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ABSTRAK 

Pengujian perangkat lunak adalah bagian dari proses pengembangan perangkat lunak, dengan tujuan 

utama untuk mengurangi/menghilangkan kesalahan pada perangkat lunak, hal ini umumnya dilakukan 

dengan menjalankan kasus-uji. Salah satu teknik untuk mengkur dan meningkatkan kualitas dari kasus 

uji adalah pengujian mutasi, tetapi walaupun sudah terbukti keefektifannya, teknik ini masih memiliki 

suatu kendala besar, yaitu tidak praktis untuk digunakan karena melibatkan pembangkitan dan eksekusi 

dari jumlah mutan yang besar. Pada penelitian ini, dilakukan eksplorasi penggunaan optimasi berbasis-

pencarian pada pembangkitan mutan (variasi dari program), dengan tujuan untuk menghasilkan mutan 

yang tidak dapat dideteksi oleh kasus-uji, karena mutan jenis ini memiliki dapat kekurangan dari kasus-

uji. Metode usulan dibandingkan dengan algoritma pembangkitan second-order mutant yang umum 

digunakan, dan juga dibandingkan dengan pendekatan berbasis-pencarian lainnya. Hasil menunjukkan 

bahwa metode usulan dapat membangkitkan lebih banyak mutan-tidak-terdeteksi (undetected-mutant) 

daripada dengan metode pembangkitan mutan yang umum. Metode usulan memiliki performansi yang 

lebih rendah daripada metode pembangkitan berbasis-pencarian benchmark, tetapi performansinya dapat 

ditingkatkan dengan melakukan perubahan pada representasi solusi, dan dengan adopsi parameter 

optimasi yang digunakan oleh metode pembanding. 

Kata kunci:  analisis mutasi, pengujian mutasi, pengujian perangkat lunak berbasis pencarian, rekayasa 

perangkat lunak berbasis pencarian 

ABSTRACT 

Software testing is a part of a software development process with a major concern is to reduce/eliminate 

fault in the software, and mainly done by executing a test case. One of the techniques for measuring and 

improving test case quality is mutation testing, but despite it is good effectiveness, this technique has a 

major problem that is impractical because it involves generation and execution of huge amount of 

mutant. This trend also happens in software testing, with the main focus on optimizing the test case 

generation. In this research, we explore the used of search-based optimization to the mutant (program 

variant) generation, with a goal to generate mutants that can escape test case detection, because these 

mutants have a probability to show test case deficiency. In this research, the proposed method is 

compared with a general second-order mutant generation algorithm and with other search-based mutant 

generation. The result shows that the proposed method can generate more undetected-mutant than a 

general second-order mutant generation. The proposed method performs worse than the benchmark 

search-based mutant generation, but this performance improved by altering it is solution representation 

and by the adoption of an optimization parameter. 

Keywords:  mutation analysis, mutation testing, search-based software testing, search-based software 

engineering  
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INTRODUCTION  

One of software quality indicator is the numbers of fault in the software. The more fault can be 

detected (and fixed) the higher the quality of the software. To have a higher fault detection 

capability, it needs to have a good quality of test case. A test case is a set of data and 

method/function call sequence executed to software/program under test (PUT). In the test case 

is also included an expected output to be compared with an actual output from the PUT, if the 

actual output is different from the expected output, it can be concluded that there is a bug in the 

PUT. Because of the importance of the test case role to guard against software defect, the test 

case itself needs to be guarded against it is own defect (custodiet ipsos custode). 

One of the methods to evaluate and improve test-case is mutation testing, it is a method that 

evaluates test case by the ability to detect a variant of a program (mutant). This method 

assumes that a good test case must be able to detect the artificial fault seeded in the PUT. 

Mutation testing is a promising method because research has shown that mutants have a strong 

relationship with an actual fault in PUT (Just, et al., 2014). But this method has it is own caveat, 

it is not practical since it needs to generate a huge amount of mutant, and this cost a great deal 

because the mutant must be executed to test case. The mutation testing process needs 

optimization. 

