well as facilitation (e.g., second-order conditioning) as a result of compound training.  The model 

also goes one step beyond ECH by assuming that experience which indirectly activates a 

representation of the US through the target CS-comparator stimulus-US associative linkage 
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causes animals to switch from a facilitative to a competitive response pattern.  This modification 

allows the model to explain basic facilitation effects and the transition from facilitation to 

competition that is often observed when the number of trials is increased.  Consistent with the 

original comparator hypothesis, SOCR assumes that the formation of associations is 

noncompetitive (i.e., cues do not compete with each other for associative strength during 

acquisition).  Thus, contiguity and local error (the difference between the magnitude of the US 

received and the expectation of the US based on each cue separately) are the necessary and 

sufficient conditions for associative learning (see the Methods section for formal details of 

SOCR).  

 Tests of SOCR have been reported in several empirical (e.g., Witnauer & Miller, 2007) 

and theoretical (e.g., Witnauer & Miller, 2010) articles.  SOCR provides explanations for a 

number of important cue interaction phenomena and some phenomena related to extinction; 

however, the scope of previous simulations of SOCR has been largely limited to cue interactions.  

The purpose of the present simulations was to apply SOCR to a broader range of phenomena 

than in previously reported simulations.  Moreover, following Polack, Laborda, and Miller 

(2011) here we modified SOCR to explain interactions among cues that are simultaneously 

present at test.  An important limitation of SOCR’s implementation in Stout and Miller’s (2007) 

simulations was that it did not specify how cues interact when they are tested simultaneously 

(i.e., they applied the model only to situations in which the target cue was tested in isolation of 

cues and contexts that shared associations with the target CS or the US).  In the present 

simulations, we applied SOCR to situations in which the test stimulus interacted with the test 

context (e.g., renewal) and to compound testing (e.g., negative patterning).  Thus, as suggested 

by Polac k et al. we extended SOCR by making two simple assumptions about cue interactions 
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during testing.  First, we assumed that the response potentials of multiple cues summate in their 

potentials to control a conditioned response.  Second, we assumed that the representation of a 

present comparator stimulus is more strongly activated than the representation of an absent 

comparator stimulus.  Importantly, the implementation of the model was identical in all 

simulations.  Importantly, we did not change the model across phenomena or procedures.  Each 

phenomenon was simulated twice, once using a consistent set of free parameters and again using 

different best fitting (discovered through hillclimbing) free parameters for each situation in 

which CSs, USs, and independent variables differed, which captures the truism that different 

CSs, USs, and other independent variables often result in different behaviors (e.g., Brandon & 

Wagner, 1998).   See the General Discussion for an explanation of the consequences of allowing 

the model’s free parameters to change across simulations.  We also matched the procedural 

parameters (treatment of control cues and contexts, number of trials, and counterbalancing of 

cues) of the actual experiments as closely as possible in the present simulations. 

Simulations 

In the present simulations, as instructed by the editors of this invited article we applied 

SOCR to a collection of experiments from a wide variety of paradigms.  SOCR assumes that 

learning is driven by contiguity and local error.  Thus, increases in the strength of the association 

between two stimuli (Stim1 and Stim2; e.g., X and the US, X and A, etc.) were modeled using 

the following equation: 

 ΔVStim1-Stim2 = SalienceStim1 * SalienceStim2 * (λ – VStim1-Stim2) (1) 

where Salience is a free parameter representing salience of the stimulus in question (0.1 < 

Salience < 0.9), λ is a fixed parameter (set at 1 by convention) that represents the maximum 

associative strength supportable by Stim2, and V Stim1-Stim2 is the pretrial  strength of the Stim1-
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Stim2 association.  Thus, V represents the proportion of asymptotic associative strength.  Note 

that the boundary conditions used in the present simulations are different from those used in 

previous simulations (e.g., Stout & Miller, 2007).  This prevented us from using unrealistically 

high or low values for the model’s free parameters. The update equation for SOCR in the present 

simulations takes the familiar form: 

V Stim1-Stim2
 n+1 = ΔV Stim1-Stim2

n + 
 V Stim1-Stim2

 n (2) 

Decrements in the strength of the Stim1-Stim2 association occured when Stim1 was presented in 

the absence of Stim2 and are modeled by the equation: 

ΔVStim1-Stim2 = SalienceStim1 * -k1 * V Stim1-Stim2 (3) 

where k1 (0.1 < k1 < 1) is a free parameter representing the rate of extinction, where the 0.1 

lower limit was to prevent extinction from ever being turned off.  Note that these learning rules 

assume that contiguity and local error (the difference between actual and asymptotic associative 

strength for a single cue) are the two factors that drive learning, which is based on Bush and 

Mosteller’s (1955) learning rules.  The extent to which a stimulus (X) can activate an absent 

stimulusi was determined by the strength of the association between those stimulis (VX-i ).  We 

also assumed that activation of a present stimulus is determined by both associative activation 

and unconditioned activation.  Associative activation of a present stimulus (i) by another present 

stimulus (X in this case) plus unconditioned activation is stronger than associative activation of 

an absent stimulus alone and is given by the following equation: 

Activation X-i = VX-i + k4 * Saliencei (4) 
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where k4 (0 < k4) is a free parameter.  Activation of an absent stimulus i given presentation of X 

is equal to VX-i. 

SOCR assumes that compound training can either facilitate or reduce responding to a 

target cue.  This is assumed to reflect processing that occurs at the time of retrieval.  Thus, the 

model assumes that responding to X (RX) is determined by the following response rule: 

RX = ActivationX-US – k2 * (Σ OpX-i-US * rVX-i * rVi-US) (5) 

where k2 is a free parameter that weights comparison processes so they have less impact (0 < k2 

< 1) than the direct CS-US association. OpX-i-US (termed the operator switch) is a variable that 

represents the degree of discrimination between directly and indirectly activated US 

representations.  This variable controlled whether the interaction between X and i was facilitative 

(e.g., second-order conditioning) or competitive (e.g., cue competition and conditioned 

inhibition).  rVX-i represents X’s potential to activate a representation of a comparator stimulus 

(i) and rVi-US represents the potential of a comparator stimulus to activate a representation of the 

US.  r was calculated following Equations 6 and 7. This response rule assumes that responding to 

X is determined by a comparison (through subtraction) between the US representation activated 

through the X-US association (VX-US) and the US representation activated through the effective 

X-comparator stimulus (rVX-i) and comparator stimulus-US (rVi-US) associative linkage. 

Basically, SOCR states that responding to X is not a function of the absolute value of VX-US.  

Rather it reflects the value of VX-US relative to other cues that were present when X was trained.  

Thus, computations reflect the view that behavioral control by a target CS (X) is determined not 

by the absolute strength of the direct X-US association, but by the strength of that association 
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relative to the  relationship between background cues and the US (rVi-US) where background 

cues are retrieved through within-compound associations (rVX-i) and dampened by a factor of k2. 

