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Transient, nonaxisymmetric modes I the instability or unsteady circular 
Couette flow. Laboratory and nu erical experiments 
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The George W  Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, 
Georgia 303320405 

L. J. Little 
Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, 
Arizona 85287-6106 

(Received 27 April 1993; accepted 12 October 1994) 

Laboratory and numerical experiments were conducted to quantitatively determine the modal 
structure of transient, nonaxisymmetric modes observed during the instability of an impulsively 
initiated circular-Couette flow. The instability develops initially as an axisymmetric, Gortler-vortex 
state and persists ultimately as a steady, axisymmetric Taylor-vortex state of different wavelength. 
The transition between these two states results from the instability of the Gortler mode combined 
with the underlying developing swirl flow and is dominated by nonaxisymmetric modes. The 
laboratory experiments employed flow visualization coupled with digital video and _ . 
image-processing techniques; numerical experiments were performed using the spectral-element 
code, NEKTON. 0 I995 American Institute of Physics. 

I. INTRODUCTION 

Circular Couette flow (CCF) has served as an effective 
test bed for studying complex transitions to chaos, the intlu- 
ence of finite geometry on pattern-selection mechanisms and 
the effects of time-dependent basic states. The stability prop- 
erties of time-dependent circular-Couette flow have been of 
interest for some time, serving as a model for eventual stud- 
ies of unsteady effects in more complicated situations. Un- 
steady CCF offers the luxuries of a simple geometry, ame- 
nable to both analyses and experiment, and a transition 
sequence which can be as simple or complex as desired 
through the adjustment of the geometrical and dynamical 
parameters involved. 

The flow of interest in the present case is one which 
combines elements of pattern selection not with finite geom- 
etry, but with a time-varying basic state. Consider a pair of 
concentric circular cylinders shown in Fig. 1 of radii a and 
b>a which enclose a viscous, incompressible fluid of kine- 
matic viscosity v ; the overall length of the system is L. Prior 
to some initial time, the entire system is assumed to be in a 
state of rigid-body rotation with angular speed Sz about the 
symmetry axis. At time t=O, the outer cylinder is impul- 
sively brought to rest, giving rise to an unsteady basic state 
which develops from the outer wall of the annulus. This 
basic state is subject, after an initial period of guaranteed 
stability,r to centrifugal instability. The flow is characterized 
by two dimensionless geometric parameters, the radius ratio 
qr=alb and the aspect ratio r=Lld, where d = b -a is the 
gap width, and a single dimensionless dynamic parameter, 
which we choose to be the Reynolds number Re=fid2/v. 

The flow just described has been studied previously. 
Chen and Neitzel’ and Neitze12 used energy-stability theory 
to determine sufficient conditions for stability while Kohuth 
and NeitzeP conducted flow-visualization laboratory experi- 
ments to determine the onset time and structure of the initial 
instability. These experiments, performed with a wide-gap 

(g=OS) apparatus, uncovered, at the higher Reynolds num- 
bers considered, an interesting sequence of events which mo- 
tivated the present work. The initial appearance of instability 
to the nearly pure-swirl basic state is in the form of axisym- 
metric, counter-rotating vortices which form once the layer 
near the outer cylinder has thickened to the point where the 
centrifugal forces can dominate the viscous forces. The axi- 
symmetric nature of the initial instability is in agreement 
with energy-stability calcu1ations.r However, since the un- 
derlying basic state continues to develop, the length scale 
associated with the potentially unstable region changes. In- 
deed, after a large time has passed, the basic-state swirl flow 
is subject to centrifugal instability across the entire gap and it 
is then the larger gap width which characterizes the scale of 
the finally appearing structure. For this flow at the radius 
ratio and Reynolds numbers of interest, the final flow is in 
the form of axisymmetric Taylor vortices which are roughly 
square in cross section. Consequently, the initial, smaller- 
scale vortices must give way to a larger-scale Taylor-vortex 
state. The adjustment between these two axisymmetric states 
was observed to occur nonaxisymmetrically in the Kohuth 
and Neitzel experiments. It is the characterization of the azi- 
muthal structure of this transition, at least at its onset, which 
is the goal of the present research. 

We shall refer to the vortices observed as a result of the 
initial instability as Giirtler vortices, since they result from a 
centrifugal instability and their size is related to the thickness 
of the potentially unstable layer near the outer, concave wall. 
Although, at any instant of time, this layer thickness is inde- 
pendent of the azimuthal (streamwise) coordinate, the thick- 
ness increases with time analogous to the spatial changes 
observed in the usual Gortler situation.4 Therefore, from a 
Lagrangian viewpoint, fiuid particles are moving into a re- 
gion of increasing boundary-layer thickness much as in the 
boundary layer on a concave plate. The scale of the Gijrtler 
vortices observed in the present situation is dictated by the 
thickness of this layer at the onset time of the initial insta- 
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FIG. 1. Taylor-Couette geometry. 

bility. At the Reynolds numbers of interest, the presence of 
the inner cylinder does not appear to affect this onset time, as 
evidenced by the agreement between the onset times for 
Couette flow measured by Kohuth and Neitzel” and those for 
spin-down to rest determined by Mathis and Neitzel.’ The 
vortices that are first apparent during the instability of spin- 
down also become unstable; the transition is less compli- 
cated in the present case, however, due to the presence of the 
inner cylinder and the ultimate establishment of a Taylor- 
vortex state. Also, the finite length of the apparatus does not 
appear to be a factor in determining the scales associated 
with the early transitions since the results of spin-down ex- 
periments in cylinders of widely varying aspect ratio are 
identical.’ Consequently, this model problem appears to be a 
good candidate for investigating the influence of a time- 
dependent basic state on pattern selection. 