The usage of Search-based optimization on the software engineering is starting to be explored 

by researchers (Harman, et al., 2012, 2009), and this trend includes in software testing domain 

(Mcminn, et al., 2004)(Orso & Rothermel, 2014).  The advantage of search-based optimization 

because it is a black-box approach, it only needs a solution representation and an evaluation 

function to be implemented. In this research, we used search-based optimization to optimize the 

mutation testing process, explore different solution representation structure, and also compare 

the result with a general mutant generation algorithm and similar mutant search-based mutant 

generation approach. 

MUTATION TESTING 

The mutation testing is a test case evaluation and improving technique that stands on hypothesis 

DeMillo in (Yue Jia & Harman, 2011): 

a. Competent Programmer Hypotheses that assumes programmers is a competent individual in 

developing software, and the fault in the program is only a simple fault that can be fixed 

with syntactical change. 

b. Coupling Effect, that assumes that all complex fault is a combination of simple faults, then a 

test case that can identify these simple fault can identify the complex fault.  

Based on these hypotheses, mutation testing generates an artificial fault henceforth called 

mutant, which created by altering one or more lines of code of the PUT (Figure 1). The 

execution of one mutation operator on one line of code can generate more than one mutant 

(Figure 1.a), this is because the effectiveness of each mutation operator is varying depending on 

the source code type on the PUT (Tuloli, et al., 2016). 

Mutant can be divided into two categories: first-order mutant (FOM) that generated by 

executing a single mutation operator to it, and higher-order mutant (HOM) that generated by 

executing more than one mutation operator. Figure 1.b illustrates a higher-order mutant created 

by implemented mutation operator (ROR) twice, this mutant is called Second-Order mutant 

(SOM) because the mutation operator executed twice.  
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The HOM has more potential to generate an undetected-mutant, that is a mutant that cannot be 

detected by current test case (Y Jia & Harman, 2008). But the problem is the higher order of 

mutant is, the more the size of mutants increase. 

 
Original Program First Order Mutant 

(ROR operator) 

First Order Mutant 

(ROR operator) 

… 

while (hi < 50){ 

  System.out.print(hi); 

  hi = lo + hi; 

  lo = hi – lo; 

} 

… 

… 

while (hi > 50){ 

  System.out.print(hi); 

  hi = lo + hi; 

  lo = hi – lo; 

} 

… 

… 

while (hi == 50){ 

  System.out.print(hi); 

  hi = lo + hi; 

  lo = hi – lo; 

} 

… 

a. Implementation of mutation operator to one line of code 

 

Original Program First Order Mutant Second Order Mutant 

… 

while (hi < 50){ 

  System.out.print(hi); 

  hi = lo + hi; 

  lo = hi – lo; 

} 

… 

… 

while (hi > 50){ 

  System.out.print(hi); 

  hi = lo + hi; 

  lo = hi – lo; 

} 

… 

… 

while (hi > 50){ 

  System.out.print(hi); 

  hi = lo * hi; 

  lo = hi – lo; 

} 

… 

b. Second-order mutant  

Figure 1. Example of first-order mutant and second-order mutant (Nguyen & Madeyski, 2014) 

DESIGN 

The mutant generation system is based on our previous mutant generation system based on 

regular expression (Tuloli, et al., 2016), the system is itself has been proven to be able to use in 

search-based First-Order Mutant generation (FOM) (Tuloli, et al., 2017). In this research, we 

explored the usage of this system on generating Second-Order Mutant (SOM). 

Second-Order Mutant Algorithm 

The second order mutant generation algorithm is used as shown in Figure 2. The algorithm 

main functionality is by implementing first and second mutant operator to line in a sequence. At 

first, the first-operator is checked to the code-line where the first-operator will be implemented, 

this is because not all mutation operator can be implemented to a code-line. For instance, an 

ABS operator (Table 1) cannot be implemented to a code-line where there is none existed 

arithmetic operator. 

