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Documented examples from neuroethology have revealed species-specific 
neural encoding mechanisms capable of mapping highly variable, but lawful, 
visual and auditory inputs within neural columns. By virtue of the entire 
column being the functional unit of both representation and processing, signal 
variation is collectively ‘absorbed’, and hence normalized, to help form natural 
categories possessing an underlying physically-based commonality. Stimulus-
specific ‘tolerance ranges’ define the limits of signal variation, effectively 
shaping the functionality of the columnar-based processing. A conceptualization 
for an analogous human model utilizing this evolutionarily conserved neural 
encoding strategy for signal variability absorption is described for the non-
invariance issue in stop place perception. 
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1. Introduction 
 

The brain is a five-star generalizer. It simplifies and organizes, reducing a deluge 
of sensory information to a manageable sum. From that small sample, the brain 
produces an effigy of the world, whose features it monitors […]. But individuals 
and events are never identical, only similar in vital ways. The brain doesn’t have 
room to record the everythingness of everything, nor would that be a smart 
strategy.                  (Ackerman, 2004: 54) 

 
The neural recognition of a spoken sound occurs over a temporal span best 
measured in milliseconds, and over a spatial extent best measured in microns. The 
only methodology that possesses the temporal and spatial resolution to capture this 
decoding event is microelectrode recording of single neuron activations. Unfortu-
nately this glimpse into neural sensory processing can only be obtained from neural 
substrates in animals. Well documented neural algorithms emanating from neuro-
ethology investigations studying both auditory and visual processing of complex 
input signals can provide a rich source of information that can be used as a theo-
retical springboard for analogous representational algorithms in human neural sub-
strates tasked to process highly similar input signals. An additional benefit of using 
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data from neuroethology is to shift the level of scrutiny to the ‘how’ of speech pro-
cessing, rather than the more commonly revealed ‘where’. Brain imaging methodolo-
gies are more suited to revealing the locational organization of neural processing loci 
and interacting networks, rather than the operational principles underlying neural 
processing. The purpose of this paper is to provide a viable neural conceptualization 
of how the human brain might represent and process the fine-grained auditory detail 
of F2 transitions characterizing consonant + vowel utterances. The neural construct 
that emerges from animal studies investigating the resolution of signal varia-
bility/ambiquity in auditory and visual inputs is neural columns. This ubiquitous, 
vertically organized, laminated structure, comprising the entire cerebral cortex, as 
well as subcortical nuclei, is postulated to be the neural encoding structure capable 
of bringing about signal normalization. Two examples of columnar-based normal-
ization, across two different sensory input signals, both characterized by lawfully 
generated variability, will be described. Following this, a well documented acoustic-
phonetic metric, locus equations (Sussman et al., 1991), will be described. Locus 
equations empirically demonstrate a categorical-level orderliness in stop place 
acoustic representation that demystifies the neural encoding of stop place categories. 
Neural columns may very well map and process the array of F2 transitions lawfully 
reflecting the dynamically changing resonance properties of the human vocal tract 
during production of stop + vowel utterances. 
 
 
2. Two Opposing Approaches to Processing Speech Signal Variation 
 
Phonetic variability in speech is ubiquitous, as direct causation stems from widely 
divergent sources—(i) speakers (e.g., age, gender, size), (ii) speaking styles (e.g., 
hypo-to-hyper-articulation), and, most importantly for this paper, (iii) phonetic con-
text (e.g., coarticulated stop + vowel sequences). Two contrastive views will first be 
described as they illustrate important theoretical differences, particularly in how 
they view the need for signal normalization. The traditional ‘abstractionist’ view is 
highly dependent upon signal normalization as a basic prerequisite for phoneme 
categorization; the exemplar view claims normalization is unnecessary, as the brain’s 
memory substrates for speech basically encode the “everythingness of everything”.  
 
2.1. The Traditional Abstractionist View 
 
Traditional accounts of speech assumed a neural representation characterized by 
discrete, idealized, static, and context-free symbolic message units forming the 
sequentially ordered ‘primitives’ of the spoken word. Hockett’s (1955) well known 
description of planned speech as a sequence of differently decorated Easter eggs 
epitomizes this early conceptualization of the neural representation of speech. The 
pioneering speech perception studies at the Haskins Labs in the 1950s added a new 
twist to this view, particularly when they investigated the role of the second formant 
transition in categorizing stop + vowel stimuli. Liberman et al. (1954), having unique 
access to the world’s first speech synthesizer, the pattern playback machine, dis-
covered that despite the invariant perception of stop place categories, the acoustic 
signal was highly variable, for the same stop, across varied vowel contexts. For 
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example, the alveolar stop category /d/, across the seven vowel contexts, revealed 
seven different F2 transitions, in both direction and extent of the transition. No 
invariant acoustic cue could be identified despite the perceptual invariance of the 
stops. The necessity for some form of signal normalization, however, was recognized 
(Shankweiler et al., 1977). By more or less default, they went in the direction of 
abandoning the auditory signal in favor of coding speech in terms of (supposedly) 
invariant motor commands. Whether it be phonemic-sized acoustic-based neural 
entities or the motor gestures to produce them, the important point is “the idea that 
the information in the speech signal must be encoded relative to something” 
(McMurray et al., 2016: 53). 
 
