
 REVIEWS

Biolinguistics 5.1–2: 151–169, 2011
ISSN 1450–3417 http://www.biolinguistics.eu

“A Running Back” and Forth:
A Review of Recursion and Human Language

Harry van der Hulst (ed.). 2010. Recursion and Human Language. (Studies in
Generative Grammar 104) Berlin: De Gruyter Mouton.

by David J. Lobina

An attentive reader of the cognitive science literature would have noticed that the
term recursion has appeared in myriad publications, and in many guises, in the
last 50 or so years. However, it seems to have gained a disproportionate amount
of attention ever since Hauser et al. (2002) hypothesized (for that is what it was)
that this property may be the central and unique feature of the faculty of lang-
uage.
 Indeed, a barrage of publications, conferences, and even critical notes in the
popular press about recursion has recently flooded academia. The volume under
review here is the result of one such conference — one that was celebrated in
2007 at the Illinois State University — and it offers, or so it says, a compendium
of works that tackle this notion from different perspectives.
 I will not be following the thematic division underlying this volume as a
way to frame the “different perspectives” it advertizes. Rather, this critical note
will focus on four distinct senses of the term recursion that can appropriately be
applied, or so it will be argued here, to four well-defined theoretical constructs of
the cognitive sciences. The formal sciences will, naturally, inform most of this
discussion, but the focus of this note will fall on relating the different
perspectives of this collection to the four senses of recursion I will outline. Ulti-
mately, this review will press one main point: Contrary to a(n apparently) wide-
spread belief, neatly stated in this book’s back cover, it is simply not true that re-
cursive structures in languages “suggest recursive mechanisms in the grammar”
(at least not in the sense that is usually intended in the literature — see infra).1
 The one feature that binds together the four theoretical constructs I will be
focusing on is the self-reference property that characterizes recursion — a feature
that is quite unrelated to the uses to which this notion can be applied. This self-

 My gratitude to Noam Chomsky for comments on an earlier version of this paper. This

work was partly funded by grants SEJ 2006-11955, 2009 SGR 401, and 2010 FI_B2 00013.
 1 I will refer to individual chapters by writing the last names of their authors in bold. Thus,

the first chapter would be referenced as Sakel & Stapert. The editor’s introduction to the
volume will be the only exception, as I will refer to it as, plainly, the Introduction. When
addressing a particular chapter in more detail, the first-mention includes the author’s first
names; two chapters did not make it into this review essay for sake of coherence, the one by
Hans-Jörg Tiede & Lawrence Neff Stout and the one by Simon D. Levy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biolinguistics (E-Journal)

https://core.ac.uk/display/233462103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Biolinguistics Reviews

152

reference property is readily demonstrated by the first connotation I will be
considering (the primary meaning in mathematics, in fact), which consists in “de-
fining a function by specifying each of its values in terms of previously defined
values” (Cutland 1980: 32); that is, a definition by induction (or recursive defin-
ition). The factorial functions (n!) offer a standard and rather trivial example:

(1) Def. n!:
 a. if n = 1 n! = 1 base case
 b. if n > 1 n! = n x (n-1)! recursive step

Note that the recursive step involves another invocation of the factorial function.
Thus, in order to define the factorial of, say, 4 (i.e. 4 x 3!), the function must
define the factorial of 3, and so on until it reaches the factorial of 1, the base case,
effectively terminating the recursion.
 A definition by induction ought not to be confused, however, with a re-
lated construct that receives similar denominations, such as an ‘inductive defini-
tion’, ‘inductive proof’, or ‘mathematical induction’.
 An inductive definition, a mathematical technique employed to prove if a
given property applies to an infinite set, proceeds as follows: First, we show that
a given statement is true for 1; then, we assume it is true for n, a fixed number
(the inductive hypothesis); lastly, we show that the statement is therefore true for
n+1 (the inductive step). If every step is followed correctly, we conclude that the
statement is true for all numbers (Epstein & Carnielli 2008). An inductive defi-
nition, then, also employs recursion, but it additionally includes an inductive
hypothesis. These two constructs should not be conflated, even if they are closely
related. In fact, it is important to note that inductive definitions are a central
feature of recursive definitions in the sense that the former grounds the latter;
that is, the recursive definition of a function is justified insofar as it ranges over
the domain established by the inductive definition (Kleene 1952: 260 et seq.).2
 Recursive and inductive definitions are discussed a few times in this
collection; this is the case, to a certain extent, for Introduction, Langendoen,
Kinsella, and, most notably, in Geoffrey Pullum & Barbara C. Scholz. The latter
take issue with the prevalent belief of what they call the ‘infinitude claim’; that is,
the claim that, for any language, the set of possible sentences is infinite. Their
discussion is framed, I believe, alongside three main themes and it is of interest to
have a closer look at them; these are: a critique of the actual ‘standard’ argument
supporting infinitude claims, the accompanying assumptions, and a number of
loosely related obiter dicta that I will not discuss in any detail.
 The standard argument has three parts, according to them: (i) there are
some ‘grammatically-preserving extensibility’ syntactic facts of the kind I know
that I exist, I know that I know that I exist, etc. (p. 115) that lead us to believe that (ii)
there is no upper bound on the maximal length of possible sentences (at least for
English); these two facts together, in turn, warrant the conclusion that (iii) the

 2 The mathematical literature contains many different types of recursive functions: the primi-

tive class, the general class, and the partial class, among others. They are all recursively
defined functions, but range over different types of objects; whatever objects/relations they
subsume should not distract from the fact that recursion remains a central property.

