
15

KMUTNB Int J Appl Sci Technol, Vol.7, No.3, pp. 15-19, 2014

Benefits and Drawbacks of Model-based Design

Arno Bergmann
Department of Electrical Engineering and Computer Science, Institute for Systems Engineering, Bochum
University of Applied Sciences, Lennershofstr. 140, 44801 Bochum, Germany

* Corresponding author. E-mail: arno.bergmann@hs-bochum.de
Received: 18 April 2014; Accepted: 28 April 2014; Published online: 27 June 2014
DOI: 10.14416/j.ijast.2014.04.004

Abstract
The Model-based Design approach, as propagated by The MathWorks, is a state-of-the-art method in the
fields of aerospace, defense and automotive developments. The obvious advantages of Model-based Design of
a convenient, understandable graphical description of systems, continuous verification and validation at all
stages of development as well as its inherent robustness against coding errors have made it a state-of-the-art
method in fields such as automotive systems and aerospace and defense. Despite the vast number of success
stories associated with this approach, Model-based Design is not a standard method throughout the entire
industry, especially not for small and medium sized enterprises. Hence, consulting on the introduction of
Model-based Design into development teams is a recurring task for the author. Presenting an industrial project,
the development of a velocimeter (spatial frequency sensor system), benefits as well as obstacles corresponding
to Model-based Design are introduced. The paper’s object is giving detailed insight into the method based on
first-hand experience. It will be concluded that Model-based Design is a favorable approach even for small
and medium sized enterprises.

Keywords: Model-based Design, Real-time workshop, Spatial filtering velocimetry, Embedded systems

1 Introduction to Model-based Design

The MathWorks’s method of Model-based Design for
software engineering is solely based on a representation
of the software interacting with its environment, called
model. This model can be understood as a graphic
implementation specification of the system components.
 The key feature of this method is that the model
can be run for simulation or system-testing purposes
at any step of the development process. This means
that the system behavior can be assessed right from the
requirements phase of the project until series production
without the need to change system description.
 Figure 1 illustrates the workflow of Model-based
Design: Starting with the system model, containing both
descriptions of the system under construction as well as
the corresponding environment, the code for the target
platform is automatically generated, which may be C or
C++ code for microcontrollers or digital signal processors
as well as VHDL or Verilog for FPGA or ASIC designs.

Figure 1: Model-based Design Workflow (The
MathWorks).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/233463347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

16

A. Bergmann / KMUTNB Int J Appl Sci Technol, Vol.7, No.3, pp. 15-19, 2014

 The main advantage of this method is that the
engineer never has to abandon the model in favor of
another development tool. Thus, the need for an initial
system sketch, a first mock-up, a prototype etc. is not
given. All process phases (feasibility study, simulation,
coding for prototypes and series, verification) are
based on the same model.
 The process of Model-based Design is known
for quite some time now. However, it is hard for the
potential user of this method to assess the suitability
for his project at hand. The following describes the
actual work with Model-based Design introducing an
industry project and shows the consequences for the
engineering process.
 The project at hand has been funded by the
European Union (EFRE Z0305MW02). The author
contributed to this development by introducing Model-
based Design to the project as well as developing the
entire algorithm including the corresponding system
software.

2 Application Example: COVIDIS Sensor System
(FRABA group, Cologne)

COVIDIS is a camera based system for the measurement
of translations in industrial environments as shown in
Figure 2. Potential applications are steel mills, cutter
controls, quality control of product lengths, automatic
control of extrusion machines and so on.

2.1 Sensor system details

The sensor system is a complete digital implementation
of a Spatial Filtering Velocimeter (SFV), consisting
of a LED illumination, a telecentric lens system, a
line scan camera as and an FPGA/DSP-platform as
depicted in Figure 3.
 The concept of SFV is shown in Figure 4: The
object’s illuminated surface is projected on an optical
grid (spatial filter). A photodetector acquires the light
intensity behind the grid, therefore producing the
spatial filter function.
 Surface features are either mapped on an opaque
or transparent section of the grid, thus contributing to
the light intensity depending on their position. As a
result, the light intensity (the amplitude of the spatial
filter signal) is modulated by a frequency proportional
to the object’s velocity.