2.2. Exemplar Theory 
 
The symbolic abstractionist view has been directly challenged by exemplar theory, 
characterized by a non-analytic, instance-based view of cognition (Jacoby & Brooks, 
1984). In exemplar-based accounts stimulus variation is informative, and hence 
instances are believed to be stored in memory. In the words of Pisoni (1992: 1): The 
variable attributes of speech are retained as “part of the internal representation of 
speech in memory”. A succinct summary might claim ‘exemplarists’ stress ‘particu-
lars’ and ‘traditionalists’ stress ‘abstractions’.  
 Exemplar-based accounts of variation can be found across many sub-
disciplines of linguistics: phonetics, phonology, morphology, semantics, syntax, and 
language acquisition (Pierrehumbert, 2001, 2003; Hawkins, 2003; Gahl & Yu, 2006). 
My focus will be limited to phonetic-based investigations. This view is perhaps best 
captured by a quote from Pisoni (1995): “This view of speech perception focuses on 
the encoding of specific instances and assumes that very detailed stimulus infor-
mation in the speech signal is processed by the listener and becomes part of the me-
mory representation for spoken language” (p. 5). A few representative studies that 
historically shaped this view are described below.  
 Mullennix et al. (1989) investigated the intelligibility of isolated spoken words 
with the independent variable being a single talker or 15 different talkers (male and 
female). Identification performance was better for words produced by a single talker. 
The voice source variability across trials when the words were spoken by a 
multitude of speakers affected recognition performance. Goldinger (1992) reported 
evidence of implicit memory for speaker-specific attributes of a talker’s voice. 
Identification performance for spoken words was superior when the words were 
repeated using the same voice, as in the original list presentation, relative to being 
repeated by a different talker. Mullennix & Pisoni (1990) showed that attributes of a 
talker’s voice could be perceived independently from the phonetic content of the 
word, and vice versa.  
 Talker variability effects were also extended to speaking rate differences (e.g., 
Sommers et al., 1994). Words produced at fast, medium, and slow rates were identi-
fied with less accuracy compared to words presented at one speaking rate. Findings 
such as these led to the claim that the listener’s brain encodes very detailed talker–
specific information in episodic memory representations. As rationalized by Pisoni 
(1995) “If these sources of variability were somehow ‘filtered out’ or ‘normalized’ by 
the perceptual system at relatively early stages of analysis, differences in recall 
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performance would not be expected in memory tasks like the ones used in these 
experiments” (p. 15). The surface logic seems to make sense, but only if one accepts 
the premise that a brief, one time exposure to words can result in permanent 
representations stored in auditory brain tissue.  
 Interestingly, the only source of signal variability that both initiated and 
shaped exemplar theory was based on speaker differences—e.g., varying talkers and 
speaking rates. In contrast, the sole variability source underlying the traditional 
abstractionist position, as represented by the Haskins group, was phonetic context, 
specifically the conundrum of perceptual invariance of stops despite the acoustic 
variability of vowel contexts shaping the F2 transitions (e.g., Liberman et al., 1954; 
Liberman et al., 1967; Liberman & Mattingly, 1985). This difference between the 
sources of phonetic variability is rarely, if ever, discussed. The important and essen-
tial difference between the two types of variation is the following: The fine-grained 
phonetic detail in speaker-based differences consists of signal elements that actually 
sound different—i.e., an F0 of 120 Hz is easily distinguishable from an F0 of 185 Hz. In 
contrast, the various F2 transitions comprising a given stop place category all sound 
the same. Thus, acoustic variability in coarticulatory, context-induced scenarios is 
phonologically non-distinctive. The variability is lawful and systematic, but it does 
not create perceptual changes within the allophones of each stop place category. It 
makes sense then, that exemplarists never investigate context-based coarticulatory 
effects because their subjects would simply hear the same stop.  
 While the findings of exemplar-based studies are indeed intriguing, they do 
not constitute, by themselves, a body of experimental evidence to suggest a theory of 
how neural substrates encode speech tokens. In fact, they defy neurophysiological 
explanation. Lavie (2007) described the existing descriptions of exemplar theory as 
“an impoverished explanatory apparatus” (p. 1). All too often proponents of exem-
plar models couch their views of speech perception and resultant brain representa-
tions in vague and fuzzy terminology, such as ‘clouds’ of exemplars (Pierrehumbert, 
2001). Actual brain-based reality, however, is totally missing from both the abstrac-
tionist and exemplar views. 
 A relevant study comparing the effectiveness of normalization operations in 
speech category identification was conducted by McMurray & Jongman (2011). A 
speech corpus (N = 2,873 recordings) obtained from 20 speakers, producing eight 
English fricatives, across six vowel contexts, provided the data base. It was deter-
mined that 24 simple cues were available to distinguish place, voicing or sibilance. 
Three different input models based on different sets of informational assumptions 
were compared in a fricative categorization task:  
 
(1) naïve invariance: a small number of cues that had a robust correlation with 

fricative identity and no compensation for talker/vowel contexts;  
 
(2) cue-integration: used every available cue, without compensation (this condition 

is most similar to exemplar approaches);  
 
(3) compensation: used every cue, but after effects of talker and vowel contexts 

were applied (this represents the normalization approach).  
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 A subset of these stimuli were presented to human listeners for fricative cate-
gorization. A classification model based on logistic regression was trained on the 
remaining stimuli contrasting the three input cue sets. The normalization/compen-
sation model performed the best, with an accuracy level similar to human listeners 
(90%). The naïve invariance condition resulted in 74.8% correct perception, and the 
cue-integration model yielded 79.2% correct category identification. Compensation 
processes to account for coarticulatory effects in production are thus highly effective 
in signal categorization. Stop + vowel productions have long been considered the 
‘litmus test for invariance seekers’, and hence the most demanding set of acoustic 
signals in need of normalization. 
 
