

Biolinguistics 2.2–3: 152–195, 2008
ISSN 1450–3417 http://www.biolinguistics.eu

Optimal Growth in Phrase Structure

David P. Medeiros

This article claims that some familiar properties of phrase structure reflect
laws of form. It is shown that optimal sequencing of recursive Merge
operations so as to dynamically minimize c-command and containment
relations in unlabeled branching forms leads to structural correlates of
projection. Thus, a tendency for syntactic structures to pattern according to
the X-bar schema (or other shapes exhibiting endocentricity and maximality
of ‘non-head daughters’) is plausibly an emergent epiphenomenon of
efficient computation. The specifier-head-complement configuration of X-
bar theory is shown to be intimately connected to the Fibonacci sequence,
suggesting connections with similar mathematical properties in optimal
arboration and optimal packing elsewhere in nature.

Keywords: c-command; minimalism; phyllotaxis; projection; X-bar theory

1. Introduction

This article addresses some theoretical issues in language design, adopting the
biolinguistic concerns of the Minimalist Program (Chomsky 1995b). Within this
framework, the line of inquiry pursued here is the attempt to explain linguistic
properties in terms of ‘laws of form’ that may have nothing in particular to do
with language, or even with biology, but rather seem to be at work at the deepest
level in nature. Much has been written elsewhere clarifying and defending this
sort of approach; see Chomsky (2005), Freidin & Vergnaud (2001), Uriagereka
(1998), and Boeckx & Piattelli–Palmarini (2005), among others.
 Within the Minimalist Program, much attention has been given to ‘virtual
conceptual necessity’, and the intuition that ‘that which is necessary is also suffi-
cient’. As a result, one prominent trend in minimalist explanation is to reduce
linguistic properties to requirements for ‘legibility’ with respect to the cognitive
systems with which the linguistic system interacts (so-called ‘bare output con-
ditions’). Nevertheless, it deserves to be emphasized that various linguistic

 I would like to thank the following individuals for help at various stages of this project:

Andy Barss, Tom Bever, Cedric Boeckx, Andrew Carnie, Noam Chomsky, Sandiway Fong,
Heidi Harley, Norbert Hornstein, Scott Jackson, Simin Karimi, Terry Langendoen, Terje
Lohndal, Jaime Parchment, Massimo Piattelli–Palmarini, Sumayya Racy, Yosuke Sato, Juan
Uriagereka, and participants in the University of Arizona Syntax Salon. I would also like to
thank two anonymous reviewers for their feedback and advice.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biolinguistics (E-Journal)

https://core.ac.uk/display/233461791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Optimal Growth in Phrase Structure

153

properties can be both real and subject to minimalist explanation without being
required in order for language to work at all, or in the simplest possible way. One
of the most important lessons from applying ‘Galilean’ thinking to the natural
world is that sometimes the best (i.e. natural) solution is not the simplest. Often
more than one constraint must be satisfied by a system in some optimal way, and
when the constraints conflict, interestingly complicated structure may emerge. In
language as well, the biolinguistic viewpoint leads us to expect to find certain
properties that are more complicated than would be strictly required for
language to work at all, but are nevertheless ‘natural’ if language works optimally.

1.1. Where We Are Headed

I propose in this article that certain properties of phrase structure have this kind
of explanation, following not from bare output conditions but rather emerging
‘for free’ from concerns of efficient computation.1 In particular, I propose here
that the characteristic shape of phrases, as captured by the X-bar schema and
similar forms, constitutes what we might think of as an ‘optimal packing
solution’ or an ‘optimal growth mode’. On the barest assumptions, Merge may
apply freely to recursively build structure from terminal elements in any number
of ways. However, if this implicitly free structure-building is subject to a
constraint on efficient computation (related to minimizing computation invol-
ving c-command and containment relations), then some constructional choices
will be preferred over others. Given basic concerns of locality of information flow
in the derivation, it is plausible that this will induce certain consistent patterns in
recursion (what amount to repeated structural ‘templates’). Enumerating all
possible recursive templates and comparing them with respect to this
computational constraint, I show that the best templates have the shape of gene-
ralized X-bar projections. That is, the best way to ‘pack’ terminals into an iterated
molecule of recursive structure (the best phrasal template) places a unique ter-
minal at the bottom of the phrasal template, with ‘slots’ for several more objects
of the same shape as the full ‘phrase’. This kind of format is represented in (1).

(1) [α [β … [γ [X0 δ]] …]]

 As I will show, such a pattern of recursion produces fewer c-command and
containment relations than any pattern of comparable complexity, a fact that I
take to indicate computational optimality (e.g., minimizing the space searched by
repeated probe-goal operations). In (1), X0 is a terminal element, and α, β, γ, and
so on are themselves constructed according to the pattern in (1). This is really
shorthand for a class of optimal patterns, differing among themselves in how
many self-similar ‘slots’ (α, β, γ, …) they permit. This includes (2), (3), and (4): In
familiar terms, (2) corresponds to the geometry of the head-complement pattern,
(3) to the specifier-head-complement pattern of the X-bar schema, and (4) to a

 1 As will be familiar to connoisseurs of this enterprise, the idea is that explanation for

linguistic properties can fruitfully be pursued in terms of the abstract derivation that
generates expressions. The relevant sense of efficiency is to be understood as internal to this
abstract computation, rather than directly reflecting online processes in language use.

D.P. Medeiros

154

pattern in which every ‘phrase’ may have two ‘specifiers’.

(2) [X0 α]

(3) [α [X0 β]]

(4) [α [β [X0 γ]]]

 We may describe the family of growth patterns fitting (1) as ‘projective’.
Some further factor(s) must act to select one particular choice (e.g., (3) instead of
(4)) from the spectrum of projective solutions described by (1), a matter to which
I return.2 On the other hand, the format of (5) is not projective in the appropriate
sense (because the terminal element X0 is not at the ‘bottom’).

(5) [X0 [α β]]

 I believe this result is surprising and significant. The options for structure-
building allowed here are quite free; any finitely-defined scheme incorporating
terminals into indefinitely recursive patterns is considered. Needless to say, only
a small minority of these patterns ‘look like’ projections. Other possibilities have
a repeating phrasal template which places terminals at (potentially many)
designated locations other than the ‘bottom’, or recurse via units different than
the ‘top’ of the template, and so on.3 The considerations which enter into the
investigation are of a purely configurational, geometric nature; no notion of ‘head
of a phrase’, ‘label’, or other elements of the theory of projection are built into the
assumptions. Yet something akin to projection (more precisely, a structural basis
which could readily be mapped to a projection scheme) emerges ‘for free’ as an
optimal solution. This suggests that the property of projection may be an
epiphenomenon of ‘blind’ structural optimization.
 A final point worth mentioning here is that what is explained is an optimal
tendency, not an absolute law. As is the case with laws of form more generally,
this kind of explanation is actually strengthened by finding occasional deviations
from the predicted pattern (so long as they are rare). Consider, for example, the
pervasive Fibonacci pattern in plant growth. A certain species may display this
pattern as an overwhelming tendency, but individuals may show other patterns
(or, as often happens, a deviation from the pattern is found on one portion of a
single individual otherwise adhering to the pattern). In such cases, we are led to
suspect even more strongly that the Fibonacci pattern is a result of a quite general
law of form, rather than directly a result of some strict requirement. So too for the
property of projection in language, I would like to suggest. That is, certain

 2 To preview: There is arguably a cost associated with making the growth pattern too

complicated, such that a growth pattern like [α [β [X0 γ]]] places a heavier burden on
resources than does a format like [α [X0 β]]. But the more complicated the pattern is
allowed to be, the greater the reduction in c-command and containment totals. Thus, we
expect language to settle on some ‘minimax’ compromise between the greater optimality of
a more complicated growth rule, and the inherent costs of such further complication.

 3 Of course, this invites the further question of whether those options are ’linguistically
reasonable’, or are ruled out for other reasons. I address this matter in section 5.

Optimal Growth in Phrase Structure

155

analyses propose that individual structures are not ‘well-behaved’ with respect to
projection: small clauses, for example (see Moro 2000); see also the various
proposals concerning exocentric or multi-headed structures (e.g., Williams 1994,
Bouchard 1995, and Jackendoff 1977). If such analyses are on the right track, then
it would seem misguided in principle to try to explain why projection is
‘virtually conceptually necessary’.

1.2. Assumptions and Perspective

The results presented in this article are primarily mathematical in nature. This
departs from the usual practice in linguistics of close and careful attention to the
intricacies of natural language data, where a proposal is judged by its success in
covering new empirical paradigms, or in reinterpreting recalcitrant patterns in
more illuminating ways. The perspective taken here is highly abstract, several
steps removed from detailed empirical descriptions and from highly ramified
empirical predictions. Instead, the goal is to attempt to explore one kind of
explanation for some broad empirical generalizations that seem more or less
well-established. It will not be my purpose here to defend these empirical
descriptions, nor to refine them or extend their coverage to new kinds of data.
The predictions of this study, insofar as they can be construed as empirical at all,
would be definitively falsified by a discovery that linguistic structures
overwhelmingly tended toward some characteristic recursive shape other than a
projective one, or had no such characteristic shape at all.4
 I will assume that syntax consists of a computational system utilizing
recursive Merge, which may apply both to items drawn from the lexicon and to
the output of other Merge operations. I keep to the simpler case of External
Merge throughout the article, setting aside the complications that arise in treating
Internal Merge. I furthermore assume that Merge is subject to the Extension
Condition, and limited to strict binarity.
 An anonymous reviewer points out that binary branching may be one of
the facts of language most in need of explanation in terms of efficient
computation.5 Accounts of “why language is that way” with respect to binarity

 4 The matter is muddied by the observation that any binary branching structure can be

decomposed into some combination of different ‘projective forms’ in the present sense, if all
that matters is bare geometry. Nevertheless, the claims advanced here are not the merest
triviality: The idea is that some particular projective structure is applied more or less con-
sistently.

 5 The same reviewer wonders whether the approach pursued in this contribution may shed
some explanatory light on the matter. As explained below, under strict binary branching, c-
command and containment totals are exactly equal. As treated here, this is simply a
convenient accident, allowing both measures to be lumped together in a single measure-
ment. The reviewer suggests that some principle of grammar may favor this sort of balance,
or that perhaps this fact tells us something about which of the two relations is more
important in language design. The second point seems promising at first: Completely flat
structure minimizes containment relations absolutely, while maximizing c-command
relations (though doing no worse than worst-case binary branching). Does this suggest that
binarity is favored for c-command? Closer examination is not encouraging. For example,
[[a b c] [d e f]], with a mix of binary and ternary branching, actually results in lower totals
of both c-command and containment relations (20 and 14, respectively) than any strictly-
binary arrangement of the same elements (22 of each, at best).

D.P. Medeiros

156

exist — for example, Kayne’s (1984) notion of unambiguous path, his theory of
antisymmetry (Kayne 1994), or the general notion that “what is necessary is also
sufficient”. Although the matter is in no way trivial, I simply adopt the usual
assumptions in this regard, trusting that readers will find it at least familiar.
 I also do not attempt to deal with the possibility that adjuncts may lie ‘on
another plane’, as has sometimes been suggested, thus ruling out some
interesting possibilities. Thus, the present approach can be seen as aligning with
Kayne (1994) and Cinque (1999) in assuming that adjuncts are in fact specifiers
with unexceptional geometry. If that assumption should prove incorrect, and
adjuncts have some special status in terms of their branching geometry, then this
study is leaving out another important case over and above Internal Merge.

1.3. A Preview of Comparing Recursive Patterns

As a first pass at the considerations to be explored here, suppose that a syntactic
derivation has reached a stage where the following three objects remain to be
combined:

(6) X0, AP, BP

 Let us take X0 to be a bare lexical item, while AP and BP are internally
complex objects constructed by Merge. For the purposes of this simplified
example, let us ignore any distinction between AP and BP. The options for
continuing the derivation are the following:

(7) [AP [X0 BP]] (or [BP [X0 AP]])

(8) [X0 [AP BP]]

 Is there any basis for choosing between (7) and (8) in terms of their effects
on c-command and containment relations? There is. Let a be the number of nodes
in AP, and let b be the number of nodes in BP. Since AP and BP are internally
complex, a, b > 2. When two objects Merge, the number of new c-command
relations defined is simply the sum of the number of nodes in each; likewise, the
operation also creates the same number of new containment relations (as the new
mother node contains all of the nodes in each). Thus, creating (7) defines (b + 1) +
(a + b + 2) = a + 2b + 3 new c-command and containment relations. Creating (8),
on the other hand, allows (a + b) + (a + b + 2) = 2a + 2b + 2 new c-command and
containment relations, which is strictly greater. Thus, fewer such relations are
(potentially) computed at this stage if the derivation ‘grows’ according to (7)
rather than (8). As argued in more detail below, this gives us good reason for
preferring (7) over (8) in terms of efficient computation, all else equal.
 Needless to say, this departs from the usual way of thinking about these
matters. For one thing, it is usually assumed that given some real example, only
one of (7) or (8) could apply; the other choice would ‘crash’, failing to meet the
requirements of the items involved. Moreover, only some of the c-command and
containment relations defined would actually be exploited to carry real linguistic

Optimal Growth in Phrase Structure

157

relations. I return to these issues in more detail later on. For now, the idea is that
if we find as an empirical matter that the configuration in (7) tends to predomi-
nate as a structural pattern, while configurations matching (8) are relatively rare,
we might be able to explain that fact in terms of this kind of comparison.
 Note that (7) has the shape of an X-bar pattern of specifier, head, and
complement, whereas (8) might correspond to a head taking a small clause
complement, which seems to be a good deal less common (as an iterated pattern).
What is at stake here has nothing to do with projection; questions such as
whether X0 is the ‘head’ of the construction do not enter into selecting one form
over the other. Rather, the issue is one of branching form and its effects on c-
command and containment relations.
 In this light, consider the familiar X-bar schema in (9a). Setting aside the
matter of projection (the fact that the complete syntactic object shares a lexical
category label X with its head X0), the relevant aspect for our purposes is that a
complex syntactic object is formed by the particular recursive pattern in (9b).

