

EXPLORING A BETTER SEARCH –BASED IMPLEMENTATION

ON SECOND –ORDER MUTANT GENERATION

Mohamad Syafri Tuloli*, Benhard Sitohang, Bayu Hendradjaya

Electrical Engineering and Informatics

Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia

* Corresponding author, email: syafri.tuloli@ung.ac.id

__

ABSTRAK

Pengujian perangkat lunak adalah bagian dari proses pengembangan perangkat lunak, dengan tujuan

utama untuk mengurangi/menghilangkan kesalahan pada perangkat lunak, hal ini umumnya dilakukan

dengan menjalankan kasus-uji. Salah satu teknik untuk mengkur dan meningkatkan kualitas dari kasus

uji adalah pengujian mutasi, tetapi walaupun sudah terbukti keefektifannya, teknik ini masih memiliki

suatu kendala besar, yaitu tidak praktis untuk digunakan karena melibatkan pembangkitan dan eksekusi

dari jumlah mutan yang besar. Pada penelitian ini, dilakukan eksplorasi penggunaan optimasi berbasis-

pencarian pada pembangkitan mutan (variasi dari program), dengan tujuan untuk menghasilkan mutan

yang tidak dapat dideteksi oleh kasus-uji, karena mutan jenis ini memiliki dapat kekurangan dari kasus-

uji. Metode usulan dibandingkan dengan algoritma pembangkitan second-order mutant yang umum

digunakan, dan juga dibandingkan dengan pendekatan berbasis-pencarian lainnya. Hasil menunjukkan

bahwa metode usulan dapat membangkitkan lebih banyak mutan-tidak-terdeteksi (undetected-mutant)

daripada dengan metode pembangkitan mutan yang umum. Metode usulan memiliki performansi yang

lebih rendah daripada metode pembangkitan berbasis-pencarian benchmark, tetapi performansinya dapat

ditingkatkan dengan melakukan perubahan pada representasi solusi, dan dengan adopsi parameter

optimasi yang digunakan oleh metode pembanding.

Kata kunci: analisis mutasi, pengujian mutasi, pengujian perangkat lunak berbasis pencarian, rekayasa

perangkat lunak berbasis pencarian

ABSTRACT

Software testing is a part of a software development process with a major concern is to reduce/eliminate

fault in the software, and mainly done by executing a test case. One of the techniques for measuring and

improving test case quality is mutation testing, but despite it is good effectiveness, this technique has a

major problem that is impractical because it involves generation and execution of huge amount of

mutant. This trend also happens in software testing, with the main focus on optimizing the test case

generation. In this research, we explore the used of search-based optimization to the mutant (program

variant) generation, with a goal to generate mutants that can escape test case detection, because these

mutants have a probability to show test case deficiency. In this research, the proposed method is

compared with a general second-order mutant generation algorithm and with other search-based mutant

generation. The result shows that the proposed method can generate more undetected-mutant than a

general second-order mutant generation. The proposed method performs worse than the benchmark

search-based mutant generation, but this performance improved by altering it is solution representation

and by the adoption of an optimization parameter.

Keywords: mutation analysis, mutation testing, search-based software testing, search-based software

engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-Journals Universitas Negeri Gorontalo

https://core.ac.uk/display/233374752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

10 Exploring a Better Search-Based Implementation on

Second–Order Mutant Generation

P-ISSN 2656-467X

INTRODUCTION

One of software quality indicator is the numbers of fault in the software. The more fault can be

detected (and fixed) the higher the quality of the software. To have a higher fault detection

capability, it needs to have a good quality of test case. A test case is a set of data and

method/function call sequence executed to software/program under test (PUT). In the test case

is also included an expected output to be compared with an actual output from the PUT, if the

actual output is different from the expected output, it can be concluded that there is a bug in the

PUT. Because of the importance of the test case role to guard against software defect, the test

case itself needs to be guarded against it is own defect (custodiet ipsos custode).

One of the methods to evaluate and improve test-case is mutation testing, it is a method that

evaluates test case by the ability to detect a variant of a program (mutant). This method

assumes that a good test case must be able to detect the artificial fault seeded in the PUT.

Mutation testing is a promising method because research has shown that mutants have a strong

relationship with an actual fault in PUT (Just, et al., 2014). But this method has it is own caveat,

it is not practical since it needs to generate a huge amount of mutant, and this cost a great deal

because the mutant must be executed to test case. The mutation testing process needs

optimization.

The usage of Search-based optimization on the software engineering is starting to be explored

by researchers (Harman, et al., 2012, 2009), and this trend includes in software testing domain

(Mcminn, et al., 2004)(Orso & Rothermel, 2014). The advantage of search-based optimization

because it is a black-box approach, it only needs a solution representation and an evaluation

function to be implemented. In this research, we used search-based optimization to optimize the

mutation testing process, explore different solution representation structure, and also compare

the result with a general mutant generation algorithm and similar mutant search-based mutant

generation approach.

MUTATION TESTING

The mutation testing is a test case evaluation and improving technique that stands on hypothesis

DeMillo in (Yue Jia & Harman, 2011):

a. Competent Programmer Hypotheses that assumes programmers is a competent individual in

developing software, and the fault in the program is only a simple fault that can be fixed

with syntactical change.

b. Coupling Effect, that assumes that all complex fault is a combination of simple faults, then a

test case that can identify these simple fault can identify the complex fault.