If the code-line can be mutated with the first mutation operator, then the second mutant operator 

is checked to the second code-line (can be same a code-line with the first). The Second-Order 

mutant is generated only when the second mutation operator can be implemented to the second 

code-line. The mutation operator itself is implemented using a regular expression (Tuloli et al., 

2016). 
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Figure 2. General algorithm to generate Second-Order Mutant 

Table 1. Mutation operator used in the experiment 

Operator Operator Name Description 

ABS ABSolute Value Insertion Alter expression/sub-expression to add ABS operator (to get its absolute 

value) and NEGABS (to get absolute value and negate it) 

AOR Arithmetic Operator 

Replacement 

Change the arithmetic operator (x, /, +, -, ^) to with another arithmetic 

operator. 

LCR Logical Connector 

Replacement 

Change logical operator (equal, not equal, and, or) with another logical 

operator 

ROR Relational Operator 

Replacement 

Change relation operator (<, >, <=, >=, =, !=) with another relation 

operator 

UOI Unary Operator Insertion Insert unary operator (++, --, +, -, !, ~) into expression/sub-expression. 

SDL Statement Deletion Delete one statement 

 

Mutation Operator  

The mutation used in the experiment is six operators which are selected because of its proven 

effectiveness. The six operators used are five operators from Offutt, et all (1996) (ABS, AOR, 

LCR, ROR, UOI) and one operator from Deng, et all (2013) (SDL). The mutation operator is 
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used to BubbleSort case, this case is selected because it is one of the most commonly used cases 

for mutation testing research (Yue Jia & Harman, 2011). 

The Evolution Process 

The search-based optimization method implemented is a genetic algorithm optimization method 

with the chromosome (solution representation) as shown in Figure 3. Each Chromosome is a set 

of second-order mutant, while each second-order mutant represents as a pair of First-Order 

Mutant. The first-order mutant represents as a pair of Mutation Operator (i.e. in Table 1), sub-

code mutant, and line code (lines of the PUT where the mutation occurred). Because each 

implementation of one mutation operator on one line of code may generate more than one 

mutant (Figure 1.a), we need sub-code mutant to differentiate the mutants. 

  

Second Order Mutant 

_ 1 

Second Order Mutant 

_ 2 

… Second Order Mutant 

_ N 

 

 

Mutation 

Operator_1 

Sub Code 

mutant_1 

Line Code_1 Mutation 

Operator_2 

Sub Code 

mutant_2 

Line Code_2 

First Order Mutant _ 1 First Order Mutant _ 2 

Second Order Mutant 

Figure 3. Solution structure algorithm 1 

RESULT AND DISCUSSION  

Comparison with other Second-Order mutant generation algorithm 

The proposed search-based method is compared with second-order mutant generation 

algorithm: LastToFirst, DiffOp, and RandomMix from Polo et al (Polo, Piattini, & Garc, 2009). 

The proposed search-based approach is a genetic algorithm with the parameters shown in Table 

2. We used the proposed method in three configuration Pop10, Pop100, and Pop200. Pop10 is 

used with 10 solutions per population, Pop100 is 100 solution per population, and Pop200 is 

200 solution per population (Figure 5).  

The compared algorithm (LastToFirst, DiffOp, and RandomMix) generates second-order 

mutant (SOM) by combining a pre-generated first-order mutant (FOM) with a certain 

arrangement. LastToFirst combines FOM according to its index in the FOM-list (Figure 6), so 

FOM with index 1 combined with last-index FOM, FOM index 2 with FOM index last-1, and 

so on. DiffOp combines FOM but only FOM that generated using a different mutation operator 

(Table 1), for example, ROR with ABS, ROR with UOI, but never ROR with ROR even when 

the ROR is used in separates line of code. RandomMix combines a randomly selected FOM. 

All this second-order mutant generating algorithm minimizes total HOM by only use each FOM 

once for generating SOM.  