 The main task of the sensor’s software is estimating
the main frequency of the spatial filter function.
Auxiliary tasks comprehend camera control, scaling,
object detection, etc.
 Using a line scan camera the optical grid is
replaced by a scalar product of the grid’s transmission
function and the camera image. This is shown in Figure 5:
A sequence of line scan pictures (bottom) is being
processed, the red line marking the current image.
This image weighted by the rectangular transmission
function is shown on the top, the sequence of the
scalar products (sum of the values in the top graph)

Figure 2: COVIDS sensor system (FRABA).

Figure 3: COVIDS sensor system in principle (FRABA).

Figure 4: Principle of spatial filtering.

17

A. Bergmann / KMUTNB Int J Appl Sci Technol, Vol.7, No.3, pp. 15-19, 2014

can be seen in the middle, being the periodic spatial
filter signal.

2.2 Model implementation

First step of the development process with Model-
based Design is obviously creating a model. The
model is simply mapping all functions into a signal-
flow graph including the external interfaces into the
target hardware.
 This model can be executed for simulation
purposes right from the first implementation.
The basic system operation can be verified on a
simple level, allowing plausibility checks on made
assumptions.
 For the feasibility phase of this project no effort
has been spent on modelling the environment. The
stimulus is given by an image sequence recorded with
a frame grabber, which allows quick verification of
initial assumptions.
 Figure 5 of the previous section is such a result
of the feasibility study. This illustrates one strength of
Model-based Design: The feasibility study provides
comprehensive results, including documentation for
the next steps as well as short movie sequences for
customer presentations.

2.3 Target system connectivity

After having developed a working system model the next
project step requires usually a verification on a target
hardware. The required code can be automatically
generated from the model, so there is no need to test
on the series hardware, the code can be brought onto

a prototype system in the first step.
 An interface allowing automatic generation
of a software project in an integrated development
environment (IDE) can be generated, which
requires about five days’ work. Having done that, the
Code is automatically generated, included into the
compiler’s IDE, compiled, brought to the target
and executed on a single button press. Figure 6
shows this for the described project with TI’s Code
Composer Studio, including graphic in-system
evaluations.
 To make this happen, the model code needs to
be embedded into the so called “harness code” which
provides the interfaces to the DSP periphery. Since the
harness code is target specific, it has to be written by
hand. The effort required depends solely on the number
of peripherals used.

2.4 Further automation

In order to simplify the development steps a graphical
user interface (GUI) has been created. Via this GUI, the
following recurring development steps are automated:
• Simulation
 Execution of single test cases.
• Code generation
 Automatic code generation, compilation and
 execution on the target
• Profiling
 Automated execution time profiling of the model,
 which may be required to optimize certain model
 parts.

Figure 6: Implementation running in an IDE (FRABA).

Figure 5: Calculation of an SFV signal.

18

A. Bergmann / KMUTNB Int J Appl Sci Technol, Vol.7, No.3, pp. 15-19, 2014

• SIL-testing
 The main verification of the system has been
 done by a software-in-the-loop (SIL) technique.
 The current project required a large number of
 test cases which could not be run and assessed
 one by one. To achieve a high test coverage,
 the SIL environment can be conFigured to generate
 a large number of artificial linescan sequences
 based on parameter sets and execute these
 repeatedly with different model versions. An
 example of a single test case is given in Figure 7.

3 Conclusions

Applying Model-based Design to the described
project has been a major factor of success. However,
the price for improving the development efficiency
is introducing a complex method and corresponding
tool to the team as well as the high licensing costs for
the actual tools.
 The benefits as well as the obstacles of Model-
based Design to this project are described in detail in
the following sections.