(9) a. XP b. 2
 3 3
 ZP X’ 2 1
 3 3
 X0 YP 0 2

 At first, it looks like (9b) is just a matter of ‘bar-level’ notation: 0, 1, and 2
correspond to X0, X’, and XP respectively. But there is a way of thinking about
(9b) which does not require reference to explicit ‘bar-level’ features (a
grammatical device that has been discarded from minimalist theory for good
reasons). The objects in (9b) are merely a convenient notation for describing the
particular recursive pattern embodied by the X-bar schema. That is, a 0 in (9b) is
a terminal (a lexical atom), while 1 and 2 are defined recursively: A 1 is an object
resulting from Merging a 0 and a 2, and a 2 is the result of Merging a 1 and a 2.
This is a template for recursion, implicitly expandable ‘all the way down’.
 On the other hand, the option followed in (8) manifests a phrasal format
distinct from the X-bar shape, as in (10). (10a) gives a familiar linguistic
interpretation of the shape (a head taking a small clause complement, as in the
analysis of the copula by Moro 2000). What is of interest for present purposes is
the abstract recursive characterization of the shape in (10b).

(10) a. XP b. 2
 3 3
 X0 SC 0 1
 3 3
 YP ZP 2 2

 Lest this be misunderstood, let me hasten to point out that I am not
claiming by the representation in (10b) that small clauses are X’ categories, or
anything of the sort. Instead, the point is that this structure can be characterized
in terms of three kinds of geometric object. One is a terminal, X0, labeled 0 in

D.P. Medeiros

158

(10b). The other two objects (1 and 2) are distinguished by their recursive proper-
ties. The idea is that (10b) is an alternative to (9b) as a phrasal template. If this
pattern continued, the nodes labeled 2 at the lowest level of (10b) would them-
selves be head+small clause structures of the same shape as (10b), potentially ‘all
the way down’. This would lead to different possible branching forms for linguis-
tic structure.
 I illustrate in (11) and (12) the results of recursively expanding the X-bar
schema (9b) and the head+small clause pattern (10b). Expressions characterized
by these patterns would fill some finite portion of these full branching spaces.

(11) 2
 5
 2 1
 5 4
 2 1 0 2
 3 3 3
 2 1 0 2 2 1
 2 2 2 2 2
 2 1 0 2 2 1 2 1 0 2
 ! ! ! ! !! ! !

(12) 2
 5
 0 1
 5
 2 2
 4 4
 0 1 0 1
 3 3
 2 2 2 2
 ! ! ! !

 As is immediately clear, recursive expansion of the X-bar pattern creates a
space of branching forms which is intuitively ‘denser’ than the space associated
with the head+small clause pattern. This difference in ‘branching density’ turns
out to be simply another aspect of the difference between (9b) and (10b),
ultimately a part of the same fact underlying the local preference for (7) over (8).
Put simply, the more densely the space of forms generated by a phrasal template
branches, the better that phrasal template is for reducing the computational
burden of c-command and containment relations. The relationship between
recursive patterns (such as the X-bar format (9b) and the head+small clause
format (10b)) and c-command and containment relations is the matter that will
concern us in this article.

1.4. On ‘Explaining’ Projection

What is ‘projection’, exactly? This question was obscured by the notational

Optimal Growth in Phrase Structure

159

conventions of earlier theories, wherein the notion was almost trivial. Taking
trees as real objects, ‘projection’ has to do with how non-terminal nodes are
labeled; whichever daughter shares its categorial ‘label’ with the mother node
has projected.
 Within a minimalist theory such as Chomsky’s (1995a) Bare Phrase
Structure, this familiar notion suddenly becomes problematic. Chomsky proposes
a set-theoretic interpretation of linguistic structure building. On that conception,
it is no longer so straightforward to ‘label’ non-terminal ‘nodes’. A device is
stipulated to capture labels, but it seems somewhat ad hoc; Merge of α and β is
taken to yield not the simplest object {α, β}, but rather {K, {α, β}}, K the label; this
requires further complication in introducing the notion of ‘Term’, essentially so
that syntactic operations ‘skip over’ the label as a potential syntactic object in its
own right. Collins (2002) objects to this complication, pointing out that it goes
“way beyond” what a minimalist theory of phrase structure requires.
 More recent work seems largely to agree with Collins; ‘labels’ are now
taken to be implicitly defined, with Merge keeping to the simpler, ‘bare’ output
of {α, β}. Chomsky (2005) proposes that labels are identified by a search
algorithm, and more recently has suggested that structures going beyond the
head-complement format are ‘unstable’ in some sense (cf. Moro 2000 for a similar
idea), and must be resolved by movement (Noam Chomsky, p.c.). Nevertheless,
the idea of a ‘label’ perseveres, now motivated as a computational device
carrying all information about a syntactic object relevant to further computation.
Hornstein & Nunes (2008), following suggestions of Chametzky (2000) and
Uriagereka (1998), challenge even this idea, arguing that for adjuncts at least,
labels are unnecessary; the contribution of an adjunct to interpretation is
understood via default ‘conjunction’ (here following Pietroski 2004).
 Casting the matter in terms of interface interpretation in this way, we may
well ask, with Wolfram Hinzen, whether forcing syntactic structure to reflect the
relevant notions is really the right move:

As for the notion ‘head’, why should phrase structure capture it, if the
question of which of two lexical items that are merged becomes the head is
decided by the lexical properties of these heads? (Hinzen 2006: 182)

Where does this leave us? It is hard to deny that there is something substantive to
the notion of projection; a verb phrase, say, is different from a noun phrase, and
this difference can be traced to the differences between verbs and nouns. But it is
precisely the ‘therapeutic’ value of minimalism that it leads us to demand more
than empirical justification for the postulation of various devices; the goal is not
merely to discover what language is like, but to explain “why it is that way”.
Regardless of the descriptive value of projection, or even its ‘usefulness’ for
interpretation or syntax-internal computation, there remains the problem of
mechanisms. That is, what structural device or process actually underlies the
phenomenon that surfaces as projection, and where does that come from? If the
mechanism can be explained ’naturalistically’ rather than teleologically (i.e., as
emerging ‘for free’ rather than being motivated by its eventual function), then we
are closer to the goal of truly ‘Galilean’ explanation of language.

D.P. Medeiros

160

1.5. Organization of the Article

This contribution attempts to cover some unfamiliar ground, exploring an un-
usual avenue of linguistic explanation at a highly abstract level. To avoid losing
the way, it may be helpful to map out in advance where we are headed.
 Section 2 examines one example of the kind of recursive pattern predicted
by this account that is of particular interest: the specifier–head–complement
configuration of X-bar theory. Here, I show that this pattern is fundamentally
connected to the Fibonacci sequence. I include some speculation on the signifi-
cance of this fact, and how it may relate to similar properties elsewhere in nature.
Section 3 lays out the claim that c-command and containment relations are of
central importance to certain aspects of linguistic computation, and that
minimizing such relations results in more efficient computation. I briefly review
several familiar empirical domains in which such concerns plausibly apply, and
attempt to justify simply counting all such relations as an idealized measure of
the relevant computational cost.
 Section 4 tackles the problem of specifying what derivational patterns are
available in principle to a Merge-based system. I develop a method to compare
different patterns to each other in terms of c-command and containment
relations, and map out how the various possibilities fare. The basic technique will
be to compare different growth patterns to each other on the basis of the ‘best
trees’ they can generate for a given number of terminal elements. Growth
patterns will be partitioned into comparison sets on the basis of their complexity,
and it will be shown that the best growth pattern from each comparison set is a
member of the class of ‘projective’ patterns, with structural properties corres-
ponding to endocentricity and ‘non-head’ maximality.
 In section 5, I attempt to outline how the present study fits into the context
of other current work, and where appropriate indicate why I have chosen to
pursue an orthogonal line of inquiry. Section 6 concludes the article, drawing
together the various threads and reviewing what has been established, and
where it seems to point. Finally, I include an appendix presenting the formal
results underpinning the claims made in section 4.

2. X-Bar Structure and the Fibonacci Sequence

In this section, I show that X-bar configurations are related in a fundamental way
to the Fibonacci sequence.6 Following Uriagereka’s (1998) identification of
Fibonacci patterns in syllable shapes and theme-rheme structure, this is of some
biolinguistic interest in itself. The mathematical structure at issue is the specifier-
head-complement configuration of X-bar theory in (13):

 6 The Fibonacci numbers form the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34,… defined recursively by

a0=1, a1=1, and an=an-1+an-2. Named for Leonardo da Pisa (ca. 1200, also known as Fibonacci),
the numbers were known long before to Indian thinkers. These numbers, and the related
golden section, seem to be favored in the natural world in myriad ways, very few of which
will be discussed here.

Optimal Growth in Phrase Structure

161

(13) XP
 5
 ZP X’
 5
 X0 YP

 The object in (13) has played a central role in the empirical description of
linguistic forms. The literature of X-bar theory is enormous; for some important
developments, see Chomsky (1970), Jackendoff (1977), Stowell (1981), Kornai &
Pullum (1990), Speas (1990), Kayne (1994), and Chametzky (1996). X-bar theory
has been adopted widely even outside the Principles–and–Parameters tradition
stemming from Chomsky (1981); see, for example, Bresnan (1982), Gazdar et al.
(1985), and Pollard & Sag (1987, 1994). For now, suffice it to note that many
researchers have taken (13) to be an important generalization about linguistic
structure. Assuming so, we would like to know why phrases seem to pattern
according to (13), if indeed they do; are there other possibilities? If so, why is (13)
favored? As Hinzen puts it:

What exactly does the X-bar scheme explain? And can its strictures be
explained as following from more general and fundamental principles in the
workings of the computational system? Or must we take it as an ultimate
syntactic template that follows from nothing at all, accepting notions like
headedness and projection as primitives? (Hinzen 2006: 180)

2.1. Iterated X-Bar: Fibonacci Numbers of Category Types

As noticed first by Carnie & Medeiros (2005), recursive expansion of the X-bar
schema generates a Fibonacci sequence of bar-level categories at successive levels
of embedding. Let us take the X-bar schema as recursively defining an X-bar
space, and imagine ‘filling’ this space, such that all possible specifiers and
complements are realized, each with their own specifiers and complements, ‘all
the way down’. If the X-bar schema is iteratively expanded in this way, the
number of XPs, X’s, and X0s at successive levels of depth in the structure each
form a Fibonacci sequence. This can be seen in the partially expanded structure
in (14).

(14) XP X’ X0
 AP 1 0 0
 5
 BP A’ 1 1 0
 4 3
 CP B’ A0 DP 2 1 1
 3 3 3
 EP C’ B0 FP GP D’ 3 2 1
 2 2 2 2 2
 HP E’ C0 IP JP F’ KP G’ D0 LP 5 3 2
 … … … … … … … … Fib(n) Fib(n–1) Fib(n–2)

D.P. Medeiros

162

 Recall that Fib(n) is defined recursively by a0=1, a1=1, and an=an–1+an–2.7 In
the X-bar schema, each XP at depth n introduces another XP at depth n+1 (its
specifier), and another at depth n+2 (its complement). Thus, the number of XPs at
depth n is the sum of the number of XPs at depth n–1 and n–2. There is a single
XP at level 0 (the root node), and one at depth 1 (its specifier). Thus, letting XP(n)
represent the number of XPs possible at depth n, XP(n) = Fib(n). Each X’ at depth
n is introduced by an XP at depth n–1, so the number of X’s at depth n, or X’(n), is
Fib(n–1). Finally, each X0 is introduced by an XP at depth n–2, so X0(n) (the
number of X0s at depth n) is Fib(n–2). As a further consequence, the sum of
number of objects of all types at each level of depth (i.e. XP(n) + X’(n) + X0(n)) is a
double of a Fibonacci number (2*Fib(n)) everywhere except at the root.
 Figure 1 below provides a more perspicuous way to visualize how the
Fibonacci sequence arises in the fractal space of forms generated by the X-bar
pattern. Here, linear order is mapped to the counter-clockwise direction around
the circle, starting at the top/’north’ (assuming specifier–head–complement
order). The binary Merge at the root of the tree corresponds to a division of the
circle exactly in half; further binary branching deeper in the tree divides the
relevant portion of the circle in half again. Where terminals occur in the
expanded X-bar schema, the relevant portion of the circle is blacked out (no
further subdivision will occur there). For example, in an X-bar tree the first
terminal down from the root (the head of the root XP) occupies the left half of the
right branch. Thus, the quarter circle between south and east is colored in. The
next head down from the root is the head of the specifier phrase, corresponding
to the shading of the eighth of the circle between the southwest and west
directions. This process continues indefinitely; the result is a fractal diagram with
Fibonacci numbers of successively smaller fractions blacked out, illustrating how
the space of possible binary-branching forms may be ‘populated’ by terminals
under perfect (infinite) iteration of the X-bar pattern of recursion.