The influence of a time-developing basic state on pattern 
selection may be important in some practical situations. With 
regard to CCF, Coles” demonstrated the existence of multiple 
states at fixed control-parameter values, these being achieved 
by altering the way in which the final state was approached. 
More recently, Benjamin and Mullin investigated such mul- 
tiple states, including so-called “anomalous modes” (rotat- 
ing in the “wrong” direction adjacent to end walls), also 
achieved through time-dependent manipulation of the bound- 
ary conditions. Uniformly accelerated CCF has received a 
reasonable amount of attention. Worthy of note in the present 
context are the experiments of Burkhalter and Koschmieder,s 
which were concerned with the influence of the sudden start 
of the inner cylinder on steady, axisymmetric Taylor-vortex 
patterns. Subsequent attempts to compute this flow9 using an 
axisymmetric computational model met with difficulty at the 
highest Reynolds number attempted, and one reason for this 
difficulty was speculated to be the presence of transient, non- 
axisymmetric modes in the laboratory experiments. 

As mentioned above, the focus of the earlier laboratory 
experiments3 was the determination of the onset time and 
axial vortex wavelength of the initial, axisymmetric Gijrtler 
instability. An early effort by Myers” to quantify the struc- 
ture of the nonaxisymmetric transition employed a low- 
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resolution, two-dimensional photodiode array, but suffered 
from inadequate spatial resolution to permit a reliable deter- 
mination of the azimuthal spectra during the transition. The 
present laboratory experiments utilize more sophisticated 
digital video data acquisition. 

The numerical solution of the unsteady, three- 
dimensional (3-D) Navier-Stokes equations is a task which 
may be undertaken, given recent advances in computer hard- 
ware and software. However, while steady 3-D flows have 
been computed for very complex geometries (particularly for 
compressible cases), there is not a large body of numerical 
work for unsteady, 3-D incompressible flow; what there is 
restricted to relatively simple geometries. Once again, CCF 
is an attractive candidate for the reasons previously stated. 
Such computations for wavy-vortex flow have been per- 
formed by Moser, Moin, and L,eonard,‘r Marcus,l’ and 
Coughlin and Marcus.13 This problem differs from those just 
cited, however, in that the sequence of instabilities observed 
leads to a flow with a variety of length scales, not all of 
which can be represented in the computation. For the nu- 
merical experiments of this paper, the problem of interest is 
solved numerically using a commercially available, spectral- 
finite-element code called NEKTON. Numerical solutions 
were attempted for one of the cases considered experimen- 
tally; laboratory and numerical results will be compared for 
this case. 

II. LABORATORY EXPERIMENTS 

A. Apparatus, instrumentation, and procedure 

The physical Taylor-Couette apparatus existed from 
previous experiments conducted by Kohuth and Neitze13 and 
Myers;” details of the design and of the brake/clutch mecha- 
nism used to effect the nearly impulsive stop may be found 
in the paper by Kohuth and Neitzel. The tlow regime has an 
aspect ratio of I?=37 and a radius ratio of g=O.5. The end 
walls of the apparatus rotate with the outer cylinder, so that, 
following the initiation of the experiment, they are tixed. 
Spin-down experiments by Mathis and Neitze15 determined 
the onset of instability to be due primarily to the spontaneous 
nucleation of disturbances rather than to the propagation of 
an end-wall vortex front and this conclusion is presumed to 
be valid for the present experiments. 

The 0uid used for these experiments is Dow Corning 
200 silicone oil with a nominal viscosity of ten centistokes at 
25 “C. Flow visualization is accomplished by seeding the 
silicone oil with grade 602 aluminum flakes from Alcoa Al- 
bron with a nominal size of 3 ,umX7 pmX2 pm. An empiri- 
cal relationship between the temperature of the fluid and the 
kinematic viscosity was derived from measurements made 
on the silicone-oil/aluminum-flake mixture. The flakes have 
a tendency to align themselves with the shear of the flow,14 
visually revealing the flow structure. Since the density of the 
aluminum flakes is slightly greater than that of silicone oil, 
they settle to the bottom of the apparatus over a period of 
time, requiring the fluid to be mixed before each experiment. 
The flow was seeded with just enough material so that the 
inner cylinder was not visible and the internal flow structure 
was masked during an experimental run. The result was that 
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flow patterns were observed only at the inner surface of the 
outer cylinder. 

Previous investigations3,” of this tlow have used either 
one-dimensional (1-D) or two-dimensional (2-D) photodiode 
arrays coupled with flow visualization to attempt to quantify 
its structure. While these methods were successful in identi- 
fying the axial wavelength of the initially appearing axisym- 
metric vortex structure,3 the use of a low-resolution 2-D ar- 
ray was unsuccessful in characterizing the azimuthal 
structure during the nonaxisymmetric transition from 
G&tier-Taylor-vortex flow.‘u 

The present work utilizes a video imaging/digitizing sys- 
tem. The primary components are an Imaging Technology, 
inc. (ITI) variable-scan frame-grabber (VFG) printed circuit 
board and a Dage-MTI, Inc. CCD-72 solid-state camera. Pe- 
ripheral components of the system are a Sony Trinitron color 
video monitor and a Mitsubishi BV-1000 super-VHS video 
cassette recorder. Finally, an ITEX-VFG subroutine. library 
and an image analysis software package from Bioscan were 
used to facilitate the data acquisition, reduction, and interpre- 
tation tasks. 