Biolinguistics Reviews

153

collection of all grammatical expressions in a given language is infinite.
 The argument is well-put together as far as it goes, and their main worry
falls not on the move from (ii) to (iii) (which is simple mathematics, they tell us),
but on the transition from (i) to (ii). Interestingly, they do not tell us what is
actually necessary to warrant the troubled transition; instead, they dismiss three
different possibilities that could be employed for its justification: the use of an
inductive generalization, mathematical induction, or by arguing from generative
grammars (the latter they take to be, strictly speaking, systems of rewrite rules
only; see infra). It is not clear at all that any of these strategies have ever been
explicitly employed in the literature in order to support the standard argument
— at least not in the sense that Pullum & Scholz have in mind. Indeed, the
examples they do provide are rather strained; specifically, the connection they
make between mathematical induction and a remark by Pinker in the context of a
popular science book (see p. 119) seems rather weak.
 More interestingly, later on in their paper (p. 124 et seq.), they point to the
(supposedly widely-held) assumption that languages are collections — in a
strong mathematical sense.3 Given that they take this to be the case, it is no
surprise the burden they place upon linguists to prove the infinitude claim. In a
similar vein, Terence Langendoen’s contribution orbits these very issues, and is
ended by urging the field to come to an agreement “upon a basis for determining
whether a language is closed under one or more of its iterative size-increasing
operations” (p. 145).
 Note that the whole issue, then, turns out to revolve around too close a
connection between natural languages and mathematical systems, to the point
that the infinitude of the former is to be proven by the standards that we impose
upon the latter. This is, however, unwarranted. It is certainly true that many
linguists have employed mathematical techniques and vocabulary to study
natural languages, but these were so used because they were useful — certainly
not to reduce linguistic phenomena to abstraction. In fact, the latter play a rather
limited role in linguistic explanation, for note that linguists typically focus on in-
formants’ grammatical judgements in order to unearth the underlying structure
of strings. This kind of study focuses on the structure that a certain mental state
— viz. the linguistic capacity — imposes upon the strings, and not on the strings
themselves in isolation from these judgements.
 Ultimately, it seems that these authors confuse the use of mathematical
concepts as a useful toolkit for a call to reduce linguistics to mathematics, but no
such thing ought to be accepted by the working linguist (I will retake the infini-
tude claim below).
 On another note, one would expect to see the opposite argument (that is,
the finiteness of a given language) to be placed under the same burden, but this

 3 They rank this assumption as one of four factors that may account for the persistent

presence of infinitude claims in the literature, but in fact only provide three (pp. 124–129).
The second of these — the connection between recursion and linguistic creativity — rests on
an obvious misrepresentation, corrected many times before (see Chomsky 2006: xviv).
Roughly, creativity does not rest on the ability to construct new sentences (p. 126); rather,
this property points to the fact that linguistic behaviour is generally stimulus-free, and that
speakers/hearers have the capacity to understand/produce novel sentences that are appro-
priate to context.

Biolinguistics Reviews

154

does not appear to be the case for languages that prima facie lack the
‘grammatically-preserving extensibility’ syntactic facts mentioned in (i) (p. 130–
131). Surely a similar argument would arise: (i’) There are some syntactic facts of
language A that suggests this language lacks grammatically-preserving
extensibility structures (such as self-embedding and coordination), which leads
to believe that (ii’) there is indeed an upper bound on the maximal length of its
sentences; therefore, (iii’) this language is a finite collection of sentences. Clearly,
the transition from (i’) to (ii’) is as troubling as that of (i) to (ii) — but only if we
grant Pullum & Scholz’s (and Langendoen’s) burden.
 Be that as it may, I now want to argue that none of this has, in actual fact,
much to do with the introduction of recursion into linguistics — at least not in
the sense that Chomsky has treated this notion.
 A second sense of the term recursion has it as a general and central proper-
ty of algorithms and generative systems. Thus, in the analysis of algorithms disci-
pline, systems of recursive equations have been employed to formalize the notion
of an algorithm qua formal object (see, especially, McCarthy 1963) and some
scholars have proposed that these recursive equations subsume a specific map-
ping function, termed a ‘recursor’ (Moschovakis 1998, 2001, Moschovakis & Pas-
chalis 2008). A recursor is said to describe the structure of an algorithm and, in
this sense, algorithms are recursors. Production systems of rewriting rules also
contain recursion as a central property, but not simply in those specific cases in
which the same symbol appears on both the left- and right-hand side of a rewrite
rule.
 Consider, for example, the underlying transformation that converts some
structure φ1...φn into some structure φn+1; the → relation can then be interpreted as
“expressing the fact that if our process of recursive specification generates the
structures φ1...φn, then it also generates the structure φn+1” (Chomsky & Miller
1963: 284). This is basically the successor function, one of the primitive class of
recursive functions. Whereas the former cases involve an internal application of
recursion within production systems, the latter is a global property of collections
of rewriting rules qua production systems (see infra).
 The successor function also underlies what is known as the ‘iterative con-
ception of set’, a process in which sets are “recursively generated at each stage”, a
statement that is to be understood as the “repeated application of the successor
function”, drawing our attention to the analogy between “the way sets are
inductively generated […] and the way the natural numbers […] are inductively
generated from 0” (Boolos 1971: 223). The current characterization of Merge, the
building operation at the heart of the language faculty, as a set-formation
operator seems to be akin to this interpretation of recursion (see Chomsky 2008
and Soschen 2008).4
 This is better understood in the context of the discussion Soare (1996) pro-
vides on the state of the art within mathematical logic. Therein, he argues that the
field has for long assumed that recursion and computation are synonymous
terms (and the same would apply for recursive and computable). This, he argues,

 4 Particularly, it is in this context that Soschen’s (2008: 199) statement regarding how “single-

ton sets are indispensable for recursion” should be understood.

Biolinguistics Reviews

155

has resulted in what he calls the Recursion Convention (RC), a state of affairs he
has attempted to reverse in subsequent publications. The RC has three parts: (i)
Use the terms of the general recursive formalism to describe the results of the
subject, even if the proofs are based on the formalism of Turing computability;
(ii) use the term Church Thesis to denote various theses; and (iii) name the sub-
ject using the language of recursion (e.g., Recursion Function Theory).
 Granted, even if it is commonly conceded that a Turing Machine captures
the manner in which every conceivable mechanical device computes a calculable
function (and it is, furthermore, generally accepted as the best formalization in
the field), Turing’s model did not in actual fact provide a formalization of what
an algorithm qua formal object is. Indeed, there is a distinction to be had between
formalising an algorithm qua a ‘model of computation’ — that is, an analysis of
what actually happens during a computational process — and qua an abstract
mathematical object. It is to the former construct that Turing’s model appropr-
iately applies, while it is the latter that systems of recursive equations and recur-
sors subsume. Furthermore, it is a well-known result that Turing Machines and
the partial recursive functions formalism of Church/Kleene (but not the general
recursive class) are extensionally equivalent in the sense that both identify the
class of computable functions. From the same inputs, both formalisms return the
same outputs, albeit in different ways (these ‘intensional differences’ will be of
some importance later on, though). Finally, it is no surprise that the Turing
Machine model has been more prominent in cognitive psychology, with its
emphasis on real-time processes, while the more abstract characterization of
what a computation is — one based on recursion — has found its natural place in
theoretical linguistics mainly. Indeed, as Collins (2008) states in the context of an
introductory book to Chomsky’s thought: “via the Church/Turing thesis, compu-
tation is just recursion defined over a finite set of primitive functions” (p. 49).
 There is, therefore, a certain consistency in Chomsky’s writings if we
understand his treatment of recursion in the terms just described. Perhaps rather
tellingly, he has pointed to the connection between grammatical theory and
recursive function theory in many writings (e.g., in Piattelli-Palmarini 1980: 101),
which suggests that he may have been influenced by the RC.5
 Naturally, the whole point of introducing recursion into linguistics was to
account for the fact that speakers/hearers show a continuous novelty in linguistic
behaviour — a novelty that does not appear to be capped in any meaningful
respect. Further, since speakers/hearers cannot possibly store all the possible
sentences they understand or utter, the cognitive state accounting for this
linguistic behaviour must be underlain by a finite mechanical procedure — an
algorithm. This is one of those properties that one would argue are a matter of
‘conceptual necessity’. A rather trivial matter, perhaps, but the whole point has
been muddied by orbiting issues. Just as Pullum & Scholz do, many studies
focus on the so-called self-embedded sentences (sentences inside other sentences,