Figure 1. Three steps in the recursive expansion of X-bar space

 7 Frequently, the Fibonacci sequence is defined with a0=0, a1=1. It should be clear that the

choice of index at issue is arbitrary, and irrelevant to the point being made here.

Optimal Growth in Phrase Structure

163

2.2. Fibonacci String Lengths and X-Bar Analyses

There is another sense in which X-bar structure is related to the Fibonacci
sequence. This fact is related to the question of what X-bar analyses can be
assigned to a linguistic string of a given length. By an X-bar analysis, I mean an
assignment of bracketing such every phrase contains a head, and up to two other
phrases in the usual configuration of specifier and complement. That is,
expanding the X-bar schema top-down, each phrase XP may have any of the
following shapes, but no other possibilities are allowed:

(15) a. XP = X0
 b. XP = [X0 YP]
 c. XP = [ZP [X0 YP]]

 Put another way, the X-bar scheme is taken to be a ‘ceiling’, but not a
‘floor’, on the internal complexity of a phrase. Assuming so, a number of
different X-bar analyses are available for any string. Let us call the ‘depth’ of an
analysis the maximum level of embedding of any element in the tree it assigns to
the string. For example, a string of length 1 must have depth 0 (i.e., it is a trivial
tree consisting of a single node), string length 2 requires depth 1, and string
length 3 requires depth 2. For greater string lengths, some analyses will have
different depths than others. As a function of the string length, we can identify
the maximum depth of any possible analysis (clearly, 1 less than the string
length), and also the minimum possible depth.
 Fibonacci string lengths are minimal depth milestones, in the sense that a
string of length Fib(n) is the first string length with a greater minimal depth than
the previous string length. That is, a string of length 4 has a minimum depth of 2,
the same as the minimal depth of string length 3; 5 is the first string length which
forces an analysis of depth 3; likewise, string length 8 is the first with a minimal
depth of 4, and so on.8 Of course, real strings may have deeper analyses than the
minimum. The point is simply that Fibonacci numbers have significance in terms
of best-possible analyses, since minimal depth analyses are the ‘best trees’ within
X-bar for a given number of elements, in terms of minimizing c-command and
containment relations (see section 4 and the Appendix for discussion). As an
illustration, consider (16) below:

 8 This follows directly from the observation in the section 2.1 and this well-known identity:
 n
 (i) Σ Fib(i) + 1 = Fib(n+2) (This identity is easily proven by induction.)
 i = o
 To see why, consider the X-bar analysis that packs the longest string possible into an X-bar

analysis of a given depth. Given (23), in this analysis, all of the categories (including XP and
X’) at the greatest depth n are formatives in the surface string; thus, Fib(n) XPs + Fib(n–1) X’s
+ Fib(n–2) X0s, plus all of the X0s introduced at lesser depths: Fib(n–3) + Fib(n–4)… + Fib(0).
Adding one more terminal to the string forces the tree to depth n+1.

D.P. Medeiros

164

(16) HP
 5
 EP H’
 4 4
 CP E’ H0 KP
 3 3 3
 AP C’ E0 FP IP K’
 2 2 2 2 2
 A0 B0 C0 D0 F0 G0 I0 J0 K0 L0

 The representation in (16) contains as many terminal nodes as possible for a
depth 4 tree (viz. 12). The next string length, 13, is a Fibonacci number, and it is
the first string length which forces the X-bar analysis to a minimal depth of 5.
That is, to add another terminal element to (16) while adhering to the restrictions
imposed by the X-bar format (understood as in (15)), one of the nodes at the
bottom-most layer of the tree must be expanded, bringing the depth of the tree to
5 for the first time. (17) is an example of such a ‘milestone’ tree; no rearrangement
of this number of elements into a structure consistent with the X-bar pattern has
less depth.

(17) HP
 5
 EP H’
 4 4
 CP E’ H0 KP
 3 3 3
 AP C’ E0 FP IP K’
 2 2 2 2 2
 A0 B0 C0 D0 F0 G0 I0 J0 K0 LP
 2
 L0 M0

2.3. Are the Fibonacci Properties of X-Bar Significant?

It is tempting to see the appearance of the Fibonacci sequence in the X-bar pattern
as being deeply significant in itself. But the X-bar schema is after all a very simple
mathematical object, and there may be nothing particularly magical about the
appearance of the Fibonacci sequence in the structures it generates. Their
appearance in this domain could be no more of a surprise than their appearance
in the family trees of bees, or in Fibonacci’s idealized rabbit populations, or in the
number of metrical possibilities for a line of Sanskrit poetry, or any of the myriad
situations these numbers describe. To put it another way, it could be that these
properties are an accident of no ‘real’ significance, or worse, merely a reflection
of mathematical simplicity in linguists’ description of language, rather than a
property of language itself.
 Yet it is undeniable that patterns related to the Fibonacci sequence play an
important role in nature, especially in optimal packing and optimal arboration.

Optimal Growth in Phrase Structure

165

For example, botanical elements emerging from a central growth point tend to
spontaneously organize into Fibonacci numbers of spirals, winding in opposite
directions. In that case, it is known that the pattern is indeed the ‘best possible’
(dynamic) solution. Likewise, the pattern shows up in the branching patterns of
many plants (e.g., sneezewort), and in a different sense in the proportions
governing asymmetric branching in mammalian bronchial structure. The list
goes on; see Uriagereka (1998) for discussion and further examples, including
other Fibonacci patterns in linguistic structure. It seems that the pattern plays a
‘spooky’ role in nature (particularly in situations related to optimal self-similar
growth). Thus, finding such a pattern in phrase structure suggests that this may
be another manifestation of ‘laws of form’, reinforcing the biolinguistic suspicion
that something deeper than just biology or linguistic principles are at work; the
property may well “follow from principles of neural organization even more
deeply rooted in physical law” (Chomsky 1965: 59).
 All of this is intriguing, but of course it remains to specify exactly in what
sense the X-bar pattern is optimal. This article attempts to go some distance
towards exploring the details, but in the end falls short of motivating the X-bar
pattern alone. Nevertheless, the weaker but more general conclusion reached
below seems promising, namely that branching forms which look like a version
of the X-bar pattern generalized to any number of specifiers are optimal. For
now, I would like to point out the following intriguing analogy with plant
growth.

2.4. An Analogy with Idealized Plant Growth

Notice that in a binary-branching tree, each node is c-commanded and contained
by a number of nodes equal to its depth in the tree. For reasons clarified in the
next section, I will propose that the number of c-command and containment
relations in a syntactic tree indicate a computational cost. This cost can be
intuitively pictured as a ‘force’ pulling toward the root of the tree, in the sense
that the deeper in the tree a given piece of structure is, the greater the number of
c-command and containment relations it incurs.
 Then the problem faced by the syntactic system is analogous to the
following idealized problem of plant growth. Suppose that a plant is ‘binary
branching’, and at each branching point, either new structure can become a
terminal leaf, gathering sunlight but preventing further growth, or can grow a
non-terminal stem which divides again in two. The plant ‘desires’ to grow as
many leaves as possible (to gather sunlight energy more effectively) without
making the resulting structure too tall/spindly. Vertical growth magnifies the
structural strain involved in supporting the structure against gravity, wind, and
so on, which is increasingly severe for each additional increment of growth away
from the root (a longer stalk serving as a more effective lever for a given wind
strength, and so on). Here, nature is searching for some compromise between
growing as many leaves as possible, and not making the resulting form too tall.
 If plant growth places two leaves at the very first branching, it is done
growing. If it places one leaf at every branching point, only one branch will then
remain available for further growth, resulting in a final form with a single stalk

D.P. Medeiros

166

(in linguistic terms, it is unidirectionally branching). Delaying leaf-generation for
some number of branchings yields better results over the long term, as the final
form will be bushier, shorter, and less likely to topple over from wind or its own
weight. The very best final form would branch everywhere until spontaneously
producing only leaves at the last generation. Of course, plants grow, making the
notion of ‘last generation’ unavailable. What seems desirable is to strike some
mini-max balance between growing as many leaves as possible immediately, and
investing in optimality for future growth by growing more branches.
 I will propose that syntax faces an equivalent problem (physical
interpretation of the details aside, of course). That is, the ‘cost’ of branching
structure grows with depth, such that each increment of deeper branching is
costlier than the last (inducing more potential c-command and containment
relations). The local ‘force’ on terminals is reduced by packing them as close to
the root as possible, which is antagonistic to global optimality (each terminal
which is too close to the root ‘closes off’ options for other structure, which must
instead appear even deeper in the tree). In both botany and syntax, the Fibonacci
pattern is a good compromise to this problem; perhaps even the best, depending
on further details of the system.

3. C-Command and Containment in Linguistic Computation

The primary tool of investigation in this article is the comparison of hierarchical
structures on the basis of the number of c-command and containment relations
they encode. Such relations are central to linguistic computations of various sorts
(e.g., long-distance dependencies). Given the recent focus on principles of
efficient computation, the hypothesis is that the derivation of structures with
fewer such relations represents less of a computational burden. Insofar as
different derivational patterns lead to structures with differing numbers of c-
command and containment relations, there is then a basis in computational
efficiency for preferring some derivational patterns over others. If we find that
the recursive patterns which seem to characterize natural language are drawn
from the patterns which are optimal in this sense, we may suspect that this aspect
of phrase structure has a minimalist explanation.
 I adopt the familiar definition of c-command, as follows:

(18) C-Command (Reinhart 1976: 32)
 Node A c-commands node B if neither A nor B dominates the other and the
 first branching node which dominates A dominates B.

We will also be interested in containment (i.e. irreflexive domination), taken as the
transitive closure of the ‘immediately contains’ relation. Note, first, that the totals
of these relations are always equal in binary-branching trees. For each node α in a
tree, the number of nodes which contain it is equal to its depth in the tree. Since
the tree is binary-branching, the number of nodes that c-command α is also equal
to its depth, because each node which contains α immediately contains a node β
not containing α, which thus c-commands α; no other nodes c-command α.

Optimal Growth in Phrase Structure

167

3.1. A Simple Observation

The point of departure for the present contribution is the simple observation that
different patterns in Merge result in different totals of c-command and contain-
ment relations, even for the same input (number of terminals). For a simple
example of this, consider sets (19) and (20).

(19) {a,{b,{c,d}}} (20) {{a,b},{c,d}}
 3 3
 a {b,{c,d}} {a,b} {c,d}
 3 3 3
 b {c,d} a b c d
 3
 c d

These structures have equal numbers of terminals and of non-terminals, yet (19)
has more c-command relations (12, compared to 10 in (20)). This is shown in (21)
and (22), a listing of all the c-command relations present in (19) and (20),
respectively (read “x: y, z, w” as “x c-commands y, z, and w”).

(21) {a,{b,{c, d}}}: – (22) {{a,b}{c,d}}: -–
 a: {b,{c,d}},b,{c,d},c,d {a,b}: {c,d},c,d
 {b,{c,d}}: a {c,d}: {a,b},a,b
 b: {c,d},c,d a: b
 {c,d}: b b: a
 c: d c: d
 d: c d: c

 Σ = 12 Σ = 10

For completeness, I list all containment relations for (19) and (20) in (23) and (24),
respectively. Here, “x: y, z, w” means “x contains y, z, and w”.