Similar to the first-order processes that determine  responding to X, the potential of X to 

activate first-order comparator stimuli (rVX-i where r denotes  reiteration) and the potential of 

comparator stimuli to activate the US (rVi-US) are determined by comparison processes involving 

second-order (j) comparator stimuli, which are other stimuli that are associated with the first-

order comparator stimuli and the target cue and/or the US.  Specifically, the following equation 

was used to calculate X’s potential to activate comparator stimuli: 

rVX-i  = ActivationX-i - k2  * (OpX-j-i  * ActivationX-j * Activationj-i) (6) 

This equation captures the view that the effective first-order comparator stimulus representation 

is determined by the representation of the first-order comparator activated directly through the 

association between X and the first-order comparator (ActivationX-i), compared to the 

representation of the first-order comparator activated through higher-order linkage (i.e., 

ActivationX-j and Activationj-i). The strength of the effective indirectly activated representation of 

the US (rVi-US) was determined by similar higher-order comparator processes: 

rVi-US  = Activationi-US - k2  * (Opi-j-US  * Activationi-j * Activationj-US) (7) 

Importantly, the operator switch (OpX-i-US) changes with experience in activating a representation 

of the US.  Changes in the operator switch were modeled using the equation: 

Δ OpX-i-US  = k3  * SalienceX * VX-i * Vi-US * (1 - OpX-i-US) (8) 

where k3 (0 < k3 < 1)  is the rate with which changes occur in the operator switch.  Note that this 

equation applies only when VX-US = 0.  Otherwise, Δ OpX-i-US  = 1 - OpX-i-US. This rule for the 
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operator switch assumes that subjects must learn to discriminate between directly activated 

representations and indirectly activated representations unless X is directly paired with the US, in 

which case the discrimination is complete in a single trial.  Initial values of operator switches 

were -1, which allowed for facilitative interactions among stimuli (e.g., second-order 

conditioning).  The total responding evoked at test was determined by simple summation such 

that: 

ResponseTotal = ∑ Ri (9) 

where i represents all stimuli present at test.   

Scaling.  In the present simulations, we were interested in differences between the 

model’s predictions and empirical data.  Consequently, we needed to scale the predictions of the 

model to match the scales used in the empirical research.  The critical measurement in some of 

the present simulations was the log10 latency to consume water for five cumulative seconds in the 

presence of the test CS.  Following Larrauri and Schmajuk (2008), we assumed that lick 

suppression multiplied by a scaling factor is equal to the response potential of X (RX) as 

predicted by the model.  In addition, we assumed that the lick suppression predicted by such 

proportional scaling is added to the scale’s minimum (i.e., log10 5) set by researchers’ measuring 

latency to complete 5 s of drinking in the presence of the CS.  Thus, in the present simulations, 

we approximated the lick suppression (LS) scale using the equation: 
 

LS = log10 5 + (Scaling * RX) (10)    

where Scaling is a free parameter used to approximate the log10 latency scale measured in lick 

suppression situations.  
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To approximate the suppression ratio (SR) scale used as the critical measure in 

simulations of lever press suppression situations, the response outputs of the model used in the 

present simulations were scaled using the following equation: 

SR = (Scaling - RX) ÷ [(Scaling - RX) + (Scaling - RContext)] (11) 

where Scaling is a free parameter that was used to represent baseline levels of lever pressing 

(i.e., in the absence of any behaviorally relevant cue).  Following Larrauri and Schmajuk (2008), 

in the present simulations that used this scaling technique, testing was conducted in a context that 

was not excitatory, so RContext was assumed to be zero in all of the suppression ratio simulations.  

All other simulated scales were assumed to be proportional to the target cue’s behavioral control 

such that 

Behavior = Scaling * RX (12) 

 Model Selection.  The Bayesian information criterion (BIC) was calculated for each 

model's fit.  We assumed that: 

BIC = n * log (SSE/n) + P * log (n) (13) 

where n represents the number of data points that were simulated, SSE represents the sum of the 

squared differences between observed and predicted means, and P is the number of free 

parameters used to fit the data (Waekliem, 2004).  Effectively, n * log (SSE/n) represents a 

badness-of-fit measurement and the far right term (P * log (n)) represents a penalty for model 

complexity.  The BIC is useful because it controls for differences in the number of free 

parameters.   Lower BIC numbers indicate a fit.  Because we optimized the values of cue and 

outcome salience, we treated these values as free parameters.  Arguably, such values are not free 

parameters because, ideally, they are constrained to be consistent with subjects’ perception (e.g., 

more intense stimuli are constrained to be of higher salience than less intense stimuli).   
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 Free Parameters.  We used a fixed set of parameters to simulate basic phenomena (e.g., 

blocking) in all of the present simulations.  Saliences were selected arbitrarily with the constraint 

that the relative values of saliences be realistic (i.e., context salience < cue salience < outcome 

salience).  They (k1-k4) reflected algebraic means of the best fitting parameters of what we 

considered to be a representative sample of simulations, which included Simulations 1-6 (except 

for Simulation 3a).In these simulations, the saliences of all cues were 0.35, the saliences of 

contexts were 0.15, and the saliences of outcomes were 0.5, which captures the view that 

outcomes (including USs) are more salient than cues, which are more salient than diffuse 

contexts.  The value of the extinction rate parameter (k1) was 0.22, the value of the comparator 

weight parameter (k2) was 0.56, the value of the operator learning rate parameter (k3) was 0.46, 

and the value of the weighting of a present comparator stimulus in determining its activation  

(k4) was 1.60.  In addition to using a fixed set of parameters to simulate each basic effect, we fit 

specific experiments using a hill climbing algorithm, which discovered presumably ideal values 

for parameters.  Importantly, we applied narrower boundary conditions on these parameters than 

were used in previous reports (e.g., Stout & Miller, 2007) in order to avoid potentially unrealistic 

values for best-fitting parameters. 

Simulation 1: Acquisition 

 Basic acquisition in Pavlovian situations is characterized by an increase in the magnitude 

of a conditioned response as a function of the number of CS-US pairings.  There are several 

aspects of acquisition that associative models should be able to fit.  First, conditioned responding 

often emerges with relatively few CS-US pairings and it often partially wanes with extensive 

training (i.e., the overtraining effect; Pavlov, 1927).  SOCR explains the emergence of 

conditioned responding based on its use of Bush and Mosteller’s (1955) learning rule, which 
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predicts that a CS-US association will grow as a negatively accelerated function of the number of 

pairings.  The overtraining effect falls straightforwardly from SOCR because, in addition to the 

target CS-US association, animals presumably learn and perform based on the target CS-training 

context and training context-US associations.  These latter two associations strengthen slowly 

relative to the target CS-US association due to the usual low salience of the context and the fact 

that it is partially extinguished during the intertrial intervals.  Thus, the training context becomes 

a strong comparator stimulus only after extensive training based on the comparator impact being 

determined by the product of  VX-Context and VContext-US.  Consequently, at least superficially, 

SOCR can explain both simple acquisition curves and the overtraining effect.  Importantly, 

recent experiments suggest that the overtraining effect is disrupted (i.e., conditioned responding 

is strengthened) when testing occurs in a context different from that used for target CS-US 

pairings (Bouton, Frohardt, Sunsay, Waddell, & Morris, 2008).   Bouton et al. administered 

light-US pairings in Context A and tone-US pairings in Context B.  Testing of both stimuli 

occurred in both contexts such that each stimulus was tested in both the acquisition context for 

that stimulus (e.g., light in Context A) and in a different context (e.g., light in Context B).  

Conditioned responding was stronger when testing occurred in the different context than when 

testing occurred in the acquisition context, which suggests that the overtraining effect is at least 

partially context specific.  This effect is potentially explained by the augmentation of Link 2 

implemented in the present simulations.  In overtraining situations, the training context functions 

as a strong comparator stimulus and down-modulates responding to the target stimulus.  This 

effect should be stronger when the representation of the acquisition context is more strongly 

activated (when testing occurs in the acquisition context).  In Simulation 1, SOCR was fit to 
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Bouton et al.’s data in an effort to determine whether or not SOCR explains simple acquisition, 

the overtraining effect, and recovery from the overtraining effect with a change in context. 