 
3. Neural Mechanisms Resolving Ambiguity due to Variation in the Input Signal 
 
In the following sections, I will describe a neural representation/processing mecha-
nism, documented across two different species and sensory systems, that function to 
absorb/normalize input signal variation. The two examples are (i) sound localization 
processing in the barn owl, and (ii) visual object recognition in the macaque. The 
existence of basically similar neural algorithms, shaped by sensory inputs over time, 
across two different organisms (mammalian and avian) and sensory modalities, 
illustrates the conserved nature of this normalization platform in evolutionary devel-
opment. The structural and functional neural unit accomplishing this feat is the 
neural column. Mountcastle (1978) was the first to claim that the cerebral cortex is 
remarkably uniform in structure across all processing areas (sound, vision, motor, 
higher order). This uniformity is due to vertically arranged neurons distributed with-
in the six-layers of each and every column comprising the 2–3 mm of the cerebral 
cortex. Moreover, columns are also present in subcortical processing areas such as 
the midbrain inferior colliculus (Wagner et al., 1987). 
 Before describing how the barn owl and macaque deal with signal input 
variability, a brief account of tolerance limits in sensory processing will be provided. 
Tolerance limits pertain to a neural ‘filtering’ principle that permits specific ranges or 
‘windows’ of signal variations to be processed by neural columns.  
 A classic early example of tolerance limits was discovered by Maturana & 
Frenk (1963) recording from single ganglion cells in the retina of pigeons. Groups of 
such cells were specifically sensitive to visual stimuli consisting of horizontally-
oriented edges. Different clusters of such cells exhibited varying tolerances in the 
input signal to elicit their firing. For example, the range of tolerance for one class of 
neurons was 25 degrees of inclination from a 0 degree horizontal edge. Said in an-
other way, any edge stimulus varying within a 0-to-25 degree range of variation was 
‘good enough’ to initiate a strong firing pattern from a given cell. Another group of 
ganglion cells operated within a 20, 15, or 10 degree range of tolerance from the abso-
lute horizontal.  
 Barlow et al. (1964) and Oyster & Barlow (1967) reported similar results record-
ing from retinal ganglion cells of the rabbit. The specific triggers for these cells were 
the speed and direction of image movement. Once again tolerance ranges were 
exhibited for specific stimuli. This commonly observed characteristic of neuronal 
sensitivities suggests the existence of prescribed limits of stimulus parameter vari-
ation for visual feature detection.  
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 Characteristically, what is shown in one sensory modality is also found in 
other modalities. Nelson et al. (1966) recorded from single neurons in the cat’s in-
ferior colliculus in response to complex, time-varying signals (FM sound sweeps). 
These ‘meow’ detectors revealed highly specific responses to (i) upward sweeps in 
frequency vs. downward sweeps, (ii) from a particular starting frequency-to-ending 
frequency, for each direction of change, and (iii) for given rates of change (Hz/sec) 
within the various starting-to-ending directional frequency ranges. The same classifi-
cation scheme was also documented for amplitude modulated input signals. The 
entire range of coding specifications across frequency and amplitude dimensions 
revealed in a cat’s ‘meow’ detector neuronal population could adequately describe 
the human speech signal, which basically consists of frequency changes over time. 
 
 
4. Columnar Organization in Sound Localization Processing in the Barn Owl 
 
Owls hunt for food at night, using sound cues arriving from various directions and 
distances. The two acoustic parameters necessary for azimuth localization (left/ 
right) are frequencies and their relative phase differences arriving at right and left 
ears. The frequencies emanate from the sounds of their prey, and the phase infor-
mation emerges from the differences in time of arrival of the sounds at the two ears. 
The ear closer to the origin sounds responds sooner. However, there are inherent 
ambiguities in frequency and phase values that need to be overcome before the owl 
can strike and secure dinner. Here is a simple example: picture an oval running track 
with two runners at a given moment in time. One runner is in front of the other, 
apparently leading in the race. If you ask a child, “Who’s winning the race?”, the 
child would most likely respond “The guy in front”. If it were the child of a physics 
professor, he/she might reply: “It’s totally ambiguous as we do not know how many 
times each runner has run around the whole track, all we see is the phase difference 
between the two runners”. Thus, phase information, without corresponding frequ-
ency information, is non-informative and ambiguous.  
 Wagner et al. (1987), recording from the central n. of the barn owl’s inferior 
colliculus during actual sound localization maneuvers, has clarified how this coding 
ambiguity gets resolved. Neurons making up tonotopically organized ‘delay lines’ 
located in a lower brain stem nucleus of the barn owl (nucleus laminaris) initially 
encode interaural phase differences in sounds arriving at the two ears. The most 
activated cell in each of the tonotopic delay lines codes the temporal disparity in time 
of arrival of the two sounds—lead ear relative to lagging ear. These temporal dis-
parities then project to the central n. in the midbrain of the barn owl, the site where 
Wagner et al. recorded from individual combination-sensitive neurons whose job is 
to encode all the various simultaneous frequency/phase pairings in the complex 
input signal.  
 Figure 1 shows a simplified schematic that captures the essence of how inter-
aural time difference (ITD) columns resolve the inherent ambiguity/variation of 
these binaural input signals. The 3D schematic shows the results of the firing pat-
terns of combination sensitive neurons vertically organized in columns throughout 
this nucleus. Frequencies (only a representative portion) are plotted along the y-axis, 
and phase differences, depicted in percentages, along the x-axis, and the emergent 
ITDs, along the z-axis. Notice that one column is shaded, the one coding an emergent 
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ITD of 50 !sec. With radioactive tracers it was determined that this particular 
column, as a collective, sent its output to the shaded area of the higher external n., 
where there was an invariant coding of 30 degrees azimuthal location of the input 
sound.. That directional location equates to a lead arrival time of 50!sec to the right 
ear. The key point is that regardless of the different frequency/phase pairings 
encoded within the column, they all contain a temporal commonality—the same ITD—of 
50 µsec! The column serves as a ‘buffer’, absorbing signal variation, to arrive at an 
invariant instance of time of arrival, which signals spatial location to the owl. The 
columns tolerate wide differences in lawful phase variations across the frequency 
spectrum of the complex input sounds.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  Columnar organization to derive ITDs in barn owl’s inferior colliculus 
 
 There is one problem, however, with this example of columnar functioning to 
yield an emergent normalization of highly variable input signals––all the inputs 
arrive co-temporally, at the same time. The owls are processing complex sounds with 
spectral energy distributed throughout the entire frequency scale. To make the theo-
retical jump from animal-to-human brains, all the variations of the input signal can-
not be co-temporal, but rather experienced one at a time, repeatedly, over long devel-
opment time spans. Phonological categories in children form over the first few years 
of normal exposure to the contrastive sounds of a natural language. The next ex-
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ample, from the macaque, will illustrate the existence of similar cortical columns that 
gradually develop with experience, but contain the same basic format and function 
as seen in ITD columns of the barn owl. 
 
