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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
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CHARACTERIZATIONS OF BERGMAN SPACES 
AND BLOCH SPACE IN THE UNIT BALL OF Cn 

CAIHENG OUYANG, WEISHENG YANG, AND RUHAN ZHAO 

ABSTRACT. In this paper we prove that, in the unit ball B of C", a holomor- 
phic function f is in the Bergman space LP(B), 0 < p < 00, if and only 
if 

LVf(z)j21f(z)1p-2(l _ IzI2)n+1 dA(z) < 0, 

where V and A denote the invariant gradient and invariant measure on B, 
respectively. Further, we give some characterizations of Bloch functions in the 
unit ball B , including an exponential decay characterization of Bloch functions. 
We also give the analogous results for BMOA(aB) functions in the unit ball. 

1. INTRODUCTION 

Let A(B) denote the class of holomorphic functions in the unit ball of Cn. 
For 0 <p < 00, the Bergman spaces LPa (B), the Hardy spaces HP (B) and the 
Bloch space R(B) on the unit ball B are defined respectively as 

La(B) = {f: f E A(B), IlfIIg = L If(z)|I dm(z) < x} 

HP(B) = {f: f E A(B), IIfIl|p= Lsup If(r4)IP d( a) < oo} 

and 

(B)= {f: f E A(B), 5IlfIll = sup Qf (z) < oo} 
zEB 

where Qf was defined by R. Timoney in [9], dm is the normalized Lebesgue 
measure on B, and du is the normalized Lebesgue measure on the boundary 
aB of B. 

In [8], M. Stoll proved that a holomorphic function f on B is in HP(B), 
O <p < 0, if and only if 

L IVf(z)l2If(z)IP-2(1-1z12)n dI(z) < 0, 

where V denotes the invariant gradient and A the invariant measure on B. 
Furthermore, if f E HP(B), then 
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lim(1 - r2)nL IVf(z)2 If(z))I"-2 d)A(z) = 0, 

where Br = {z E B: lzl < r}. 
These results were first given by S. Yamashita in [11 ] and [ 12] in the unit disk 

of C. In [13], the results for Bergman spaces similar to that of Yamashita's 
were given on the unit disk D. 

The main purpose of this paper is to obtain the analogous result for functions 
in the Bergman spaces LP, on the unit ball B of Cn . Furthermore, some new 
characterizations of Bloch space ?(B), including an exponential decay type 
characterization, are given too. The main results of this paper, which are also 
similar to that of [13] in case n = 1, are as follows: 

Theorem 1. A holomorphic function f is in LP,(B), 0 < p < o, if and only if 

L IVf(z)l2If(z)IP-2(I - 1z2)n+ dA(z) < 0. 

Furthermore, if f E LPa(B), then 

lim( 1- r2)n+l r IVf(Z) 12 1f(Z) lp-2 d) (z) = 0. 

Theorem 2. Let n > 1, p > 2; then the following quantities are equivalent: 

(i) lIfl pII, 
(ii) J2 = SupaEB fB 1Vf(z)12 1f(z) -f(a) lp2 

* (I - _ ga(z) 12)n+l I fa (z) l -2n+2 dA(z) 
(iii) J3 = SuPaEB fB -Vf(z) 2 ff(z)-f(a) Ip2[G(z, a)]'1+ dA(z), 

where (0a denotes the involutive automorphism of B satisfying (Oa(O) = a, 
Oa (a) = 0, (Oa (Oa (Z)) = z, and G(z, a) denotes the Green's function of B . 
Theorem 3. Let n > 1; then a holomorphic function f E ?4(B) if and only if 
for every a E B and every t > 0 there are positive constants K and /3, such 
that 

j IVf(z)I [ G (z , a) n+ dA (z) < Ke-t 

where Ea,t = {z E B : If(z) - f(a)l > t}. When f E ?, K = KoIIfll7, 
fi = C/llf IJ, where Ko and C are constants depending only on n . 