 Figure 2 depicts the results of a simulation (with the fixed set of parameters) of basic 

acquisition, overtraining, and reduced overtraining with a change in context.  The top panel of 

Figure 2 depicts the change in responding to the CS as a function of the number of acquisition 

trials.  Importantly, responding is expected to increase with a moderate amount of training and 

then decrease with massive training  (the overtraining effect; Pavlov, 1927).  Inspection of the 

bottom panel of Figure 2 reveals that SOCR anticipates stronger responding in an associatively 

neutral context than in the acquisition context; thus, the model anticipates that the overtraining 

effect wanes with a change in context (Bouton et al., 2008).  The top panel of Figure 3 

summarizes Bouton et al.’s (2008) results and the best fitting predictions of SOCR during 

acquisition.  Both observed and predicted conditioned responding increased as a function of the 

number of CS-US pairings during the first 12 sessions, which demonstrates that SOCR can 

explain basic acquisition.  In addition, both observed and predicted performance declined with 

extensive training; thus, SOCR explains the overtraining effect.  Finally, observed and predicted 

responding was weaker in the acquisition context than in a different context, thereby 

demonstrating that SOCR explains the observation that the overtraining effect diminishes with a 

change in context (see Figure 2b).  These results in conjunction with previous simulations (e.g., 

Stout & Miller, 2007; Witnauer & Miller, 2010) suggest that SOCR provides a good account of 

phenomena related to acquisition. 

Simulation 2: Extinction 

 Extinction occurs when the behavioral control by a target stimulus decreases as a result of 

nonreinforced presentations of that stimulus following acquisition.  SOCR asserts that basic 
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extinction is driven by two mechanisms.  The first is based on the strengthening of the target CS-

context association that presumably occurs during nonreinforced trials, which increases the 

strength of the indirectly activated US representation at test, thereby decreasing responding.  

This is at least superficially consistent with the widely held view that extinction is not 

completely driven by unlearning (e.g., Delamater, 1996).  Second, as a consequence of local 

error reduction, SOCR assumes that unlearning contributes to extinction, which is consistent 

with the observation that recovery from extinction is rarely complete.   

Importantly, the information that animals learn during extinction is often not expressed 

outside of the extinction context.  Renewal occurs when testing outside of the extinction context 

results in greater behavioral control by the target stimulus than when the target stimulus is tested 

in the extinction context.  In Simulation 2, we applied SOCR to extinction and renewal.  Figure 4 

depicts the results of a simulation with the fixed parameters in which SOCR predicts less 

responding as a function of the number of nonreinforced presentations of the CS (Figure 4, top 

panel) and more responding when testing after extinction occurs in the acquisition context than 

in the extinction context (Figure 4, bottom panel).  Three contextual manipulations are known to 

produce renewal in at least some situations.  When extinction occurs in the context of acquisition 

(Context A) and testing occurs in a different context (Context C), responding is sometimes 

greater than when testing occurs in Context A (AAC renewal).  Similarly, if acquisition, 

extinction, and testing each occur in distinct contexts (ABC renewal), responding is often greater 

than when extinction and testing occur in the same context that is distinct from the acquisition 

context.  In addition, if acquisition occurs in Context A and extinction occurs in Context B, 

responding is greater in Context A than in Context B (ABA renewal).   AAC, ABC, and ABA 

renewal strongly suggest that the information learned during extinction is not completely erased 
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by nonreinforced trials and that extinction is context dependent.  SOCR is able to explain 

renewal based on its use of the augmentation rule for interactions among stimuli during testing.   

Rescorla (2008) conducted three experiments aimed at demonstrating renewal using a 

within-subjects design in which the associative histories of the test CSs and contexts were 

equated across renewal conditions.  For example, in his demonstration of ABC renewal, subjects 

received training of two different stimuli (X and Y) in context A.   X was extinguished in 

Context B and Y was extinguished in Context C.  Both stimuli were tested in both Contexts B 

and C; thus, renewal could be assessed by comparing responding to the CSs across the two 

contexts.  Consistent with other reports of renewal (e.g., Bouton & Bolles, 1979), Rescorla 

observed weaker responding when a CS was tested in the context in which it was extinguished 

than when it was tested in the other context.  Rescorla’s demonstrations of AAC and ABA 

renewal used a similar design.   

SOCR’s best fitting predictions and Rescorla’s (2008) results are depicted in Figure 5.  

The decline in predicted values as a function of nonreinforced trials matches the decline in 

observed conditioned responding, thereby demonstrating that SOCR explains simple extinction.  

Importantly, predicted response strength increased when testing occurred outside of the 

extinction context, which matches the ordinal differences observed by Rescorla and demonstrates 

that SOCR is able to explain renewal although, lamentably, the size of the predicted differences 

between conditions do not match  well Rescorla’s observations.  In other simulations, SOCR 

provided a better fit to these differences by allowing for smaller values of k1 (the extinction rate 

parameter), which is consistent with the view that renewal suggests that extinction involves more 

than unlearning. .  These data, in conjunction with several recent experiments (e.g., Laborda, 

Witnauer, & Miller, 2011; Witnauer & Miller, in press), support the explanation of extinction 
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provided by SOCR with one important qualification.  In its current form, SOCR does not have a 

mechanism to explain how changes in time and emotion can influence the context.  For example, 

training with an aversive US presumably creates a relatively temporary emotional context.  

Reinstatement treatments, which create an aversive emotional context in fear conditioning, might 

cause the emotional context of testing to be more similar to the emotional context of original 

acquisition than to the emotional context of extinction (in which aversive stimuli are omitted).  

Thus, one could view reinstatement as a form of ABA renewal in which the emotional context 

(instead of the physical context) is being changed between phases.  Similarly, spontaneous 

recovery could be viewed as a form of ABC renewal in which the temporal context changes 

between phases (Bouton, 1993).  Thus, the model fails to explain spontaneous recovery and  

reinstatement  but, in explaining ABA, AAC, and ABC renewal, the model could likely explain 

other recovery from extinction effects with slight modifications as it has been argued by Bouton 

(1993) that spontaneous recovery and reinstatement are variants of renewal. 

Simulation 3: Second-Order Conditioning and Conditioned Inhibition 

 Second-order conditioning is the increase in responding that sometimes occurs when a 

target stimulus is nonreinforced in the presence of a well-established excitor (Pavlov, 1927).  

Interestingly, conditioned inhibition is often observed after similar training procedures.  For 

example, nonreinforced XA presentations interspersed among reinforced presentations of A will 

cause X to be inhibitory with respect to the US such that it will reduce responding to an 

independently trained excitor (i.e., it will negatively summate) and be slower to acquire 

excitatory behavioral control than a neutral stimulus.  Second-order conditioning and conditioned 

inhibition occur after similar training with the critical procedural variable being the number of 

nonreinforced trials (e.g., Stout, Escobar, & Miller, 2004; Yin, Barnet, & Miller, 1994).  
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Interestingly, conditioned inhibition is relatively insensitive to presentations of the conditioned 

inhibitor alone (i.e., conditioned inhibition fails to extinguish; Zimmer-Hart & Rescorla, 1974).  

