
 BRIEFS

Biolinguistics 6.1: 070–078, 2012
ISSN 1450–3417 http://www.biolinguistics.eu

All Tied in Knots

David J. Lobina

In this note, I wish to critique a proposal put forward by Camps & Uriagereka
(2006; C&U) and Balari et al. (2011; BEA) regarding the study of the evolution of
language. In particular, I intend to cast doubt on the connection they draw bet-
ween the computational properties of the language faculty and those involved in
the conceptualization of a knot. In what follows, I will offer a rather negative
commentary, in the sense that no alternative will be forthcoming. In fact, one of
the main points of this paper will be that there is no phenomenon to explain at
all; or at least it has not been properly formulated.
 The general idea underlying what C&U and BEA propose is clear enough.
Considering that the language faculty is underlain by a computational system
that generates sound/meaning pairs, it ought to be possible to outline some of its
computational properties. Furthermore, it is at least a possibility for some other
cognitive domain of the human mind to share some of these very computational
properties. If that is the case, C&M claim, such a domain would constitute a
“cognitive base” that can be said to be in a “causal correlation” with the linguistic
capacity (p. 35) ⎯ that is, the computational properties of such a ‘base’ would be
parasitic on those of the language faculty. If this holds, the behaviors associated
with this cognitive base could plausibly constitute indirect evidence for an
“underlying linguistic prerequisite” (ibid.).
 I pretty much doubt that such an inference is in fact sound, but let it stand
for the sake of the argument. The specific behavior that engages C&U and BEA
relates to the ability to tie a knot, a skill that must have originated in modern
man, given that evidence for it in the fossil record ⎯ such as in the binding of
projectiles to their shafts (C&U: 58) ⎯ is only present in the archaeology of Homo
Sapiens (p. 45). Naturally, language and knot-tying are phenomena that at first
sight appear to be completely unrelated, but C&U and BEA assure us that they
may in fact share underlying properties. The overall argument is more or less as
follows. According to mathematical linguistics, the expressive power of natural
language is context-sensitive (or more accurately, mildly context-sensitive; Joshi
et al. 1990); thus the computational system underlying language is of such power.
Further, the mathematical structure of knots may be studied by employing the
tools of Knot Theory, a subfield of mathematical topology. According to C&U,
and citing a work from this literature (viz. Mount 1989), knots can only be created/
described by a context-sensitive system, a conclusion they take to be “not subject
to rational debate” (p. 63). In a related manner, BEA conclude, citing another

 I am grateful to Mark Brenchley, José E. García-Albea, Aravind Joshi, and Mario Santos-

Sousa for helpful comments on a longer version of this paper. Part of this research was
funded by an AGAUR grant 2009 SGR-401 awarded by the Catalan administration.

Biolinguistics Briefs

71

study from Knot Theory (Hass et al. 1999), that determining whether a string is
knotted or not is of a computational complexity comparable to the processing of
linguistic expressions (p. 11). Given that evolution doesn’t, apparently, generate
identical structures (C&U: 45), the ability to entertain and create knots may
indeed be parasitic on computational properties of the language faculty.
 Note, first of all, that in the above paragraph there is a leap from the
expressive power of a language to the computational complexity of processing it;
whilst these two factors are closely related, they should not be conflated. Such
computational properties point, of course, to the classification of formal
grammars and languages that Chomsky (1956, 1963) delineated ⎯ the so-called
Chomsky Hierarchy.1 In those publications, Chomsky ranked different classes of
formal languages (where a language is defined as a set of strings of symbols) in
terms of the formal grammars (i.e. string rewriting systems) that are said to
generate these languages. The expressive power of a grammar, then, refers to the
precise set of strings that it can generate. Moreover, to say that a grammar is
context-sensitive is to specify a particular set of constraints on the form of its
rewriting rules that differentiates them from, for example, a context-free
grammar. Concurrently, mathematical linguistics has also focused on the
automata that are said to recognize each of the languages of the Chomsky
Hierarchy (Hopcroft et al. 2007). In particular, it has been amply demonstrated
that for each language class there is an automaton that recognizes all sets of
strings of this class; in this sense, each grammar is equivalent to a specific
automaton. In a perhaps more neutral vocabulary, one could state that automata
and grammars specify languages.
 Even though both automata and grammars describe the same reality ⎯ viz.
a ranking of different language classes ⎯ there is a clear difference in perspective
between employing a grammar and an automata in the study of computational
properties.2 Indeed, it is no surprise that it is the latter construct that has featured
more extensively in the study of the “rate of growth of the time or space”
required to solve a problem (Aho et al. 1974: 2); that is, the study of the compu-
tational complexity of a problem is much more amenable for study by employing
abstract machine devices such as automata than it is with a grammatical