camera image calibrated, and finally, the temperature of the 
liquid was measured to allow the determination of its viscos- 
ity. The experiments themselves are carried out under the 
control of the PC, which establishes the initial state, initiates 
the unsteady ilow, and coordinates the data acquisition. The 
control/data-acquisition program prompts the user for the de- 
sired Reynolds number, measured temperature of the fluid, 
optical calibration factors, and the pixel column number cor- 
responding to the centerline of the cylinders. The computer 
uses the fuid temperature to calculate the viscosity, and 
hence, knowing the desired Reynolds number, the required 
angular speed, then initiates a ramping routine which is ex- 
ited once this speed is bracketed. A bisectioning routine is 
then executed until the difference between the desired speed 
and the actual speed is within a specified tolerance. The 
speed is held constant for 1.5 gap-diffusion times (d2/v) to 
ensure rigid-body rotation. The final task for the control sys- 
tem is the initiation of the unsteady flow, which is accom- 
plished by sending signals which sequentially disengage the 
clutch and engage the brake. 

The ITI VFG has the capability to accept either a stan- 
dard RS-170 interlaced signal (30 frames per second) or a 
noninterlaced signal from a fast-frame-rate camera. Prelimi- 
nary tests determined that there was no detectable degrada- 
tion of image quality due to the l/60 s lag between the cap- 
ture of the even and odd fields in the interlaced mode. 
Therefore, for ease of calibration and timing, data acquisition 
was performed in the interlaced mode. 

B. Data reduction and laboratory results 

Figure 2 shows a sequence of photographs from one of 
the experiments at Re=300 which identifies the different 
flow regimes. Table I provides a summary of onset time and 
spatial data for the five Reynolds numbers examined. 

The remainder of the system was designed around the 
capabilities of the VFG board. With the Mitsubishi super- 
VHS recorder, stable images are obtainable in both slow mo- 
tion and frame-by-frame modes, thus allowing the Row to be 
visually examined effectively and accurately at known in- 
stants in time. Since each experiment was recorded on video 
tape simultaneously with the digital data acquisition, a visual 
record was available for comparison with onset times and 
wavelengths determined from the analysis of the digital data. 
Though not necessary for these experiments, the data from 
the video tape can be post-processed and digitized, if desired, 
by selecting the VCR as the input source for the VFG. 

While the azimuthal flow structure is of primary interest, 
it is also desirable to obtain quantitative information on the 
axial structure. Since the initial instability is axisymmetric, 
its onset time can be determined by inspection of the time 
history of an axially sampled flow pattern. Digitizing the 
entire field of view would have reduced the data-acquisition 
rate intolerably compared to the speed at which changes take 
place in the flow. Instead, two orthogonal lines of pixels were 
digitized to provide the desired data. The horizontal line (480 
pixels) was defined by the center row of pixels to minimize 
the manipulation required to correct for curvature, and the 
vertical line (380 pixels) corresponded with the centerline of 
the cylinders. Due to the finite computational time required 
to write the data to the PC’s ram drive, the data-acquisition 
rate was limited to ten frames per second. 

The onset times and wavelengths of interest were deter- 
mined by analyzing the video-taped record of the experi- 
ments along with power spectra determined from discrete 
Fourier transforms (DFTs) of the luminance data. Before the 
DFTs could be calculated, however, steps had to be taken to 
condition the raw data. Slight variations in illumination were 
never totally eliminated since the aluminum tlakes have a 
tendency to stick to the outer cylinder, and the outer cylinder 
itself is not perfectly uniform. To eliminate contamination of 
the data by these factors, the luminance data from the first 
frame of data taken following the impulsive stop were sub- 
tracted from all subsequent frames. Noise introduced by 
glare from individual aluminum flakes was reduced by 
smoothing (using a five-point running average) the data be- 
fore calculating the power spectra. 

Once power spectra were calculated, the results were 
displayed in two formats to determine the quantities of inter- 
est: (i) the time history of amplitude for selected wave num- 
bers and (ii) the time history of the sum of the amplitudes of 
all of non-DC spectral components. Either of the graphs may 
be employed to determine the onset time of interest, but the 
second type proved more reliable when compared with a 
visual examination of the video tapes. Figure 3 shows the 
time history of the sum of all significant non-DC components 
for the axial direction for a typical case. The quantity k re- 
ferred to in the caption of this figure (and again in Fig. 4) is 
the axial wave-number index, defined in terms of the Fourier 
transform F(k) of the luminance data, i.e., 

Prior to the initiation of each experiment, the silcone oil .I 
was vigorously mixed to ensure even distribution of the alu- F(k)= i c f(i)ew 
minum flakes, the lighting optimized to reduce glare and the j=l 
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FIG. 4. (a) Spectral history of several distinct axial wave numbers for the 
same experiment depicted in Fig. 3: 0 k= 1; V k=2; E k=5; A k=6. The 
interactions of the wave numbers complicate the prediction of the onset 
time; (b) spectrum corresponding to t=O.lM. 

The time at which the amplitude begins to increase rapidly is 
identified as the onset time of the initial, axisymmetric insta- 
bility. The critical wave number is defined as the first wave 
number to exhibit such rapid growth in amplitude, and this 
information was obtained from the first type of graph, an 
example of which is shown in Fig. 4(a), which shows the 
DFT amplitude history of a few of the more powerful modes. 
In Fig. 4(b) is shown the complete spectrum corresponding 
to the time t=0.065, corresponding to the location of the 
maximum amplitude shown in Fig. 4(a). The same technique 
was applied to the azimuthal data to identify the onset and 
structure of nonaxisymmetric flow. 

