

AIJSTPME (2011) 4(2): 1-8

1

A CAM controlled machine, one step to make machining as easy as printing

Didonato A.

Grenoble Institute of Technology, Grenoble, France

Reader L., Marin J., Naksangchun N., Nguyen D. N.

Responsible Design Project student, Grenoble Institute of Technology, Grenoble, France

Vignat F.

G-SCOP Laboratory, Grenoble Institute of Technology, Grenoble, France

Abstract

Manufacturing parts using a CNC machine needs highly skilled people. The development of new, user friendly

human machine interfaces should make machining a designed part to be as simple as printing a document. A

step towards this goal is to integrate CAM Software and CNC Machine controllers. The project aims to

develop a new type of milling machine to simplify the stages between the design stage in CAD software and the

manufacture of the designed part using the CNC machine. The solution chosen to achieve this is to integrate

the CAM software, for this project the software is ESPRIT, with the CNC controller of the CNC machine. This

project is a student project launched within the framework of an international semester project (Responsible

Design) by a team of 4 students coming from all over the world.

Keywords: CAM, Machining, Control

1 Introduction

Manufacturing parts using a CNC machine needs

highly skilled people. The development of new, user

friendly human machine interfaces should make

machining a designed part as simple as printing a

document and reduce the human interaction required

between design and manufacturing. A step towards

this goal is to integrate CAM Software and CNC

Machine controllers. The project aims to develop a

new type of milling machine to simplify the stages

between the design stage in CAD software and the

manufacture of the designed part using the CNC

machine. The solution chosen to achieve this is to

integrate the CAM software, for this project the

software is ESPRIT, with the CNC controller of the

CNC machine. This project is a student project

launched within the framework of an international

semester project (Responsible Design) by a team of 4

students coming from all over the world. The project

has been carried out in conjunction with DP

technology, a leading developer and supplier of

computer-aided manufacturing software for a full

range of machine tool applications. ESPRIT is DP

technology‘s flagship product and is a programming

system used for milling, turning, wire EDM and multi

tasking machine tools. It is the CAM software that is

integrated into the system designed within this

project.

2 Previous work on the subject

Some works have already been conducted to override

the use of ISO language to program CNC machines.

Many of them are based on STEP NC standard.

[1],[2] proposes STEP-NC Platform for Advanced

and Intelligent Programming (SPAIM). This platform

controls current industrial machine tools directly

from STEP-NC files, which benefits from this new

data model. In fact, the STEP-NC file contains all the

information for manufacture, through the description

of machining entities, working steps, work plane,

tools, machining strategies, etc.

[3-6] proposes the use of STEP-NC to support

distributed interoperable intelligent manufacturing

through global networking with autonomous

manufacturing workstations with STEP compliant

data interpretation, intelligent part program

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/233463303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Didonato A. et al. / AIJSTPME (2011) 4(2): 1-8

2

generation, diagnostics and maintenance, monitoring

and job production scheduling.

[7] proposes an innovative language, the 'Base

Numerical Control Language (BNCL),' which is

based on a low-level simple instruction set-like

approach. The architecture is designed around two

concepts: the BNCL virtual machine, which acts as a

virtual microprocessor, and the BNCL virtual

hardware, which is an abstraction of the machine

tool. The areas of research described above all aim to

replace G-Code with a more evolved language able to

address more information. However, all of them rely

on the use of an intermediate language between the

CAM software and the machine itself. Our proposal

is to contribute to a new method with the aim of

removing this intermediate file and its manipulation.

Figure 1 : Machine architecture

Didonato A. et al. / AIJSTPME (2011) 4(2): 1-8

3

3 Machine architecture

The architecture of the machine is not original from

an operative point of view. The mechanical part of

the machine comes from a classical 3 axis milling

machine. From the command point of view, the

system is composed of two PC‘s (see figure 1). The

machine is controlled by a real time Linux PC let‘s

call it Linux PC. This PC receives instructions from

ESRPIT installed on another PC trough a TCP/IP

socket. This ESPRIT PC acts as a human machine

interface whilst the real time PC performs without

direct control. The user controls the machine via a

manual control pad or via ESPRIT. In ESPRIT, the

user can prepare the machining operation as usual. To

start the machining operation they do not need to

create an ISO file and transfer it to the CNC. They

simply connect the socket to the Linux PC and click

the start machining button as shown figure 2. Of

course the user will have prepared the machine as

usual placing the part and the tools in the right

position.