 (23) {a,{b,{c,d}}}: a,{b,{c,d}},b,{c,d},c,d (24) {{a,b}{c,d}}: {a,b},a,b,{c,d},c,d
 {b,{c,d}}: b, {c,d}, c, d {a,b}: a,b
 {c,d}: c, d {c,d}: c,d

 Σ = 12 Σ = 10

3.2. C-Command in Linguistic Relations

The notion of c-command is central to numerous linguistic relations. Reinhart’s
(1976) original concern was describing the distribution of anaphora. While still
relevant to binding theory, c-command is also implicated in linearization (Kayne
1994), the determination of relative scope (May 1985), and the probe-goal
mechanism of Chomsky (2000, 2001), the latter taken to underlie long-distance
agreement and to be a pre-condition for displacement.
 Epstein et al. (1998) provide a natural reason for the ubiquity of the c-

D.P. Medeiros

168

command relation in terms of a derivational view of syntax. As they point out, c-
command amounts to the condition that syntactic objects can enter into linguistic
relations with elements of the sub-tree they are merged with. This suggests a
view of c-command as following from a search operation (potentially) accom-
panying each Merge operation. The property of Minimality, as encoded by
principles such as the Minimal Link Condition, Shortest Move, Attract Closest,
and Relativized Minimality (the relevant literature is vast; see Chomsky 1995b,
Rizzi 1990, among many others), reinforces this interpretation of c-command. The
basic observation is that in configurations like (25), where X could enter into a
dependency with either Y or Z but Y is ‘closer’ to X in some appropriate sense
than Z is, a dependency may hold between X and Y but not between X and Z.

(25) X … Y … Z

 This closeness is usually measured by c-command relations: If Y
asymmetrically c-commands Z, then Y is closer to a c-commanding X than Z is.
To a first order of approximation, we might reasonably say that syntax seems to
‘minimize links’, presumably for reasons related to efficient computation. The
idea is that long-distance dependencies reflect a search operation ‘probing’ for a
‘goal’ in the searched category in a top-down fashion (Chomsky 2001). Once an
appropriate goal is found, the search terminates, thereby blocking a dependency
with a more deeply embedded but otherwise legitimate goal (so-called ‘inter-
vention effects’, possibly unifiable with the A-over-A Condition).
 As one aspect of ‘least effort’ conditions on efficient computation, Chomsky
(2000: 99) explicitly includes principles aimed to “reduce ‘search space’ for com-
putation: ‘Shortest Movement/Attract’, successive-cyclic movement (Relativized
Minimality, Subjacency), restriction of search to c-command or minimal domains,
and so on”. The last point is especially significant for our purposes: In terms of
individual instances of search, the burden is less if a smaller domain is searched.
But note that the total number of c-command relations in a syntactic object is
simply the sum over the size of domains that have (potentially) been searched
during its derivation. Thus, it is a natural extension of the drive to restrict the
domains for individual searches to prefer structural patterns leading to lower c-
command totals, since that amounts to restricting the aggregate domain for
iterated searches.
 C-command totals may be taken to indicate computational cost in other
ways as well. Beyond the search interpretation of the probe-goal mechanism,
Kayne’s (1994) Linear Correspondence Axiom can be understood as a process
‘reading’ c-command relations and deriving linear order. Moro’s (2000) theory of
dynamic antisymmetry reinforces this view of linearization as a computational
process at the interface, for him crucially applying after syntactic displacement
has resolved points of symmetry. Likewise, scope is affected by displacement,
again suggesting that some process ‘reads’ c-command relations at the
interpretive interface. It seems natural to suppose that processes of linearization
and the determination of scope are less burdensome if applied to objects with
fewer c-command relations.

Optimal Growth in Phrase Structure

169

3.3. Containment Computations

There are reasons to believe that certain linguistic computations are ‘measured
out’ by containment relations, such that minimizing the number of such relations
improves computational efficiency. For example, Chomsky & Halle (1968) note a
relationship between stress levels and hierarchical set structure in complex
expressions. They propose a cyclic rule of stress assignment (the Nuclear Stress
Rule) that re-computes stress in successive applications from most-to-least
embedded levels. See Halle & Vergnaud (1987) for a broadly similar system, as
well as Hayes (1995). In all of these theories, the stress on individual items may
potentially be readjusted at each level of embedding. Importantly, an
arrangement like (20) involves fewer total (potential) adjustments of the stress
levels on individual elements than (19). That is, in (19) the most deeply
embedded elements (c and d) will be subjected to three cycles of stress
computation; the element b will undergo two cycles, and a just one: The total is 9
(potential) readjustments of individual stress levels. On the other hand, in (20)
each element is twice-embedded, hence subject to 2 cycles, for a total of 8
potential readjustments. This suggests that assigning stress to (20) is a simpler
computation than doing the same for (19).
 Along the same lines, consider theories that relate displaced elements to
their position of canonical interpretation in the way that Head-Driven Phrase
Structure Grammar (Pollard & Sag 1987, 1994) does.9 To encode discontinuous
dependencies (e.g., in wh-questions), HPSG utilizes a feature on a verb (a SLASH
feature in the HPSG parlance) marking its semantic deficiency, which propagates
up the tree along the path of dominating nodes until it encounters a category that
can satisfy it. If some such mechanism underlies displacement phenomena in
general, then one natural condition of efficient computation is that the feature
propagation path should be as short as possible. Maximally balanced trees like
(20) provide a scaffolding with the minimal propagation path-length sum
possible; in general terms, the ‘average’ containment path is shorter in such a
tree, and the worst-case paths are shorter than in any other structure.

3.4. Is Counting Enough?

I will resort to simply counting all of the c-command (equivalently, containment)
relations in a structure, adopting the working hypothesis that this is a reasonable
proxy for the ‘real’ computational cost incurred in actual expressions. It might be
objected that counting all c-command relations may overestimate the relevant
cost in important ways. For one thing, it is often assumed that in a given
configuration, the relations for which c-command matters are one-sided. Thus,
when α and β merge, only one (say, α) can search the other; dependencies cannot
be established from β into the interior of α. Moreover, the very fact of
intervention means that not all probe-goal searches are computed; the search

 9 Of course, HPSG is a model-theoretic approach to syntax. It is not clear that concerns of

‘efficient computation’ are as relevant to such an approach as to proof-theoretic derivational
accounts pursued within the Principles–and–Parameters tradition.

D.P. Medeiros

170

stops once the first legitimate target is found. Thus, it seems we are crucially
over-counting the c-command relations that should matter for such a
comparison. Similar concerns apply to containment; for the case of stress
assignment, it seems only the containment relations involving terminals matter
for optimality.
 This is a necessary casualty of the idealizations here. To restrict depen-
dencies such that only one of the operands of Merge may search the other
requires some basis for the asymmetry. Given the range of constructional options
considered here, there simply is no way to reconstruct such an asymmetry on
configurational grounds in full generality. Since any other grounds for the
asymmetry (say, properties of the individual lexical items involved) are ignored
as well, we shall have to live with this. Similarly with the intervention effect:
Without knowing what dependencies might actually be established or not, we
are left with a bare scaffolding of possible dependencies and no way of choosing
how it might be filled out. The only basis for comparison is the scaffolding itself.
 Even so, I think the approach here is not unreasonable. Recall that the goal
is to find a basis for selecting certain structural patterns over others. At this level
of idealization, it may make sense to abstract away from the details and consider
the total space of possible relations latent in branching forms themselves.
However the possibilities are eventually exploited in particular expressions by
some defined relations entering into linguistic computations while others do not,
it is a fact that some structures put a tighter cap than others on the computational
cost that could be incurred in principle.
 Furthermore, it is a crucial point that the measure of computational cost
need not be strictly accurate for our purposes; all that is important is that it
reflects the relative optimality of the structural options being compared. In this
regard, it is encouraging to note a general property of scale-invariance in the
comparison between different recursive possibilities. As we will see, the self-
similarity of the patterns to be explored implies that if one pattern produces
fewer c-command and containment relations than another in small domains,
their relative optimality will not be reversed in larger domains. The same
property of self-similarity suggests that the comparison will tend to go the same
way if domains are restricted in principle in equivalent ways.
 The hypothesis — and it is only that — is that at this level of abstraction,
this simple expedient of counting will suffice to illuminate at least the outlines of
where such an approach will lead. But suppose it turns out that simply counting
total numbers of c-command and containment relations is wrong in some
fundamental way, and a more detailed look at the properties involved leads to
different measurements, making different predictions. Even so, I would like to
suggest that such predictions should be taken seriously, and their explanatory
potential explored. In other words, the methodology employed here may prove
to be too simplistic, but I think the underlying concerns deserve attention, in that
(to my knowledge) computational efficiency in this form has not been examined
before, and the potential for ‘deep’ linguistic explanation in these terms appears
promising.

Optimal Growth in Phrase Structure

171

4. Optimal Syntactic Growth Modes

What I propose to investigate and compare below are phrase structural patterns,
in the sense of characteristic aspects in the branching geometry formed by Merge
applying recursively to lexical items and its own output. The hypothesis being
entertained is that the forces which govern the process, in the sense of selecting
some binary-branching structures over others, will give rise to identifiable and
repeated tendencies (what might be thought of as ‘optimal growth modes’). To
determine what tendencies we might expect, I generate all possible patterns that
could be used as consistent ‘phrasal templates’ to build infinitely recursive
structures from lexical atoms, and develop a technique to compare them to each
other.

4.1. A Domain for Terminals

One condition that will need to be imposed is that the recursive templates
include a characteristic place for terminal elements. This makes a good deal of
sense on several levels. First, the objects are recursively defined, which requires
some ‘base step’; it is hard to see what aspects of branching structure could
provide this other than terminals. From another point of view, these are
ultimately discrete, finite patterns, built bottom up from lexical items; they are
‘about’ structuring terminals into larger structure. Without terminals to ‘ground’
the patterns, there can be no distinctive shape, hence no ‘pattern’ at all; the only
rule would then be ‘anything goes’.
 The concern in this regard is structures like (26) below, which are
‘maximally balanced’, with all terminals at the same depth (or at two adjacent
levels of depth. These structures provide absolute minimization of c-command
and containment relations.

(26)
 5 5
 3 3 3 3
 2 2 2 2 2 2 2 2
 A0 B0 C0 D0 E0 F0 G0 H0 I0 J0 K0 L0 M0 N0 O0 P0

 If the concerns in this article really do ‘matter’ in the determination of
structure, why do we not see such forms in natural language? If the only problem
were optimizing at once the positioning of a full set of elements, we would indeed
expect to see something like this.
 But one guiding theme in minimalist work is the idea that syntactic forms
are to be explained dynamically, by local (informationally limited) optimization
at each step of a syntactic derivation. In these terms, the structure above looks
decidedly unnatural. To actually derive such a form, Merge must apply as
symmetrically as possible. This involves unbounded ‘vertical’ information flow
at each step; the internal structure of syntactic objects must be accessible ‘all the
way down’ so as to match objects (terminals, pairs of terminals, pairs of pairs of
terminals, etc.) appropriately. But even this ‘local’ (i.e. one Merge operation at a

D.P. Medeiros

172

time) matching of object structures is not enough. The derivation must be kept in
appropriate synchrony across the entire set of parallel sub-derivations; if one
process of merging terminals into ever-larger sets proceeds too many steps
beyond other combinations occurring in parallel, we may be left with a final
stage where only unmatched objects remain. Information must thus be shared
‘horizontally’ as well, in effect amounting to global pre-planning of the
derivation.
 We can identify a parallel situation in botanical growth. Recall the idealized
problem of leaf-placement in section 2.4: The ideal representation for solving the
problem produces no leaves until the last generation, when only leaves are
produced. There is something distinctly unnatural about this; organic growth
proceeds by a local logic, where notions such as ‘final form’ have no power to
shape the dynamics of growth. Similar concerns apply to the pattern of Fibonacci
spirals in phyllotaxis: If the only problem were to pack at once a certain number
of elements into a limited space, a hexagonal lattice structure would be best. But
the observed patterns grow, with the result that what we in fact observe is not the
best form, but the best growth pattern, a crucial distinction.
 Given the dynamic view of syntax adopted here, similar constraints are
expected to apply: The best configuration is ‘ungrowable’. Parallel to the phylo-
tactic case, we expect to observe at best an optimal derivation, not an optimal
final representation, because the dynamic system is limited by a fundamental
locality. This is why (26) is not predicted here; no local pattern of growth can
produce it.

4.2. Possible Growth Modes

Such concerns lead us to expect that the considerations which enter into
derivational choices will be limited by an informational horizon. Recall that one
of the problems with (26) was that it required syntactic objects to be matched ‘all
the way down’. Limiting this informational flow means that only some of the
recursive structure of the operands of Merge is ‘visible’ to optimization concerns.
For example, if one level of internal structure can be examined, then terminals
can be distinguished from more complex objects. Allowing two layers of
structure to be visible allows further distinctions, which allows more internal
complexity in recursive patterns, and so on.
 As an idealization to aid the investigation of these matters, I will suppose
that whatever pattern might be found will be consistent (i.e. deterministic). A
consistent recursive scheme carried out within a finite derivational window can
be described by a finite number of distinct ‘types’ of syntactic object (terminals,
or objects recursively defined as the result of Merging other terminals or
recursively defined objects), which ‘loop’ into each other in a finite cycle.