In Section 2, we first give some notations. Theorem 1 is proved in Section 3. 
Theorems 2 and 3 are proved in Section 4. In Section 5, we give some charac- 
terizations of BMOA(OB) which are similar to Theorems 2 and 3. 

2. NOTATIONS 

For each a E B, let (Pa(Z) denote the involutive automorphism of B as 
given in [6] by W. Rudin. Let Vf(z) = (Of/Ozi, ... , Of/Ozn) denote the 
complex gradient of f and Rf = 7n Zj(O f/O zj) the radial derivative of f . 
Let 

dA(z) = (1 - IZ12)n+1 dm(z); 



BERGMAN SPACES AND BLOCH SPACE IN THE UNIT BALL 4303 

then dA is the invariant volume measure corresponding to the Bergmen metric 
on B; that is, 

jf(z)ddA(z) = jfo yV(z)dZ(z) 

for each f E LI (d)) and all v' E Ar, the group of Mobius transformations of 
B . 

For f E C2(Q?), Q2 an open subset of B, define 

Af(z) = n ff ? 9z)(0) 5 

as in [1], 

=) n+ 1(1 - 1Z12) Z (31 - Zj) aZf(Z) 
i,j= 

The operator A is invariant under X; that is, A(f o v) = (Af) o V for all 
Y/ E X'. See [6, Section 4.1] for details. Let V denote the invariant gradient 
on B. Then 

4 O f ag1 
(Vf(z) , g(z)) _+1(1 _zI2) [L(Ei - zizj)foziJ 

If f is holomorphic on B, it is given in [8] that 

Ajfj2 = jVfj2 = n 1_(1 - Iz12)(jVfl2 - jRfj2). 

Throughout this paper, C and Cj are constants depending only on the di- 
mension n. M is a finite number, and M(r) is a finite number for a fixed 
r E (0, 1]. C is not necessarily the same in each appearance, nor are Cj, M, 
M(r). 

For convenience, A(f, r) - B(f, r) means that there exist constants N1, 
N2, Cl and C2, so that 

N1 + CIA(f, r) < B(f, r) < N2 + C2A(f, r), 

where N1, N2 may depend on f, but they are finite quantities for a fixed 
function f. 

By [10], the invariant Green's function on B is given by G(z, a) = g((a(Z)) , 
where 

g(z) =n+ jn(l - t2)n-It-2n+I dt. 

Here we state the Green's formula for an invariant Laplacian (see [7, (92.5)1). 
If LI is an open subset of B, Q c B, whose boundary is good enough (in our 
application, Q2 will be an annulus) and if u, v are real-valued functions such 
that u, v E C2() n C(), then 

j(uAv -vAu) dt= j(ui- 
v 
5) da, 

where T and a are the volume element on B and surface area element on 
(99i determined by the Bergman metric, and 19 denotes the outward normal 
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differentiation along OQ2 with respect to the Bergman metric. It is known (cf. 
[1]) that the volume element T is given by 

dT(z) = 2n(l - IzV)n+1 dm(z), 

where w,n denotes the Euclidean surface area of OB and the surface area ele- 
ment Ur on a9Br is given by 

dcf (rc~) =Co6n(n + 1)n-Ir2n- 1 

3. PROOF OF THEOREM 1 

To prove Theorem 1, for e > 0, let 

VE(Z) = (If(Z)1 + e)pI2, O < p < o; 

then v8 E Co. Since Ag = 0 on B\{O} and g = g(r) on dBr = {z E B: 
IzI = r}, using Green's formula with u = g - g(r), v = vE and Q = {z E B: 
3 < lzl < r}, we can conclude 

L|Izr(g - g(r))Av6 dT 
<Ilzl<r 

Br rn [Bj 9n Bf a n ] 
Because O is bounded on dBj, g(6)62n-l O_ 0 (3 -- 0) and g is integrable 
near 0 (3 :0 O), taking the limit O0, we get 

( 1 ) | (g-g(r) g g)v dA ve(r4) dc(r) -v (0). 
Br A~~~~B 

Let 

fl(z) = P If(z)IP-2jVf(z)j2, 4 
by [8], for 0 < p < o; when e -O 0, 

Av,(z) - _(z) a.e. on B. 