Figure 2 : Start machining window

4 What ESPRIT Does

From the ESPRIT PC side, the Esprit add-in has a

major role in the system. It is able to access the Esprit

document using the Esprit API. The add-in is

programmed with VB.Net, it calculates tool path

trajectories using this retrieved information, sends

these values to Linux for operating the machine and

serves as a GUI to user. The Esprit add in developed

for the project consists of eight classes that are

Main.vb, Ui.vb, Jog.vb, Machining.vb, Calc.vb,

Waiting.vb, SendClient.vb and ReceiveClient.vb.

Main class is the class that has links to ESPRIT and

serves as the class that the execution starts when add

in is launched. UI, Jog, Machining and Waiting serve

as GUI classes. UI also has central position in the

program as it handles the majority of the functioning

of the program and has several ties to the other

classes. SendClient and ReceiveClient are tied to the

UI class and are used to communicate with Linux.

Calc is also tied to UI and it‘s used to handle most of

the actual trajectory calculations and to find the

specific instance for generic technology and tool

objects as well as obtain the relevant information

from these. See Figure 3 for a diagrammatical

representation of these classes.

4.1 Trajectory calculation

A major aspect of the project was the trajectory

planning. Trajectory and path planning is required in

order to control the machine and follow the correct

paths to create the designed shape. The paths could

be taken straight from the ESPRIT document, but

because there is the need to include acceleration and

deceleration in the tool paths and to give enough

information to the Linux PC to control the machine at

each time loop, the trajectory planning was required.

The calculation is not presented here as far as it is

similar to the one used in classical milling machines.

The result of the calculation is a table describing the

required speed and position required for each axis at

each time loop. This is what we can call low level

orders that will be sent from the ESPRIT PC to the

Linux PC for machine control. Thus all the

calculations needed for trajectory planning are

performed in the ESPRIT PC and the Linux PC will

only have to manage the machine control.

4.2 Data communication

For the communication between the two PCs a TCP

connection with sockets is used. The TCP was

selected to be used for the communication because it

delivers all the messages sent trustfully (unlike for

example UDP). Since communication both ways is

necessary (from Windows to Linux and vice versa),

both computers have server and client. Each server

will create a socket, assign it a name (provide an IP

address and a port to communicate), and wait for

client to connect to socket. Client also creates a

socket and connects to the name of socket on the

server. When the server detects a connection request

from a client, it will create a new socket and use it to

communicate with the client. The old socket

continues to wait for other connections from other

clients.

Didonato A. et al. / AIJSTPME (2011) 4(2): 1-8

4

In our solution there is the need for communication

between the Windows PC (ESPRIT addin) and the

Linux PC. In order compute the messages sent

between these two PCs, a specialised syntax had to be

developed for this communication. Both systems will

send and receive information so the syntax has to

cover the messaging in both ways. In Windows it is

possible to receive complete lines so the syntax for

the communication in this way is relatively simple. In

Linux however, only an array of bytes is received and

the messages must be constructed again. This has

strong effect on the syntax, for example at the end of

each line a specific mark (@) must be sent. The

syntax of information sent to the Linux PC from

Windows is covered here:

 To inform about the change to the auto mode

―A@‖ is sent.

 To inform about the change to jog mode, letter ―J‖,

letter of axis (―X|Y|Z‖) and ―@‖ is sent. For

example ―JX@‖ for change to jog mode in X axis.

To inform Linux about the start of whole machining

―M1@‖ is sent to the Linux. ―M0@‖ is sent for the

end of the machining.

 Before the start of each operation (or set of

toolpaths) we send letter ―P‖, number ―1‖ if

coolant is to be used during this operation or ―0‖ is

not and ―@‖ to mark that line end.

 For spindle speed change both in auto mode and

jog mode we send letter ―S‖, new value of wanted

speed as integer between 0 and 255, and ―@‖ to

mark the line end. For example ―S150@‖. Sent

values will turn the spindle only clockwise.

 For the movement information we will simply

send ―FeedrateX PosX FeedrateY PosY FeedrateZ

PosZ@‖, where FeedrateX is the feedrate of X

axis and PosX the position of X axis and so on.

Values of feedrate are integer values between

-255 and 255. Positive value moves the machine

to the direction of positive X axis. The position

value is also given as integer as pulses (there are

1000 pulses in 1 millimetre). The different values

are separated with whitespace.