4.2.1. Notational Conventions

To allow the full range of recursive possibilities, let us simply use the natural
numbers to represent the relevant distinctions among outputs of different Merge
operations, reserving 0 for terminal elements. Let us furthermore use the largest

Optimal Growth in Phrase Structure

173

number in a pattern to designate the root symbol (held constant, under the ‘top-
down’ formulation discussed below). Here, we will take the appearance of the
same number on two different nodes to mean that the structures so labeled have
isomorphic recursive structure. In these terms, the simplest recursive pattern
(both including terminals and allowing indefinite recursion) will be represented
as below:

(27) 1
 3
 1 0

Likewise, in this formulation the X-bar specifier-head-complement pattern will
have 0-level terminals marked as 0s, while ‘single-bar-level’ intermediate
categories are 1s, and ‘phrases’ are 2s.

(28) 2
 3
 2 1
 3
 0 2

 Thus, the numerical designations might be thought of as something like a
generalization of conventional ‘bar-level’ notation. To be clear, this is not a
proposal about reviving bar-level notation as an explicit grammatical device,
thus violating Inclusiveness. Instead, the notation is a device for reasoning about
possible derivational sequences; the relevant information is not to be understood
as somehow reified in any way ‘on’ the node, but is a matter of information that
is in the way the derivation itself proceeds. If these patterns do characterize
natural language, that fact presumably emerges from dynamic considerations,
rather than being explicitly enforced by some mechanism like ‘bar-level features’.
 Insofar as a pattern is consistent, its elements (other than 0) can be
characterized by what amount to ‘rewrite rules’ (again, this is a matter of
investigational convenience, not a proposal for a ‘real’ grammatical device):

(29) i j k i in {1, 2,… n}; j, k in {0, 1, 2,… n}

The simplest structure (27) can thus be expressed as in (30), and the X-bar schema
as in (31):

(30) 1 1 0

(31) 2 2 1
 1 2 0

4.2.2. Generating All Possibilities

Let us now set to exploring the options systematically. If the ‘derivational

D.P. Medeiros

174

window’ is as small as possible (i.e. the growth pattern is as simple as possible),
then there is only one option for how to build recursive structure from terminals.
I call this the ‘spine’, for obvious visual reasons (intuitively, it generates a uni-
directionally branching tree); I will likewise use descriptive names for the other
patterns for mnemonic convenience.

(32) 1 1 0 (‘spine’): 1
 3
 1 0

 We obviously need at least this much structure to have recursion at all.
Ignoring linear order (as I do throughout), and requiring the pattern to be built
recursively from terminal elements and the output of Merge, for distinct objects
0, 1 the other combinations can be ruled out (1 1 1 is not built from terminals,
while 1 0 0 does not recurse).
 Moving on to the next level of complexity in sequencing Merge, we
consider patterns involving two types of non-terminals (equivalently, two-stage
sequencing of Merge operations). Given the remarks above, we have at first pass
62 = 36 distinct options for recursive patterns involving two order-irrelevant
Merge rules (i.e. non-terminal characterizations) defined over three object types
(0, 1, 2); for arbitrary n, there are (n(n+1)/2)n–1 options. Being a little more careful,
we can restrict this further by ruling out the following types of characterizations:

(33) i i i does not terminate (DNT)
 n 0 0 does not recurse (DNR)
 n n 0 isomorphic to the Spine

 That is, any object which immediately contains two isomorphic copies of
itself cannot be recursively constructed from terminals. If the root node
(designated as the largest number n) consists of two terminals, recursion is
impossible. Finally, if the root node consists of a terminal and an object
isomorphic to the root, it is isomorphic to the spine (1 0 1), hence is not really a
member of the higher-order comparison set. The table below lists all the options
for the comparison set built from {0, 1, 2}; non-viable options are grayed out.

 2 2 1 2 1 1 2 1 0
1 2 2 DNT DNT high-headed

D-bar
1 2 1 DNT DNT high-headed

X-bar
1 2 0 X-bar D-bar (spine)

1 1 0 spine of spines pair of spines (spine)

1 0 0 double-headed

spine
DNR DNR

Table 1: Options for the comparison set built from {0, 1, 2}

Optimal Growth in Phrase Structure

175

 I have also grayed out the option described as a ‘pair of spines’, which, as
the name is intended to suggest, consists of two spines merged at the root. It
should be clear that this is not a repeating structure; the configuration at the root
is unique, and thus it is not a growth pattern in the desired (basically, self-
similar) sense. I illustrate the remaining options below, including their repeating
‘molecular’ structure as a partial tree diagram.

(34) a. 2 2 1 (‘X-bar’)
 1 0 2

 b. 2
 3
 2 1
 3
 0 2

(35) a. 2 1 0 (‘high-headed X-bar’)
 1 2 1

 b. 2
 3
 0 1
 3
 2 1

 Options (34) and (35) form a natural pair, as do (36) and (37) below, in that
the members of the pairs are really the same recursive cycle caught at different
times, with a different selection of which non-terminal serves as the root. I call
the member of each pair of patterns in which the terminal occurs nearer to the
root ‘high-headed’. See the discussion in 4.3.3.2 below.

(36) a. 2 1 1 (‘D-bar’)
 1 2 0

 b. 2
 3
 1 1
 3
 2 0

(37) a. 2 1 0 (‘high-headed D-bar’)
 1 2 2

 b. 2
 3
 0 1
 3
 2 2

D.P. Medeiros

176

This pair (again, really different ‘snapshots’ of the same pattern) has a funda-
mental symmetry; the D in D-bar is meant to stand for ‘double’ for this reason.

(38) a. 2 2 1 (‘spine of spines’)
 1 1 0

 b. 2
 3
 2 1
 3
 0 1

(39) a. 2 2 1 (‘double-headed spine’)
 1 0 0

 b. 2
 3
 2 1
 3
 0 0

 Enumerating all of the options for further comparison sets (allowing three
stage Merge sequences/three non-terminal types) would be a good deal more
tedious. For illustrative purposes, I include just one of the options. This
represents the ‘projective’ geometrical format, and thus is the optimal member of
its class (for reasons discussed below, and proven in full generality in the
Appendix). Intuitively, it corresponds to the structures described by Jackendoff’s
(1977) ‘uniform three-level hypothesis’, an X-bar-like structure with two speci-
fiers. In other words, it is a version of the X-bar schema utilizing three non-
terminal types; hence, ‘3-bar’.

(40) a. 3 3 2 (‘3-bar’)
 2 3 1
 1 3 0

 b. 3
 3
 3 2
 3
 3 1
 3
 3 0

4.3. Comparing Growth Modes

Now that we have developed a way of enumerating the possibilities for recursive
growth modes, we turn to the task of comparing them to each other. Recall the
fundamental observation underlying this investigation, that building structure in
some ways results in fewer c-command and containment relations than other
options. I have argued that having fewer such relations lessens the computational

Optimal Growth in Phrase Structure

177

burden for the derivation. The hypothesis is that this results in a preference for
patterns in the application of Merge that will tend to reduce c-command and
containment relations. Our goal in this section will be to develop a technique to
compare the recursive options we have enumerated on the basis of their
consequences for c-command and containment totals.

4.3.1. Comparison Sets Based on Cycle Complexity

Each of the recursive patterns we are considering is defined within the bounds of
some fixed amount of sequential complexity. Some patterns have more or less
internal structure than others: The spine is ‘simpler’ than the X-bar schema. The
X-bar schema requires more in the way of (relatively local) information flow to
structure the derivation appropriately. Different choices of the size of the
derivational window (i.e. the number of different types of object, or equivalently,
the number of derivational steps in a characteristic cycle) will partition the
possibilities into natural comparison sets. That is, we will compare recursive
patterns of comparable complexity to each other. In present terms, we will be
comparing patterns that can be specified with the same number of symbols, so
that a comparison set will consist of all the recursive possibilities that can be
described with numbers from 0 to some fixed n.

4.3.2. Direct Comparison

How can one growth mode (recursive pattern) be compared to another?
Sometimes the comparison can be made quite directly. Consider again the
following example from the introduction. We are given the problem of
combining the syntactic objects AP, BP, and X0 via binary Merge. AP and BP are
internally complex, while X0 is a terminal. The options are these:

(41) [AP [X0 BP]] (or [BP [X0 AP]])

(42) [X0 [AP BP]]

 Again, given just the information that AP and BP are internally complex,
the first option produces fewer c-command and containment relations than the
second. Noticing the monotonic way in which c-command and containment
relations accumulate in a derivation (i.e. additively), this local superiority gives
us very good reason for preferring to apply the pattern manifested in the first
option over the second more generally, if we are forced to choose one or the other
as a repeated format. Put another way, it motivates the choice of the growth
mode (43) over (44):

(43) 2 (‘X-bar’)
 3
 2 1
 3
 0 2

D.P. Medeiros

178

(44) 2 (‘high-headed D-bar’)
 3
 0 1
 3
 2 2

 However, this sort of direct comparison will not work for the full
comparison set they belong to. Consider another member of that set:

(45) 2 (‘double-headed spine’)
 3
 2 1
 3
 0 0

No local, direct comparison with the previous two patterns is possible, since they
take different inputs (23 calls for two terminals); in general, where (43) and (44)
can be applied, (45) cannot.

4.3.3. Indirect Comparison

To get around this problem, I will proceed as follows. First, it is an inescapable
fact that these are discrete patterns, ultimately built from some finite number of
terminal atoms. This suggests an alternative, slightly indirect way to compare
different growth patterns: Compare the set of tree-forms they can generate for
some constant number of terminals.
 These patterns implicitly define a class of trees. For example, The Spine can
be applied to generate (46); that unidirectionally branching structure belongs to
the set of trees associated with the growth mode (such a tree can be ‘grown’ by
the pattern). On the other hand, (47) does not belong to the class of trees
associated with the Spine.

(46) [W0 [X0 [Y0 Z0]]]

(47) [[W0 X0] [Y0 Z0]]

 For a fixed number of terminals, there are many different binary-branching
arrangements of that number of elements. Some of those branching structures
will belong to the class of trees associated with a particular phrase-structure
pattern, and some will not. These will typically differ in their number of c-
command relations. However, for a fixed number of terminal elements and a
particular recursive pattern, we can identify the best tree(s), which contain the
fewest number of c-command relations of any of the trees associated with a
particular pattern. These best trees for a number of terminals then serve as a basis
for comparison among the patterns themselves (since, as it turns out, this
comparison is monotonic: If a pattern allows a better tree for n terminals than any
competing pattern, it also has a better tree for n+m terminals).

Optimal Growth in Phrase Structure

179

4.3.3.1. The ‘Bottom of the Tree’ Problem

However, this requires some further clarification. The idea is to find some way to
compare templates for infinite growth, by isolating them and seeing what
happens when they are followed as faithfully as possible. The problem is that
none of these rules can be followed completely faithfully. This is an inevitable
consequence of insisting that they allow for indefinite recursion: Any such
growth pattern must contain ‘slots’ for other objects of indefinitely large size. Yet
the objects which manifest these patterns must ultimately be finite, with nothing
but terminal nodes at the bottom of the tree. As a result, some ‘slot’ that calls for
a larger object must be filled with a terminal instead.
 To illustrate, consider the simplest possible growth rule for combining
terminals into an indefinitely large recursive structure:

(48) 1
 3
 0 1

 Even in this, the simplest pattern, the very first step in a derivation presents
a problem, as it does not follow the rule. Any derivation whatsoever must begin
by creating a structure of the form [X0 Y0]; there simply is no other option. So
for a pattern like (48), we will accept a structure like (49) as manifesting it as
faithfully as possible:

 (49) 1
 3
 0 1
 3
 0 1
 3
 0 1
 3
 0 1/0

The notation 1/0 indicates where we have deviated from following the growth
rule (necessarily, since the tree is finite), here including a terminal where the rule
calls for a complex object.
 However, if we must allow some ‘fudging’ at the bottom of the tree, we can
at least be faithful everywhere else. Keeping in mind that our ultimate goal is to
find some basis for comparing one growth mode to another, we reason that we
do not want to ‘truncate’ the pattern encoded in the growth rule anywhere not
required by the brute fact of discreteness. In particular, we will insist that the
growth pattern be followed faithfully ‘in the middle’ of the derivation, so to
speak. This amounts to the formal specification that the only deviation from the
recursive pattern allowed will be replacing a called-for non-terminal with a
terminal. We rule out non-terminal to non-terminal sequencing that violates the
pattern, as in (50) below. Here, the notation *0/1 marks the illegitimate portion:

D.P. Medeiros

180

A called-for terminal has been filled with a non-terminal instead.