For a fixed r, from (1) and by the monotone convergence theorem, we have 

(2) lim j(g - g(r))Av6d) = lim (j ve(r) d() V. (O)) 
(2) r- 

- 

= LB If(r4)IP do(g) - If(?) P 
B 

By (2) and the Fatou Lemma 

j(g - g(r))fIp dA) = j lim(g - g(r))Av, dA 

< lim (g - g(r))Ave d) 
0 Br 

= LB f(r4)iP dg(,) - f(O) IP = M(r) < oo; 
B 
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thus, (g - g(r))g is integrable on Br with respect to dA. 
As 0 < p < 2, for a fixed r, by [8], AVe(Z) < 2fp(z), a.e. on B , and thus 

2 

(g - g(r))Av6 < (g - g(r))2-f, a.e. on B. 
p 

As p > 2, for e E (0, 1] 

Av? < M(r) < oo, on Br, 

and thus 

(g - g(r))Av, < M(r)(g - g(r)) 

(here g - g(r) is obviously integrable on Br). 
Using the dominated convergence theorem with both 0 < p < 2 and p > 2 

and from (2), we get 

j(g - g(r))fdp = liimj (g - g(r))AvcdA 

= LB jf(r4)jP da(4) - If(O)IP. 
B 

Let 

(t) {(1, t > IZI, 
0 ~otherwise; 

then the left side of (3) is 

j(g(z) - g(r))Jp(z)dA(z) 

- |' f#(z) d A (z) (n + 1 f (1- t2)n) dt) 

(4) 'Br r2' J0Z t2' n I 
-n+ L| #(Z)d,(Z) (z (1 2-1 Xlzl (t)dt 

- n2 I r(1 2n-l dt J ](z) d).(z). 

Obviously, the end of (4) 

n +1 [r (1- t2 )n1 dtf gp*(z)dA)(z) 
()2n ot2n1 t 

On the other hand, for 0 < r < 1, there exists a positive integer k, so that 
1/2k< r < 1/2k-1 ; then 



4306 CAIHENG OUYANG, WEISHENG YANG, AND RUHAN ZHAO 

n +1 r ( t2)n-) ( Jg(z) dl(z)) dt 

n+ 1 |o r1t2 (1-|)- ft()i)d 

2n 0t2nB1 

(6) n+ 1 I2k(2n-1) (2r( )) r 1-t2)n-1 (Lf(z)d(z)) dt 

n+1 f (1-t2) (| g(z) di'(z)) dt 

+ 2f+ 122n1r2n+lj (1-t2)n-1 (I t(z)di(z)) d 

n1 +t2. 

By (4) and (3), 

= (g(z) - g()) dA(z) 

= L It(2)tP d(4) - tf(O)tP <ox. 

B 

Thus, it follows from (4), (5) and (6) that 

|B- g( Z- r) )j7#(z) di( z) w r-2n+1 J( 1 -t2) n-1( g (z) dt(.) 

Moreover, by (3), we have 

(7) LB If(rn)I + d2(2n) r- 2 (1) - t2)nI (j g(n)d)p(z) dA(z) dt 
Hence 

If In = 2n 1 r2n1 drj If(r4)IP d(4) J1 d r (jr( - t2)n-1 dtL g f(z) di(z) ) 

= j(1 - t2)n-I dtj (z) dt(z)jdr 

J n t2)ndtjg f(z)dA(z) 

=|L 17(z)dt(z)j|(1 -t2)n dt 

jn I - (z2)n+ I lg (z) dd(z) 