 
5. Columnar Organization for Signal Variability in Visual Object Recognition 

in the Macaque 
 
Tanaka (1993) investigated object recognition in the inferotemporal cortex of the 
macaque. Visual images undergo lawful changes due to different illuminations, 
viewing angles, and articulation of the object. Tanaka’s set of critical visual features 
to test a neuron’s firing sensitivities were created by a systematic reduction method. 
Starting with images of natural objects (e.g., the head of a tiger), they first zeroed in 
on single neurons in a given cortical column that maximally fired to the complete 
stimulus. Then they systematically reduced and simplified the image, step by step, 
with each step being tested as to whether the neuron still responded to the altered 
image with the same magnitude of response as seen in the original complete image. 
Each step was a gradual reduction of the complexity of the image. When a given 
neuron ceased responding to a particular reduced image, the reduction process 
stopped and a basic critical feature was arrived at. A set of 12 critical features were 
thus derived and used to probe the columnar organization in anterior IT cortex. 
Figure 2 shows the step-by-step reduction process for the ‘tiger image’ from Tanaka 
(1993). The ‘tiger’ neurons responded equally to all stimulus reductions except the 
bottom two symbols (dark rectangles and white square). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  Example of the reduction method to arrive at a critical visual feature 
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 When vertical electrode penetrations were made within a given TE column, 
they first determined the critical feature from the mid region of that column. Further 
single neuron recordings within the vertical penetration revealed responsiveness to 
related or highly similar images to the optimal stimulus. The object feature was not 
represented by a single cell, but rather by the activity of all cells within a given column. 
The effective stimuli, composed of subtle variations of a given image, overlapped 
and provided a robust collective columnar response. Whilst the input signal con-
tained subtle variations due to changes in illumination, viewing angle, and articu-
lation of the object, the global organization of the column structuring the output 
showed little change despite the internal variation. As stated by Tanaka (1993): “The 
clustering of cells with overlapping and slightly different selectivity works as a 
buffer to absorb the changes” (p. 686).  
 Figure 3 shows the schematic from Tanaka (1993) illustrating the cortical 
columnar organization in area TE. Vertical penetrations within a given column 
revealed sensitivities to the same basic shape, in all their lawful permutations, as if 
they were ‘visual object allophones’. The findings of Tanaka illustrate that in visual 
object recognition there is no stored template or ‘prototype’ that is matched to the 
input stimulus, but rather a flexible and collective process wherein the variations in 
the stored data (sets of columns) represent the various ‘visual allophones’ characteriz-
ing an object’s features across the lawfully generated physical contingencies learned 
via visual experiences.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3:  Columnar organization in area TE 
 
 
6. How Might the Human Brain Normalize F2 Transitions? 
 
Using the columnar model documented in the barn owl and macaque, the following 
section will attempt to extend this algorithm to the seminal non-invariance conun-
drum in speech perception, stop place categorization. Locus equation (LE) studies 
(e.g., Sussman et al., 1991, 1993, 1997) have demonstrated that, at the level of the stop 
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place category, the frequencies at which F2 transitions start (F2 onsets), and where 
they end in the vowel nucleus (F2 midvowel), display a linear and highly correlated 
relationship. Figure 4 shows a typical alveolar ([dV]) locus equation scatterplot, with 
10 vowel contexts. Each [dV] token (e.g. deet, debt, dat, dot, doot, etc.) was randomly 
produced within a carrier phrase, five times, by a single speaker. The <x, y> coordi-
nates are F2 onset frequencies plotted on the y-axis, and their corresponding F2 
midvowel frequencies on the x-axis. The F2 transition is parameterized by two time 
points, where it starts and where it merges into the vowel. In the scatterplot below 
the regression slope was .394, y-intercept 1217 Hz, and R-squared .915. The R-
squared values in LEs typically exceed .90, and the standard errors of estimate are 
usually less than 100 Hz.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:  Typical locus equation plot for an alveolar stop /d/ 

 
 The following quote succinctly summarizes the LE paradigm: “[A] tremendous 
amount of orderly structure can be witnessed by plotting exemplars in an F2-onset 
frequency by F2-vowel-midpoint frequency space. What appears to be a nearly im-
possible categorization problem becomes less mystical when one sees the structure 
inherent in a different acoustic space“ (Lotto & Holt, 2016: 76). LEs have clearly de-
monstrated that the variable F2 transitions, that previously led Motor theorists to 
abandon the auditory signal in favor of motor gestures, display an emergent level of 
orderliness when displayed as a higher order stop place category. Normalization has 
occurred, in a self-organized fashion, for free, when the whole stop place category is 
displayed by these <x, y> coordinates. No statistical algorithms are needed. The 
observation that lawful orderliness first emerges when the phonological category is 
displayed as a collective (rather than token-by-single token), suggests that the neural 
correlate of a phonological category should also be a collective, capable of represent-
ing all its allophonic members. 
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 Linear scatterplots and contrastive LE slopes have been documented across 
stop place categories in every language thus far examined—including Arabic, 
English, Estonian, French, Spanish, Swedish, Thai, and Urdu (Lindblom, 1963; Duez, 
1992; Sussman et al., 1993; Martínez-Celdrán & Villalba, 1995)—and thus might very 
well be a linguistic universal. The category-specific slopes of locus equations have 
been shown to be reliable phonetic markers for stop place (labial, alveolar, velar), as 
they capture the degree of anticipatory coarticulation of each vowel context on stop 
place occlusion (Krull, 1988; Sussman et al., 1991, 1993). Rather than viewing vowel 
context-induced variability as ‘unwanted noise’, the locus equation view maintains 
that differentially tweaking coarticulatory extents across stop place categories actual-
ly underlies the acoustic distinctiveness to contrast stop place categories in acoustic 
space.  
 