Figure 6 depicts a simulation of the change from second-order conditioning to conditioned 

inhibition that occurs with increasing numbers of training trials. The simulation used the fixed 

parameters.  All simulations involved an equal number of reinforced (A+) and nonreinforced 

(XA-) trials.  Training consisted of either 10 (Few) or 100 (Many) trials and the test stimulus was 

either X alone (Elemental) or X in compound with an independently trained excitor (Compound).  

Importantly, the model is able to explain simple second-order conditioning (excitatory 

responding in Few-Elemental), conditioned inhibition (attenuated responding to the 

independently trained excitor in group Many-Compound).  Simulations 3a, 3b, and 3c used a 

hillclimbing algorithm to fit SOCR’s predictions to the results of experiments in conditioned 

inhibition and second-order conditioning. 

Simulation 3a:  Second-Order Conditioning and Conditioned Inhibition After Feature 

Negative Training 

 In a feature negative discrimination task, animals receive reinforced presentations of A  

and nonreinforced presentations of AX.  In these situations, X sometimes becomes inhibitory 

with respect to the US, such that it will reduce responding to an independently trained excitor 

(i.e., it will negatively summate) and be slower to acquire excitatory behavioral control than a 

neutral stimulus.  However, responding to X after feature negative training seems to depend on 

several procedural variables including the number of trials and whether A+ and AX- trials are 

interspersed or arranged serially with all A+ followed by all AX- trials (Yin, Barnet, & Miller, 

1994).  With relatively few AX- trials, X often evokes an excitatory conditioned response (i.e., 

second-order conditioning).  After many AX- trials, conditioned inhibition to X is observed and 
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it is stronger when trials are interspersed than when they are serially organized (i.e., blocked 

rather than interspersed ).  The purpose of Simulation 3a was to test whether or not SOCR can 

explain these observations. 

 The results of Yin et al.’s (1994) Experiment 2 and SOCR’s best fitting predictions are 

summarized in Figure 7.  In their experiment, Yin et al. administered either none (N), few (F), or 

many (M) AX- trials that were either serial (S) or interspersed (I).  In addition, subjects were 

tested on either X alone or X in compound with an independently trained excitor (BX).  

Excitatory responding to X alone was stronger after few trials than after none or many.  

Moreover, excitatory responding was evident after both interspersed and serial training.  That is, 

X evoked a strong excitatory conditioned response in Groups IF-X and SF-X and a weak 

excitatory response in all other groups that were tested on X alone, thereby replicating basic 

second-order conditioning.  Importantly, the predictions of SOCR closely match the observations 

within the groups that were tested on X, indicating that SOCR explains the emergence of second-

order conditioning after relatively few trials and the decline in second-order conditioning after 

many trials.  This is driven by SOCR’s use of the operator switch, which assumes that activation 

of the US through higher-order associative structures (i.e., the X-A-US associative linkage) has a 

facilitative effect on the target stimulus when animals lack much experience with an indirectly 

activated US representation.  Facilitation is expected to change to competition as animals gain 

experience with the indirectly activated US representation; thus, second-order conditioning 

should be weak after many training trials.  When X was tested in compound with B, strong 

excitatory responding was observed after none and few training trials because X was either 

neutral (Condition None) or moderately excitatory (Condition Few).  Inhibition to X developed 

after many training trials, which was evidenced by the relatively weak responding to XB 
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observed after many training trials (i.e., responding in Group IM-XB was weaker than in IF-XB 

and IN-XB).  Importantly, inhibition was weaker when training trials were presented serially 

than when they were interspersed (i.e., responding was weaker in IM-XB than in SM-XB).  All 

of the critical results within the compound testing condition were anticipated by SOCR.  The 

increase in predicted inhibition achieved by increasing the number of trials was driven by the 

operator switch and the relatively weak inhibition observed after serial training (i.e., all A-US 

followed by XA-) was expected because the A-US association extinguished during XA- trials, 

thereby decreasing the strength of the indirectly activated US representation at test.   

SOCR explains several important phenomena related to feature negative training, 

including: second-order conditioning only with relatively few interspersed or serial trials, and a 

conditioned inhibitor negatively summating with an independently trained excitor and additional 

inhibition occurring only with relatively many interspersed trials.  In other simulations, SOCR 

was also shown to explain other aspects of discrimination learning.  Based on its use of the 

augmentation rule, SOCR explains basic negative patterning, which involves reduced responding 

on compound AB- trials relative to elemental A-US and B-US trials during A-US / B-US / AB- 

training.  The augmentation rule allows for negative patterning because indirect activation of the 

US representation through the A-B-US and B-A-US linkages should be stronger when A and B 

are presented in compound; thus, responding should be relatively weak during compound trials.  

Moreover, SOCR explains positive patterning (weak responding to elements and strong 

responding to the compound during A- / B- / AB-US training) because it assumes that the 

excitatory response potentials of A and B should summate when they are presented in 

compound.  Importantly, this account is challenged by experiments in which both effects are 

observed (e.g., Bellingham, Gillette-Bellingham, & Kehoe, 1985).  SOCR seems unable to 
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explain both positive and negative patterning with the same set of free parameters because the 

best-fitting parameters for negative patterning allow for strong competition on compound trials, 

which is contradicted by the observation of strong responding on compound trials in positive 

patterning.  This is likely driven by SOCR’s use of simple elemental representations.  

Presumably, if SOCR assumed that animals learn about configurations of stimuli, it would allow 

the model to explain both negative and positive patterning with a single set of parameters. 

Simulation 3b:  The role of the context in conditioned inhibition 

 According to SOCR, conditioned inhibition occurs when a target stimulus indirectly 

activates the US representation (through the target stimulus-comparator stimulus-US linkage) 

more strongly than it directly activates the US representation (through the direct target stimulus-

US association).  Conditioned inhibition procedures involve at least two types of trials: 

reinforced presentations of a training excitor and nonreinforced presentations of the target 

stimulus in compound with the training excitor, which strengthen the comparator stimulus-US 

and the target stimulus-comparator stimulus associations, respectively.  In these situations, the 

training excitor can consist of either a punctate stimulus (e.g., feature negative training) or a 

training context (e.g., the explicitly unpaired procedure for conditioned inhibition and inhibition 

produced through differential conditioning).  Thus, two distinct procedures that often produce 

conditioned inhibition are the feature negative (A+ / AX-) and differential conditioning (A+ / X-) 

procedures.  Interestingly, the procedural parameters that promote conditioned inhibition with 

feature negative training seem to mitigate conditioned inhibition with differential training.  

The results of Urcelay and Miller (2006) demonstrated that A+ / X- training with a short 

intertrial interval (ITI; massed) is more effective in establishing inhibition to X than training with 

a long ITI (spaced).  Conversely, massed feature negative training is less effective than spaced 



Performance factors - 23 
 

training.  Urcelay and Miller’s summation tests in Experiments 1 and 2 are summarized in Figure 

8.  Subjects received either massed or spaced training and, orthogonally, either feature negative 

(FN) or differential training (Diff).  Also, a transfer excitor was tested in compound with either 

the target stimulus (Sum) or a control stimulus (Ctrl).  Responding in Groups FN Spaced Sum 

and Diff Massed Sum was reduced relative to their respective control groups, indicating that 

inhibition was observed after spaced feature negative training and massed differential training.  

Moreover, responding was greater in Group FN Massed Sum relative to Group FN Spaced Sum, 

which suggests that massed trials reduce the effectiveness of feature negative training.  Also, 

responding was greater in Group Diff Spaced Sum than in Group Diff Massed Sum.   