3.1 Benefits of Model-based Design

Consistent documentation and implementation: The
model description is a very appropriate source for the

system documentation. Since it is also the source of
the actual code, documentation an implementation can
easily be kept consistent.
 Coding errors: Automatic code generation
completely eliminates coding errors, making
implementation specification (model) and actual
implementation consistent as well.
 Documentation effort: As stated before, the
model’s graphic representation make it appropriate
for documentation purposes and significantly reduce
documentation costs.
 Communication improvements: The model
can easily be understood be each and every project
member, allowing simple but effective presentations
for discussions of technical details or outsourcing of
code development into other teams.
 Continuous verification and validation (V&V):
V&V is a key bonus of this method, allowing tests at
every project stage. Problems can be tackled in the
earliest possible stage, reducing the costs for late and
potentially risky product changes.
 Possibility of major changes at late project phases:
Due to the block oriented and therefore modular
workflow as well as the automatic code generation,
large functional blocks may be replaced at a late
project stage. This is a main advantage if concurrent
algorithms are available, e.g. autocorrelation and fast-
fourier transform.

Figure 7: Implementation running in an IDE (FRABA).

19

A. Bergmann / KMUTNB Int J Appl Sci Technol, Vol.7, No.3, pp. 15-19, 2014

 Code re-use: The simulation blocks can be
included into an own library without extra effort,
because they automatically exist as modules. Therefore,
re-use of the solutions is very simple.
 No coding effort: Target specific implementation
requires a lot of effort in development and debugging
and may require an expert engineer. With automatic
code generation this effort is reduced to implementing
the harness code.
 Less debugging: Extensive simulations reduce
the need for in-system debugging.

3.2 Obstacles of Model-based Design

Platform independence: In case code execution time
has to be optimized, device-specific libraries need
to be included. These hinder porting onto another
target.
 Difference between prototype and series code:
The first prototype code, including large floating-point
operations as well as completely generic code, took a
hundred times longer to execute on the target than the
series code. This was a major obstacle for the described
progress because it took much longer for first prototype
verifications than planned.
 Implementation of harness code: Implementing
a harness code requires an initial training.
 Adapting the toolchain to the target hardware:
The initial adaption of a new IDE requires detailed
insights into the code generation process producing
significant project costs and delay.
 Implementation of special functions: Model
blocks provided by Simulink are limited in their
possibilities. Therefore it may be necessary to generate
proprietary blocks by handwritten C-Code, which
defeats the Model-based approach to a certain amount.

 Model implementation: Implementing a model
is a unique task which requires a significant amount
of practice and experience.

4 Conclusions

Model-based Design is the method of choice for
embedded system development, as long as the
functions to implement are sufficiently complex to
benefit from the advantages of continuous V&V and
detailed simulations. The obstacles of this method
can be handled even by small and medium-sized
enterprises and can be addressed during the project as
long as the extra-effort for initial training is accounted
for in the planning phase.

References

[1] Y. Aizu and T. Asakura, Spatial Filtering
 Velocimetry, Berlin Heidelberg New York:
 Springer Verlag, 2006.
[2] B. Degener, “Implementation of a fully
 automated test environment in MATLAB/
 SIMULINK for SFV systems,” Diploma Thesis,
 University of applied sciences Gelsenkirchen,
 2006. (orig: “Erstellung einer vollautomatischen
 Testumgebung in MATLAB/ SIMULINK für
 Ortsfrequenzfiltersensoren,” Diplomarbeit,
 Fachhochschule Gelsenkirchen, 2006.)
[3] INTACTON GmbH, “Data sheet: Optical length
 and velocity sensor COVIDIS 08/2007,”
 INTACTON GmbH, 2007.
[4] THE MATHWORKS TRAINING SERVICES,
 “Real-Time Workshop Embedded Coder for
 Production Code Generation,” The MathWorks
 Training Services, 2005.