Since such graphical analyses are obviously subject to 
personal interpretation, a more quantitative method was 
sought. A statistical scheme similar to that used previously3 
was devised to determine the onset time and critical wave 
number by comparing the difference between a central- 
running average of the power (using N, data points) and a 
backward-running average (of the first N2 data points) to a 
multiple (B) of the central-running standard deviation. Un- 
fortunately, it was impossible to find a single set of constants 

0.06 

0.04 

to 

0.02 

0 
180 200 220 240 260 280 300 

Re 

FIG. 5. Onset of the initial instability versus Reynolds number: 0 present 
results; A Kohuth and Neitze13. 

N, , Na, and B which would yield an onset time of either 
instability consistent with visual observations for all experi- 
ments. Therefore, all of the onset-time results which are pre- 
sented were obtained from a visual examination of either the 
video- tape or the graphs of the power spectra. 

Four quantities were desired for each experiment: (i) the 
onset time of the initial instability; (ii) the dominant axial 
wavelength at the onset of instability; (iii) the onset time of 
the transition to nonaxisymmetric behavior; and (iv) the 
dominant azimuthal wave number at the onset of the transi- 
tion. All times have been scaled by the diffusion time d”lv 
and axial wavelengths are scaled by the gap width d. Five 
experiments were performed at each of the selected Reynolds 
numbers; all results presented are mean quantities resulting 
from these experiments. 

1. The initial instability-Onset time and critical axial 
wavelength 

The results reported for the onset time t,, of the initial 
instability were determined primarily from the video tape. 
Since the appearance of the initial instability is spotty in 
nature, resulting from spontaneous nucleation of distur- 
bances along the wall of the outer cylinder, the results ob- 
tained from the video tape were considered to be more rep- 
resentative of the true onset times because the entire field of 
view, rather than just a single vertical line, was available for 
observation. In the cases where the initial instability devel- 
oped across the centerline of the cylinders, however, evi- 
dence of the instability appeared in the digitized power spec- 
tra of the axial structure at a slightly earlier time than it 
became visible to the naked eye. For such experiments, the 
result obtained from an examination of the power-spectra 
graphs is reported. The onset times obtained using a combi- 
nation of the graphical technique described above and the 
video tape agree well with those of Kohuth and NeitzeJ3 as 
shown in Fig. 5. 

Since the initial vortex pattern is very weak,5 it is diffi- 
cult to accurately measure the wavelengths of the Gijrtler 
vortices from the video-taped image as it appears on the 
monitor using image-processing software. Therefore, the re- 
sults reported for the critical wavelengths were determined 
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from analyses of the power content of individual wave num- 
bers. As with the measurement of to, the critical wavelengths 
determined here compare favorably with those of Kohuth 
and Neitze13 and serve to validate the present data acquisition 
and reduction techniques. 

2. Nonaxisymmetric flow-Onset time and critical 
azimuthal wave number 

As with the axisymmetric results, the onset times t, of 
the transition to nonaxisymmetric flow could be determined 
more accurately and consistently from the video tape than 
from the power spectra of the digitized luminance data since 
the entire field of view was available for examination. For a 
few of the experiments, the horizontal data-acquisition line 
happened to correspond with a region of the flow which did 
not exhibit any azimuthal structure until several seconds af- 
ter the flow had clearly transitioned to the nonaxisymmetric 
regime. Qpically, however, the transition times determined 
from an inspection of the video tape agree well with those 
determined from graphs of power spectra, regardless of 
whether a graph of individual wave numbers or the sum of 
the non-DC components was used. As with the analysis of 
the initial instability, the digitized data seems to be able to 
detect the development of the azimuthal structure at a 
slightly earlier time than can be detected visually if the data 
acquisition line crosses the region where the nonaxisymmet- 
ric disturbances first appears. For those experiments, the re- 
sult determined from a graph of the power spectra was used. 
Otherwise, the transition time, as determined from a frame- 
by-frame analysis of the video tape, was reported. 

The mean values for t,, shown as a function of Re in 
Fig. 6, exhibit the expected decrease in onset time with in- 
creasing Reynolds number. Shown for comparison purposes 
are estimates for the same quantity observed by Euteneuer16 
[who referred to the transition as a “Knickstelle”) for spin- 
down within a single cylinder. The difference A= t,- to be- 
tween the time of transition to nonaxisymmetric flow and the 
initial onset of instability, given in Table I, appears to be 
approaching a constant value for increasing Re. Although 
there is a decreasing trend in the mean values of At with 
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FIG. 7. Azimuthal power (sum of non-DC components) history for a case 
with Re=200 showing the transient nature of the nonaxisymmetric transi- 
tion. 

increasing Re over the range investigated, the scatter does 
not permit a definitive statement to be made regarding the 
existence of a positive lower bound. 

The critical azimuthal wave number m corresponding to 
Fourier mode eim ’ was determined to be m= 1 for all of the 
experiments, whether from the graphed data or simply from 
a visual examination of the video tape [an m=l tilting is 
apparent in the photograph of Fig. 2(c)]. The power spectra 
indicate a mildly significant contribution at the onset of the 
transition from the m = 2 waves for two of the experiments at 
Re=225, but the presence of such modes could not be ob- 
served from the video-tape record. Therefore, the critical azi- 
muthal wave number for all of these experiments is reported 
as m = 1, but the possible contribution of higher wave num- 
bers warrants further investigation. The numerical experi- 
ments on this problem to be discussed next also calculated 
m = 1 as the dominant wave number at the transition to non- 
axisymmetric flow, and Myers,” even with his poor resolu- 
tion, obtained this same result. 