6.1. Possible Neural-Based Correlates for Mapping Locus Equation Structure 
 
An essential requirement across sounds comprising a category to qualify them as ‘in-
formation bearing parameters’ is a high degree of statistical regularity (Suga, 1989). 
When parameters of a communicative sound possess a high degree of statistical cor-
relation, neuronal-based learning is optimized and subsequent representational map-
ping in neural tissue becomes highly feasible (Suga et al. 1978; Suga, 1989). In this 
section, I will suggest two brain-based processing mechanisms: (i) a class of neurons 
capable of encoding locus equation acoustic parameters, F2 onset in relation to F2 
midvowel, and (ii) a neural structure ideally suited to map equivalence classes —the 
neural column. 
 A neuron capable of processing both the onset and offset frequencies of F2 tran-
sitions is well documented in neuroethology. They are referred to as ‘delay-tuned’ 
combination-sensitive neurons (e.g., Mittman & Wenstrup, 1995; Portfors & Wen-
strup, 2001; Yavuzoglu et al., 2011). These higher-order auditory processing cells 
have been widely described in the mustached bat (e.g., Suga, 1994). One example is 
the derivation of target velocity in echo location. In this instance, the Doppler shifted 
frequency of the returning echo pulse (e.g., CF2, the second harmonic constant 
frequency segment) is processed relative to the CF2 frequency of the emitted pulse. 
The laws of physics determine the Doppler shift, and the bat uses this information to 
‘calculate’ the speed of the target prey. The bat also calculates distance of the prey by 
the time delay between various harmonics of the pulse vis-à-vis returning echo. In 
both cases, tens of milliseconds separate the two biosonar signal components, just as 
they do in stop + vowel utterances (F2 onset relative to F2 midvowel Hz). The crucial 
point is that delay-tuned, combination-sensitive neurons are the ideal candidate 
neuron to encode the start and end of a F2 transition, arguably the most important 
acoustic cue in speech perception (Liberman & Mattingly, 1985). 
 Auditory combination-sensitive neurons tasked to map highly variable, but 
lawful input signals, in neural substrates would be expected to be organized within a 
neural entity capable of representing the entire equivalence class. One viable can-
didate is the neural column (or sets of columns). Why would phonologically-based 
sorting not use the same evolutionarily conserved mechanisms as other species had 
already developed, in dealing with ambiguous and highly variable encoding 
problems? 



A Functional Role for Neural Columns 
 

71 

6.2. The Significance of Linearity and the Locus Equation Slope 
 

A basic requirement that must exist to allow encoding of variable inputs within 
neural columns is a shared physically-based commonality across the input stimuli. An 
interesting similarity emerges when one compares the linear scatterplots of LEs to 
<x, y> scatterplots of the physical input signals underlying both echolocation in the 
bat and sound localization processing in the barn owl. Velocity-coding (Doppler 
shift) and distance tuning in biosonar echo processing are based on perfectly linear 
relationships between the two signal elements for each emergent property (Suga et 
al., 1983). Similarly, ITD maps in the barn owl (Wagner et al., 1987) are formed from 
linear <frequency–phase> relationships inherently formed by the laws of physics.  
 The LE slope is a statistically generated metric that represents the correlational 
value of the plotted frequencies F2 onset and F2vowel. Said in another way LE 
slopes, characterizing a given stop place category, statistically capture a lawful pat-
terning of variable F2 transitions in acoustic space. Thus, they illustrate the existence 
of a shared lawful commonality across acoustically-coded <x, y> coordinates represen-
ting a stop place category. In sum, the laws of physics create the F2 transitions, and 
the brain utilizes these fine-grained acoustic stimuli for its own encoding purposes. 
Just as a linear regression slope captures and represents the entire spatial distribu-
tion of F2 transitions in acoustic phonetic space, the F2 ‘particulars’ hypothesized to 
exist within neural columns can collectively signal the same stop place perception in 
an isomorphic neural space. 
 
6.3. Speaker-Based Differences in Stop + V Coarticulation 
 
Sussman et al. (1991) derived LE plots for twenty speakers, 10 male and 10 female. 
Within a stop place category speaker specific slope/y-intercept values also exhibited 
substantial variability. However, and this is a big however, when slope and y-inter-
cept values were used in a discriminant analysis, to assess predicted [bdg] categori-
cal identity, the result showed 100% correct stop place categorization. This result was 
subsequently replicated for Spanish speakers (Celdran & Villalba, 1995). Once again, 
tolerance limits for slope, and their requisite y-intercept values, allowed for absolute 
contrastive mapping of categories. The mean alveolar LE slope for male and female 
speakers was .43 and .41, respectively, with male speakers varying from .346 to .492 
and female speakers from .27 to .50. Figure 5 below shows the clustering of LE 
slopes/y-intercepts across the 20 speakers. The red squares represent the 20 speakers 
producing [dV] LEs, the green triangles show the [gV] LEs, and the blue diamonds 
show the 20 [bV] LE parameters. It can easily be seen why the discriminant analysis 
yielded 100% correct category assignment—there is no category over-lap among the 
three stop place categories, despite the range of speaker-specific values seen within 
each stop place category. The bottom line: If stop place categories, produced across 
several variability-inducing scenarios—phonetic context + male-female differences, 
can be captured as three, non-overlapping, categorical clusters on a higher order LE 
<x, y> plot, the brain should not experience any processing road blocks in doing the 
same thing. The challenge is to explain how a single input stimulus finds its way to 
the higher order categorical representation. Visual object recognition in the columns 
of inferior temporal cortex of the macaque faces the same question: How does each 
separate visual experience of a shape find its way to the correct column?  
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Figure 5:  Locus equation slopes and y-intercepts across 10 male and 10 female speakers for labial, 