Inspection of Figure 8 reveals that SOCR provided a reasonably good fit to Urcelay and 

Miller’s (2008) data.  SOCR explains inhibition produced by differential training because, when 

trials are massed, A+ / X- training presumably establish strong X-training context and training 

context-US associations, which conjointly allow for a strong indirectly activated US 

representation.  When trials are spaced, the training context-US association extinguishes during 

the ITI, thereby diminishing indirect activation of the US at test. Thus, SOCR explains the 

diminished conditioned inhibition that was observed with spaced relative to massed differential 

trials.  SOCR explains inhibition produced by spaced FN training for the reasons detailed in 

Simulation 3.  Importantly, those processes can be influenced by competition among comparator 

stimuli for the potential to mediate indirect activation of the US.  When a target stimulus is 

trained in the presence of two comparator stimuli that can independently make the target a 

conditioned inhibitor, the comparator stimuli can compete with each other for the potential to 

drive support responding indicative of conditioned inhibition to the target stimulus.  Applied to 

feature negative training, when trials are spaced, only the training excitor (A) will be an effective 
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comparator stimulus because the context extinguishes during the intertrial interval.  In contrast, 

when trials are massed, the training excitor and the training context will compete with each other 

for the potential to serve as effective comparator stimuli to the target stimulus, consequently 

reducing the inhibitory potential of the target (Urcelay & Miller, 2008).  Thus, SOCR predicts 

that the amount of inhibition produced by feature negative and differential training depends on 

the ITI. 

Simulation 3c:  Extinction of conditioned inhibition 

 Many associative models (e.g., Rescorla & Wagner, 1972) predict that presentations of a 

conditioned inhibitor by itself will reduce its effectiveness as a conditioned inhibitor.  Figure 9 

summarizes the results of Zimmer-Hart and Rescorla’s (1974) experiment that failed to detect 

evidence of extinction of conditioned inhibition (cf. Polack et al., 2011).  Subjects first received 

A-US / AX- inhibition training, which presumably made X inhibitory.  Following inhibition 

training, subjects received either the target stimulus alone in the context (Extinction) or mere 

exposure to the context (No Extinction).  Then subjects were tested on either an independently 

trained transfer excitor (B) or the training excitor (A).  Orthogonally, these excitors were tested 

in compound with either the conditioned inhibitor (Summation) or a control stimulus 

(Summation Control).  Critically, the pattern of responding was similar in the Extinction and No 

Extinction conditions, which suggests that presentations of the target stimulus alone had no 

effect on conditioned inhibition.  Moreover, they observed that negative summation was stronger 

when the target stimulus was tested with the training excitor than when it was tested with the 

independently trained transfer excitor.  SOCR’s predictions match Zimmer-Hart and Rescorla’s 

results.  SOCR explains the failure to observe extinction of conditioned inhibition by assuming 

that presentations of the target stimulus in the training context simultaneously decrease the 
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strength of the X-A association (which undermines conditioned inhibition mediated by A) and 

increase the strength of the X-training context association (which strengthens conditioned 

inhibition mediated by the context).  During extinction of the inhibitor, the training context-US 

association should extinguish, which should undermine inhibition to the target stimulus.  

However, this effect should be equal across groups (all groups received the same exposure to the 

training context), so extinction of the training context-US association should not differentially 

affect the magnitude of inhibition across groups.  Also, SOCR explains the observation that 

negative summation is stronger when the target stimulus is tested in compound with the training 

excitor than when it is tested in compound with the transfer excitor based on its use of the 

augmentation rule.  Thus, the present simulations revealed that SOCR explains many important 

characteristics of inhibition and discrimination learning.  In addition, previous simulations (Stout 

& Miller, 2007) have demonstrated that SOCR can explain the reduced conditioned inhibition 

that is observed after extinction of the training excitor (Lysle & Fowler, 1985) and conditioned 

inhibition established using a surrogate outcome (Espinet, Iraola, Bennet, & Mackintosh, 1995).  

Space precludes revisiting these effects.  

Simulation 4: Cue competition 

 SOCR explains basic cue competition by assuming that the compound training ordinarily  

involved in cue competition studies establishes strong target stimulus-comparator stimulus and 

comparator stimulus-US associations that allow for the target stimulus to indirectly activate the 

US representation, the strength of which is subtracted from the directly activated US 

representation.  Thus, SOCR explains overshadowing, blocking, overexpectation, relative 

stimulus validity, and backward blocking (as reviewed by Stout & Miller, 2007).  The results of 

a simulation using the fixed set of parameters are summarized in Figure 10.  Notably, SOCR 
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explains both overshadowing (reduced responding after compound relative to elemental training) 

and blocking (reduced responding after training a target in the presence of a well-established 

signal for the US relative to simple compound training).  SOCR also explains the reduced 

blocking (increased responding) observed after posttraining associative deflation of the blocking 

cue (i.e., recovery from blocking).  The purpose of Simulation 4 was to test whether SOCR with 

the augmentation rule can explain basic blocking (Simulation 4a), the reduced relative stimulus 

validity effect seen with posttraining extinction of the excitatory unique element (Simulation 4b), 

and unblocking with increases and decreases in US magnitude (Simulation 4c).   

Simulation 4a: Blocking 

 Cue competition often wanes with increases in the amount of training of the compound 

stimulus, beyond some moderate amount (e.g., 4 trials; Stout, Arcediano, Escobar, & Miller, 

2003).  SOCR explains this phenomenon by assuming that massive amounts of training cause the 

training context and the competing cue to counteract (Stout & Miller, 2007).  Previous 

simulations did not examine SOCR’s potential to explain the effect of increasing the amount of 

compound training from a small to moderate number of trials.  Azorlosa and Cicala (1986; see 

Figure 11) demonstrated blocking in fear conditioning with 1 compound trial and a decrease in 

blocking with 10 compound trials.  In their critical experiment, subjects received either 1 or 10 

compound blocking trials.  In addition, three control groups were included in which subjects 

were tested with a novel stimulus or with a stimulus that was trained in the presence of an 

irrelevant control cue using 1 or 10 compound trials.  I Blocking was clearly weaker after 10 than 

after 1 compound blocking trial and SOCR provided a good fit to their results.  SOCR assumes 

that after 10 compound blocking trials, the training context has become excitatory and can 
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compete with the blocking cue for the potential to reduce responding to the target cue (i.e., the 

training context and the blocking cue counteract for the potential to compete with the target cue). 

Simulation 4b: Recovery from the Relative Validity Effect 

 The relative validity effect involves less responding to X after AX+ / BX- training than 

after AX+ / AX- / BX+ / BX- training.  SOCR explains the basic effect by assuming that A has a 

stronger comparator impact after continuous reinforcement than A and B after partial 

reinforcement (Stout & Miller, 2007).  More importantly, the relative validity effect is attenuated 

when A is extinguished (McConnell, Urushihara, & Miller, 2010).  In their critical experiment, 

McConnell et al. administered AX+ /  BX- / CY+ / DY- training in Phase 1, which was designed 

to establish weak responding to both X and Y through relative validity.  In Phase 2, subjects 

received either extinction of the AD compound (Extinction) or exposure to the context (No 

Extinction) and, orthogonally, subjects received either X (Test X) or Y (Test Y) during a 

subsequent test session.  Inspection of Figure 12 reveals that subjects suppressed more to X after 

compound extinction than after context exposure, thereby demonstrating recovery from the 

relative validity effect.  Importantly, this effect was specific to X; responding to Y did not 

change as a result of extinction.  These findings are, to the authors’ knowledge, uniquely 

anticipated by SOCR.  Other models of retrospective revaluation assume that a common error 

term drives changes in the associative status of absent cues (e.g., Van Hamme & Wasserman, 

1994), which should apply equally to X and Y.  In contrast, SOCR explains these findings by 

assuming that extinction of A influences X and extinction of D is irrelevant.  This explanation is 

supported by the results of Simulation 6b. 