The transient nature of the nonaxisymmetric flow re- 
gime, which is clearly visible in the photographs of Fig. 2, 
may also be seen by examining the long-time behavior of the 
power spectrum. Figure 7 shows the sum of the non-DC 
components of azimuthal power for a case at Re=200. Fol- 
lowing an initial period of noise, during which the pure-swirl 
and Gijrtler modes are present, the azimuthal power in- 
creases for a time, then returns to the initial noise level after 
the establishment of axisymmetric, Taylor-vortex Low. The 
reason behind the oscillation of the power for O.Xt~0.3 is 
not known, but may be related to the fact that data are col- 
lected only along a single horizontal (azimuthal) line. 

III. NUMERICAL EXPERIMENTS 

A. Formulation 

The governing equations for this problem are the incom- 
pressible Navier-Stokes and continuity equations. The gap 
width d is chosen as the length scale, the velocity is scaled 
by fld, the dynamic pressure p(fld)2 is used to scale the 
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pressure, and the time scale is chosen to be the diffusion 
time, d’/v. After scaling, the resulting equations are 

^ L 

Re-’ u~+uu,.+” u~+wu,-- 41, 
r r 

Re-’ v~+u~J,+ f v~+wv,+ 7 

1 
= ---ps+Re-’ V’v- $t- 
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2 

r ;rue 2 
i 

Re-‘w,+uw,+ p we+wwZ=-Pe+Re-tV2~, 

where V” is given by 

1 d d 1 d2 d2 
V2’y-$ ‘5 +p-#+-Q 

i i 

(lb) 

u, v, and w correspond to the velocity components in the 
radial, azimuthal, and axial directions, respectively, and 

iid2 
Re= - v ’ 

is the Reynolds number defined previously to characterize 
the experiments. The initial condition is 

u=o, v=r, w=o at t=O, i3i 

and the boundary conditions to be applied are the kinematic 
and no-slip conditions at the inner and outer cylinders 
(4a),(4b) and an assumption of periodicity in the axial direc- 
tion (4~): 

u=w=o, 
7;1 v 

y=y-lq at r=- 
1+ 7’ 

1 u=v=w=o at r=fi, 

4ir, 60) =dr, @J), (4c) 

where 4 represents any of the velocities or the pressure and r 
is the chosen length over which the flow is assumed periodic, 
Periodicity in the azimuthal direction with period 2~ is also 
required. The condition (4~) requires some discussion. The 
domain of the flow to be computed is idealized to be infinite 
in axial extent and the flow is assumed to exhibit a periodic 
axial structure of dimensional period L allowing computa- 
tions to be performed over a single periodic ce11.r7 Such an 
assumption is consistent with the initial and final axisymmet- 
ric Gijrtler and Taylor-vortex states and assumed to hold for 
the regime of interest. The choice of the parameter I’ is a 
troublesome one, however, since a single value will not serve 
all possible steady or transient vortex patterns. More discus- 
sion of this point will follow. 

B. NEKTON spectral-element code 

The NEKTON code18 uses the spectral-element methodlg 
to solve the time-dependent, incompressible Navier-Stokes 
and/or heat equations, as well as various subsets of these, in 
one, two, or three dimensions. The spectral-element method 
combines the exponential accuracy associated with spectral 
methods with the ease of implementation of finite-element 
methods. The main difference between the spectral-element 
and finite-element methods is that high-order spectral func- 
tions rather than simple, low-order polynomials are used to 
perform the elemental interpolation steps. This results in 
large systems of linear equations which, although sparse, 
provide spectral accuracy. 

NEKTON uses Lagrangian interpolation on a Gauss- 
Lobotto-Legendre mesh. The overall temporal accuracy is 
specified as O(At j; spatial accuracy is given as 
0 [ A3 exp(- a)], where p is the problem dimensionality, 
N is the number of elements, and iy is a constant. The fhst 
component of this error is due to the decomposition of the 
global domain into elements and the second is due to the 
spectral nature of the interpolating polynomials. Thus the 
order of the interpolating polynomials has a greater effect on 
reducing the error than the number of elements. The solution 
to the discretized linear equations is performed using a solver 
based on conjugate-gradient iteration for the implicit terms 
and matrix multiplication for the explicit terms. 

A simulation is performed by specifying an elementa 
problem domain, along with initial and boundary conditions, 
through an interactive, graphical preprocessor. There are 
three basic tasks to be performed by the user. The first is the 
design of the computational domain, in terms of both the 
number of elements to be employed and the order of the 
interpolation polynomials which will be used. For a given 
machine, these two parameters are closely linked. The sec- 
ond is the selection of a method for formulating the dis- 
cretized governing equations. Three options are provided: the 
split, stress, and nonstress options. The primary difference in 
these formulations is in accuracy, execution time, and appli- 
cability to certain problems. Finally, a time step must be 
specified, however, the code will modify this time step if 
necessary in order to ensure Courant-Friedrichs-Levy 
stability” of the convection terms. The code then solves the 
equations for either a specified final time or number of time 
steps. 

The user also specifies the form of the desired output. 
This can be either a complete dump of field variables or the 
time history of the field variables at specific nodal locations. 
The latter are referred to as history points. While the user can 
specify the frequency of the field dumps, there is no way to 
limit the rate of output of history points. Analysis of the 
results of a simulation is accomplished by a post-processor, 
which allows the computed quantities to be displayed graphi- 
cally. 