(50) 1
 3
 * 0/1 1
 @ @

4.3.3.2. Top-Down Generation

Note that we have imported a further complication by the convention of
assuming that one of the non-terminal types (n, the highest of the numbers
designating the non-terminal types) will be uniformly associated with the root.
Formally, this amounts to generating the trees to be compared from the root
down, allowing any branch to terminate. It is an important (if subtle) point that
this is not a matter of committing to a top-down view of syntactic derivation,
though it should be recognized that a Merge-based system need not be quite so
literally bottom-up as often assumed:

Thus if X and Y are merged, each has to be available, possibly constructed
by (sometimes) iterated Merge. […] But a generative system involves no
temporal dimension. In this respect, generation of expressions is similar to
other recursive processes such as construction of formal proofs. Intuitively,
the proof ‘begins’ with axioms and each line is added to earlier lines by rules
of inference or additional axioms. But this implies no temporal ordering. It is
simply a description of the structural properties of the geometrical object
‘proof’. The actual construction of a proof may well begin with its last line,
involve independently generated lemmas, etc. The choice of axioms might
come last. (Chomsky 2007a: 6)

 Regardless, in the present investigation top-down generation is an artifact
of notational choices, rather than a substantive claim.10 Recall that the objects of
interest are recursive cycles. Understood as time-neutral geometric patterns of
recursion, these patterns do not properly have a ‘beginning’ or an ‘end’ (other
than terminal elements, which can in principle appear anywhere in the looping
structure as inputs to Merge, but not outputs). Their structure is a matter of how
outputs from one step loop into the input to other steps. But we have kept to the
familiar tree-diagram notation, assigning numerical designations to non-terminal
types. The result is that certain patterns are multiply represented. For example,
‘X-bar’ and ‘high-headed X-bar’ are really the same recursive pattern, with a
different choice for which non-terminal occurs at the root.
 However, it turns out that a certain orientation of the pattern (fixing one or

 10 In light of this point, the claim made in this article about ‘projective structures’ needs to be

clarified somewhat. Represented in the format [α [β … [γ [X0 δ]] …]], the claim is a little
too strong. What is motivated here is rather the recursive cycle underlying this format. Put
another way, even universal strict adherence to such a growth mode in reality would not
necessitate that the root node be maximal; the recursive cycle could be oriented differently
at the root, thus showing up as one of the ‘high-headed’ alternatives (such a situation would
look like a ‘small’ projection at the root embedding an otherwise well-behaved projective
structure).

Optimal Growth in Phrase Structure

181

another of the non-terminal types at the root) will consistently provide better
results than others. Thus for each looping object we can generate a set of alternate
versions fixing one or another of the stages as the ‘top’, corresponding to the
‘root’ of a tree, and see which are best. Since the basis for comparison is best
performance, this should not present a problem in any way.

4.3.3.3. Some Results from Indirect Comparison

Figure 2 graphs the growth in c-command and containment relations for several
recursive patterns. Recall that for each growth mode, there is an associated set of
trees generated by adhering to the structural pattern consistently from the root
down, allowing terminals to appear in ‘slots’ calling for non-terminals (required
for finite trees). For a given number of terminals, a number of trees can be
generated by a given pattern. These will differ in the number of c-command and
containment relations they encode, but for each choice of growth mode and
number of terminals, there will be a best tree (or set of such trees). A ‘best tree’
has the fewest possible c-command and containment relations that could be
produced by that growth mode for that number of terminals. It is these totals
which appear in Figure 2 (as a function of the number of terminals).

Figure 2: C-command and containment totals as a function of terminals in best trees

D.P. Medeiros

182

 I include in the figure ‘best trees’ in X-bar (34), as well as three other two-
layered constructional schemes (35-37). I also include the best system utilizing a
4-way combinatorial distinction (40), which I call ‘3-bar’ (intuitively, an X-bar-
like system with two types of intermediate category). The spine (32) forms the
upper boundary curve; no growth pattern results in worse performance (in the
sense of creating more c-command and containment relations for a given number
of terminals). There is also a lower boundary curve, here labeled ‘Max Balance’.
This is the number of c-command and containment relations in a maximally
balanced tree like (26) from section 4.1; the pattern is not the result of any finite
growth pattern, but forms the boundary on best-case performance.
 Among the growth modes in its comparison set, X-bar has the best
performance: Its curve is closer to the best case lower boundary (‘Max Balance’).
The optimal pattern from the next comparison class, ‘3-bar’, has slightly better
performance (the best trees that can be ‘grown’ by that pattern have fewer c-
command and containment relations for the same number of terminals).
 To be clear, the figure is meant as an illustration, not a proof. The general
result that projective growth modes are best is established formally in the
Appendix.

4.4. Deriving Projection

As suggested by Figure 2, X-bar is the best growth mode that can be achieved by
any two-stage scheme for constructing recursive structure from terminals via
binary Merge. What I call ‘3-bar’ is better still, though it requires more
distinctions (more recursive complexity, more information flow) to construct.
Generalizing, these are examples of the ‘projective’ format in (51), where X0 is a
terminal at the ‘bottom’ of the repeating structure, and α, β, and so on are objects
themselves constructed according to (51).

(51) [α [β … [γ [X0 δ]] …]]

 The structural properties of (51) can be captured in our alternate notation
as in (52), where 0 is a terminal, and n the non-terminal associated with the root.

(52) n i n
 i j n
 …
 k 0 n

 The specifier-head-complement format of X-bar theory is one example of
such a ‘projective structure’: Specifically, it is (52) with n=2. The more optimal ‘3-
bar’ system of (40) is another example, this time with n=3. As I prove in the
Appendix, this is the optimal format for n+1 (i.e. 0, 1, … n) types of category
(many other less optimal possibilities exist). Intuitively, the idea is as follows. The
phrase structural possibilities are understood to be (partially) realized by finite
expressions, built bottom-up by Merge. As such, every recursive pattern must
include terminals (0s) as one of its structural types. Moreover, no categories are

Optimal Growth in Phrase Structure

183

built solely from non-terminals ‘all the way down’.
 Given these restrictions, and the determinacy of the structural characteri-
zations assumed, any non-terminal node must dominate a terminal node within
depth n, for n+1 types. The best kind of structure, following the format in (52),
introduces terminals no closer to the root than forced by this. In essence,
introducing terminals too close to the root ‘closes off’ branches, forcing complex
structure to appear deeper in the tree, where it will induce more c-command and
containment relations than if it were shallower. The format in (52) allows
arbitrarily large structures to be as balanced as possible given the limitations
resulting from finitely many structural distinctions.
 Note two very interesting properties of (52):

(53) a. Every non-terminal immediately dominates a root-type node.
 b. Terminal nodes and root-type nodes are associated one-to-one; a

single terminal occurs at the lowest level of the chain of non-root-
type nodes dominated by a root-type node.

Replace ‘root-type node’ with ‘maximal projection’, ‘terminal’ with ‘head’, and
‘chain of non-root types dominated by a root type’ with ‘projection chain’, and
we have:

(54) a. Every non-terminal immediately dominates a maximal projection.
 b. Heads and maximal projections are associated one-to-one; a single

head occurs at the lowest level of the projection chain.

 That is, the recursive scheme that best minimizes c-command and contain-
ment relations has geometric properties corresponding to (54a) the maximality of
non-head daughters, and (54b) endocentricity. Such properties are the essence of
the theory of projection. But the notions entering into (53) are purely structural
ones. Does this ‘derive’ projection? Not in the sense of literally providing labels
on non-terminal nodes. But it suggests a reason for syntactic objects to tend to
take the form of structures which are ‘ready-made’ to be ‘read’ as projections, in
that there is a natural one-to-one association in the optimal format between larger
molecules of structure and unique terminals at their ‘bottom’.

5. Lexical Features and Projection

This article has been concerned with matters of pure hierarchical geometry,
paying no attention to lexical details at all. To say the least, this is orthogonal to
the sort of approach pursued in recent work. Following the seminal work of
Speas (1990), phrase structure is generally understood to be determined by the
specific featural requirements of lexical items, hence ‘projected from the lexicon’.
Taking this view in conjunction with the principle of Last Resort, which holds
that syntactic operations are driven by strict necessity (Chomsky 1995b), there is
little room for other principles to play a role in phrase structure. In the strongest
version of such a conception, each step in the structure-building process is

D.P. Medeiros

184

required; if some other step were taken, some lexical feature would not be
checked appropriately, and the derivation would crash.

5.1. Beyond Features and Last Resort

To be clear, I see no reason to deny that Last Resort accurately describes the
mechanisms in play, at an appropriately detailed level of description. But
focusing too narrowly on the mechanisms involved may limit the depth of
explanation that might be achieved. Consider, for example, the mysterious EPP
(Extended Projection Principle) property (Chomsky 1981), which requires that
T(ense) must have a filled specifier. This can be enforced by supposing that the
relevant head has an EPP feature (or some equivalent device), and that the
derivation will crash if the specifier position is not filled. But does this actually
explain the EPP, or merely describe it? On this view, it is an accident that T has
such a feature; it could just as well have lacked that feature, and then there
would be no EPP. What is left unanswered is why T should have such a
requirement in the first place; can that be explained in some naturalistic way?11
 The usual approach is to take lexical properties as given a priori, with the
task of syntax being to accommodate them as best it can. The present approach
could be understood as exploring causation in the other direction (i.e. the extent
to which syntactic effects might explain lexical properties). Without
presupposing that lexical requirements have to be what they are, all options are
on the table, so to speak. The ultimate goal is to eventually use the insights of the
present investigation to achieve a deeper understanding of lexical facts (for
example, why an EPP feature for T might be preferred), though this further step
is left for future work. That is, independent of the mechanisms which effect
structuralization, we may ask about the optimality of the patterns they induce.
Insofar as those patterns turn out to be optimal in the sense explored here, they
are as expected — ‘perfect’, Galilean, and explainable in the minimalist mode.
 Thus, the point of view here is compatible with even the strictest under-
standing of how a derivation might be driven by lexical features, if it is allowed
that principles of optimality might play some role in determining lexical
features.12 If so, the concerns explored in this article are rather far in the back-
ground, indirectly realized through patterns ‘frozen into’ the lexicon. On the

 11 Earlier drafts of this work included material showing how concerns of minimizing c-

command and containment relations plausibly play a role in displacement, including EPP-
movement. The crucial point is that with respect to some of the computations involving
such relations at the interfaces, displaced elements are effectively in their displaced position
and not in their ‘base’ position (linearization and scope being clear cases), thus opening up
the possibility that displacement might serve to derive a more economical form, in the
relevant sense. Although the predictions here seem extremely promising, the issues that
arise go too far beyond the scope of this article.

 12 This may seem odd at first, if ‘features’ are understood as properties related to inter-
pretation at the interface. Two comments are in order. First, the sorts of features that could
most readily be explained by computational considerations are so-called uninterpretable
features, which have the dual properties of not being interpreted directly, and seemingly
playing a crucial role in structuralization. Second, it may after all be sensible to rethink some
properties formerly considered to be properties of interpretation in terms of syntax-internal
concerns, pursuing the general program of Hinzen (2006) along these lines.

Optimal Growth in Phrase Structure

185

other hand, in his most recent work Chomsky has suggested that Merge may be
driven by a non-specific generalized ‘Edge Feature’ EF (Chomsky 2007a), which
is undeletable in syntax (hence allowing unbounded Merge). If that point of view
is adopted, the options for structure are not nearly so rigidly and predictably
forced by the choice of lexical items, and the considerations here may play a
rather more direct role in determining structure.

5.2. Lexical Requirements: Projection vs. Structuralization

An essential step in the argument is the idea that many possibilities are logically
possible for phrase structure. In particular, I argue that we should be willing to
be surprised that syntax makes use of ‘projective’ geometries, wherein terminals
occur at the bottom of phrases. But at first glance, this would seem to present a
problem: How could it be any other way? That is, if local structures are indeed
enforced by lexical requirements, how could a terminal affect structure anywhere
except in the sort of domain defined by a projective structure?
 What is at stake is the power to enforce structural features, and how far
that extends. It is uncontroversial that certain lexical items can force certain
structural choices in subsequent Merge operations beyond the first they occur in
(i.e. higher up the tree). For example, the item T (Tense), even after Merging with
its complement, is able to enforce further details of the derivation, in the form of
its EPP property requiring a phrase to occur in its specifier. It seems that T has
the reach to place non-local requirements on the structure it occurs in.
 But what is required for (lexically-driven) non-projective geometries is that
structural enforcement can reach down the tree as well as up. That would require
lexical requirements to be discharged ‘before’ the enforcing head has been
Merged; is that not a paradox? Crucially, this sort of situation is not just possible,
but empirically attested. The relevant case is long-distance selection: Selectors
have the power to enforce properties not just in their complements, but in the
interior of their complements as well (thus ‘down’ the tree).
 Boeckx (2008) gives the following example from Hebrew. In Hebrew, as in
English, the verb meaning ask selects for a [+wh] CP. What is important, for our
purposes, is the presence of the topicalized phrase ha sefer to the left of the [+wh]
element le mi:

(55) Sa’alta oti et ha sefer le mi le haxzir.
 asked.2.SG me ACC the book to whom to return
 ‘You asked me to whom to return the book.’ (Boeckx 2008: 16)

This is a clear case of long-distance selection going beyond strict head–
complement. That is, assuming the articulated left periphery of Rizzi (1997), the
selected [+wh] material occurs embedded inside the phrase hosting the topic.
Boeckx notes that Grimshaw’s (1991) notion of Extended Projection, or other
feature-passing devices, doesn’t solve the problem:

More specifically, it is unclear what it would mean to allow for [+wh]
information to be ‘passed onto’ Topic0, given that [wh] marks new

D.P. Medeiros

186

information, and [Topic] old information. Such a semantic clash of feature
composition would be expected to bring the percolation of the relevant
feature to an end. (Boeckx 2008: 16)

 For another relevant case, consider the analysis of the copula as a head
taking a small clause complement (Stowell 1978, Moro 2000), illustrated in (56)
below. Here, the lexical copula selects a small clause, an atypical structure
resulting from Merge of two full phrases. Small clause structure is a matter of
geometry internal to the complement of the copula, hence plausibly another case
of long-distance selection in the relevant sense.