 1 It seems to me that this leap and the subsequent conflation of these two properties stems

from the manner in which C&U and BEA interpret the Chomsky Hierarchy. In fact, these
two publications follow the (in my opinion entirely misbegotten) ‘re-interpretation’ of the
Chomsky Hierarchy Uriagereka conducts in chapter 7 of his 2008 book. This is rather
surprising, for a number of reasons. First of all, even though C&U (p. 36) state that their
description of the Hierarchy is based on Uriagereka (2008) ⎯ which they define, rather
conceitedly, as a “current linguistic perspective” ⎯ this book was not even published at the
time. More importantly, Uriagereka himself would surely admit that his re-interpretation is
not only non-standard, but a very speculative exercise indeed. Why would these scholars,
then, assume its validity as a framework upon which to draw a comparison between
language and knot-tying? Be that as it may, the main mistake of this re-interpretation lies in
Uriagereka’s belief that focusing on the different automata that specify the different lang-
uage classes gives you an account of structure generation, but this is quite simply not true;
see infra for more details.

 2 Hopcroft & Ullman (1969: 5) call these two perspectives the “recognition point of view” and
the “generative point of view”. Similarly, Wintner (2010: 17) talks of the “dual view of lang-
uage”.

Biolinguistics Briefs

72

formalism.3 If this is so, it is the case that the preoccupations of Automata Theory
revolve (mainly) around discovering the inherent computational difficulty of
various problems.
 Consequently, when it is stated that natural language has a particular com-
putational complexity, this is supposed to refer to the inherent difficulty involved
in processing linguistic structures. As it happens, what computational complexity
is in fact involved in the processing of language is very uncertain. In a review
article explicitly devoted to this question, and even though one of its section is
titled “Parsing and recognition”, Pratt-Hartmann (2010) focuses his attention on a
much narrower issue: the recognition problem. That is, given a grammar G with-
in a specific formalism F, the recognition problem aims to ascertain the amount of
time and space that a Turing Machine would require in order to determine if a
given string defined over the alphabet of G belongs to the language specified by
G (Pratt-Hartmann 2010: 55). According to Pratt-Hartmann, the computational
complexity of a grammar can only be determined within a specific formalism,
and therefore different formalisms are likely to involve different measures of
complexity. For example, the recognition of a context-free grammar specified in
Chomsky normal form (see infra) can be achieved by the so-called CYK algorithm
in time O(mn3), where m is the number of production rules, n is the length of the
string, and O refers to the upper bound on the growth rate of this specific
function (pp. 57–58). In other formalisms, the measures of complexity differ
considerably: For a language represented with a tree adjoining grammar (TAG; see
Frank 2004 for a brief description),4 the recognition problem can be solved in time
O(n)6 (p. 60); with a government and binding formalism, the problem is in the class
PSPACE5; and, finally, in the case of an Aspects-based grammar, the recognition
problem is quite simply undecidable (p. 63).
 At first sight, these results would appear to be far removed from the inter-
ests of a psycholinguist, and in a sense, they clearly are. After all, language pro-
cessing is not at all like the problem of determining whether a string is part of a
language (putting aside the ability to judge the grammaticality of sentences to
one side, obviously). That this is so follows, in my opinion, from the rather incon-
trovertible fact that formal language theory, strictly speaking, focuses on the
properties of sets of strings of symbols, and not, or at least not as much, on the
structural descriptions that are assigned to these strings. The issues at hand, how-
ever, are rather subtle and significant care must be employed in their discussion.
 Consider a grammar formalized in (a simplified version of) Chomsky
normal form; namely, a 3-tuple composed of a set of non-terminals, a set of
terminals and a set of production rules. Assume that there is a ‘start’ symbol that
can be expanded by employing one of the production (that is, rewriting) rules of
the grammar. In turn, the resultant string ⎯ a composition of terminal and non-

 3 Cf. Aho et al. (1974: iii): “[T]o analyze the performance of an algorithm some model of a

computer is necessary”. Similarly, Pratt-Hartmann (2010) employs a multi-tape Turing
Machine in order to summarize the main results of studies in computational complexity.