In spite of its generality, there are some limitations to the 
code (Version 2.7, used for the calculations reported here, is 
described; the current version referenced in the bibliography 
is 2.85). First, three-dimensional calculations are performed 
in Cartesian coordinates only, meaning that a purely axisym- 
metric solution may be more difficult to attain. Second, the 
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selected order of the expansion polynomials must be the 
same in all coordinate directions. Therefore, the only way to 
increase accuracy in a particular direction to resolve sharp 
gradients is to add more elements. Third, there is no provi- 
sion to allow the user to output field variables for a subdo- 
main of the tlow to an external file for additional processing, 
although possible in previous versions of the code. 

C. Numerical procedures 

The numerical procedures necessary to perform the fully 
three-dimensional Taylor-Couette problem can be divided 
into three main parts: domain design, computation of the 
solution, and data reduction. The majority of the calculations 
referred to here were performed on an IBM RISC/6000 
(model 530) workstation located at the Georgia Institute of 
Technology. Preliminary computationszl on a related prob- 
lem indicated that, of the three formulations available in 
NEKTON, the split formulation provides accuracy equal to the 
other formulations with a substantial reduction in CPU time; 
hence, it is the formulation employed for the results pre- 
sented here. 

The design of the computational domain is perhaps the 
most important part of the preparation for the computation. 
In accomplishing this, there are two primary considerations, 
namely, the selection of the type of domain (and the associ- 
ated geometric domain parameters) and its discretization into 
spectral elements, including selection of the order of the in- 
terpolating polynomials. A truncated, infinite domain with 
periodic end conditions was selected as the domain type for 
this problem, as already mentioned. Other types were exam- 
ined, however, including a complete, finite domain with fixed 
boundary conditions at the ends to correspond to the condi- 
tions of the laboratory experiments and a finite, half-domain 
with a fixed boundary condition at the cylinder base and a 
symmetry boundary condition at the midplane. Unfortu- 
nately, memory limitations of the RISC/6000 machine would 
not allow adequate resolution with a domain other than the 
axially periodic one employed. 

As mentioned earlier, a single aspect ratio will not allow 
the accurate representation of all possible flow states, due to 
the fact that smaller, initially appearing, Giirtler vortices ul- 
timately give way to larger, Taylor vortices. The aspect ratio 
which was decided upon for the present computations was 
selected with the final, steady Taylor-vortex state in mind. It 
is well known that Taylor-vortex flow consists of pairs of 
counter-rotating vortices, each vortex being approximately 
square in cross section. Thus, if the dimensional gap width 
between the cylinders is d, the height of the domain required 
for K pairs of vortices is approximately 2Kd. To ensure that 
proper behavior at steady state is realized, the aspect ratio 
must be selected such that the Taylor vortices appear in pairs 
of equal and opposite strength. Numerical experimentation 
resulted in the selection of an aspect ratio for these compu- 
tations of lY=2.0. The radius ratio used was set to ~=0.5 to 
allow comparison with the experiments. 

The final consideration in the domain design is the se- 
lection of the discretization (in terms of spectral elements) 
and the order of the interpolation polynomials. Many differ- 
ent domains were examined. This part of the design process 
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FJIG. 8. Elemental mesh used in the solution of the unsteady CCF problem. 

involves examining the trade-offs between the number of 
elements and the order of the interpolating polynomials. Nu- 
merical experiments on a simpler, related problem resulted in 
the selection of the mesh shown in Fig. 8; it has 160 ele- 
ments and uses fifth-order interpolation polynomials. The 
numbers of nodes in the r, 8 , and z directions are 21,32, 
and 17, respectively, giving a total unique node count of 
11 424. Oscillations are observed in flow quantities at small 
times in the computation immediately following the impul- 
sive stop, but these diminish rapidly, prior to the appearance 
of the initial Giirtler instability. 

As discussed for the laboratory experiments, the power 
spectra determined by Fourier transforming flow quantities 
in the azimuthal direction were used to determine the onset 
times and azimuthal wave numbers for the nonaxisymmetric 
disturbances. The quantity selected for the computation of 
these power spectra was the z component of velocity, w, at 
32 discrete, constant-radius, constant-height points around 
the cylinder. The points were chosen to be the nodes just 
inside the outer cylinder. This is to simulate, as well as pos- 
sible, the results obtained from the laboratory experiments by 
the interpretation of flow-visualization data. The selected ve- 
locities were written to disk at every time step. The vertical 
velocity was chosen because of the necessity of solving the 
problem in Cartesian coordinates and the vertical velocity 
corresponds to the axial component in a more natural cylin- 
drical coordinate system. Determination of the radial or azi- 
muthal velocity components would entail additional compu- 
tation and storage. 

Although every time step is recorded, only 512 frames of 
data are actually used in the power-spectrum analysis, where 
a frame is defined as a complete set of vertical velocities for 
each of the 32 history points at a given time step. Since no 
mechanism exists in the code for limiting the rate of data 
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output, the excess points are discarded at the conclusion of 
each run. Each of the 512 records is Fourier transformed to 
obtain a power spectrum for each of the corresponding times. 
Since NEKTON only allows the recording of velocity histories 
at nodal locations, and since the Gauss-Lobotto-Legendre 
mesh nodes used in the program are not equally spaced in the 
azimuthal direction, a discrete Fourier transform (DFT) had 
to be used in place of a more efficient fast-Fourier transform 
WV. 