 In the jog mode for feedrate change ―F‖, new

value of wanted feedrate as integer between 0 and

255, and ―@‖ are sent. For example ―F150@‖ is

sent for changing the feedrate to 150. This feedrate

is used with all of the axis in jog mode.

 For tool change, letter ―T‖, the number of used

tool, whitespace, length of tool and ―@‖ are sent.

For example ―T1 34@‖. The number of tool is the

same that in the Esprit, basically integer value.

The tool length is an integer value in millimetres.

 For the request of machine to go home position,

―H@‖ is sent

The information sent from Linux to Windows will

also be coded using different letters for different

commands (or requests). The used syntax is:

 ―E‖ for emergency stop and ―1‖ or ―0‖ for the start

or stop of the emergency stop. (i.e. ―E1‖ for the

start of the emergency stop)

 ―A‖ is used for informing that the mode currently

used is ―Auto mode‖

 ―J‖ and ―X/Y/Z‖ for jog mode in each axis. For

example ―JY‖ for changing to the jog mode in Y

axis.

For the information about the position in jog mode or

during machining Linux sends information of all axis

every time the joystick stops (only once). This

information is sent in the form ―PosX PosY PosZ‖.

For example ―45334 34623 54934‖. The sent values

are in pulses (there are 1000 pulses in 1 millimetre)

and separated by whitespace.

 ―H‖ is sent for telling that the machine is in the

home position.

Didonato A. et al. / AIJSTPME (2011) 4(2): 1-8

5

Figure 3 : AddIn composition

5 What the Linux PC does

The Linux PC runs under Xenomai [8]. Xenomai is a

real-time development framework co-operating with

the Linux kernel, in order to provide a pervasive,

interface-agnostic, hard real-time support to user-

space applications, seamlessly integrated into the

GNU/Linux environment. This PC controls three

programs that in three separate threads and

communicate through real time pipes. Within these

three threads, one is real time while two are non real

time (see figure 4). The non real time program

‗server_recv‘ receives data from Windows. This data

is sent by the Windows PC using the syntax defined

in section 4.2. The program then sends the data to the

real time program using a real time pipe. The second

non real time program ‗server_send‘ receives data

from the real time program through a real time pipe

and sends it to the Windows PC. These two programs

are used to transform non real time communication

task between the esprit PC and the linux PC into real

time communication tasks. The real time program

(titled ‗main task‘) is the main program to control the

machine. At each time loop it receives the speed and

position setpoint from the server_receive program. It

then reads the current position and adjusts the speed

setpoint function of the difference between the

position setpoint and the current position. It then

writes on the I/O register of the P4CNC card the

adjusted speed setpoint. This program also manages

the spindle speed, the tool change in automatic mode

and any operations that occur in manual mode.

Didonato A. et al. / AIJSTPME (2011) 4(2): 1-8

6

Figure 4 : Linux PC main tasks

6 Ongoing machining operation

In the ongoing machining phase, the operation runs

as follows:

(1) First the Esprit add-in sends Linux ―M1@‖ for

informing that machining is started.

(2) Linux then blocks the use of jog mode. This

means even the jog mode is turned on from the mode

selector, Linux will not go to jog mode, it ignores the

change at this point. After this, Linux waits for more

information coming from Windows.

(3) During the ongoing machining the add-in will all

the time get information from Esprit one operation at

a time. It will calculate the trajectories for movement

(basically speeds and position) and

 (4) show progression of the whole machining

process.

(5) The add-in will send letter ―P‖ and number 0 or 1

and ―@‖ to Linux in order to inform about the

starting of the machining. The number 0 is send for

not using coolant during this operation and 1 is send

for using. ―@‖ is just used to indicate the line end.

(6) If Linux receives ―P1‖ it turns the coolant on.

Also the Linux will interpret the upcoming lines as

information for movements.

(7) Before starting operation, add-in checks the

technical information of the operation. If tool change

is needed it‘s also done at this point. In the tool

change the tool length is also compensated to the

home positions. This procedure is described in the

―Tool change‖ part

(8) After possible tool change spindle speed for

operation is send to Linux. For this ―S‖ and spindle

speed as integer from 0 to 255 and ―@‖ is send (for

example speed 150 ―S150@‖ is send). Originally

speeds were designed to go from -255 to 255,

negative meaning counter clockwise movement, but

in this solution we only have clockwise movement.

(9) The spindle speed is changed in Linux.