 5 This is actually confirmed in personal correspondence with Noam Chomsky (May 2009):

“[T]here is a technical definition of ‘recursion’ in terms of Church’s thesis (Turing machines,
lambda calculus, Post’s theory, Kleene’s theory, etc.)”, the only one used he’s ever used, “a
formalization of the notion algorithm/mechanical procedure”. Further, he states that he’s
“always tacitly followed the RC”.

Biolinguistics Reviews

156

such as I know that I know etc.) as a way to demonstrate the non-finiteness of lang-
uage, and given that self-embedding is sometimes used as a synonym for
recursive structures (see infra), too close a connection is usually drawn between
the presence of these syntactic facts and the underlying algorithm of the language
faculty. However, even if there were a language that did not exhibit self-
embedding but allowed for conjunction, you could run the same sort of argu-
ment and the non-finiteness conclusion would still be licensed. These two aspects
must be kept separate; one focuses on the sort of expressions that languages
manifest (or not), while the other is a point about the algorithm that generates all
natural language structures.
 There is surprisingly little in the collection under review here that touches
on these very issues. Both Harry van der Hult’s Introduction and Arie Verhagen
do discuss global and local applications of recursion, but not quite in the terms
outlined here. Verhagen describes two roles for recursion, a specific one that
gives rise to long-distance dependencies (supposedly the self-embedded senten-
ces, see below) and a more general one that delineates a mechanism for embed-
ding phrases inside other phrases. As for the Introduction, and even though the
discussion presented there is framed in terms of rewriting rules, the main points
pertain to structures only. Thus, the general application refers to the general
embedding of phrases into other phrases, while the specific one refers to those
phrases that are embedded within a constituent of the same kind. I will come
back to this below, but it is worth pointing out now that this is the closest this
collection gets to discussing the central role of recursion in the formalization of
an algorithm — a clear shortcoming, given that the RC, systems of recursive
equations, recursors, etc form the core of Chomsky’s thought on the matter.
 There is some tangential discussion regarding Merge by Jan Koster. He
takes issue with the postulation of a recursive Merge as the syntactic engine that
generates linguistic expression. His worries seem to be twofold; on the one hand,
a recursive Merge cannot do anything unless in combination “with external,
invented cultural objects — lexical items” (p. 289); on the other hand, these lexical
items come with specific combinatorial properties that already account for the
hierarchical structure that Merge will, then, redundantly generate “once more”
(p. 292). The latter is, of course, a valid point that recapitulates the debate
between representational and derivational views on theories of grammar. The
former is, however, more troubling. Even if we were to grant Koster that lexical
items are cultural inventions, we would do well to remind ourselves that there
cannot be any cultural inventions that are not entertained in the mind first, which
is perhaps a trivial point. Moreover, we can be sure that external, cultural inven-
tions do not come with “fully-fledged combinatorial properties” (idem.) other
than the mould that the linguistic capacity imposes — and this is clearly an inter-
nalist explanation. More importantly, this bears very little relation to my des-
cription of the role of recursion in linguistic theory as a general property of the
underlying mechanical procedure.
 I have been defending a common thread running through Chomsky’s
writings, but this is not to say that he has always been consistent — or that the
focus has not fallen, on many occasions, on the internal applications of recursion
within production systems.

Biolinguistics Reviews

157

 The characterization of this internal application has changed dramatically
as the theory progressed. An early characterization of generative grammar divi-
ded the computational system into two components: the base (composed of
rewriting rules that returned strings with associated phrase markers) and the
transformational system (a component that would convert some phrase markers
into other phrase markers, preserving structure). In Chomsky (1957), the
recursive property of certain rules is ascribed to the latter system, while
Chomsky (1965) assigns it to the base component. By the 1970s and 1980s, most
of the rewriting rules were in fact eliminated from syntactic theory, perhaps
completely so by the time Chomsky (1986) appeared. The latter is an important
point, given that most discussions on recursive mechanisms — and this is no
exception in this collection — seems to be centered exclusively on rewriting rules,
which is rather unfortunate. It should be trivial at this point to remark that
recursion as a general property of generative systems remains at the center of
linguistic theory regardless of the replacement of production systems with Merge
— both, as I have tried to show, are underlain by the successor function.
 Nevertheless, it is of interest to discuss recursive rewriting rules to some
extent, given the prominence they receive in the literature — and in this
collection. Consider the following sample below.

(2) a. S → NP VP
 b. NP → D N
 c. VP → V NP
 d. NP → N (NP)
 e. VP → V S

Rules (2d) and (2e) are recursive, as the category on the left-hand side of the
arrow is reintroduced on the right-hand side (directly in (2d), indirectly in (2e)).
These can generate what I for now will call nested constructions (sometimes
called self-embedding), such as noun phrases inside other noun phrases (such as
John’s [brother’s [teacher’s book]] is on the table), or sentences inside other sentences
(as in John thinks (that) [Michael killed the policeman]). In general, it is this sort of
structures that most linguists have in mind when they talk about recursion.
 It is sometimes supposed that nested structures and recursive rules are
very closely connected, to the point that nested constructions cannot be
generated by anything other than recursive rules. This is mentioned in this
collection a couple of times, sometimes with (dubious) references to the mathe-
matical linguistics literature on formal grammars. This is clearly not quite correct,
however. To a first approximation, it is worth noting that recursive rules were
introduced in order to simplify the grammar. Take a nested string such as
[a[ab]b], where the a’s stand for subjects and the b’s for verbs. This can easily be
generated by the employment of rules like (2d) and (2e), while a more compli-
cated generation would involve the repeated application of rules like A→aB,
B→aC, C→bD, D→b. It is precisely in this context that Chomsky (1956: 115–116)
states that “if a grammar has no recursive steps […] it will be prohibitely com-
plex”, with danger of reducing it to a list of sentences.
 Amy Perfors et al. (Josh Tenenbaum, Edward Gibson, and Terry Regie)