 4 Incidentally, the expressive power of TAG is mildly context-sensitive, which is argued to be
the correct expressive power of natural language.

 5 For a problem to be in the class PSPACE means that the Turing Machine would require a
polynomial amount of space to solve the recognition problem.

Biolinguistics Briefs

73

terminal symbols ⎯ can be further expanded by using other rewriting rules until
a string consisting only of terminals is derived. The history of these rule appli-
cations is usually called a derivation, and it is possible to use a tree represen-
tation as a visual aid in order to depict a given derivation in graphic form. In this
sense, the ‘derivation tree’ so devised would specify the structure of the string so
generated.
 Note, however, that there are in fact two structural descriptions at hand
here, what Simon (1962) called a state description (an object as sensed) and a
process description (an object as is constructed), respectively. While obviously
related (a process generates an object), the internal structure of each construct
may not coincide piecemeal. Perhaps it is the case that there is a direct connection
between the applications of rewriting rules and the intrinsic structure of a
linguistic object so generated ⎯ surely the devise of linguists ⎯, but such a nexus
is not quite so transparent in other formalisms. As Miller (1999) points out, there
is a difference between a ‘derived tree’ and a ‘derivation tree’ in TAG; whilst the
former describes a linguistic object as postulated by the linguist (as in the syn-
tactic trees so common in many a linguistic paper), the latter specifies the oper-
ations that TAG employs (viz. the adjunction and substitution of ‘elementary
trees’). Further, Miller (1999) proceeds, it is to the latter than we ought to focus if
we are interested in the structures that TAG generates (usually called its strong
generative capacity).6 That is, it is the derivation tree that specifies the structural
descriptions of a formalism, not the derived tree.
 My present point is that there is a difference between a string rewriting
system as employed in mathematical linguistics and a tree rewriting system such
as TAG in respect to what products these two systems return (cf. Miller 1999: 29).
Strictly speaking, the rewriting systems of formal language theory generate
strings (weak generation); they don’t generate structures. That is, there is nothing
in the formalism of a rewriting system itself that even hints at the possibility of
generating structure. Certainly, it is possible to modify such systems so that they
generate structures, and this is precisely what obtains in systems such as those
employed in a TAG. In my view, then, it is entirely correct to state that a rewrite
rule generates a string to which a structural description is associated (surely an
assignment that the linguist carries out; cf., again, Miller 1999: 2), but it is simply
fantasy to suppose that they literally generate structures.
 The same point applies to automata, which for present purposes can be
described, in a somewhat simplifying manner, as being composed of an input
tape, a control operation and a finite set of states (such as the initial state and the
final, accepting state; Hopcroft et al. 2007: 45–46). It is certainly true that a proper-
ly characterized automaton would be able to accept a string of symbols of which
we predicate a structure, but the automaton itself would not reflect in any way
the internal constitution the set of symbols it receives is supposed to underlie. To
suppose otherwise, it would quite simply be a figment of someone’s imagination;
or worse, metaphor.7

 6 Stabler (forthcoming) makes the very same point regarding the merge-based derivations of

his minimalist grammars.
 7 Hopcroft et al. (2007: 243–244) point out that a pushdown automaton (the automaton that

specifies/recognizes context-free languages) can simulate the derivations of a grammar, in