Simulation 4c: Unblocking 
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 Some models assume that blocking involves a learned reduction in associability to the 

blocked stimulus because it does not predict a change in the occurrence of the US (e.g., Pearce & 

Hall, 1980).  This account of blocking is supported by the observation that blocking is attenuated 

by both increases and decreases in US magnitude during compound trials (Holland, 1984).  

Towards demonstrating this phenomenon, Holland exposed subjects to Phase 1 elemental 

training consisting of A+ / B++ and Phase 2 training consisting of AX++ / B++ (Group Up), 

A++ / BX++ (Group Up Control), A+ / BX+ (Group Down), or AX+ / B+ (Group Down 

Control), where + represents one food pellet and ++ represents one food pellet followed by two 

additional food pellets.  The results of this experiment and SOCR’s best fitting predictions are 

illustrated in Figure 13.  Holland observed less blocking in Groups Up and Down relative to their 

respective controls.  SOCR anticipates less blocking in Group Up because A should be a less 

effective blocking stimulus than B based on its being paired with a weaker US in Phase 1.  

SOCR anticipates less blocking in Group Down because B should be better able than A to 

counteract with the training context (which was made excitatory during Phase 1 training).   The 

best-fitting parameters for this simulation involved an unusually high value for the salience of 

the context.  This allows the model to predict a strong Context-US association and, consequently, 

counteraction between the context and the blocking stimulus. 

Simulation 5:  Unequal associative changes 

 Rescorla (2000) observed a greater increase in the excitatory behavioral control by an 

inhibitor (B) than an excitor (A) when the two stimuli were conditioned in compound.  This is 

problematic for associative theories which assume that total error reduction drives learning (e.g., 

Rescorla & Wagner, 1972) because A and B should share a common error term when they are 

trained in compound; thus, changes in A and B should be equal (assuming equal saliences or 
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appropriate counterbalancing).  In Simulation 5, SOCR was applied to the appetitive 

conditioning portion of Rescorla’s experiments.  The results of  the experiment  and 

accompanying simulation are summarized in Figures 14 (depicting the results of a simulation 

using the fixed set of parameters) and 15 (depicting Rescorla’s results accompanied by best-

fitting predictions).  All subjects received training designed to establish B and D as inhibitors and 

A and C as excitors in Phase 1 followed by AB+ training in Phase 2.  Subjects subsequently 

responded less to AD than to BC during test (D was an inhibitory stimulus).  Critically, the only 

difference between the training of AD and BC was the difference in the amount that was learned 

about A and B during AB+ trials.  SOCR is able to explain this difference (using either 

hillclimbing or the fixed set of parameters) based on its use of a local error reduction rule, which 

predicts greater increases in the strength of the B-US association than the A-US during AB+ 

trials. 

Simulation 6:  Latent inhibition 

 Previous reports have documented that SOCR can explain the observation that CS-US 

pairings are less effective in establishing excitatory conditioned responding when they are 

preceded by presentations of the CS alone (latent inhibition; Stout & Miller, 2007).  Figure 16 

summarizes the results of simulated latent inhibition using the fixed set of parameters.  In 

addition, SOCR predicts that the CS-training context and training context-US associations are 

critical for latent inhibition, which is supported by the observation that latent inhibition is 

attenuated when a context shift occurs between pretraining exposure and training (undermining 

the effect of CS preexposure on the CS-training context association) and when context extinction 

follows CS-US pairings (reducing the strength of the training context-US association).  

Importantly, latent inhibition-like effects also occur when CS-weak US pairings are administered 
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instead of CS-alone presentations (Hall & Pearce, 1979).  Figure 17 summarizes the critical 

results of Hall and Pearce’s demonstration of latent inhibition produced by CS-weak US pairings 

and SOCR’s predictions.  In Phase 1, subjects received either pairings of an irrelevant control 

stimulus with a weak US (Light+), simple preexposure to the target stimulus (Tone-), or pairings 

of the target stimulus with a weak US (Tone+).  In Phase 2, all subjects received tone-strong US 

pairings followed by testing of the tone using a barpress suppression procedure.  Suppression to 

the tone was weakest in Group Tone-, which replicates basic latent inhibition.  Moreover, 

suppression was weaker in Group Tone+ than in Group Light+, which indicates that tone-weak 

US pairings cause latent inhibition.  SOCR explains this effect by assuming that the tone-weak 

US pairings strengthen the tone-US, tone-context, and context-US associations. Strengthening 

the tone-US association increases responding at test, but this is more than offset by the stronger 

context-US association and particularly the tone-context association. Thus, the net effect of tone-

weak US pairing is to reduce responding relative to training an irrelevant stimulus. 

General Discussion 

 The results of the present simulations demonstrate that SOCR explains a wide variety of 

associative phenomena, some of which are outside the domain of cue interaction that SOCR was 

originally designed to explain.  The performance of SOCR across the present simulations is 

summarized in Table 1 and the best-fitting parameters of SOCR are presented in Table 2.  BIC 

values allow for comparisons across simulations and models because it involves a penalty for 

number of free parameters and increases as a function of the amount of data explained with a 

single set of parameters. SOCR explains acquisition and related phenomena, including the 

overtraining effect and reduced overtraining with a context shift (Bouton et al., 2008), and 

reduced responding after pretraining pairing of the target with a weak US (Hall & Pearce, 1979).  
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SOCR explains extinction and renewal (e.g., Rescorla, 2008), select aspects of discrimination 

learning (e.g., conditioned inhibition produced by feature negative training), and second-order 

conditioning produced by feature negative training, and the emergence of conditioned inhibition 

only after many trials (Yin et al., 1994).  SOCR explains several previously unsimulated aspects 

of cue competition, including reduced blocking produced by changes in US intensity (Holland, 

1984)  and recovery from the relative validity effect as a result of posttraining deflation of the 

continuously reinforced element (McConnell et al., 2010).  In addition, SOCR correctly 

anticipates that response strength of a target cue is determined by the associative status of other 

cues present during training, as well as the associative history of the target cue (e.g., Rescorla, 

2000).  Importantly, the augmentation rule used in the present simulations allowed SOCR to 

explain interactions between a target cue and other stimuli that are present at test, including 

renewal and the attenuated overtraining effect observed after a change in context.   