Biolinguistics Reviews

158

provide (partial) confirmation for this intuition by employing a qualitative
Bayesian analysis to calculate the ideal trade-off between simplicity of grammars
(treated as a prior probability) and the degree of fit to a corpus (treated as the
likelihood). Even though recursive rules, they tell us, are costly because they
predict sentences that are not observed in a corpus (which hurts their goodness
of fit; see pp. 161–164), the calculation ultimately returns, perhaps unenlighten-
ing, a grammar with recursive and non-recursive rules as the preferred choice. I
qualify these results as uninformative because they do not seem to differ from
what was being proposed in the 1950s. Granted, this sort of analysis offers a
much more formal understanding, but one should not mistake formalization for
insight if the issues were already well-understood. Further, there are two aspects
of this work that are somewhat troubling. First, the study places too much
emphasis on the actual ‘observed’ data found in corpora. These are not to be
disregarded, obviously, but linguists ought not to forget that the actual subject
matter, that is, the actual phenomenon to be explained, remains the cognitive
state that underlies the observed linguistic behaviour (this point about corpora
resurfaces in many other contributions). Secondly, it is an obvious point to make
that this analysis only applies to those theories that postulate production systems
as grammars — those linguists close to the generative framework, though, have
long dispensed with them.
 Quite clearly, none of this applies to theories that focus on Merge as the
central syntactic engine. Moreover, it certainly has very little to do with the
general point made supra; namely, Chomsky’s leitmotif is based on recursion qua
general property of the computational system underlying language, be this a
production system or a set-operator like Merge.
 Despite it all, it is worth delving into the uses (and abuses) that systems of
rewriting rules have been put to as to unearth some (seemingly) widespread
mistakes. This will allow me to introduce the third sense I would like to discuss,
one that pertains to the study of computational processes, which is the interest of
much of applied computer science. At this point, though, it seems “a reasonable
conjecture” to claim that at root “there is only one fixed computational procedure
that underlies all languages” (Chomsky 1995: 11); a ‘recursive’ Merge in this
sense.
 It is important to note that there is a significant discontinuity between
rewriting rules and linguistic expressions. Technically speaking, rewriting rules
only return strings, not structures, which is presumably one of the reasons why
rewritings rules were eliminated from linguistic theory (cf. Collins 2008: 58)6. It is
a point that deserves emphasis, as its neglect hampers clarity. Take Fitch (2010),
for instance; therein, he puts forward two problematic claims: Firstly, that a
recursive rule has the property of self-embedding (p. 78), and secondly, that it is
a “linguistic stipulation” for a self-embedding rule to entail a self-embedded

6 I say “technically” in reference to the historical fact that rewriting rules have always been

employed as string substitution operations. It is sometimes stated, however, that a system of
rewriting rules strongly generates a set of structures, while it weakly generates a set of strings,
but there is no obvious difference in the actual rules to merit the distinction — apart from
the definition. Perhaps this should be rephrased as follows: A computational system such as
rewriting rules generates weakly but a system like Merge generates strongly.

Biolinguistics Reviews

159

structure (p. 80), which I suppose carries over to simply embedding rules and
embedded structures.
 The first claim is simply not correct. A rule is recursive if there is a self-call,
but this is independent of what operation is in fact executed. There is a distinction
to be had between what a rule does and how it actually proceeds, and it is to the
latter than recursion applies. It is this reflexive property that makes the definition
of the factorial functions recursive, but there is no sense in stating that there is
any embedding whatsoever.
 As mentioned, rewriting rules return strings, not structures; a fortiori, there
is no such thing as a self-embedding rewriting rule. Moreover, Fitch misplaces
the long-held stipulation he identifies. In previous models, the rules of the base
component would return simple declarative sentences, and these would be
converted into more complex structures by the transformational component; the
latter were not part of the set of rewriting rules.
 The replacement of Merge for production systems involved the postulation
of an operation that embeds elements into one another. Merge does this in a
bottom-up fashion rather than generating strings in the left-to-right manner of
rewriting rules, but both Merge and a production system are recursive devices
for the same reason, that is, qua generative systems that are underlain by the
successor function.
 The conflation, apropos recursion, between what an operation does and how
it proceeds is rather common in the literature, and this collection of papers is no
different. Some contributions (Karlsson, Verhagen, Kinsella, Harder, Hunyadi)
discuss what they call center-embedding rules, tail-recursive rules, the sort of
structures these generate, and their relationship. Much like Fitch, these terms
actually refer to the structures themselves, rather than the actual rules. Thus, a
center-embedding rule is supposed to generate nested structures in which, say, a
sentence is embedded in the middle of a bigger sentence, like in the classic (The
mouse (the cat (the dog bit) chased) ran away). A tail-recursive rule, on the other
hand, embeds elements at the edge of sentences, either on the left-hand side
(John’s [brother’s [teacher’s book]] is on the table) or on the right-hand side (The man
[that wrote the book [that Pat read in the cafe [that Mary owns]]]).
 These terms, however, have absolutely nothing to do with the recursive
character of the rules themselves, only to the type of embedding the resultant
expression manifests. A center-embedding rule, after all, is not one in which the
reflexive call occurs in the middle of a derivation, but even if it did, this has no
substantial consequences. As for tail-recursion, this is a widely-used term in
computer science, and it refers to a process in which the recursive call of the
algorithm occurs at the very end of the derivation (Abelson et al. 1996). Quite
clearly, a nested structure on the left-hand side of a sentence cannot be the result
of a tail-recursive rule if the derivation process undergoes left-to-right
applications of rewriting rules. In a nutshell, these terms refer to specific
properties of the structures, not to recursive mechanisms or operations.
 Rather surprisingly, some of the aforementioned chapters seem to have a
much stronger point in mind. Fred Karlsson, following Parker (2006; cited
therein), states that ‘nested recursion’ rules (i.e. center-embedding; Verhagen, p.
103 tells us that this is sometimes known as ‘true recursion’, but no reference is