alveolar, velar stop categories 
 
6.4. A Hypothesized Algorithm for Developing Categorical Mapping within a Column 
 
In Sussman et al. (1991), a hypothetical algorithm was presented to provide an initial 
attempt at formalizing this mapping puzzle. It was organized in three (temporally 
sequential) tiers of processing: (i) stop burst processing; (ii) F2 onset processing; and 
(iii) F2midvowel processing. Each layer had synaptic connections to combinatorial 
‘AND-gate’ neurons that respond best to the joint presence of multiple input signals. 
Using [dae] as an initial input CV, how does this signal finds its way to the [d] 
column’ within a developing ‘speech sound map’ (e.g. Guenther et al., 2006) driven 
by a child’s own babbling and ‘motherese’ external input?  

The first stage is envisioned as the most activated neuron responding to the 
spectral noise prominences in the /d/ burst, in combination with the most activated 
neuron responding to the tonotopic F2onset frequency. These dual input signals 
would converge and synapse onto the same ‘AND-gate’ combinatorial neuron coding 
the two input signals. This neuron then connects with another set of combination-
sensitive neurons that combines the above pair with the tonotopically analyzed /ae/ 
F2vowel-activated neuron(s). Linear LE plots for a given stop place category signify 
that a given F2 vowel Hz has a strong predictability accuracy for the appropriate F2 
onset Hz. The combined projections from the burst, F2 onset, and F2 vowel process-
sing thus all converge onto the same combination-sensitive cells dedicated to inte-
grating the three levels of signal input and predicting stop place identity. All CVs 
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with the same initial stop + assorted vowels activate similar combinatorial neurons 
coding that stop place. Why? Because they all possess an acoustic-based common-
ality as captured and reflected by the contrastive and linear locus equation scatter-
plots. As the infant, over time, hears words beginning with the same sound—‘daddy, 
doggie, daisy, dance, day, duck, deer…’—the above circuitry develops its ‘tuning’ pre-
cision and slowly establishes perceptual identity and the resultant representations 
for the building blocks of phonology, the phonemic units of language.  
 Two experimental studies lend support to this conceptualization. Sussman et 
al. (1999) analyzed CV babbling and first word productions of an infant spanning the 
period of seven months to age 40 months. A total of 7,888 utterances were 
longitudinally analyzed, month by month (a total of 3,103 [bV], 3,236 [dV], and 1,549 
[gV]). LEs scatterplots were generated from these transcribed data values. Babbling-
based LEs bore very little resemblance to phonologically mature speakers. An inter-
esting transformation was documented across development as babbling gradually 
transformed into first word attempts, and ended with the more sophisticated 
utterances of a 3-year-old. Specifically, initially flat ‘labial’ LEs generated from 
babbled CVs gradually became steeper, due to greater levels of anticipatory coarticu-
lation; initially steep ‘alveolar’ LEs plots derived from reduplicated and variegated 
babbling gradually leveled off, due to decreased levels of anticipatory coarticulation, 
and thus more closely resembled the low-slope values of adult-like [dV] productions. 
These articulatory-based adjustments, documented by changing LE slope values, can 
be envisioned as a parallel developmental progression of a maturing ‘speech sound 
map’. 
 However, when LEs are derived from children diagnosed with the neurologi-
cal disorder known as ‘developmental apraxia of speech’ (DAS), their mean slopes 
across [bV], [dV], and [gV] productions were not contrastive relative to age-matched 
peers, but highly similar—labial = .642, alveolar = .703, and velar = .749 (Sussman et 
al., 2000). It is no wonder that their speech exhibits a high degree of unintelligibility. 
Their speech motor control deficiencies preclude precise control of anticipatory coar-
ticulation to acoustically separate and contrast stop place classes. Their phono-
logically-organized speech sound maps are thus inherently impoverished, preclud-
ing precise acoustic mapping of the acoustic elements of speech sounds with even-
tual production of these sounds. 
 
 
7. Summary and Conclusions 
 
An effort was made to introduce neural-based reality into discussions of context-
induced phonetic variability in stop place perception. In describing the basic 
differences between exemplar versus traditional abstractionist views of phonetic 
variability, it was stressed that neither approach provided a realistic account of how 
variability is actually processed in the brain. Abstractionist (viz. motor theory) 
accounts were credited with citing the need for normalization routines to remove 
‘noise’, a view foreign to exemplar accounts, who maintain every input token is 
informative and hence stored. To accomplish this goal, two neural-based examples 
from neuroethology investigations, sound localization in the barn owl and visual ob-
ject recognition in the macaque, were described. Both avian and mammalian species 
were shown to possess (i) columnar structures that encoded stimulus variations, (ii) 
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within specified tolerance ranges, that (iii) were linked by lawful physically-based, 
relationships. By virtue of the entire column functioning as a collective unit, the 
encoded variability served to eliminate or absorb the inherent ‘noise’. There is no 
matching of ‘on-line’ input signals to stored ‘prototypes’. 
 The basic similarities between the neuroethology examples and human speech 
perception for stop place coding were then described using the locus equation 
paradigm as a theoretical bridge between animal and human models of processing 
highly variable sensory inputs. An attempt was made to conceptualize a neural 
account of stop place categorization by using the columnar model from neuro-
ethology, in combination with the remarkably linear and orderly data from normal 
productions of stop consonants produced with varied vowel contexts. The neural 
analog of a LE slope was hypothesized to be the contents of neural columns—
encoding the collective acoustic commonalities of the F2 transitions characterizing 
each stop place category. Thus, in principle, columnar outputs coding stop place 
identity are loosely analogous to what a contrastive LE slope captures. The LE en-
codes the F2 transition onset and offset on an <x, y> scatterplot, the brain is hypo-
thesized to encode the same physically paired frequencies within sets of neural 
columns. The ultimate outcome is an invariant perception of a speech sound despite 
highly variable instances of that sound when in context. It is hoped that these 
conjectures will spark further discussions and innovative thinking to further advance 
our understanding of these encoding and representational issues. 
 In closing, the advent of ECoG electrode array studies performed on human 
subjects have provided the first glimpse into the ‘how’ of speech processing. Chang 
et al. (2010) provided direct evidence of cortical population response patterns for the 
categorical representations of /ba/–/da/–/ga/ from a 14-item synthesized continu-
um systematically varying in F2 onsets. Mesgarani et al. (2014) reported the encoding 
of phonetic features directly tuned to a multiplicity of spectrotemporal acoustic cues. 
The conjectures put forth in this article will gain added validity as future ECog 
studies further clarify the nature of acoustic-phonetic representations of speech in 
human temporal cortex.  
 