I 2(z)IP-2( -p1z12zn+ d)4z), 

B 
2 
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and thus 

f E LP (B) j |Vf(z)I2If(z)Ip-2(j _ 1z12)n+1 dA(z) < x a 

That is the main part of Theorem 1. 
When f E LPa (B), by the above result, 

jj I vf(z)12If(z)lp-2(l _ 1z12 ndA(z) dt 
O t 

= jj IVf(z)I21f(z)lp-2(1 _ Iz22)' dt d(z) 

< IVf(z)I2If(z)Ip-2(j -1z2)n+1 dA(z) < o, 

and thus 

(8) lim J Vf(z)I2If(z)Ip-2( - 1z12)n dA(z) dt = 0. 

Furthermore 

(1 - r2)n+l 1| Vf(z)121f(z)lp-2d)(z) 

(9) < 2(1- r) jIVf(z)I2If(z)jp-2(j - 1z12)n dA(z) 

< 2j J Vf(z)I2If(Z)Ip-2(j - Iz12)ndA(z)dt. 

By (8) and (9), we conclude 

lim(l - r2)n+l L| Vf(z)I2If(z)Ip-2 dA(z) = 0. 

That is the last part of Theorem 1. 

Remark 1. From (7) we can get another proof of Theorem 1 of [8]. In fact, 
letting r -. 1 in (7), we get 

IIfIL~~ jip t2)n 1 dtj fg(z)d) (z) 

= L ](z) d) (z) (1 - t2)n1 dt 
B l~~~~~ZI 

L IVf(Z)I2If(Z)Ip-2(1 _ 1z12)n dA(z) 

Remark 2. Theorem 2 in [8] can be concluded from (3). Taking the limit r . 1 
on two sides of (3), using the monotone convergence theorem, we get 

(10) IIfIIP = If(O)IP + PH4 L Vf(z) 2lf(z)lP2g(z) d).(z). 

This is equivalent to the result of Theorem 2 of [8]. 
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4. CHARACTERIZATIONS OF BLOCH SPACE IN THE UNIT BALL 

Lemma 1. Let n > 2 be an integer; then there are constants C1 and C2 such 
that, for all z E B\{O}, 

CI(I - IZ12),IZI2(n-1) < g(Z) < C2(1 _ Iz12)nIz-2(n -1) 

where 

g(z) =n +1 j r-2n+l(I - r2)n-" dr. 

Proof. It is easy to see that 

(11) urn~~ii g(z) n n+1 
)lZIl-l (1 - Izj2)nIZI-2(n-1) - 4n2 

and 

(12) lrn g(z) n n+1 
lzil-mO (1 - Iz12)nIzI-2(n-1) - 4n(n - 1) 

The result of Lemma 1 comes by the continuity of g(z), (11) and (12). 

Proof of Theorem 2. Replacing f in (3) by fa = fo 0Pa(D) - f o (Da(O), we get 

4 L vfa(W a(W)-p-2(g(W) - g(r)) dA(w) 

= LB Ifa(r4)IP da(C). 
B 

Therefore 

AIlfallp =4 A Ifa(z)IPdm(z) = 8j r2n Idr Ifa(rC)IPda(C) 

= n 2n-1 drj)I2gr) d(w = 2n r dr j 'Vfa a(W)Ip-2(g(W) - g(r)) dA(w) 

< 2n + dr ( t)dj rIa(W)fp-2(g(W) - g(r)) dA(w) 

I r I _ t2 )n-I (1-t) 

= (n + 1)] dr f()t2n- dtI fVfa(W(aI(W)dlp-2]d(w) 

=(n+1JI I - t2)nt-I dt /; 2l Ifawlla()P2i 

=(n + 1 ) t2,n-1 dt dr IVg(W Vfa(W a lP2d(W) )p2dw 

= (n + 1 ) t2| -vf dt ) fa(Waa(w) l-2 dA(w)| ( t,t )dt 

< 2n L 1Vfa(W)I2Ifa(W)Ip-2( d-wI2)g(W) dAI(w) 