Specific details of the statistical analysis can be found in 
Little.21 It suffices to say that the onset of a particular wave 
number is determined to be the time at which a central run- 
ning average of the amplitude spectra is greater than a con- 
stant multiple of a central-running standard deviation. The 
constant is chosen such that the onset times obtained agree 
visually with plots of the amplitude-spectra histories. The 
overall onset time t, is then the minimum value of the onset 
times of all wave numbers, and the wave number m for 
which this occurs is deemed to be the critical one. Such an 
approach was unsuccessful with the laboratory data. We are 
concerned here only with the determination of the time at 
which the nonaxisymmetric transition appears. Storage of 
axially placed history data necessary to calculate spectra to 
locate the initial Gijrtler instability was prohibited, once 
again, by memory limitations. 

D. NUMERICAL RESULTS 

NEKTON was used to calculate the unsteady, three- 
dimensional impulsively initiated circular-Couette flow of in- 
terest for the case Re=300. This Reynolds number corre- 
sponds to one of the cases examined in the laboratory. In 
order to determine the time evolution of the flow structure, 
the 32 azimuthal history points just described were placed at 
(T,z) = (1.965 ,0.914), which is just inside the outer cylinder 
and slightly below the midplane of the computational do- 
main. 

Equally spaced temporal data were desired to simplify 
the statistical procedure used to determine the onset of times 
of transient, nonaxisymmetric instability. In order to obtain 
equally spaced time stepping, it was necessary to run the 
code twice. As mentioned earlier, NEKTON automatically ad- 
justs the time step in order to satisfy the Courant- 
Friedrichs-Levy stability condition. For cases in which there 
are large variations in the flow velocities over the course of a 
run, this results in the usage by NJZKTON of unequal time 
steps. This automatic time-step selection can be overridden, 
however, it is necessary that stability criteria be observed. 
Consequently for the first run, the code was allowed to chose 
the time steps. These were recorded and, after completion of 
the run, the minimum value, At,, , was noted. The code was 
then switched to a fixed-time-step mode and restarted, using 
a manually set time step equal to or smaller than At, to 
ensure stability. For the case presented here, the time step 
was selected to be At =8X10-s. Another option, of course, 
would be to just interpolate the results from the runs with an 
automatically selected time step and then transform these 
data. This would yield spectra colored by the interpolation 
scheme used; since the RISC workstation was essentially a 

dedicated machine, it was decided to directly compute the 
results for equally spaced times. 

Experimentation was also necessary in order to deter- 
mine the time necessary to reach steady-state time. The re- 
sults of Kohuth and Neitze13 and the present experiments 
were available to guide this aspect of the work. Knowledge 
of this time was necessary to ensure that the transition from 
axisymmetric (Giirtler-vortex) flow to nonaxisymmetric flow 
and back to axisymmetric (Taylor-vortex) flow would be re- 
alized. The laboratory experiments revealed that a time of 
t,=0.8 would be sufficient for all the pertinent flow regimes 
to be realized. This, coupled w-ith the specified At, requires a 
total of 10 000 time steps. Certainly, for determination of the 
onset time of nonaxisymmetric modes alone, it is not neces- 
sary to compute the flow completely to steady state, but only 
to some time at which the nonaxisymmetric flow is evident. 
However, the more complete computation performed here 
lends credence to the ability of the code/model to at least 
qualitatively mirror the physics observed in the laboratory. 

Figure 9 shows a time sequence of meridional-plane 
streamline histories for four different values of azimuthal 
angle 0. In Fig. Y(a), the streamlines indicate that the flow is 
still an axisymmetric swirl flow, i.e., no Giirtler mode is yet 
visible, while in Fig. 9(b), these have clearly appeared, ex- 
hibiting only very weak azimuthal dependence. In Fig. 9(c), 
a definite loss of axial symmetry is clearly evident. Figure 
9(d) shows that, at time t=0.4, the flow is still nonaxisym- 
metric, but the nonaxisymmetric effects are clearly decaying 
as compared to the previous plot. Finally, Fig. 9(e) shows the 
flow after it has essentially reached a steady state of Taylor- 
vortex flow. Thus, the computation appears to have repre- 
sented, at least qualitatively, the transitions which are ob- 
served experimentally. 

A graph of the power-spectra history for this computa- 
tion is given in Fig. 10, in which only those azimuthal modes 
with sufficient power to be visible on the figure are shown. A 
comparison between Fig. 10 and its experimental counterpart 
(Fig. 7) shows a definite similarity, in that the transient na- 
ture of the nonaxisymmetric flow regime is clearly repre- 
sented in both the computation and flow-visualization data. A 
casual inspection of these data reveals that the computed 
onset time appears to be around t,=0.04 and that the onset 
wave number is m = 1. The measured onset time for nonaxi- 
symmetric flow for Re=300 was t,=O.029. It is possible that 
the differences are due, in part, to the selection of the axial 
extent of the computational domain which coincides with the 
expected size of the final Taylor-vortex flow. Indeed, if the 
results of Fig. 9(b) are representative of the initial, Giirtler- 
vortex mode, the presence of four pairs of vortices in the 
domain would correspond to an axial wavelength of X=0.5, 
rather than the measured value of X=1.1 (see Table I) for 
Re=300. In fact, a mode with the experimental axial wave- 
length is impossible to represent in this computational do- 
main. Another possibility is that the vortices present in Fig. 
9(b) are merely numerical in nature and not representative of 
the initial onset. Some evidence in support of this may be 
provided by the magnitude of the streamfunction, which is 
0(10m3) for the case of Fig. 9(b), compared to O(1) for the 
flow in Fig. 9(e) and the fact that the experimentally deter- 
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FIG. 9. Computed meridional streamlines at four azimuthal positions (O”, 
90”, 180”, and 270”) at dimensionless times (a) 0.005; (b) 0.01; (c) 0.1; (d) 
0.4; (e) 0.8. In all cases, the left and right boundaries correspond to the inner 
and outer cylinders, respectively. 

mined onset time of ta =0.021 is double the time of the com- 
puted state represented in Fig. 9(b). 