 
 
 
References 
 
Ackerman, Diane. 2004. An Alchemy of Mind. New York: Scribner. 
Barlow Horace, R.M. Hill & W.R. Levick. 1964. Retinal ganglion cells responding 

selectively to direction and speed of image motion in the rabbit. Journal of 
Physiology 173, 377–407. 

Chang, Edward F., Jochem W. Rieger, Keith Johnson, Mitchel S. Berger, Nicholas M. 
Barbaro & Robert T. Knight. 2010. Categorical speech representation in human 
superior temporal gyrus. Nature Neuroscience 13, 1428–1432. 

Martínez-Celdrán, Eugenio & Xavier Villalba. 1995. Locus equations as a metric for 
place of articulation in automatic speech recognition. In Kjell Elenius & Peter 
Branderud (eds.), Proceedings of the XIIIth International Congress of Phonetic Sci-
ences (ICPhS 95; Stockholm, Sweden, 13–19 August 1995), vol. 1, 30–33. Stock-
holm: Stockholm University. 



A Functional Role for Neural Columns 
 

75 

Duez, Danielle. 1992. Second formant locus–nucleus patterns: An investigation of 
spontaneous French speech. Speech Communication 11(9), 417–427. 

Gahl, Susanne & Alan Yu. 2006. Introduction to the special issue on exemplar–based 
models in linguistics. The Linguistic Review 23, 213–216. 

Goldinger, Stephen D. 1992. Words and voices: Implicit and explicit memory for 
spoken words. Storrs, CT: University of Connecticut doctoral dissertation. 

Guenther, Frank H., Satrajit Ghosh & Jason A. Tourville. 2006. Neural modeling and 
imaging of the cortical interactions underlying syllable production. Brain and 
Language 96, 280–301. 

Hawkins, Sarah. 2003. Roles and representations of systematic fine phonetic detail in 
speech understanding. Journal of Phonetics 31, 373–405. 

Hockett, Charles. 1955. A Manual of Phonology. Baltimore, MD: Waverly Press. 
Jacoby, Lawrence & Lee Brooks. 1984. Nonanalytic cognition: Memory, perception, 

and concept learning. In Gordon H. Bower (ed.) The Psychology of Learning and 
Motivation, 1–47. New York: Academic Press. 

Krull, Diana. 1988. Acoustic properties as predictors of perceptual responses: A 
study of Swedish voiced stops. Phonetic Experimental Research at the Institute of 
Phonetics (PERILUS) 7, 66–70. 

Lavie, René-Joseph. 2007. Exemplar theory in linguistics: A perspective for the 
cognitive subject. Communication to the 11th Congress of Cognitive Linguistics, 
Bordeaux, 19–21 May 2005. https://hal.archives-ouvertes.fr/halshs-00142394. 

Liberman, Alvin & Ignatius Mattingly. 1985. The motor theory of speech perception 
revised. Cognition 21, 1–36. 

Liberman, Alvin, Franklin Cooper, Donald Shankweiler & Michael Studdert–
Kennedy. 1967. Perception of the speech code. Psychological Review 74, 431–461. 

Liberman, Alvin, Pierre Delattre, Franklin Cooper & Louis Gerstman. 1954. The role 
of consonant–vowel transitions in the perception of the stop and nasal 
consonants. Psychological Monograph 68, 1–13. 

Lindblom, Bjorn. 1963. Spectrographic study of vowel reduction. The Journal of the 
Acoustical Society of America 35 , 1773–1781. 

Lotto, Andrew & Lori L. Holt. 2016. The frame problem in speech communication: 
Defining the dimensional space for phonetic categorization. In Augustine 
Agwuele & Andrew Lotto (eds.), Essays in Speech Processes, 68–82. Sheffield: 
Equinox. 

Maturana, H. R. & S. Frenk. 1963. Directional movement and horizontal edge 
detectors in the pigeon retina. Science 142, 977–979. 

McMurray, Bob & Allard Jongman. 2011. What information is necessary for speech 
categorization? Harnessing variability in the speech signal by integrating cues 
computed relative to expectations. Psychological Review 118(2), 219–246. 

McMurray, Bob, Ariane Rhone & Kayleen Hannaway. 2016. Relativity in speech 
perception: From locus equations to predictive coding. In Augustine Agwuele 
& Andrew Lotto (eds.) Essays in Speech Processes, 30–67. Sheffield: Equinox. 

Mesgarani, Nima, Connie Cheung, Keith Johnson & Edward Chang. 2014. Phonetic 
feature encoding in human superior temporal gyrus. Science 343, 1006–1010. 