 Inspection of Table 2 reveals that there was variability in the values for the best-fitting 

parameters. This is a consequence of two important aspects of the present simulations.  First, the 

hillclimbing algorithm does not attempt to minimize differences across simulations with respect 

to best-fitting parameters.  Thus, the hillclimbing will not necessarily find similar values for 

parameters across different simulations.  We chose this strategy for assessing SOCR because 

only optimal parameters (as discovered by hillclimbing) allow us to assess the underlying 

principles of the model independent of the appropriateness of the model’s parameters.  Second, 

this reflects the fact that we simulated experiments that used different procedural parameters 

(e.g., differing CSs, differing USs, different stimulus intensities, different stimulus durations, 

different interstimulus intervals, or differing numbers of trials), which presumably cause the 

model to have different best-fitting parameters.  Indeed, some of the predictions of SOCR are 
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parameter dependent.  For example, the strength of the predicted overshadowing effect partially 

depends on the strength of the Context-US association.  While this could be viewed as a 

weakness of SOCR, we prefer to view this as strength of the model because most (if not all) 

associative phenomena are only observed within specific procedural constraints.  For example, 

overshadowing has been shown to depend on the number of trials, intertrial interval, CS 

duration, and CS-US contingency; all of these variables presumably influence the Context-US 

association.   In some unreported simulations, best-fitting values near zero for some  ki 

parameters were found, which effectively disables some aspect of the model.  For example, a 

best-fitting value of 0.1 for k1 was found in Simulation 1, which allowed for only very slow 

extinction.  Importantly, we replicated these simulations with greater constraints on the 

hillclimbing algorithm and reported them here and showed that the model still predicted the 

central effects that were simulated.  This resulted in worse fits of the model.  We elected to 

report the more-constrained simulations because they are based on more realistic values for the 

free parameters.   Table 3 represents a comparison of the results of simulations with fixed and 

best-fitting parameters. 

 Some important phenomena are outside of the domain of Stout and Miller’s (2007) 

SOCR.  In its current implementation, SOCR is a trial-wise model.  Thus, the model is unable to 

explain phenomena related to the distribution of responding within a CS (e.g., inhibition of 

delay; e.g., Drew, Zupan, Cooke, Couvillon, & Balsam, 2005).  Moreover, SOCR assumes a 

simple elemental representation instead of a microelemental (e.g., Wagner, 1981) or a configural 

representation (e.g., Pearce, 1987).  Ultimately, this representational scheme was chosen in order 

to develop and test the simplest version of SOCR possible.   That is, we wanted to determine the 

set of phenomena that is explained by the core principles of SOCR.   Adding more sophisticated 
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assumptions about representation would allow SOCR to explain more experiments (especially 

those related to generalization and discrimination).  However, it would create a more complex 

model and it would not allow us to easily determine whether SOCR’s performance is attributable 

to its most important assumptions (e.g., local error reduction at acquisition, comparisons 

performed at test, and facilitative or competitive cue interactions as a function of the operator 

switch) or to the more complex (and less central) assumptions concerning representation.  This 

also allowed us to use a smaller number of free parameters (5 excluding saliences of stimuli; k1: 

extinction rate, k2: comparator weight; k3: operator rate; k4: augmentation; and Scaling) than is 

sometimes used in contemporary associative modeling.   
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Table 1: Summary of the fit of SOCR 

 

Note:  BIC = Bayesian information criterion (BIC) and SSE = sum of squared error for best-

fitting predictions discovered through hillclimbing.  Number of parameters include saliences of 

individual stimuli; SOCR has five free parameters plus one for each stimulus.  Lower numbers 

for BIC (including negative) and SSE indicate a better fit.  Note that the BIC scores for 

Simulation 2 are inflated due to the difference in scale between it and the other experiments that 

were simulated. 

Simulation BIC SSE Number of 
Parameters 

1: Acquisition (Bouton et al., 2008) -92.92 0.16 9 

2: Extinction (Rescorla, 2008) 105.75 6791.39 8 

3a: Feature-Negative (Yin et al., 1994) -6.83 0.41 10 

3b: Context and Inhibition (Urcelay & Miller, 2006) -0.42 0.53 10 

3c: Extinction of Inhibition (Zimmer-Hart & Rescorla, 1974) -14.00 0.008 11 

4a: Blocking (Azorlosa & Cicala, 1986)  -4.87 0.19 9 

4b: Relative Validity (McConnell et al., 2010) -10.38 0.0005 9 

4c: Unblocking (Holland, 1984) 12.18 196.01 9 

5: Unequal Associative Changes (Rescorla, 2001) 1.54 1.13 11 

6: Latent Inhibition (Hall & Pearce, 1979) -18.36 0.24 9 
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Table 2: Best-fitting parameters for SOCR 

 

Note:  Sim = Simulation, Stim = Stimulus, Ctx = Context, and NA = Not Applicable.  In 

Simulation 5, Context 1 refers to the salience of a cue used in training. 

 

  

Sim k1 k2 k3 k4 Scaling Stim1 
Salience 

Stim 2 
Salience 

Stim 3 
Salience 

Ctx 1 
Salience 

Ctx 2 
Salience 

US 
Salience 

1 0.10 0.43 0.10 3.00 0.69 0.29 0.44 NA 0.34 0.18 0.74 

2 0.13 0.20 0.39 5.71 133.48 0.10 NA NA 0.88 NA 0.31 

3a 0.34 0.84 0.76 0.31 4.47 0.35 0.69 NA 0.10 0.90 0.41 

3b 0.10 0.87 0.16 0.93 2.88 0.34 0.10 0.90 0.10 NA 0.90 

3c 0.47 0.25 0.90 0.10 0.20 0.20 0.90 0.55 0.25 0.10 0.90 

4a 0.10 0.19 0.22 1.84 0.96 0.65 0.10 NA NA 0.90 0.90 

4b 0.10 0.54 0.43 0.86 0.47 0.73 0.35 NA 0.25 NA 0.34 

4c 0.65 0.90 0.61 6.10 185.23 0.90 0.10 NA 0.90 NA 0.90 

5 0.10 0.55 0.24 2.05 3.80 0.75 0.67 0.58 0.34 0.25 0.90 

6 0.11 0.57 0.90 0.10 1.12 0.10 0.90 NA 0.13 NA 0.90 
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Table 3:  Effects simulated with best-fitting and fixed parameters. 

 

Effect1 Predicted with fixed 
parameters? 

Fit with 
hillclimbing? 

Acquisition (Simulation 1) Yes Yes 

Overtraining  (Simulation 1) Yes Yes 

Recovery from overtraining with context shift (Simulation 1) Yes Yes 

Extinction  (Simulation 2) Yes Yes 

ABA, ABC, and AAC Renewal (Simulation 2)2 Yes Yes 

Second-order conditioning and conditioned inhibition following 
feature-negative training (Simulation 3a) 

Yes Yes 

ITI being directly related to the strength of inhibition after Pavlov’s 
procedure (Simulation 3b) 

NA Yes 

ITI being inversely related to the strength of inhibition after differential 
training (Simulation 3b) 

NA Yes  

Failure of inhibitor-alone presentations to reduce conditioned 
inhibition (Simulation 3c) 

NA Yes 

Blocking (Simulation 4a) Yes Yes 

Recovery from blocking with more compound trials (Simulation 4a) NA Yes 

Retrospective revaluation after relative validity (Simulation 4b) NA Yes 

Recovery from blocking with changes in US intensity (Simulation 4c) NA Yes 

Greater increases in response potential to an inhibitor than an excitor 
after excitor-inhibitor compound training (Simulation 5) 

Yes Yes 

Latent inhibition (Simulation 6) Yes Yes 

Hall-Pearce negative transfer (Simulation 6) No Yes 
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Note: NA = not applicable because the effect was not simulated with fixed parameters due to 

fixed parameters being used to only simulate basic effects and these rows refer exclusively to 

specific experimental series.  Yes indicates that SOCR simulated the critical between-group 

differences that characterize a specific effect.  No indicates that the model failed to predict the 

critical between-group difference.  See Table 2 for exact parameters fit through hillclimbing.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Performance factors - 44 
 

 

 

Footnotes 
 

1The word limit on the present article precluded our reporting the simulation of more of the 

phenomena in the guest editors’ list of effects. 