Biolinguistics Reviews

160

provided) cannot be reduced to iterations (while tail-recursion can)7, a claim that
is repeated by Peter Harder (p. 239) and, with qualifications, by Vitor Zimmerer
& Rosemary A. Varley (p. 397).
 They could not possibly mean this as a general point about computability
theory, however. After all, it is a well-established, though often forgotten, result
of the formal sciences that all tasks that can be solved recursively can also be
solved iteratively (Roberts 2006). Put bluntly, that is, that “all recursive relations
can be reduced to recurrence or iterative relations” (Rice 1965: 114). In fact, one of
the references mentioned in this collection, albeit indirectly (p. 347), namely Liu
& Stoller (1999), offers a framework that provides automatic transformations of
any type of recursion into iteration, an “optimization technique” that can cope
with the most complex of recursive relations, such as multiple base cases or
multiple recursive steps, of which Fibonacci sequences are an example (contrary
to what Fitch 2010: 78 seems to think).
 Perhaps what these authors have in mind is a much narrower point;
namely, the interrelations between recursion and iteration within sets of rewriting
rules. In this context, James Rogers & Marc Hauser offer a solid discussion of
formal grammars and their potential relevance for the study of behaviour. Still,
the formal literature hardly contains a mention of ‘center-embedding recursion’,
a term that only seems to appear in some linguistic papers; as I stated above, it
tends to appear in the context of recursive rewriting rules, even if in reality it
refers to either an embedding operation of a particular kind, or to a certain type
of structure.
 As for the recursion/iteration equivalence in general terms, let us take the
factorial functions we defined recursively above to clarify this point, which
brings me to the third sense I would like to focus on. This refers not to the algo-
rithm qua formal object, but to its actual implementation; that is, it is the study of
the so-called models of computation. A recursive process, then, is one in which
an operation calls itself, creating chains of deferred operations, which is usefully
contrasted with an iterative process, wherein an operation reapplies in succession
(Abelson et al. 1996: 33–34).8
 The recursive processing (shown on the left-hand side of Table 1) naturally
follows from the recursive definition, while the iterative solution (shown on the
right-hand side) necessitates a subtle observation. This is simply that factorials
can be iteratively computed if we first multiply 1 by 2, then the result by 3, then
by 4, until we reach n. That is, we keep a running product, together with a
counter that counts from 1 up to n. Further, we add the stipulation that n! is the
value of the product when the counter exceeds n. (NB: The first digit of the iter-
ative solution shows the factorial whose number we are calculating, the second

 7 Further, he incorrectly states, by misunderstanding the discussion in Tomalin (2006: 64), that

Bar-Hillel might have reintroduced recursion into linguistics. Rather, Bar-Hillel seems to
have been interested in a more precise definitional technique for theoretical constructs.
Chomsky (1955: 45) manifests his agreement in spirit, while two years later sees “success
along these lines unlikely” (Chomsky 1957: 58).

 8 This is usefully contrasted with the ‘clear’ definitions of recursion and iteration that Kin-
sella offers on page 182. Note that what she actually provides is a clear example of the con-
flation we discussed supra; namely, between embedding (or not) and recursion (otherwise,
iteration).

Biolinguistics Reviews

161

digit is the actual counter and the third is the running product.)

4 × (factorial 3) factiter 4 1 1
4 × (3 × (factorial 2)) factiter 4 2 1
4 × (3 × (2 × (factorial 1))) factiter 4 3 2
4 × (3 × (2 × 1)) factiter 4 4 6
4 × (3 × 2) factiter 4 5 24
4 × 6

Table 1: Recursive and Iterative Implementations

As the shape of these implementations show, the material kept in memory at any
stage differs greatly. In the second line of the recursive processing, the actual op-
eration in course is factorial 2, while what is being kept in memory is 4 × (3 × …).
This is in great contrast to any stage of the iterative process, as the only things in
working memory are the operation in course and the variables it operates upon.
Naturally, an iterative process is in general more efficient; still, there exist clear
data structures meriting a recursive solution.
 Three properties must be met for a recursive solution to be the most
natural: (i) the original problem must be decomposable into simpler instances of
the same problem; (ii) the sub-problems must be so simple that they can be
solved without further subdivision; and (iii) it must be possible to combine the
results of solving these sub-problems into a solution to the original problem
(Roberts 2006: 8). Of course, recursive structures are naturally (and intuitively)
the ideal candidates, but this should not distract from the point just made,
namely that there is nothing intrinsically recursive about the factorial class. That
is, the suitability of the recursive solution has to do with the nature of the
solution itself, and not with the structures themselves. The connection between a
structure and a recursive processing is, therefore, an empirical matter to be
worked out on an individual basis; it cannot be simply assumed.
 There is a great confusion about this in the cognitive sciences. Thus, much
of the literature clearly conflates structures and mechanisms, inevitably
concluding that recursive structures can only be generated or produced by
recursive mechanisms, and mutatis mutandis for iterative structures and
mechanisms. I have already noted above that a general property of implemen-
tations is that any sort of task which can be solved recursively can also be solved
iteratively. Indeed, at the most general level, any function or task that can
computed by the partial recursive functions of Church/Kleene (Kleene 1952),
that is, a recursor, is computable by a Turing Machine, and the latter is an iterator
(Moschovakis 1998). Translating this general result into actual processes is no
small matter, but the literature provides many cases (see Liu & Stoller 1999, men-
tioned supra).
 There is not an awful lot of discussion on real-time recursive processes in
the collection under review here. Perfors et al. mentioned, in passing, that even
though syntax may well be fundamentally recursive (in the sense of the grammar
containing recursive rewriting rules), the parser could “usefully employ non-

Biolinguistics Reviews

162

recursive rules” for simpler sentences (p. 170) — a well-taken point about the ef-
ficiency of non-recursive rules in processing.
 László Hunyadi does offer some data regarding possible recursive perfor-
mance. After correctly stating that recursion and iteration would access (work-
ing) memory differently (p. 347), some experimental evidence is provided on the
type of prosodic structure associated with some of the structures alluded to
earlier (self-embedding and tail-recursion; an ‘iterative’ structure is also deline-
ated, viz. John is an excellent, cheerful, good-humoured man). The experiments were
rather low-key; subjects were to read some sentences aloud, so that tonal phrases
could then be analysed. They found different pitch levels for the embedded
sentences in the nested constructions, a phenomenon that was coupled with a
‘tonal continuity’ — that is, there is a long-distance dependency between two
discontinuous segments. For example, for [A…[C]…B], the tonal properties of
[A…B] are identical to a continuous [AB] phrase. Further, this phenomenon is
accompanied by three other effects: (i) there is no lowering of the pitch contours
in C (a general tendency called ‘downdrift’), (ii) the phrase C is realized in a
different pitch, and (iii) there is an ‘upstep’ of B to the initial pitch of A.
 Hunyadi sees this process as a clear example of recursion, given that the
tonal properties of A must be kept in memory during C, so that they can be re-
stored at B. This, Hunyadi believes, is a direct probe of memory — a ‘bookmark
effect’. Further analyses with tail-recursive and iterative structures show that the
bookmark effect does not appear, which would suggest a principled distinction
between these and self-embedded structures.
 Despite couching the whole discussion in terms of the computational
principles of recursion, tail-recursion and iteration, these results appropriately
describe structural properties of prosody (or grouping in general; see pp. 361–
365), but not its actual production (let alone the underlying grammar). That is,
the different memory loads that recursive and iterative processes would incur
was, in actual fact, not probed at all — there is a distinction, after all, between
probing structures and probing mechanisms. We can doubtless be certain that the
prosodic structure is, roughly, isomorphic to the syntactic structure, but not
much follows about the underlying processing mechanisms.
 Furthermore, this contribution introduces some confusion regarding the
relationship between recursion and hierarchy (and iteration), and it might be
worth our time to clarify it. Take computer science, a discipline which also
employs ‘trees’ in order to represent nonlinear data structures. Computer scien-
tist Donald Knuth certainly echoes a widely-held view when he writes that “any
hierarchical classification scheme leads to a tree structure” (Knuth 1997: 312);
more importantly, we need to understand his contention that “recursion is an
innate characteristic of tree structures” (idem., p. 308). By ‘innate’, here, is prob-
ably meant intrinsic, and we can clarify what this means by providing a graphic
representation of the recursive implementation of the factorials, as shown here:

Biolinguistics Reviews

163

(3) fact 4
 3
 4 fact 3
 3
 3 fact 2
 3
 2 fact 1

Note that the hierarchical structure directly stems from the fact that the imple-
mentation is underlain by a two-equation system: A variable plus a self-call, and
it is the latter that expands into the base case, effectively terminating the recur-
sion and the overall computation. It is this specific characteristic that explains
why this type of hierarchy, a binary tree, automatically results from a recursive
implementation.
 This hierarchy, however, is among the operations, and not the data struc-
tures. There is no sense in stating, by looking at the tree, that the factorial of 3 is
embedded into the factorial of 4. This would amount to a definition of a structure
in terms of how it is generated, but why do that? After all, most people are taught
at school that the factorial of 4 is calculated by multiplying 4 by 3, then by 2, and
finally by 1, and this magically eliminates the once-perceived embedding.
 There is certainly a difference between representing a hierarchy of oper-
ations and representing a complex object; the factorials example is meant to illus-
trate that a recursive implementation automatically results in a binary hierarchy,
but that one cannot necessarily infer the former from the latter.
 It is also worth pointing out that an implementation is a real-time compu-
tational process, and we are therefore on a different level of analysis than when
discussing, say, Merge. Granted, linguistic expressions also exhibit a binary tree
structure, and it is certainly the case that Merge effects this geometry, but
crucially it does not do so in the way of a recursive implementation. Recursive
generation (successor function) and recursive implementations are different
things, even if they may result in similar ‘forms’.
 It is to the structural ‘forms’ the language faculty generates that we move
onto now, the fourth and last sense of recursion. Recursive data structures are
defined by the U.S. National Institute of Standards and Technology as any object
or class ‘that is partially composed of smaller or simpler instances of the same
data structure’; that is, any structure which includes an abstraction of itself (an X
within an X). The prototypical cases here are the ‘trees within trees’ so familiar to
generative grammar. It is important to establish what the X in the ‘X within an X’
is, so as to identify a recursive structure that is in fact of some relevance.
 Note that this is a definition that focuses on properties of structures only,
independently of the operations/mechanisms that generate/process them. There
is nothing odd about this, Chomsky & Miller (1963) defined certain constructions
in these very terms; they defined the tail-recursive sentences as either right- or
left-recursive (depending on the direction of the embedding), and offered the
term self-embedding (still used today) for what some call the center-embedding
constructions (p. 290).
 It is to actual structures and their properties that a significant amount of

Biolinguistics Reviews

164

papers in this collection focus on. One set of papers focuses on languages that,
prima facie, lack self-embedding sentences; I will focus on these first.
 Jeanette Sakel & Eugenie Stapert, then, review the data presented by Dani-
el Everett on Pirahã, an Amazonian language claimed to lack any type of self-
embedding. There are two main points here; one is that Pirahã lacks ‘mental
state’ verbs (verbs like think, believe, etc); a fortiori, there is no outright clausal
embedding, but simple juxtaposition of individual sentences. The correctness of
the latter rests on the status of the verbal suffix –sai, a marker that Everett, in
earlier work he now considers mistaken, classified either as a nominalizer or as a
clausal embedding indicator (see p. 5). Ultimately, Sakel & Stapert support Ever-
ett’s contemporary analysis of this suffix as a single marker of semantic cohesion
between parts of discourse. Sauerland (2010), however, offers some experimental
data that might cast some doubt on this. After carrying out a maximum pitch
analysis on the two conditions the –sai marker would appear, according to
Everett’s earlier study, Sauerland found that the pitch level in the nominalizer
condition was indeed much greater than in the clausal condition, indicating that
there are two versions of this marker, one of which marks embedding.
 Sauerland’s methodology is an interesting one, and can complement more
traditional ways of determining whether a language exhibits self-embedding.
Marianne Mithun lists some of the usual formal features that languages with
self-embedding manifest (viz. complementizers, omission of co-referential argu-
ments, non-finite verb forms; p. 23) and provides an analysis of a variety of lang-
uages, such as central Alaskan Yup’ik, Mongolian Khalkha, and North American
Mohawak. Apparently, these three languages exhibit some kind of self-
embedding, but in different ways, which suggests, to Mithun at least, that this
feature manifests cross-linguistic gradience (sic.) and variation (p. 39). Perhaps
this variation is present within individual languages too. Ljiljana Progovac seems
to suggest this much for English, given the impossibility of nesting root small
clauses (e.g., Me first, Case closed; p. 193) into other root small clauses. It is to be
supposed that even if this is correct, it is so for a small part of the grammar,
leaving other claims (viz. the presence of self-embedding else-where) virtually
uncontested.
 Karlsson, on the other hand, offers a typology of recursive and iterative
structures (two and six types, respectively; see pp. 43–49 for definitions and
examples) based on a quantitative analysis of spoken corpora. By recursive
structures he means self-embedding and tail-recursion, and the central claim of
his paper is that this sort of corpora analysis provides qualitative data — in the
form of ‘constraints’ — that explain why recursive structures are so rare in
spoken language. Karlsson then concludes that multiple nesting is an artificial
feature of language that “arose with the advent of written language” (p. 64) — it
is not a central feature of language.
 A similar rationale informs Ritva Laury & Tsuyoshi Ono. Therein, they
provide a corpora analysis of conversations conducted in Finnish and Japanese,
reaching similar results (and conclusion): Nested constructions are not very com-
mon in spoken Finnish and Japanese (pp. 84–55); therefore, recursive structures
cannot be a central property of language (I will come back to this presently).
 Another set of papers, on the other hand, focus on self-embedding outside