Mittmann, David & Jeffrey Wenstrup. 1995. Combination-sensitive neurons in the 
inferior colliculus. Hearing Research 90, 185–191. 

Mountcastle, Vernon. 1978. An organizing principle for cerebral function. In Gerald 



76                                                H. M. Sussman 
 

Edelman & Vernon Mountcastle (eds.), The Mindful Brain, 7–50. Cambridge, 
MA: MIT Press. 

Mullennix, John & David Pisoni. 1990. Stimulus variability and processing depen-
dencies in speech perception. Perception and Psychophysics 47, 379–390. 

Mullennix, John, David Pisoni & Christopher Martin. 1989. Journal of the Acoustical 
Society of America 85, 365–378. 

Nelson, P. G., S. D. Erulkar & J. S. Bryan. 1966. Responses of units of the inferior col-
liculus to time-varying acoustic stimuli. Journal of Neurophysiology 17, 834–860. 

Oyster, Clyde & Horace Barlow. 1967. Direction-selective units in rabbit retina: 
Distribution of preferred directions. Science 155, 841–842. 

Pierrehumbert, Janet. 2001. Exemplar dynamics: Word frequency, lenition and 
contrast. In Janet Bybee & Paul Hopper (eds.), Frequency and the Emergence of 
Linguistic Structure, 137–157. Amsterdam: John Benjamins. 

Pierrehumbert, Janet (2003). Phonetic diversity, statistical learning, and acquisition of 
phonology. Language and Speech 46, 115–154. 

Pisoni, David. 1992. Some comments on invariance, variability and perceptual nor-
malization in speech perception. In John J. Ohala, Terrance L. Neary, Bruce M. 
Derwing, Megan M. Hodge & Grace E. Wiebe (eds.), Proceedings 1992 Inter-
national Conference on Spoken Language Processing, 587–590. Banff: University of 
Alberta. 

Pisoni, David. 1995. Some thoughts on ‘normalization’ in speech perception. Research 
on Spoken Language Processing, Progress Report No. 20. Bloomington, IN: Indi-
ana University. [Appeared in Keith Johnson & John W. Mullennix (eds.) Talker 
Variability in Speech Processing, 9–32. San Diego, CA: Academic Press, 1997.] 

Portfors, Christine & Jeffrey Wenstrup. 1999. Delay-tuned neurons in the inferior col-
liculus of the mustached bat: implications for analyses of target distance. 
Journal of Neurophysiology 82, 1326–1338. 

Shankweiler, Donald, Winifred Strange & Robert Verbrugge. 1977. Speech and the 
problem of perceptual constancy. In Robert Shaw & John Bransford (eds.), Per-
ceiving, Acting, and Knowing: Toward an Ecological Psychology, 315–346, Hillsdale: 
NJ Erlbaum. 

Sommers, Mitchell, Lynne Nygaard & David Pisoni. 1994. Stimulus variability and 
spoken word recognition: 1. Effects of variability in speaking rate and overall 
amplitude. Journal of the Acoustical Society of America 96, 1314–1324. 

Suga, Nobuo. 1989. Principles of auditory-information processing derived from 
neuroethology. Journal of Experimental Biology 146, 277–286. 

Suga, Nobuo. 1994. Multi–function theory for cortical processing of auditory 
information: Implications for single unit and lesion data for future research. 
Journal of Comparative Physiology 175, 135–144. 

Suga, Nobuo, William E. O’Neill & Toshiki Manabe. 1978. Cortical neurons sensitive 
to combinations of information-bearing elements of biosonar signals in the 
mustached bat. Science 200, 778–781. 

Sussman, Harvey M., Nicola Bessell, Eileen Dalston & Tiffany Majors. 1997. An 
investigation of stop place of articulation as a function of syllable position: A 
locus equation perspective. Journal of the Acoustical Society of America 101(5), 
2826–2838. 

Sussman, Harvey M., Celeste Duder & Eileen Dalston. 1999. An acoustic analysis of 



A Functional Role for Neural Columns 
 

77 

the development of CV coarticulation: A case study. Journal of Speech, Language, 
and Hearing Research 42, 1080–1096. 

Sussman, Harvey M., Thomas Marquardt & Jadine Doyle. 2000. An acoustic analysis 
of phonemic integrity and contrastiveness in developmental apraxia of speech. 
Journal of Medical Speech–Language Pathology 8(4), 301–313. 

Sussman, Harvey M., Helen McCaffrey & Sandra Matthews. 1991. An investigation 
of locus equations as a source of relational invariance for stop place 
categorization. Journal of the Acoustical Society of America 90, 1309–1325. 

Sussman, Harvey M., Celeste Duder, Eileen Dalston & Antonina Cacciatore. 1999. An 
acoustic analysis of the development of CV coarticulation: A case study. Speech, 
Language, and Hearing Research 42, 1080–1096. 

Sussman, Harvey M., Katherine Hoemeke & Farhan Ahmed. 1993. A cross-linguistic 
investigation of locus equations as a relationally invariant descriptor for place 
of articulation. Journal of the Acoustical Society of America 94, 1256–1268. 

Tanaka, Keiji. 1993. Neural mechanisms of object recognition. Science 262, 685–688. 
Wagner, Herman, Terry Takahashi & Mark Konishi. 1987. Representation of intra-

aural time difference in the central nucleus of the barn owl’s inferior colliculus. 
Journal of Neuroscience 7, 3105–3116. 

Yavuzoglu, Asuman, Brett Schofield & Jeffrey Wenstrup. 2011. Circuitry underlying 
spectrotemporal integration in the auditory midbrain. Journal of Neuroscience 
31, 14424–14435. 

 
 
 
 
Harvey M. Sussman 
University of Texas at Austin 
Departments of Linguistics and  
Communication Sciences & Disorders 
305 E. 23rd St. (B5100) 
Austin, TX 78712 
USA 
sussman@austin.utexas.edu  