Biolinguistics Briefs

74

 Consequently, even if mathematical linguistics may have been able to
study the computational complexity exemplified in various automata or gram-
matical formalisms to a significant extent, none of this may bear any resemblance
to what goes on in the mind of speakers and hearers when they produce or
process linguistic material. Admittedly, a hearer receives a chain of elements in a
temporal sequence, but it is rather obvious that this input is not treated as if it
were a string of symbols; rather, a structure is imposed on this material in some
manner. Accordingly, the computational complexity of natural language pro-
cessing will have to consider properties of human psychology such as memory
limitations, the strategies that are employed in parsing, the use of the immediate
context and many other factors. All in all, it is simply not known what compu-
tational complexity our mental machinery exhibits in the processing of language.
Consequently, a comparison with other computational tasks in these very terms
seems to me rather flimsy.
 Even if this weren’t the case, it is very easy to show that the mathematical
theory of knots is in fact not informative about either the expressive power or the
computational complexity involved in tying a knot. Further, it also has nothing to
say regarding how to determine if a string is knotted. This is unquestionable the
case because the subject matter of such a field involves something else altogether.
A fortiori, no relation can at present be drawn between the ability to tie a knot
and the conceptualization/processing of language.
 As in any other subfield of mathematics, Knot Theory is a rather narrow
and technical discipline, a factor that should make anyone skeptical of the possi-
bility of adapting it to the purposes of studying human cognition. As it turns out,
the knots that Knot Theory studies bear no relation to real knots. Basically, a
mathematical knot is a closed structure, an embedding of a circle into Euclidean
3-space (Burde & Zieschang 2003: 1). Moreover, the main line of research in this
field is extremely narrow; what these theorists attempt to do is figure out which
two knots are isotopic and which are not, where two knots are regarded as
isotopic if one of them can be transformed into the other by following step-by-
step moves. This, the knot recognition problem, involves working out the formal
equivalence of two knots. A special case of this problem concerns the so-called
‘unknot’, a closed loop without any knot in it, as shown on the left-hand side of
Figure 1 below. The ‘unknotting’ problem, in turn, involves specifying an algo-
rithm that can recognize the unknot in a figure like the one found on the right-
hand side of Figure 1 (that is, convert the knot on the right-hand side into an
unknot).

the sense that the material the automaton is inputted can be manipulated in a manner that
mimics the rule applications of the grammar (that is, the derivation). The same point
follows: the structure that is assigned to the derivation (by the linguist) plays no role in the
operations of such formalisms. Furthermore, the structure of a given derivation may not
coincide with the structure of the object that is constructed. After all, simulation and
mimicking do not stand on the same ground as a mechanism that is literally constructed as
to generate structures, such as a tree rewriting system or an embedding mechanism like
Merge (this situation is a bit like the attempt to model language comprehension — or indeed
the whole of cognition— as a type of Bayesian inference; virtually anything can be so
modeled, but this doesn’t imply that mental mechanisms in fact effect such inferences).

Biolinguistics Briefs

75

Figure 1: The unknot and a non-trivial knot

Relevant to the issues I am unearthing here is the so-called Reidemeister moves, a
set of well-defined combinatorial moves that can disentangle a knot without
damaging it (note that these moves disentangle a knot, they don’t untie it). There
are three such moves: twist/untwist; move one strand over another; and move
one strand over/under a crossing (Manturov 2004: 12).
 Naturally, none of this has anything to do with how you go about tying a
knot, let alone the computational complexity required to do so. Perhaps unsure-
prisingly, the actual details of Knot Theory go completely unmentioned in C&U;
its relevance to real-life knot-tying abilities just assumed. BEA do point out that
Knot Theory deals with “elastic, closed, and tangled knots” (p. 11), but they go
on to claim that “formal details aside” (as if they were of no importance), “the
task of determining whether any string is knotted is known to have a complexity
comparable to the one needed to process linguistic expressions” (ibid.; reference:
Hass et al. 1999). And a bit later, they say, “(un)tying knots (or determining
whether a tangled string is knotted) seems to require an underlying compu-
tational system of Type 1” (ibid.; Type 1 in the CH: context-sensitive).
 There are two things at fault here. First is the claim that Knot Theory
involves “determining whether a string is knotted”, something that is clearly not
the case, as Knot Theory takes tied knots as its starting assumptions ⎯ indeed,
this field’s sole concern is the equivalence problem outlined above. The other
problem is to treat (un)tying a knot and determining if a string is knotted as if
they are equivalent, but there are no reasons whatsoever to believe so.
Furthermore, the reference BEA include in relation to this (viz. Hass et al. 1999) is
clearly misrepresented. Rather, what Hass et al. (1999) proved is that an algo-
rithmic solution for the unknotting problem is in the complexity class NP, which
is to say that the algorithm will define multiple ways of processing the input
without specifying which one it will take, in polynomial time. Quite clearly, this
has no relation to either the mildly context-sensitive expressive power of
language or the complexity involved in language processing; moreover, it also
has no relation to the complexity of (un)tying a knot.
 Nevertheless, this is not to say that (un)tying a knot may well involve a
non-trivial computational system, but we don’t have an account of this.8 At one
point, BEA do envision what may actually be involved in making a knot; one
must relate, they tell us, a segment of the knot with the background, and this may