An expanded plot of the spectral histories prior to time 
t=0.04 reveals contributions from m==7 and m = 15 which 
are larger in amplitude than those of m = 1, and a na’ive sta- 
tistical analysis would return the result that these correspond 
to the onset wave numbers. However, the magnitude of the 
power contained in these modes at these early times is two 
decades below that observed in Fig. 10, so that these contri- 
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FIG. 10. Computed amplitude spectral histories for three azimuthal wave 
numbers: 0, m=l; A, m=2; V, m=7. 

butions are more likely indicative of random noise than of a 
significant change in the flow. The statistical analysis for 
onset wave number m= 1 revealed the onset time to be 
t,-0.0411. 

IV. DISCUSSION 

The primary goal of this investigation was to obtain 
quantitative results regarding the role of nonaxisymmetric 
modes in the selection of an axial pattern for this unsteady 
CCF. Both laboratory and numerical experiments indicate 
that the initially appearing, axisymmetric Gortler vortices 
lose stability to a nonaxisymmetric mode with an azimuthal 
wave number m = 1 as the underlying swirl flow continues to 
decelerate. The ensuing adjustment of the vortices results, 
ultimately, in the establishment of a steady, axisymmetric 
Taylor-vortex state which persists indefinitely. 

The laboratory experiments, performed with the use of 
flow visualization and digital photography, used a pair of 
horizontal and vertical lines along which to collect reflec- 
tance data, which was then Fourier transformed to examine 
the spectral character of observed spatial variations. In some 
instances, the horizontal line of data, from which the azi- 
muthal variations were detected, coincided with a nodal line 
in the flow so that the true onset of nonaxisymmetry was not 
located by this technique, but rather, from an examination of 
the video tape. The collection of more on-line data during the 
course of the experiment would have significantly slowed the 
framing rate and also have required more extensive curvature 
corrections to be made prior to processing. The alternative is 
to flatten the image, either optically, prior to photographing 
the flow, or through software manipulation of the video-tape 
images. Neither of these was done for this set of experi- 
ments. 

The numerical experiments utilized the code NEKTON, a 
spectral-element package capable of performing unsteady, 
three-dimensional computations. The results obtained appear 
to be valid in a qualitative sense, although they are not in 
complete quantitative agreement with those of the laboratory 
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experiments. The regimes observed experimentally3 are all 
present in these computations. There is agreement between 
the azimuthal wave number measured at the onset of non- 
axisymmetric flow and that computed here. The computed 
onset time for the Gortler-mode onset appears to be smaller 
than that observed in the laboratory while that computed for 
the nonaxisymmetric transition, however, is significantly 
higher. From Fig. 9(b), it would appear that the (unknown) 
value of the onset time for the initially appearing Giirtler 
mode is, at most, t,=O.Ol. The experimentally measured on- 
set time of t,=O.OZl (Table r) indicates that the flow should 
still be pure swirl at this time. There are at least three pos- 
sible reasons for this discrepancy. The first two, relating to 
the imposition of a fi%ed axial periodicity and the magnitude 
of the streamfunction, have already been discussed above. It 
would seem reasonable that a smaller-scale disturbance such 
as that computed here should have been visible in the labo- 
ratory experiments, if strong enough. The third reason could 
be related to the oscillations induced into the computations 
by the unrealistic, theoretical sudden stop. It is known that 
the instability results from an imbalance between the radial 
pressure-gradient force and the centrifugal force. Thus small 
inaccuracies in this profile could lead to premature onset 
times by serving as finite-amplitude disturbances.17 

The problem of the axial extent of the computational 
domain for an unsteady problem of the type computed here 
is a troublesome one. One would like to compute the flow in 
a domain of limited axial extent from the standpoint of 
economy. Consequently, the computation reported here is 
performed under the assumption of axial periodicity with the 
length of the domain selected so that the final steady-state 
pattern is well represented. Numerical experiments by Chen, 
Neitzel, and Jankowski17 have shown that, for a circular 
Couette flow with a ramped inner-cylinder speed, the proper 
steady state Taylor-Couette flow can be obtained for values 
of I? in the range 1.9<l7<2.1. On the other hand, Liu and 
Chen’* observe that aspect ratios less than 0.8X where X is 
the axial wavelength of one pair of Taylor vortices, will re- 
sult in either no onset of instability or onset that is signifi- 
cantly delayed. Thus it is possible that the use of a truncated, 
infinite domain, regardless of I?, will result in inaccuracies in 
the onset wavelength or onset time. 

One remedy for this problem, of course, would be to 
perform the calculations in a complete, finite domain or at 
least a finite half-domain with a symmetric boundary condi- 
tion at the midplane. Such calculations of unsteady axisym- 
metric swirl flows have been done by Neitzel and DavisU 
and Neitzel’ with some degree of success. The inclusion of 
the third dimension, however, makes such an undertaking 
prohibitively resource expensive at the present time. The 
negative side of this, were it a practical solution, is that each 
computation is dependent upon the finite geometry selected. 
The ideal solution for the present problem would calculate 
the true infinite-cylinder problem, but such an effort must 
include allowing the computational domain to dynamically 
adapt to the changing flow structure. 
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