(56) copP
 3
 copula SC
 3
 XP YP

 The conclusion seems to be that lexical requirements can enforce structural
details down the tree as well as up. This is one reason for carefully separating a
notion of ‘phrase’ tied to projection from a notion involving structure. Surely we
do not want to say that portions of the lower clause in the Hebrew example
above are ‘projections’ of the selecting verb, nor that the small clause is a
‘projection’ of the copula. The point is simply that such an element must occur in
a characteristic structure with ‘deeper roots’, so to speak: Its lexical requirements
have structuralization effects that reach down the tree. It should be clear that if
such items were the rule, syntactic structures would be drawn from a different
set of tree-forms than those described by a projective structure like the X-bar
pattern. This only deepens the mystery of why real linguistic structures should
tend to adhere to something like the X-bar scheme.

5.3. Antisymmetry and Teleological Reasoning

One important theory which has received little mention throughout is the anti-
symmetry approach to linear order following from Kayne (1994). Kayne proposes
that linear order is not a primitive relation of the syntactic component, but rather
a consequence of certain structural properties. Specifically, he proposes that
linear order follows from asymmetric c-command, and derives from this the
result that only phrase structures obeying a particularly rigid X-bar format are
linearizable.
 In a sense, then, Kayne’s work may be seen as deriving X-bar shape in
terms of PF interface requirements. If one adopts such a view, the concerns
explored in this article may seem superfluous, in that X-bar-like structure is
‘over-determined’ both by interface requirements (antisymmetry) and by
minimization of c-command and containment computations (in the present
account). But Chomsky has repeatedly emphasized that such a redundancy of
explanation should be taken to indicate that some further theoretical reduction is
required. Put another way, why would we want to explain the relevant facts in

Optimal Growth in Phrase Structure

187

another way, if antisymmetry already does the job?
 Let us examine the antisymmetry account in more detail. One crucial point
that must be faced by any version of antisymmetry is that pure geometry as such
is insufficient to linearize the result of Merging two complex objects. In Kayne’s
original work, this problem was resolved using the ‘segment/category’
distinction proposed by May (1985). That is, when objects XP and YP merge, the
result will be, say, YP; in this case, the lower YP is then a ‘segment’ of the full YP,
and does not ‘count’ for the linearization rule, which is restated in terms of full
categories. Notice that this requires both a device of projection (to distinguish
whether Merge of XP and YP is an XP or a YP), and some explicit notion of bar-
level. Without the latter to distinguish Y0 and YP, the head Y0 of YP would be a
further segment (with Y’) of the larger category (YP), with the undesired result
that the X-bar configuration would be an unlinearizable multiple-adjunction
structure.
 Chomsky’s (1995a) Bare Phrase Structure Theory incorporates a similar
linearization scheme that improves on this somewhat, in effect recreating the
segment/category distinction by insisting that intermediate categories, as neither
maximal nor minimal projections, are ‘invisible to the computation’, a claim
which seems empirically supported at least. Nevertheless, projection is still
integral to the system, and must be explicitly represented by some device that is
visible to the PF component.
 In either Kayne’s or Chomsky’s theory, projection is required for PF
demands at least. Without such a device, language would fail to be ‘usable’ by
PF; thus one might argue that antisymmetry could explain projection (and the
projective X-bar structure) in terms of requirements imposed by the interface.
Why then should any alternative explanation for such properties be counte-
nanced?
 I would like to argue that, if we wish to ‘explain’ syntax naturalistically, we
should be suspicious of teleological reasoning of this sort (see especially Hinzen
2006 on this point). That is, supposing that interface conditions — what syntax is
‘good for’ — explain the mechanisms that syntax has at its disposal is
problematic; in a sense, it amounts to a denial of the autonomy of the syntax.
Rather, the preferred mode of minimalist explanation is (or ought to be) to
explain syntactic facts in terms of concerns internal to the syntax itself. This is the
sort of intuition expressed by Uriagereka’s notion that it is “as if syntax carved
the path that interpretation must blindly follow” (Uriagereka 2002: 64). Thus,
whatever the functional necessity of projection, it is something we would like to
derive rather than stipulate.
 It may be ‘good’ for language to have a mechanism for projection. But so
what? Language, without such a mechanism, would be whatever it was (perhaps
unusable, or at least unpronounceable). As Darwin was careful to point out, the
‘desire’ to fulfill a certain function does not induce internal complexity. This is
not the sort of explanation we should be satisfied within the biolinguistic
enterprise. It may be ‘good’ for tigers to have stripes, so that they may be more
effectively camouflaged in tall grass, but that does not cause them to have stripes.
Likewise, the usefulness of flight does not explain how certain creatures come to
have the necessary anatomy in the first place. In the case of projection, labels may

D.P. Medeiros

188

be good things to have, but where do they come from?
 These concerns are all the more pressing given the biolinguistic
perspective, and particularly the rejection of adaptationist accounts. The
preferred mode of explanation, if it can be achieved, is to show that properties of
language are not just examples of good design, but of minimal design as well.
Insofar as language seems to have properties that are ‘custom-made’ for its
eventual function, we may feel we have explained more, and in a more satisfying
way, if we find that those properties ‘emerge’ from the optimal functioning of
more primitive components. Suppose we have two kinds of accounts for a
property like projection. One account appeals to the use to which projection is
eventually put to explain why it exists in the first place, in terms of the
interpretation (e.g., linearization) of syntactic objects. An alternative account
purports to explain projection in an internalist, autonomous way which makes no
reference to the eventual use to which language may be put, instead reflecting
optimality in ‘bare’ combinatorics. Then the second account is more of what we
are looking for, so to speak. We would prefer to find, not that projection is a
principled complication whose mechanism we must stipulate as a primitive, but
rather that the mechanism itself is an example of ‘order for free’, expected to
emerge from the optimal operation of more basic components of the system.

5.4. ‘Emergent’ Projection?

I would like to suggest that this should lead us to rethink the nature of projection
in the grammar. Indeed, that concept has a problematic status under current
understanding. Simply put, the ‘technology’ of projection seems to require
something non-minimalist, such as assuming that Merge is fundamentally
asymmetric, or that Merge necessarily includes a labeling function, both prima
facie departures from the virtual conceptual necessity of truly ‘bare’ sets of lexical
items. Recognizing this problem, Chomsky suggests that projection is not a
primitive notion of syntactic theory, but is to be explained in some way:

It seems now that much of the architecture that has been postulated can be
eliminated without loss, often with empirical gain. That includes the last
residues of phrase structure grammar, including the notion of projection or
later ‘labeling’, the latter perhaps eliminable in terms of minimal search.

(Chomsky 2007b: 24)

 If the ubiquity of c-command relations in linguistic phenomena reflects a
search process (as discussed in section 2), then explaining projection in terms of
minimal search is, in fact, exactly what I have proposed. More precisely, what is
explained here is why structural correlates of projection are expected in the
products of a dynamically optimal derivation. But what is left curiously hanging
is the idea of labeling itself: No specific mechanism for enforcing the association
between a phrase and its head is motivated. This may well be a good result,
given the problems surrounding the technical implementation of labels pointed
out by Collins (2002) and others.
 In the quote above, it seems that Chomsky has in mind ‘eliminating’
labeling as a matter of notation explicitly reified by some device in phrase

Optimal Growth in Phrase Structure

189

structure (for example, by complicating the set structure produced by Merge to
directly encode the label, as in Chomsky 1995a). But the essential notion remains
as a derived fact: Some designated element is required to be readily accessible to
determine appropriate interpretation. In the present proposal, a more radical
reduction is on offer: The pattern which gives a special place to some designated
terminal is independently derived, an accident of optimal branching form. I
would like to suggest that this might amount to a deeper explanation; the fact
‘emerges’ for naturalistic reasons internal to the workings of the computation
itself. This is one way of cashing out Uriagereka’s notion that it is “as if syntax
carved the path that interpretation must blindly follow” (Uriagereka 2002: 64).

6. Conclusions

The Minimalist Program is concerned with the degree to which the abstract
mental system that generates syntactic expressions is ‘perfect’; that is, as simple
and optimal as it could be. This is often cast as the search for explanation in terms
of ‘virtual conceptual necessity’. But another important facet of minimalist
theorizing is that (internal) optimality is also important. This is precisely the
nature of ‘emergence’: Sometimes, very simple systems behaving optimally give
rise to complicated structure. In other words, while superficial complexity may
seem problematic from the point of view of the minimalist expectation of perfect
simplicity, sometimes complex structure is the most perfect solution.
 I have argued that the property of ‘projection’ might be explained in this
way. That is, rather than supposing that projection is strictly required for the
linguistic system to function at all (a teleological concern which says nothing
about where the instantiating mechanism might come from), I argue that a
structural basis for projection might emerge from the optimization of unlabeled
branching forms. If we suppose that Merge may apply freely, the full spectrum of
binary-branching forms is available in principle. But I have argued that there is a
computational burden associated with establishing relations based on c-
command and containment, such that some derivational choices are better than
others. Taking this claim together with the idea that the information which can
influence derivational choices is rather local in character, it stands to reason that a
syntactic derivation will face the same ‘problem’ repeatedly, and thus that it
might consistently apply the same solution, in the form of a self-similar pattern of
recursion. It turns out that the best such patterns correspond to exactly the sort of
structures described as ‘projections’.
 Moreover, there may be reasons for singling out the X-bar pattern of
specifier-head-complement from among these projective patterns. The X-bar
form has played an important role in linguistic theory for several decades. Here,
this pattern has been shown to have properties related to the Fibonacci sequence,
a mathematical pattern which pervades nature. It is not much of an exaggeration
to claim that patterns related to the Fibonacci sequence are nature’s ‘favorite
solution’ to problems of self-similar growth. Of great relevance to the
biolinguistic enterprise is the robust, unselected nature of the pattern: Although
it is an optimal solution to certain problems, it is apparently not produced by

D.P. Medeiros

190

successive approximations under evolutionary ‘tinkering’, but emerges robustly
and spontaneously from quite general laws of form that shape the inorganic
world as well (see Douady & Couder 1992, Thompson 1917/1992, Ball 1999).
 I have tried to demonstrate the potential value of considerations orthogonal
to another trend in minimalism, the general program of reducing syntactic
properties to lexical requirements. One way of understanding the ideas here is as
potentially underlying some otherwise mysterious lexical properties, while still
maintaining that featural requirements are the mechanism which drives
derivational choices. In its strongest form, this proposal could also be taken to
indicate a more direct role for hierarchical optimization in determining syntactic
forms. In that case, linguistic computation takes on the appearance of a
dynamically self-organizing system, and the explanatory burden placed on
features and interface requirements is reduced.
 This article is one attempt at explaining substantive properties of language
in terms of efficient computation and ‘laws of form’. This has only been achieved
by way of considerable idealization and abstraction; surely the present approach
has a long way to go before approaching anything like the rigorous empirical
standard to which linguistic research is usually held. It is not clear that detailed
predictions are even possible at the level of abstraction here, and it may turn out
that nothing more than intriguing analogies will follow from taking it seriously.
Even if the specific ideas here prove to be misguided, I hope that the article may
at least suggest some new avenues toward deeper explanation of the sort invited
by the biolinguistic perspective.

Appendix: Proof of the Optimality of Projective Structure

Take a recursive pattern P to be defined as above over terminal type 0, non-
terminal types 1, … n, with properties of determinacy (every non-terminal i
branches according to a unique rule i j k, with j, k in 0, 1, … n), and termination
(no non-terminal dominates only non-terminals ‘all the way down’).
 The reasoning here will involve the infinite tree-space T generated by
maximal iteration of a recursive pattern P. In such trees, every non-terminal node
in the recursive pattern will be recursively expanded, and the non-terminals thus
introduced will be expanded, and so on ‘all the way down’.
 Now, we may consider mapping nodes in the tree-space T1 generated by
one pattern P1 to nodes in the tree-space T2 generated by another pattern P2. The
idea is to find immediate-containment-preserving maps of sets of nodes in T1 to
sets of nodes in T2 such that:

(A1) the image of the root node of T1 is the root node of T2, and
(A2) if node α immediately contains node β in T1, the image of α immediately

contains the image of β in T2.