Biolinguistics Reviews

165

syntax. Thus, Eva Juarros-Daussà argues that there is a restriction (what she calls
the two-argument restriction) that prevents argument structure (i.e. the predicate
with its lexically encoded arguments) to be truly recursive. Quite clearly, how-
ever, she is not arguing against the possibility that an element may well be em-
bedded inside an element of the same type (which automatically makes a
structure recursive). Rather, she is suggesting that this embedding cannot go on
into infinitude (a slightly different matter) — that is, she is arguing for the
finitude of argument structure (p. 253). Similarly, Yury A. Lander & Alexander B.
Letuchiy provide data from a Northwest Caucasian language, Adyghe, that
seems to allow self-embedding within its verb forms.
 On a much grander scale, Harry van der Hulst discusses self-embedding in
phonology, a topic that has generated some heated debate (as he discusses).
Phonological structure is clearly hierarchical, but whether it also manifests self-
embedding is rather controversial. This chapter defends the controversial view
(phonology is recursive), and the overall idea seems to be that given that
recursive structures are principally semantic phenomena (a manner of organizing
information), there must be an isomorphic structure in morphology (p. 303). The
remainder of the chapter offers a long discussion of phono-morphotactic struc-
ture, phonotactic structure, and prosodic structure, concluding that there is, after
all, self-embedding at the syllable/foot, word, phrase and prosodic level. Pretty
grand claims, and it will certainly be interesting to see what the literature makes
of it (a thorough discussion of these issues is beyond the present review).
 It will have been noticed that I have discussed all these papers in the con-
text of structures only. Indeed, the study of self-embedded structures in natural
language is an important one, but it ought to be clear that this phenomenon tells
us much more about semantics than about syntax. Such structures, it is clear,
provide the linguistic system with a way of “organizing and constraining seman-
tic information”, and their distribution appears to be construction- and language-
specific (Hinzen 2008: 358–359).
 Once the dubious connection between these structures and specific
rewriting rules is disregarded, it is not at all clear why some contributors believe
that self-embedding cannot be converted into other types of phrases — a claim
that is in fact explicitly denied in Kinsella (p. 188). Therein, Anna Kinsella makes
clear that languages like Pirahã, even if they really do not manifest self-
embedding, do not come at an ‘expressive’ loss to their speakers. That is, there is
no reason to believe that Pirahã cannot “express [similar] concepts using alter-
native means”. Indeed, a self-embedded sentence such as The mouse [the cat [the
dog chased] bit] ran away seems to be easily converted into either The dog chased the
cat that bit the mouse that ran away (which some would call, I suppose, tail-
recursive) or The dog chased the cat and the cat bit the mouse and the mouse ran away
(a type of iterative structure, according to Karlsson).
 Furthermore, there is a lot of interesting work regarding the concomitant
properties that self-embedded structures exhibit, which range from their role in
language acquisition and their cross-linguistic distribution, to their connection to
the conceptual system (see, for example, Roeper 2009). Be that as it may, Merge
remains a simple, recursive generator for reasons that lie elsewhere — the
presence (or not) of self-embedded structures in a particular language is an ancil-

Biolinguistics Reviews

166

lary matter.
 As a final point in this lengthy review, I might as well mention that there
are, in fact, grounds to believe that language manifests a much more general type
of recursive structure. At the appropriate level of abstraction, a structure that
contains an instance of itself (i.e. an X within an X) appears to be a feature of any
type of syntactic structure. That is, every syntactic phrase, as Moro (2008: 68)
shows, accords to the same geometry, an asymmetric structure [Specifier [Head –
Complement]]. This is shown below:

(4) YP
 3
 Spec XP
 3
 Head Complement

Therefore, a Complementizer Phrase (viz. the top node of a clause) is a complex
[S[H–C]] structure composed of a number of architecturally-equivalent but simp-
ler [S[H–C]] structures. As Moro (2008: 205 et seq.) shows, all human languages
appear to follow this scheme, despite some variation in the linear order. Linear
order is not the key property; rather, the central point is the basic hierarchical
configuration: S is always more prominent than [H–C] and H is always more pro-
minent than C.9
 At this level, then, structural recursion appears to come for free, but
remains an interesting and surprising fact about language. It in fact identifies
natural language as a subcategory of infinite systems, one that manifests a
specific type of embedding: endocentric and asymmetric X structures. As such,
category recursion is a subtype of structural recursion (in the same way that self-
embedding is a subtype of general embedding), and it is perhaps in this sense
that contemporary debates on the universality of embedding ought to be under-
stood.
 Certainly, an extensive terminological clean-up is in order, as much of the
nomenclature currently in use (such as ‘true, nested or center-embedding recur-
sion’, ‘tail-recursion’, ‘self-embedding rules’, et alia) is likely to create confusion
rather than anything else.

Epilogue

It appears that the word recursion entered the English language in the 17th
century as an adaptation of the past participle of the Latin verb recurrere ‘to go
back’. Thus in his An English Expositor (1616) — that compendium of the “hardest
words” — John Bullokar defined recursion as “a running back”. A convoluted
term it remains, but for different reasons.

9 The S–H–C schema invokes X-bar configurations. However, current linguistic theory doubts

the existence of the specifier position. If so, the overall architecture would be something like
this: [… Head … (Compl) … [… Head … (Compl) …] …]. The point I am making still applies;
that is, this sort of general recursive structure is present in all languages, independently of
the most usual form of self-embedding.

Biolinguistics Reviews

167

 This critical note has attempted to outline four contemporary senses of this
term that appropriately applies to well-established theoretical constructs of the
cognitive sciences. An attempt was made to encompass the material of this
collection around these four connotations as to elucidate a number of issues.
Naturally, many topics went untreated, and the focus of this review has befallen
on two main points.
 Firstly, I have claimed that Chomsky, like many in the mathematical liter-
ature, takes recursion to be a central property of what a mechanical procedure is.
Despite the different applications recursion has received within his vast output, a
recent paper states that linguistic “competence is expressed by a generative
grammar that recursively enumerates structural descriptions of sentences”
(Chomsky 2006: 165; my emphasis) — a very close statement to the spirit of the
Recursion Convention.
 Secondly, I have tried to show that there is a clear conflation between, on
the one hand, recursion and (self)-embedding and, on the other, recursive
structures and recursive mechanisms. All these should in fact be kept separate
unless there are principled reasons (and there might well be) to link them. Their
connection, however, cannot be simply assumed.
 It is rather clear that the present collection completely disregards the first
point, while being guilty, for the most part, of the second. Perhaps we can
concoct an explanation for why this collection so utterly fails to address
Chomsky’s actual introduction of recursion in linguistics — the overarching
effect of one paper: Hauser et al. (2002).
 It is undeniable that this paper has generated an incredible amount of
discussion, but recursion was certainly not its main topic; indeed, to a certain
extent, it received a rather indefinite characterization. This has had the
unfortunate result that many recent publications on the role of recursion in
cognition (and this is true for many of the contributions of the collection under
review) come up with rather outlandish definitions, which are then loosely
related to the aforementioned piece, even if on closer inspection, the actual work
presented has very little to do with it — or more importantly, with Chomsky’s
leitmotif.10
 Unfortunately, the literature is steadily moving towards an increasingly
confused study of recursive structures in conflation with mechanisms, obscuring
what ought to be a rather straightforward and uncontroversial point: The
centrality of recursion within the formalization of the mechanical procedure that
underlies the language faculty.