(10) After this Esprit add-in sends the movements

line by line. Used form is ―feedrateX positionX

feedrateY positionY feedrateZ positionZ@‖. The

values for tell the current feedrate and position for

each axis in this point of machining. For the feedrate

of each axis integer value from -255 to 255 is used.

Position can be integer from the whole range, but in

reality the values are limited to the positions that the

machine can move to.

(11) In each loop the Linux also reads the position of

the machine from the encoder.

(12) It then uses this value as a reference to a value

obtained from the add-in and makes corrections to the

feedrates if the positions do not match.

 (13) Then the Linux commands the machine using

the corrected feedrates.

(14) This moves machine, or actually changes the

feedrates of each axis. The commanding of the

Didonato A. et al. / AIJSTPME (2011) 4(2): 1-8

7

machine is done in real time using the Xenomai. The

information between real time and non-real time is

transferred using ―pipe‖ functions of Xenomai. This

function is kind of a buffer.

 (15) After the last line describing the movement in

operation, ―#@‖ is sent to Linux to inform that it is

the end of that operation.

(16) When Linux receives this mark, it will turn the

coolant off and start to interpret the upcoming lines

as different kinds of commands.

 (17) After finishing the whole machining process

Esprit add-in still sends ―M0@‖ to Linux to describe

the end of machining operation.

(18) When Linux receives this it will stop the spindle

by putting the speed value to 0. NOTE! During the

whole machining tasks 3-16 are repeated for each

operation. Inside one operation tasks 3, 4 & 10-14 are

repeated for continuous movement.

7.Conclusions

This paper presents a new type of CNC system that

aims to simplify the stages between the design stage

in CAD software and the manufacture of the designed

part using the CNC machine. The solution chosen to

achieve this is to integrate the CAM software, for this

project the software is ESPRIT, with the CNC

controller of the CNC machine. The architecture of

the CNC is based on the use of two PC‘s. The first

PC runs ESPRIT under a Windows operating system.

It manages the human machine interface and the tool

path calculations. It then sends, through a TCP

socket, the information concerning the tool path

incremented with a time step of 1 ms. The second PC

runs Xenomai real time framework under a Linux

operating system. It manages the machine control.

This new type of CNC simplifies the use of the

machine allows for direct control of machining

through the ESPRIT software. The user still requires

the knowledge to prepare the machine properly;

putting part and tools in the right position. Some

works using vision and recognition algorithms [9]

should allow going further in this direction.

Acknowledgments

The authors would like to thank DP Technology for

their support. They would also like to thank all the

associates of the ginova platform and especially Jean-

François genestter and Thierry hennocque for their

kind and strong support.

Didonato A. et al. / AIJSTPME (2011) 4(2): 1-8

8

Figure 5 : Ongoing machining operations

References

[1] Laguionie R., Rauch M. et Hascoët J.Y., 2009.

Toolpaths Programming in an Intelligent Step-

NC Manufacturing Context, Arxiv preprint

arXiv:0905.3079,

[2] Rauch M., Laguionie R. et Hascoët J.Y., 2009.

Achieving a STEP-NC Enabled Advanced NC

Programming Environment, Advanced Design

and Manufacturing Based on STEP, 197–214.

[3] Newman S.T., Allen R.D. et Rosso R.S.U.,

2003. CAD/CAM solutions for STEP-compliant

CNC manufacture, International Journal of

Computer Integrated Manufacturing, 16(7): 590–

597.

[4] Xu X.W. et Newman S.T., 2006. Making CNC

machine tools more open, interoperable and

intelligent—a review of the technologies,

Computers in Industry, 57141–152.

[5] Xu X.W., Wang H., Mao J., Newman S.T.,

Kramer T.R., Proctor F.M. et Michaloski J.L.,

 2005. STEP-compliant NC research: the search

for intelligent CAD/CAPP/CAM/CNC

integration, International Journal of Production

Research, 43(17): 3703–3743.

[6] Xu X.W. et He Q., 2004. Striving for a total

integration of CAD, CAPP, CAM and CNC,

Robotics and Computer-Integrated

Manufacturing, 20(2): 101–109.

[7] Fortin E., Chatelain J.F. et Rivest L., 2004. An

innovative software architecture to improve

information flow from CAM to CNC,

Computers & Industrial Engineering, 46(4):

655–667.

[8] http://www.xenomai.org,

[9] Zhang X., Tian X. et Yamazaki K., 2010. On-

machine 3D vision system for machining setup

modeling, The International Journal of

Advanced Manufacturing Technology, 48(1):

251-265.