The comparative evaluation is measured by using average mutant (undetected, detected, etc.), 

and the number of unique undetected/detected mutant exist in the population. The average 

undetected/detected mutant can only measures for each solution (chromosome) qualities, while 

the unique mutant can be used to measures search-diversity of all the mutants in the population 

(Figure 4). If a population have a high average undetected mutant with a low unique undetected 
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mutant, it means that the search process has reach convergence, and the search process cannot 

further improve the solution. 

Table 2. Genetic Algorithm parameters 

Parameter Value Description 

PopSize 10, 100, and 200 Population size 

MaxEval 100000 Stopping condition, a condition when the 

evolution stopped. 

Variabel 60 Variable in each solution candidate (chromosome/ 

individual). 

Crossover Probabilities 90% The Probability of one solution candidates to be 

recombined with other solution candidate. 

Mutation Probabilities 10% Number of gen (variable) that mutated 

Undetected +2 Fitness value for every undetected mutant found 

in the solution candidates. 

Detected 0 A Penalty for fitness value for every detected, 

non-exist-subcode, unmutated-line-of-code, and 

redundant mutant exist in the solution candidate 

 

NASubKode -2 

Unmutated -2 

Redundant -2 

SubCodeUpper 12 The Upper limit of the subcode mutant, this set in 

accord with the case being used. 

 

The result shows that our proposed approach is able to generate more mutant than the general 

second-order mutant algorithm (Figure 5). The LastToFirst can only generate 3 undetected-

mutant, DiffOp cannot generate any undetected-mutant, and RandomMix only generate one 

undetected-mutant, this is very few compared with total possible of undetected mutant 151 

undetected-mutant (Table 3). 

Table 3. The result of generating all Second Order-Mutant for BubbleSort case 

Measurement Value 

Total First-Order Mutant 89 

Total Second-Order Mutant 3916 

Undetected-SOM 151 

Detected-SOM 3442 

Sub-Code-Mutant not exist 10 

Unmutated-Line 313 

Duration (millisecond) 451130 

 

The population-size parameter proven to significantly affect the resulting undetected-mutant, 

this effect cannot be detected by measuring average-undetected-mutant but must be measured 

by unique-undetected-mutant in the population (Figure 5). The average-undetected-mutant 

cannot detect the difference between pop100 and pop200 performances, this is because the 

improvement of the population size (from 100 to 200) increase the variety of the undetected-

mutant without increasing undetected-mutant/solution ratio, this makes the average-undetected-

mutant does not increase (Figure 5). The unique-undetected-mutant on the other hand measure 

variety of the undetected-mutant, that makes the unique-undetected-mutant are a better 

indicator in measuring the effect of the population-size parameter. 
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No Chromosome/ 

Solution 

1 E A B D 

2 F D C A 
 

For example A, B, C is undetected mutant, then to 

evaluate the population is: 

 Average Undetected-Mutant for the population is 

population_total_undetected_mutant / 

total_chromosome = (2+2) / 2 = 2 

 Unique Undetected Mutant is 3, which is A, B, and C 

 

Figure 4. Illustration of population evaluation using average-undetected-mutant and unique-

undetected-mutant 

 

Figure 5. Comparison of average undetected-mutant and unique undetected mutant of proposed 

algorithm vs other second-order mutant generation algorithms 

Comparison of Different Implementation of Proposed Method 

The proposed Search-based method used in the previous experiment was using a solution 

structure that consists of pairs of mutation-position as illustrates in Figure 3. Later we found 

that this structure can cause: 

1. undetected mutant, 

2. detected mutant, 

3. un-mutated line of code, unmutated by mutation first operator or second operator, 

4. non-existing sub-code mutant, for mutation operator 1 or mutation operator 2. 

The (1) and (2) condition is expected to happen and is useful to measure the method 

performances, but condition (3) and (4) can cause a decrease in evolution performance. 

To address this problem, we designed an alternative approach, by adopting the second-order 

mutant approach (LastToFirst, etc) by using a different solution structure as shown in Figure 6. 