 8 In this and the next paragraph, I implicitly assume that knot tying can be modeled as a com-

putational task, but I do not actually think this is so obvious. In any case, it would have to be
demonstrated, not presumed.

Biolinguistics Briefs

76

well involve “grouping and long-distance-like relations” (p. 11). This insight
comes from C&U, in fact; therein, the authors briefly describe a possible transfor-
mation of a string into a knot by assigning a specific number to each segment so
that these symbols can in turn be manipulated by a (context-sensitive) grammar.
They don’t provide a proof of this, but the underlying idea is not incoherent. For
example, Turing (1954) discusses a similar issue in relation to solvable and
unsolvable problems in Knot Theory. As noted earlier, a knot is a closed curve in
three dimensions, but it can also be accurately described, Turing tells us, “as a
series of segments joining the points given in the usual (x, y, z) system of
coordinates” (p. 585). Further, a set of symbols can be employed to represent unit
steps in each coordinate direction (say, a’s and d’s for the X-axis, and so forth) so
that transformation moves can be modeled by substitution rules of the pro-
duction systems variety.
 These are, in fact, the terms in which I assume C&U claimed that Mount
(1989) showed the necessity of a context-sensitive system to create knots; a
conclusion, it will be recalled, supposedly “not subject to rational debate”. Some-
what amusingly, Mount (1989) turns out to be an unpublished computer manual
for a program devised to assist mathematicians in the study of Knot Theory. At
one point (p. 4), this author discusses the Reidemeister moves I outlined above,
and remarks that the transformation of one knot into another may be reduced to
a grammar problem, in precisely the terms Turing (1954) discusses. Later on, it is
again remarked that “the Reidemeister moves could be rephrased as some kind
of context-sensitive grammar” (p. 5).
 Note what is actually being claimed here. First, that the Reidemeister
moves could be modeled by a context-sensitive grammar; obviously, this is not a
demonstration, but mere supposition. Secondly, such a supposition is exclusively
meant to relate to the (narrow) purposes of Knot Theory; that is, Mount is won-
dering whether a production system may be employed to study the knot
recognition problem. Again, this has nothing to do with the computational com-
plexity or expressive power of (un)tying a knot in real life. Nor could it be con-
strued as even suggesting such a connection. It is rather astonishing that the
passing comments of an unpublished computer manual can become, on anyone’s
reading, a conclusion “not subject to rational debate”.
 In short, as it stands there is no fact of the matter regarding what relation
there is, if there must be one, between the computational properties of the
language faculty and whatever capacity underlies our ability to conceptualize
and indeed tie a knot. This is not to say that there might not be a fruitful way to
study such a relationship, but neither C&U nor BEA have provided any reason
whatsoever, plausible or speculative, to believe that there is anything in need of
explanation here.
 In order to put an end to this brief examination, I should also add that C&U
and BEA raise many other issues that are certainly worth discussing, such as the
application of the Chomsky Hierarchy in the study of cognitive domains, the role
of the different levels of analysis in such a study, and general features of mental
architecture. In my opinion, there are significant shortcomings in the manner in
which they treat all these issues, but this is not the place to discuss any of this; I
do note, however, that I have done so elsewhere (Lobina 2012).