? Cf/ IVfa(W)12lfa(W)Ip-2(l - IW12)n+IW 1-2n+2 dA(w). 
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The last inequality is given by Lemma 1. Letting q'a (w) = z, we can find 

IIfallp <? Cf IVf(z)l f(z) -f(a) 

* (1 - a(Z)12)n+l IPa(Z)1-2n+2 dA(z) 
Thus we have 

SUp IlIfaIIlp < CJ2. 
aEB a 

By Theorem 4.7 in [9], 

Ilf llW < Cllf llx, 

where lifliX = SUpzEB IVf(z)I(1 _ 1z12) . By the lemma in [5]. 

IlfIlIx < CSUpIIfaIILPa aEB 

Therefore 

(13) Ilif Il < Ch2- 

Because I9a(Z)I < 1 for z, a E B, we know 

1-(zl2n+2 < 1f()-2(n- 1) 

By Lemma 1 and G(z, a) = (a(Z)) 

(1 - Ia(Z)I2) +1IPa(Z)L2(fl) < C(G(z, a))1+L. 

Hence 

J2 < SUp j IVf(Z)12If(z) - f(a) lp-2 
aEBB 

(14) (1 - 
I9a(Z)I2) 1IPa(Z)V2("-) dA(z) 

< Csup| IV()2f - f(a) P-(G(z , a))'+' dA(z) 
aEBB 

= CJ3. 

Now let IlIfIM < oX. By Theorem 4.7 in [9], 

IVf(Z)I(l - 1z12) ? C1IIfII_. 

Thus by Lemma 2.2 in [2], 

IVTf(z)I(l - zI2)t 
? 

C2IIfIIe, 

where VTf is the complex tangential gradient of f. Hence by the proof of 
Theorem 2.4 in [2], 

IVf(z)12 = AIfI2(Z) 

< 4(1- _z12)2IVf(z)12 + 4(1 -_z 12)IVTf(Z)12 

< Cllf 112 
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From this and Lemma 1, 

J3(a) = j 1Vf(z)121 f(z) - f(a) IP-2(G(z, a))1+n dA(z) 
B 

(15) Clif jI If 0 97a(W) - fo 0p (?)P2(g(W ))1+ 

* (1 - IW12)-n- dm(w) 

< ClIfII, j Ifa(W)lpW -2(in-) dm(w). 

When p = 2 

J3 (a) < Cllf 112|Iw n )dm(w) 

(16) = 2nCIIlfI 2 r2n-21-n' dr R 

= 2nCIlfIq 101 rn- dr = n2CIIf 112 
When p > 2, let a = max(n2 +1, I then it is easy to know that 

( W |W| n --1 dm(w)) =M < x. 

By the Lemma in [5], 

(L Ifa(W)I(P-2)a dm(w)) < C(r((p - 2)a + R))l/aIfIIw2. 
Thus, by (15), using the Holder inequality 

J3(a) < Cllfllm (|Ia(W)I(P-2)adm(w) 

( 17) (I a m( 

< CM(r((p - 2)a + 1))I Ilf IIP. 
By (16) and (17), for p > 2, 
(18) J3= supJ3(a) < C(F((p - 2)&+ 1))l/aIf II. 

aEB 

By (13), (14) and (18), the quantities lIfIlIP, J2 and J3 are equivalent. The 
proof of Theorem 2 is complete. 
Remark 3. It is authors' belief that the results of Theorem 2 should hold for all 
p's, that is, also for 0 < p < 2. In this case more delicate techniques seem to 
be needed. 
Proof of Theorem 3. First, let f E R'. For each integer k > 0, let a = n2 + 1 
in (18), then we get 

Ik+2(a) = L IVf(z)121f(z) - f(a)Ik(G(z, a))1+L dA(z) 