This structure uses an already generated FOM, this limit the search space only to the already 

generated FOM, and reduced the probability of condition (3) and (4) to emerge. The 

improvement is proven by the improvement of undetected-mutant and detected-mutant of the 

algorithm_2 (Pop10v.2, Pop100v.2, Pop200v.2) than our previous algorithm (Pop10, Pop100, 

Pop200) that shown in Figure 7 and Figure 8. In this experiment also shows once again the 

effective usage of unique-undetected-mutant indicator in the measurement, the average-

undetected-mutant only show some improvement of the algorithm_2 (Figure 7), while the 

unique-undetected-mutant shows a significant improvement of the algorithm_2 both compared 

to algorithm_1, also in different population size (Figure 8). 
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Indices FOM Mutation Operator Subcode mutant Line Numbers 

1 UOI 3 14 

2 SDL 5 10 

…    

a. Pre-generated FOM list 

Index 

FOM_1 

Index 

FOM_2 

…. 

b. Solution Structure 

Figure 6. Solution structure for algorithm 2 

 

 

Figure 7. Comparison of average undetected-mutant, average detected mutant, and duration 

between algorithm 1 and algorithm 2 

 

 

Figure 8. Comparison of unique undetected-mutant, unique detected mutant, and duration 

between algorithm 1 and algorithm 2 

Comparison with Other Evolutionary Mutation Testing 

To get a fair comparison, we took a Delgado et al approach (Delgado-Perez, et al., 2017), to 

compare with our proposed method, from this will be referred to as Delgado method. Delgado 

defines a strong mutant consist as: 

1. potentially equivalent mutant: mutant that undetected from the current/existing test case, 

2. difficult-to-kill: mutant that can be detected by only one test case, and this test case does not 

detect other mutants. 
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A potentially equivalent mutant can be associated with our undetected-mutant definition, even 

though there is no guarantee that our undetected mutant is not an equivalent mutant. A difficult-

to-kill mutant can be associated with our detected-mutant, but of course, it needs to be 

analyzed, because the mutant must be exclusively detected by only one test case, and the test-

case cannot detect other mutants. 

Delgado method and implemented and further combined with using indexed of pre-generated 

FOM, we named this DelgadoVersi2. At first experiment, DelgadoVersi2 was executed 

normally, but since the running time is much longer than our proposed method (Pop200v.2), it 

gives a rather unfair advantage to the DelgadoVersi2 method. To give a better comparison, we 

also experiment with a Delgado method but with a limited time that matches the Pop200v.2 

duration, we called this Delgado(Timed). 

Because of the earlier experiment shows Delgado method has better performance, and we 

suspect one of the factors is the Delgado choice of parameters, we adapt Delgado parameters to 

the proposed method and named this experiment Pop200v.2 Param Delgado. We also 

compared to all possible combination of FOM, we named the experiment GenerateAll.  

As shown in Figure 9, the result shows that the DelgadoVersi2 method is able to generate a 

higher number of undetected mutant that proposed mutant (Pop200v.2) but it needs a longer 

duration. The duration even longer than the generation of all possible mutant (GenerateAll), but 

this is as expected because the DelgadoVersi2 method needs overhead processing for the 

evolution. 

 

 

Figure 9. Comparison proposed algorithm with other search-based approaches 

In the same duration, the Delgado method (DelgadoTimed) has a better performance than the 

proposed method (Pop200v.2). One of the determining factors is the parameter used by 

Delgado method, it is proven by the improvement of the proposed method after adapting the 

parameter used by Delgado (Pop200v.2 param Delgado). We analyze that the cause of this 

improvement is because of the parameter in the Delgado method is more emphasized on 

exploration than exploitation. This shows on its higher value of crossover probability and 

mutation probability (Table 2). 