Biolinguistics Briefs

77

References

Aho, Alfred V., John E. Hopcroft & Jeffrey D. Ullman. 1974. The Design and

Analysis of Computer Algorithms. London: Addison-Wesley Publishing
Company.

Balari, Sergio, Antonio Benítez-Burraco, Marta Camps, Víctor M. Longa,
Guillermo Lorenzo & Juan Uriagereka. 2011. The archaeological record
speaks: Bridging anthropology and linguistics. International Journal of
Evolutionary Biology 2011, doi:10.4061/2011/382679.

Burde, Gerhard & Heiner Zieschang. 2003. Knots. Berlin: Walter de Gruyter.
Camps, Marta & Juan Uriagereka. 2006. The Gordian knot of linguistic fossils. In

Joana Rosselló & Jesús Martín (eds.), The Biolinguistic Turn. Issues on
Language and Biology, 34–65. Barcelona: Publications of the University of
Barcelona.

Chomsky, Noam. 1956. Three models for the description of language. IRE
Transactions of Information Theory IT-2, 113–124.

Chomsky, Noam. 1963. Formal properties of grammars. In R. Duncan Luce,
Robert R. Bush & Eugene Galanter (eds.), Handbook of Mathematical
Psychology, vol. 2, 323–418. New York, NY: John Wiley.

Frank, Robert 2004. Restricting grammatical complexity. Cognitive Science 28, 669–
697.

Hass, Joel, Jeffrey C. Lagarias & Nicholas Pippenger. 1999. The computational
complexity of knot and link problems. Journal of the ACM 46, 185–211.

Hopcroft, John E. & Jeffrey D. Ullman. 1969. Formal languages and their Relation to
Automata. London: Addison-Wesley Publishing Company.

Hopcroft, John E., Rajeev Motwani & Jeffrey D. Ullman. 2007. Introduction to
Automata Theory, Languages and Computation. London: Addison-Wesley.

Joshi, Aravind K., K. Vijay Shanker & David Weir. 1990. The convergence of
mildly context-sensitive formalisms. Department of Computer and
Information Science Technical Report (University of Pennsylvania), 1–65.

Lobina, David. 2012. Conceptual structure and the emergence of the language
faculty: Much ado about knotting. Ms., Tarragona: Universitat Rovira i
Virgili. LingBuzz, http://ling.auf.net/lingBuzz/001397.

Manturov, Vassily. 2004. Knot Theory. Florida: Chapman & Hall/CRC.
Mount, John. 1985. KnotEd: A program for studying knot theory. [http://mzlabs.com

/JohnMount] (27 January 2012)
Miller, Phillip H. 1999. Strong Generative Capacity. Stanford, CA: CSLI

Publications.
Pratt-Hartmann, Ian. 2010. Computational complexity in natural language

processing. In Alexander Clark, Chris Fox & Shalom Lappin (eds.), The
Handbook of Computational Linguistics and Natural Language Processing, 43–73.
Malden, MA: Blackwell.

Simon, Herbert. 1962. The architecture of complexity. Proceedings of the American
Philosophical Society 106, 467–482.

Stabler, Edward. Forthcoming. Recursion in grammar and performance.
[http://www.linguistics.ucla.edu/people/stabler/Stabler10-Recurs.pdf]
(27 January 2012)

Biolinguistics Briefs

78

Turing, Alan M. 1954. Solvable and unsolvable problems. In B. Jack Copeland
(ed.), The Essential Turing, 576–595. Oxford: Oxford University Press.

Uriagereka, Juan. 2008. Syntactic Anchors. Cambridge: Cambridge University
Press.

Wintner, Shuly. 2010. Formal language theory. In Alexander Clark, Chris Fox &
Shalom Lappin (eds.), The Handbook of Computational Linguistics and Natural
Language Processing, 11–42. Malden, MA: Blackwell Publishing.

David J. Lobina
Universitat Rovira i Virgili
Departament de Psicologia
Centre de Recerca en Avaluació i Mesura de la Conducta
Ctra. de Valls s/n
43007 Tarragona
Spain
davidjames.lobina@urv.cat