 Let us say that T2 contains T1 if there is some mapping of the set of all nodes

Optimal Growth in Phrase Structure

191

in T1 into nodes of T2 meeting this condition, and that T2 properly contains T1 if T2
contains T1 but T1 does not contain T2. (If T1 contains T2 and T2 contains T1, then T1
and T2 are isomorphic, and so are P1 and P2.)
 We will also consider finite trees within these infinite trees, i.e. contained by
them in the sense above. For notational clarity, we reserve Ti for infinite tree-
spaces generated by maximal expansion of Pi. Clearly, if T1 properly contains T2,
every finite tree generable by P2 can be generated by P1.
 We are interested in comparing the optimality, with respect to number of c-
command and containment relations, of best finite trees (with equal numbers of
nodes) generated by distinct recursive patterns P1, P2. At the very least, if every
arrangement possible under P2 is also possible under P1, but there are
arrangements generated by P1 more optimal than any arrangement of the same
number of nodes under P2, we will judge P1 to be more optimal than P2.

(A3) Lemma 1
 If T1 properly contains T2, P1 is more optimal than P2.

 Clearly, every finite tree generable by P2 can be generated by P1. For proper
containment to hold, T1 cannot be mapped to T2. The mapping from T1 to T2 fails
first at some finite depth d (succeeding at all depths less than d); the maximal
finite trees in T1 and T2 can be mapped to the other up to depth d–1.
 For the mapping to fail, T1 must have one or more non-terminals at depth
d–1 that map to one or more terminals at the same depth in T2. Then consider the
maximal finite tree in T1 of depth d (all recursive options expanded to depth d, all
non-terminals in T1 at depth d replaced with terminals). This tree has fewer c-
command and containment relations than any tree in T2 with the same number of
terminals. One or more of the non-terminals at depth d–1 that were expanded in
T1 must terminate at that depth in T2. Then some number of nodes in T1 at depth
d cannot be mapped to corresponding nodes in T2 at the same level, and the same
number of nodes must appear at depth d+1 or greater in T2; all other nodes
correspond. Since the number of c-command and containment relations induced
by a node is equal to its depth in the tree, it follows that any tree in T2 containing
the same number of nodes as the maximal finite tree of depth d in T1 must have
strictly more c-command and containment relations.
 Thus, if T1 properly contains T2, P1 is more optimal than P2: Every arrange-
ment possible under P2 is also possible under P1, but there are arrangements
generated by P1 superior to any arrangement of the same number of nodes under
P2.

(A4) Lemma 2
 The infinite tree space Tp generated by the projective recursive pattern Pp

defined over some number n of non-terminal types properly contains all tree-
spaces Ti generated by distinct recursive patterns Pi defined over the same
number of non-terminal types.

 To see this, we will need one more concept, that of ‘least path-to-terminal’.
A ‘path’ leading from node α to node β is the set of nodes containing α, β, and all

D.P. Medeiros

192

nodes dominating β which are also dominated by α. For any non-terminal node
in a tree, we can identify the paths of nodes leading to terminals it dominates,
and measure the depth of those paths. Among these paths, there will be one or
more least paths-to-terminals (clearly, of depth at most n, for n non-terminal
types). Let us consider these paths under the sort of mapping described above.
 First, in Tp, the least path-to-terminal from the root node has length n. Let
us call an ‘off-branch’ from this path a sub-tree whose root node is immediately
dominated by a node on the path, but is not on the path itself. In Tp, the least
path-to-terminal from the root of any off-branch is itself of length n (since any
off-branch is isomorphic to the root node).
 Now suppose Ti is a tree-space distinct from Tp defined over the same
number n of non-terminal types. First, Tp contains Ti. For this to be false, there
must be some finite depth d at which the mapping first fails. Find the shortest
path-to-terminal from the root in Ti (or select one of them, if there are several of
the same shortest length). Let us map the nodes in this path to nodes in the least
path-to-terminal in Tp. This mapping succeeds, because this path is of depth at
most n, and the path-to-terminal in Tp is of depth n. Now, for each off-branch
from the path in Ti, we can map a least path-to-terminal successfully to the least
path-to-terminal on the corresponding off-branch in Tp, which again is of the
greatest possible depth n. And so on, for off-branches of off-branches; this
exhausts the set of nodes in Ti, since (due to the termination requirement) every
non-terminal lies on some least path-to-terminal. Thus, Tp contains Ti.
 It cannot be the case that Ti contains Tp, because we have supposed that Tp
and Ti are distinct. Thus, Tp properly contains Ti.
 Then from Lemma 1 and Lemma 2, Pp is more optimal than Pi; since Pi was
an arbitrary recursive pattern distinct from Pp defined over the same number of
non-terminal types, we conclude that the projective pattern is the most optimal.

References

Ball, Phillip. 1999. The Self-Made Tapestry: Pattern Formation in Nature. Oxford:

Oxford University Press.
Boeckx, Cedric. 2008. Bare Syntax. Oxford: Oxford University Press.
Boeckx, Cedric & Massimo Piattelli–Palmarini. 2005. Language as a natural

object; linguistics as a natural science. The Linguistic Review 22, 447-466.
Bouchard, Denis. 1995. The Semantics of Syntax: A Minimalist Approach to Grammar.

Chicago: University of Chicago Press.
Bresnan, Joan (ed.). 1982. The Mental Representation of Grammatical Relations

(Cognitive Theory and Mental Representation). Cambridge, MA: MIT
Press.

Carnie, Andrew & David Medeiros. 2005. Tree maximization and the Extended
Projection Principle. Coyote Working Papers in Linguistics 14, 51-55.

Chametzky, Robert. 1996. A Theory of Phrase Markers and the Extended Base.
Albany, NY: SUNY Press.

Optimal Growth in Phrase Structure

193

Chametzky, Robert. 2000. Phrase Structure: From GB to Minimalism (Generative
Syntax 4). Malden, MA: Blackwell.

Chomsky, Noam. 1965. Aspects of the Theory of Syntax. Cambridge, MA: MIT
Press.

Chomsky, Noam. 1970. Remarks on nominalization. In Roderick Jacobs & Peter
Rosenbaum (eds.), Readings in English Transformational Grammar, 184-221.
Waltham, MA: Ginn and Co.

Chomsky, Noam. 1981. Lectures on Government and Binding: The Pisa Lectures.
Dordrecht: Foris.

Chomsky, Noam. 1995a. Bare phrase structure. In Gert Webelhuth (ed.),
Government and Binding Theory and the Minimalist Program (Generative
Syntax 1), 385-439. Malden, MA: Blackwell.

Chomsky, Noam. 1995b. The Minimalist Program (Current Studies in Linguistics
28). Cambridge, MA: MIT Press.

Chomsky, Noam. 2000. Minimalist inquiries: The framework. In Roger Martin,
David Michaels & Juan Uriagereka (eds.), Step by Step: Essays on Minimalist
Syntax in Honor of Howard Lasnik, 89-155. Cambridge, MA: MIT Press.

Chomsky, Noam. 2001. Derivation by phase. In Michael Kenstowicz (ed.), Ken
Hale: A Life in Language (Current Studies in Linguistics 36), 1-52. Cam-
bridge, MA: MIT Press.

Chomsky, Noam. 2005. Three factors in language design. Linguistic Inquiry 36, 1-
22.

Chomsky, Noam. 2007a. Approaching UG from below. In Uli Sauerland & Hans-
Martin Gärtner (eds.), Interfaces + Recursion = Language? Chomsky's Mini-
malism and the View from Syntax–Semantics (Studies in Generative Grammar
89), 1-29. Berlin: Mouton de Gruyter.

Chomsky, Noam. 2007b. Of minds and language. Biolinguistics 1, 9-27.
Chomsky, Noam & Morris Halle. 1968. The Sound Pattern of English. New York:

Harper and Row.
Cinque, Guglielmo. 1999. Adverbs and Functional Heads: A Cross-linguistic

Perspective (Oxford Studies in Comparative Syntax). New York: Oxford
University Press.

Collins, Chris. 2002. Eliminating labels. In Samuel David Epstein & T. Daniel
Seely (eds.), Derivation and Explanation in the Minimalist Program (Generative
Syntax 6), 42-64. Malden, MA: Blackwell.

Douady, Stephane & Yves Couder. 1992. Phyllotaxis as a physical self-organized
process. Physical Review Letters 68, 2098-2101.

Epstein, Samuel David, Erich Groat, Ruriko Kawashima & Hisatsugu Kitahara.
1998. A Derivational Approach to Syntactic Relations. Oxford: Oxford
University Press.

Freidin, Robert & Jean-Roger Vergnaud. 2001. Exquisite connections: Some
remarks on the evolution of linguistic theory. Lingua 111, 637-666.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum & Ivan Sag. 1985. Generalized
Phrase Structure Grammar. Cambridge, MA: Harvard University Press.

Grimshaw, Jane. 1991. Extended projection. Ms., Brandeis University.
Halle, Morris & Jean-Roger Vergnaud. 1987. An Essay on Stress (Current Studies

in Linguistics 15). Cambridge, MA: MIT Press.

D.P. Medeiros

194

Hayes, Bruce. 1995. Metrical Stress Theory. Chicago: University of Chicago Press.
Hinzen, Wolfram. 2006. Mind Design and Minimal Syntax. Oxford: Oxford

University Press.
Hornstein, Norbert & Jairo Nunes. 2008. Adjunction, Labeling, and Bare Phrase

Structure. Biolinguistics 2, 57-86.
Jackendoff, Ray. 1977. X’-Syntax: A Study of Phrase Structure (Linguistic Inquiry

Monographs 2). Cambridge, MA: MIT Press.
Kayne, Richard S. 1984. Unambiguous paths. In Richard S. Kayne, Connectedness

and Binary Branching, 129-163. Dordrecht: Foris.
Kayne, Richard S. 1994. The Antisymmetry of Syntax (Linguistic Inquiry

Monographs 25). Cambridge, MA: MIT Press.
Kornai, Andras & Geoffrey Pullum. 1990. The X-bar theory of phrase structure.

Language 66, 24-50.
May, Robert. 1985. Logical Form (Linguistic Inquiry Monographs 12). Cambridge,

MA: MIT Press.
Moro, Andrea. 2000. Dynamic Antisymmetry (Linguistic Inquiry Monographs 38).

Cambridge, MA: MIT Press.
Pietroski, Paul. 2004. Events and Semantic Architecture. Oxford: Oxford University

Press.
Pollard, Carl & Ivan Sag. 1987. Information-Based Syntax and Semantics, vol. 1

(CSLI Lecture Notes 13). Stanford: CSLI Publications.
Pollard, Carl & Ivan Sag. 1994. Head-Driven Phrase Structure Grammar. Chicago:

University of Chicago Press.
Reinhart, Tanya. 1976. The Syntactic Domain for Anaphora. Cambridge, MA: MIT

dissertation.
Rizzi, Luigi. 1990. Relativized Minimality (Linguistic Inquiry Monographs 16).

Cambridge, MA: MIT Press.
Rizzi, Luigi. 1997. The fine structure of the left periphery. In Lilliane Haegeman

(ed.), Elements of Grammar: Handbook of Generative Syntax (Kluwer
International Handbooks of Linguistics 1), 281-337. Dordrecht: Kluwer.

Speas, Margaret. 1990. Phrase Structure in Natural Language (Studies in Natural
Language & Linguistic Theory 21). Dordrecht: Kluwer.

Stowell, Tim. 1978. What was there before there was there? In Donka Farkas,
Wesley Jacobson & Karol W. Todrys (eds.), Papers from the Fourteenth
Regional Meeting of the Chicago Linguistic Society, 458-471.

Stowell, Tim. 1981. Origins of Phrase Structure. Cambridge, MA: MIT dissertation.
Thompson, D’Arcy Wentworth. 1917/1992. On Growth and Form [abridged edn.,

prepared by John Tyler Bonner]. Cambridge: Cambridge University Press.
Uriagereka, Juan. 1998. Rhyme and Reason: An Introduction to Minimalist Syntax.

Cambridge, MA: MIT Press.
Uriagereka, Juan. 2002. Derivations: Exploring the Dynamics of Syntax (Routledge

Leading Linguists). London: Routledge.
Williams, Edwin. 1994. Thematic Structure in Syntax (Linguistic Inquiry

Monographs 23). Cambridge, MA: MIT Press.

Optimal Growth in Phrase Structure

195

David P. Medeiros
University of Arizona
Department of Linguistics
P.O. Box 210028
Tucson, AZ 85721
USA
medeiros@email.arizona.edu