References

Abelson, Harold & Gerald J. Sussman with Julie Sussman. 1996. Structure and

Interpretation of Computer Programs. Cambridge, MA: MIT Press.

 10 Moreover, there are good reasons to believe that both Hauser and Fitch have a different

view (and, in my opinion, an incorrect one) to Chomsky on what recursion actually is;
namely, a self-embedding operation (see Hauser 2009 and Fitch 2010).

Biolinguistics Reviews

168

Boolos, George. 1971. The iterative conception of set. The Journal of Philosophy 68,
215–231.

Chomsky, Noam. 1955. Logical syntax and semantics: Their linguistic relevance.
Language 31, 36–45.

Chomsky, Noam. 1956. Three models for the description of language. In IRE
Transactions of Information Theory IT-2, 113–124.

Chomsky, Noam. 1957. Syntactic Structures. The Hague: Mouton.
Chomsky, Noam. 1965. Aspects of the Theory of Syntax. Cambridge, MA: MIT

Press.
Chomsky, Noam. 1980. Rules and Representations. New York: Columbia Univer-

sity Press.
Chomsky, Noam. 1986. Knowledge of Language: Its Nature, Origin, and Use. New

York: Praeger.
Chomsky, Noam. 1995. The Minimalist Program. Cambridge, MA: MIT Press.
Chomsky, Noam. 2006. Language and Mind, 3rd edn. Cambridge: Cambridge Uni-

versity Press.
Chomsky, Noam. 2008. On phases. In Robert Freidin, Carlos P. Otero & Maria

Luisa Zubizarreta (eds.), Foundational Issues in Linguistic Theory: Essays in
Honor of Jean-Roger Vergnaud, 133–166. Cambridge, MA: MIT Press.

Chomsky, Noam & George A. Miller. 1963. Introduction to the formal analysis of
natural languages. In Robert D. Luce, Robert R. Bush & Eugene Galanter
(eds.), Handbook of Mathematical Psychology, vol. 2, 269–322. New York: Wi-
ley.

Collins, John. 2008. Chomsky: A Guide for the Perplexed. London: Continuum.
Cutland, Nigel. 1980. Computability: An Introduction to Recursion Function Theory.

Cambridge: Cambridge University Press.
Epstein, Richard & Walter Carnielli. 2008. Computability: Computable Functions,

Logic, and the Foundations of Mathematics. Socorro, New Mexico: Advanced
Reasoning Forum.

Fitch, W. Tecumseh. 2010. Three meanings of recursion: Key distinctions for bio-
linguistics. In Richard Larson, Viviana Déprez & Hiroko Yamakido (eds.),
The Evolution of Human Language, 73–90. Cambridge: Cambridge University
Press.

Hauser, Marc D. 2009. Origin of the mind. Scientific American 301, 44–51.
Hauser, Marc D., Noam Chomsky & W. Tecumseh Fitch. 2002. The language fac-

ulty: What is it, who has it, and how did it evolve? Science 298, 1569–1579.
Hinzen, Wolfram. 2008. Prospects for an explanatory theory of semantics.

Biolinguistics 2, 348–363.
Kleene, Stephen C. 1952. Introduction to Metamathematics. Amsterdam: North Hol-

land Publishing Co.
Knuth, Donald. 1997. The Art of Computer Programming (3 vols.). Upper Saddle

River, NJ: Addison-Wesley.
Liu, Yanhong A. & Scott D. Stoller. 1999. From recursion and iteration: What are

the optimizations? SIGPLAN Notices 34, 73–82.
McCarthy, John. 1963. A basis for a mathematical theory of computation. In Paul

Braffort & David Hirshberg (eds.), Computer Programming and Formal Sys-
tems, 33–70. Amsterdam: North-Holland Publishing Co.

Biolinguistics Reviews

169

Moro, Andrea. 2008. The Boundaries of Babel. Cambridge, MA: MIT Press.
Moschovakis, Yiannis N. 1998. On founding the theory of algorithms. In Harold

G. Dales & Gianluigi Oliveri (eds.), Truth in Mathematics, 71–104. Oxford:
Clarendon Press.

Moschovakis, Yiannis N. 2001. What is an algorithm? In Björn Engquist & Wil-
fried Schmid (eds.), Mathematics Unlimited: 2001 and Beyond, 919–936. Berlin:
Springer.

Moschovakis, Yiannis N. & Vasilis Paschalis. 2008. Elementary algorightms and
their implementations. In S. Barry Cooper, Benedikt Löwe & Andrea Sorbi
(eds.), New Computational Paradigms, 81–118. Berlin: Springer.

Piattelli-Palmarini, Massimo. 1980. Language and Learning: The Debate between Jean
Piaget and Noam Chomsky. London: Routledge and Kegan Paul.

Rice, Gordon. 1965. Recursion and iteration. Communications of the ACM 8, 114–
115.

Roberts, Eric. 2006. Thinking Recursively with Java. Hoboken, NJ: Wiley.
Roeper, Tom. 2009. Microscopic Minimalism. Boston University Plenary Address.
Sauerland, Uli. 2010. Experimental evidence for complex syntax in Pirahã. Ms.,

Zentrum für allgemeine Sprachwissenschaft, Typologie und Universalien-
forschung, Berlin. [http://ling.auf.net/lingBuzz/001095]

Soare, Robert. 1996. Computability and recursion. The Bulletin of Symbolic Logic, 2,
284–321.

Soschen, Alona. 2008. On the nature of syntax. Biolinguistics, 2, 196–224.
Tomalin, Marcus. 2006. Linguistics and the Formal Sciences. Cambridge: Cambridge

University Press.

David J. Lobina
Universitat Rovira i Virgili
Departament de Psicologia
Centre de Recerca en Avaluació i Mesura de la Conducta
Ctra. de Valls s/n
43007 Tarragona
Spain
davidjames.lobina@urv.cat