CONCLUSION  

The proposed test case generation method is proven to be able to generate a second-order 

mutant, both to use by a general second-order generation algorithm (DiffOp, LastToFirst, 

RandomMix) also can be used by a search-based optimization method. The proposed search-

based method can generate more mutant that the general second-order mutant algorithm.  
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The proposed search-based method performed worse than Delgado search-based method, but 

this research discovers findings to help improve search-based performances. It shows a better 

solution representation of the mutants that reduced the existence of uncompiled mutant, this can 

improve the search by reducing the search-space into an only a valid mutant. Increasing 

Population size also can improve performances, because it improves solution population 

diversity. Another finding is about a better indicator to use in measuring performances, we 

suggest the use of unique-undetected-mutant because it has proven to be able to reflect the 

diversity of solution that cannot be detected using average-undetected-mutant. 

In the future, we will use this finding to create a more efficient mutant generation method, 

while maintaining a good undetected-mutant ratio (mutation score). There are also many 

explorations can be made such as search-based method (e.g. Hill Climbing, A*, etc.) and or the 

parameter/configuration of the method (e.g. selection, crossover, mutation technique in Genetic 

Algorithm method), or other implementation related optimization. 

REFERENSI 

Delgado-Perez, P., Medina-Bulo, I., Segura, S., Garcia-Dominguez, A., & Dominguez-Jimenez, 
J. J. (2017). GiGAn : Evolutionary Mutation Testing for C ++ Object-Oriented Systems. 
32nd ACM SIGAPP Symposium On Applied Computing. 

Deng, L., Offutt, J., & Li, N. (2013). Empirical evaluation of the statement deletion mutation 
operator. Proceedings - IEEE 6th International Conference on Software Testing, 
Verification and Validation, ICST 2013, 84–93. https://doi.org/10.1109/ICST.2013.20 

Harman, M., Mansouri, S. A., & Zhang, Y. (2009). Search Based Software Engineering : A 
Comprehensive Analysis and Review of Trends Techniques and Applications, 1–78. 

Harman, M., McMinn, P., Souza, J. De, & Yoo, S. (2012). Search-based software engineering: 
Techniques, taxonomy, tutorial. Empirical Software Engineering and Verification, 1–59. 
Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-25231-0_1 

Jia, Y., & Harman, M. (2008). Constructing Subtle Faults Using Higher Order Mutation 
Testing. Retrieved from http://discovery.ucl.ac.uk/1302155/ 

Jia, Y., & Harman, M. (2011). An analysis and survey of the development of mutation testing. 
IEEE Transactions on Software Engineering, 37(5), 649–678. 
https://doi.org/10.1109/TSE.2010.62 

Just, R., Jalali, D., Inozemtseva, L., & Ernst, M. (2014). Are mutants a valid substitute for real 
faults in software testing?, 654–665. https://doi.org/10.1145/2635868.2635929 

Mcminn, P. (2004). Search-based Software Test Data Generation : A Survey. Software Testing, 
Verification & Reliability, 14(2), 105–156. 

Nguyen, Q. V., & Madeyski, L. (2014). Problems of Mutation Testing and Higher Order 
Mutation Testing. Advanced Computational Methods for Knowledge Engineering, 157–
172. https://doi.org/10.1007/978-3-319-06569-4_12 

Offutt, a. J., Lee, A., Rothermel, G., Untch, R. H., & Zapf, C. (1996). An experimental 
determination of sufficient mutant operators. ACM Transactions on Software Engineering 
and Methodology, 5(2), 99–118. https://doi.org/10.1145/227607.227610 

Orso, A., & Rothermel, G. (2014). Software testing: a research travelogue (2000–2014). 
Proceedings of the on Future of Software Engineering - FOSE 2014, 117–132. 
https://doi.org/10.1145/2593882.2593885 

Polo, M., Piattini, M., & Garc, I. (2009). Decreasing the cost of mutation testing with second-
order mutants. Software: Testing, Verification, and Reliability, (June 2008), 111–131.  

Tuloli, M. S., Sitohang, B., & Hendradjaya, B. (2016). Regex Based Mutation Testing Operator 
Implementation. In International Conference on Data and Software Engineering. 

Tuloli, M. S., Sitohang, B., & Hendradjaya, B. (2017). On the Implementation of Search-Based 
Approach to Mutation Testing. In International Conference on Data and Software 
Engineering (ICoDSE). in press. 