2SOCR was able to simulate the critical ordinal differences observed in renewal situations (i.e., 

weaker responding in the extinction context than in a new context or the acquisition context).  

However, we must qualify our report of SOCR’s success by pointing out that the predicted 

magnitude of the effect is both weaker than is often observed and dependent on the value of k1.  
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Figure Captions 

Figure 1.  The extended comparator hypothesis. Arrows represent the associations between 

stimuli. The strengths of the directly and indirectly associated outcome representations are 

compared to determine the strength of responding to the target cue. Ovals depict stimulus 

representations; rectangles depict physical events; diamonds represent the comparator process. 

Figure 2.  Predicted responding based on a fixed set of parameters during 100 acquisition trials 

with 3 context extinction trials per intertrial interval.  The top panel represents predicted 

responding to a CS as a function of the number of CS-US pairings.  The bottom panel represents 

responding to the CS in the acquisition context and an associatively neutral context. 

Figure 3.  Best-fitting predictions and observed results of Bouton et al.’s (2008) Experiment 1.  

The top panel (A) represents predicted and observed conditioned suppression to two different 

CSs (tone and light) during CS-US training sessions in different contexts.  The bottom panel (B) 

represents responding during a separate test session in which both the light and tone were tested 

in the context used for training that CS (Same) or in the context used to train the other CS 

(Different).  Note that lower values indicate stronger conditioned suppression. 

Figure 4.  Predicted responding based on a fixed set of parameters during extinction and in ABA 

renewal.  The top panel depicts responding after 10 acquisition trials and during 30 extinction 

trials in Context B (after training in Context A).  3 context extinction trials occurred during each 

intertrial interval. The bottom panel depicts responding to the CS during a subsequent test in the 

extinction context (B) or acquisition context (A). 

Figure 5.  Best-fitting predictions and observed results of Rescorla (2008).  The first 12 x-axis 

values represent average responding during blocks of extinction trials in ABA (Experiment 1; 

top panel), AAB (Experiment 2; middle panel), and ABC (Experiment 3; bottom panel) renewal 
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experiments.  The last two x-axis values represent average responding in the extinction and 

renewal contexts, respectively.  

Figure 6.  Predicted responding based on a fixed set of parameters to X after A+ / AX- training.  

Elemental indicates testing of X alone.  Compound indicates testing of X in the presence of  an 

independently trained excitor.  Few depicts responding after 10 simulated training trials.  Many 

depicts responding after 100 trials. 

Figure 7. Best-fitting predictions and observed mean log latencies to resume drinking in the 

presence of the test CS in Yin et al. (1994).  Condition I received interspersed and Condition S 

received serial presentation of A+ and AX- trials.  Condition N received zero, Condition F 

received few, and Condition M received many pairings of X and A.  X indicates that subjects 

were tested on X alone and BX indicates that subjects were tested on a compound consisting of 

X and an independently trained condition excitor (B). 

Figure 8.  Best-fitting predictions and observed log latency to resume drinking in Urcelay and 

Miller’s (2006) summation conditions.  Groups in the FN condition received feature negative 

(A+ / AX-) training and Groups in the Diff condition received differential (A+ / X-) training.  

Subjects were tested on either the target inhibitor (Sum) or an irrelevant control stimulus (Sum 

Ctrl) in compound with an independently trained transfer excitor.  Additionally, subjects 

received either a short (Massed) or a long (Spaced) interval between trials. 

Figure 9.  Best-fitting predictions and observed suppression in Zimmer-Hart and Rescorla’s 

(1974) Experiment 1.  Summation indicates that the target inhibitor (X) and Summation Control 

indicates that an irrelevant control stimulus was tested was tested in compound with either the 

excitor used in inhibitory training (A) or an independently trained transfer excitor (B).  Condition 

Extinction indicates received presentations of X alone and Condition No Extinction received 
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exposure to the context.  Note that lower values indicate more suppression. 

Figure 10.  Predicted responding based on a fixed set of parameters after elemental (X+) 

training, overshadowing (BX+), blocking (A+ | AX+), and recovery from blocking (A+ | AX+ 

|A-).  In the blocking condition, there were 10 Phase 1 trials followed by 5 AX-US trials and 18 

context extinction trials per ITI.  Notably, more context extinction trials were used in this 

simulation than in other simulations because cue competition is attenuated when training is 

relatively massed (e.g., Stout, Chang, & Miller, 2003). 

Figure 11.  Best-fitting predictions and observed suppression in Azorlosa and Cicala’s (1986) 

Experiment 1.  Subjects in the Blocking groups received Phase 1 A+ trials followed by either 1 

or 10 Phase 2 AX+ trials.  Subjects in Group Novel Stim were tested on an associatively neutral 

stimulus at test.  Subjects in Group 10 Blocking Control (Unsignaled) received treatment 

identical to that in Group Blocking 10 except that A and the US were unpaired in Phase 1.  

Groups 10 Blocking Control (No Ph1) and 1 Blocking Control (No Ph1) received treatment 

identical to Groups 10 Blocking and 1 Blocking except that Phase 1 training was omitted. 

Figure 12.  Best-fitting predictions and observed suppression in McConnell et al.’s (2010) 

Experiment 1.  All subjects received Phase 1 training consisting of AX+ / BX- / CY+ / DY-.  

Subjects in the extinction condition received Phase 2 compound extinction of AD and subjects in 

the No Extinction condition received mere exposure to the context.  Subjects were tested either 

on X (Test X) or Y (Test Y). 

Figure 13.  Best-fitting predictions and observed results of Holland’s (1984) Experiment 1.  Up 

indicates an increase and Down indicates a decrease in the number of USs that followed the CS.  

See text for details.  Note that the Predicted value for Up Control is slightly negative and very 

close to zero. 
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Figure 14.  Predicted responding based on a fixed set of parameters to after compound training 

with an excitor (A) and an inhibitor (B) to compounds consisting of the target excitor and a 

control inhibitor (AD) and the target inhibitor and a control excitor  (BC).  Greater responding to 

BC indicates that B gained more behavioral control than A during AB+ trials.  100 iterations of 

X+ / XB- / XD- / A+ / C+ were simulated in Phase 1.  3 Phase 2 AB+ trials were simulated.  

There were 3 context extinction trials per ITI. 

Figure 15.  Best-fitting predictions and observed results of Rescorla’s (2000) Experiment 1.  

Condition BC was tested on a compound consisting of the target inhibitor (B) and an 

independently trained excitor (C).  Condition AD was tested on the target excitor (A) and an 

independently trained inhibitor (D).  Note that SOCR fit all control experiments in Rescorla’s 

(2000) article with a single set of parameters but, for simplicity of presentation, only the data 

from Experiment 1 are presented. 

Figure 16.  Predicted responding based on a fixed set of parameters to a target CS during training 

to a preexposed CS (CS Preexposure) and a novel CS (Acquisition).  66 CS-alone presentations 

preceded 5 CS-US pairings with 3 context extinction trials per ITI occurred in the present 

simulations. 

Figure 17.  Best-fitting predictions and observed suppression to the tone in Phase 2 of Hall and 

Pearce’s (1979) Experiment 2.   Group Tone+ received pretraining consisting of Tone-weak 

shock pairings in Phase 1whereas Group Tone- received preexposure to the Tone alone, and 

Group Light+ (Control)  received pretraining consisting of light-weak shock pairings.  Phase 2 

consisted of pairings of the tone with a strong shock. 
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Witnauer et al. Figure 3 
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