< C(r(k(n2 + 1) + 1));TlIlfIIk+2 
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It is easy to see that (I(k(n2 + 1) + 1)) n2+ < (n2 + 1)kk!. Hence 

Ik+2(a) < C(n2 + 1)kk!Ilf IIk+2 

Note that, when k = 0, the above inequality is also valid by (16). Taking a 
constant T, 0 < T < -I1 then if we set f, = T/IIfIM, we get 

<Z~(Z 1Jk2(a ? n> ~,2+1k!II 

e ,t | IVf(z)12(G(z, a))'+' dA(z) 

< If() f(z)elf d)f(G(z? a))K + ndA(z) 

It~~~~~~~~~~~~~~I 
But~~~~~~E, 

? nlk ?? f nk2 1kIlIk2 

E L If)k+2(a) < C) k! (nff2 d d1)kk 
k=O k=O 

= jIVf() f((n) I f()TI((= K < )x , 
k=O 

where K e Kotlf 112 , Ko is an absolute constant. Hence 

(j9) IIVf(z)l (G(z, a))I+' dA(z) < Ke-f<t 0 

Conversely, let f satisfy ( 19); then 

L dtf IVf(z),2(G(z, a))t+d dc(z) < K u e-nii t l of W oW . 

But 
| dtl I'Vf(z)l (G(z, a))'+' dA(z) 

is i m i p f (Z) 12 n(G( )I o + S [ for dils. 

functon fe BMA(dB if and 1 onl if) 

g IV(z)2lf() -f(a) I(G(z , a))'+L dA(z). 

aEB 

By Theorem 2 with p = 3, we know that f E,9(B) . The proof is complete. 

5. CHARACTERIZATIONS OF BMOA IN THE UNIT BALL 

Let f E HI (B) , the Hardy space in the unit ball of Cn . We say that 
f E BMOA(o9B) if its radial limit function f* iS a function of bounded mean 
oscillations on OB with respect to nonisotropic balls generated by the non- 
isotropic metric p(C, q) = 11 - (C, q) I /2 on OB. See [3] for details. 

Let fa = f ? (#a(') - f ? (Pa (0) In [4], Ouyang proved that a holomorphic 
function f E BMOA(,YB) if and only if 

(20) sup l|fallHp < 00. 
aEB 
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Furthermore, he proved that if f E BMOA(0B), then 

(21) sup lIfallp < KFcp + 1) Ilf IP* < x 
aEB 

where 
IIfII** = sup lIfaliHi- 

aEB 

Now replacing f in (10) with fa, we get 

l)fallp = I | IVfa(W)121f 0 (Da(W) - f o (a(0) P2g(w) dA(w) 

(22) p2 j IVf(z)2f(z)- f(a)I 2G(z, a) dA(z). 

By (20), (21) and (22), we get the following 

Proposition 1. For 0 < p < x, a holomorphic function f e BMOA(9B) if and 
only if 

supj IVf(z)I2If(z) - f(a)lp-2G(z, a) dA(z) < 0. 

Moreover, if f E BMOA(dB), we have 

(23) sup IVf(z)121f(z) - f(a)lp-2G(z, a) dA(z) < KF(p 1) l ** 
aEB JBc 

Remark 4. When p = 2, the above result was proved by J. S. Choa and 
B. R. Choe (see [1, Theorem A]). 

Using (23) and a similar method of the proof of Theorem 3, we can obtain 
an exponential decay characterization of BMOA(9B) as follows. 

Theorem 4. A holomorphic function f E BMOA(9B) if and only iffor every 
aeB and every t>0, 

L IVf(z)12(G(z, a)) dA(z) < Ke-fnt 

where Ea,t = {z E B: If(z) - f(a)I > t}, and K, B> 0 are constants. When 
f E BMOA(0B), K = KollfII12*, ,B = C/llfll*, where Ko and C are absolute 
constants.w 
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