Based on these hypotheses, mutation testing generates an artificial fault henceforth called

mutant, which created by altering one or more lines of code of the PUT (Figure 1). The

execution of one mutation operator on one line of code can generate more than one mutant

(Figure 1.a), this is because the effectiveness of each mutation operator is varying depending on

the source code type on the PUT (Tuloli, et al., 2016).

Mutant can be divided into two categories: first-order mutant (FOM) that generated by

executing a single mutation operator to it, and higher-order mutant (HOM) that generated by

executing more than one mutation operator. Figure 1.b illustrates a higher-order mutant created

by implemented mutation operator (ROR) twice, this mutant is called Second-Order mutant

(SOM) because the mutation operator executed twice.

Tuloli, et all 11

P-ISSN 2656-467X

The HOM has more potential to generate an undetected-mutant, that is a mutant that cannot be

detected by current test case (Y Jia & Harman, 2008). But the problem is the higher order of

mutant is, the more the size of mutants increase.

Original Program First Order Mutant

(ROR operator)

First Order Mutant

(ROR operator)

…

while (hi < 50){

 System.out.print(hi);

 hi = lo + hi;

 lo = hi – lo;

}

…

…

while (hi > 50){

 System.out.print(hi);

 hi = lo + hi;

 lo = hi – lo;

}

…

…

while (hi == 50){

 System.out.print(hi);

 hi = lo + hi;

 lo = hi – lo;

}

…

a. Implementation of mutation operator to one line of code

Original Program First Order Mutant Second Order Mutant

…

while (hi < 50){

 System.out.print(hi);

 hi = lo + hi;

 lo = hi – lo;

}

…

…

while (hi > 50){

 System.out.print(hi);

 hi = lo + hi;

 lo = hi – lo;

}

…

…

while (hi > 50){

 System.out.print(hi);

 hi = lo * hi;

 lo = hi – lo;

}

…

b. Second-order mutant

Figure 1. Example of first-order mutant and second-order mutant (Nguyen & Madeyski, 2014)

DESIGN

The mutant generation system is based on our previous mutant generation system based on

regular expression (Tuloli, et al., 2016), the system is itself has been proven to be able to use in

search-based First-Order Mutant generation (FOM) (Tuloli, et al., 2017). In this research, we

explored the usage of this system on generating Second-Order Mutant (SOM).

Second-Order Mutant Algorithm

The second order mutant generation algorithm is used as shown in Figure 2. The algorithm

main functionality is by implementing first and second mutant operator to line in a sequence. At

first, the first-operator is checked to the code-line where the first-operator will be implemented,

this is because not all mutation operator can be implemented to a code-line. For instance, an

ABS operator (Table 1) cannot be implemented to a code-line where there is none existed

arithmetic operator.

If the code-line can be mutated with the first mutation operator, then the second mutant operator

is checked to the second code-line (can be same a code-line with the first). The Second-Order

mutant is generated only when the second mutation operator can be implemented to the second

code-line. The mutation operator itself is implemented using a regular expression (Tuloli et al.,

2016).

12 Exploring a Better Search-Based Implementation on

Second–Order Mutant Generation

P-ISSN 2656-467X

Figure 2. General algorithm to generate Second-Order Mutant

Table 1. Mutation operator used in the experiment

Operator Operator Name Description

ABS ABSolute Value Insertion Alter expression/sub-expression to add ABS operator (to get its absolute

value) and NEGABS (to get absolute value and negate it)

AOR Arithmetic Operator

Replacement

Change the arithmetic operator (x, /, +, -, ^) to with another arithmetic

operator.

LCR Logical Connector

Replacement

Change logical operator (equal, not equal, and, or) with another logical

operator

ROR Relational Operator

Replacement

Change relation operator (<, >, <=, >=, =, !=) with another relation

operator

UOI Unary Operator Insertion Insert unary operator (++, --, +, -, !, ~) into expression/sub-expression.

SDL Statement Deletion Delete one statement

Mutation Operator

The mutation used in the experiment is six operators which are selected because of its proven

effectiveness. The six operators used are five operators from Offutt, et all (1996) (ABS, AOR,

LCR, ROR, UOI) and one operator from Deng, et all (2013) (SDL). The mutation operator is

Tuloli, et all 13

P-ISSN 2656-467X

used to BubbleSort case, this case is selected because it is one of the most commonly used cases

for mutation testing research (Yue Jia & Harman, 2011).

The Evolution Process

The search-based optimization method implemented is a genetic algorithm optimization method

with the chromosome (solution representation) as shown in Figure 3. Each Chromosome is a set

of second-order mutant, while each second-order mutant represents as a pair of First-Order

Mutant. The first-order mutant represents as a pair of Mutation Operator (i.e. in Table 1), sub-

code mutant, and line code (lines of the PUT where the mutation occurred). Because each

implementation of one mutation operator on one line of code may generate more than one

mutant (Figure 1.a), we need sub-code mutant to differentiate the mutants.

Second Order Mutant

_ 1

Second Order Mutant

_ 2

… Second Order Mutant

_ N

Mutation

Operator_1

Sub Code

mutant_1

Line Code_1 Mutation

Operator_2

Sub Code

mutant_2

Line Code_2

First Order Mutant _ 1 First Order Mutant _ 2

Second Order Mutant

Figure 3. Solution structure algorithm 1

RESULT AND DISCUSSION

Comparison with other Second-Order mutant generation algorithm

The proposed search-based method is compared with second-order mutant generation

algorithm: LastToFirst, DiffOp, and RandomMix from Polo et al (Polo, Piattini, & Garc, 2009).

The proposed search-based approach is a genetic algorithm with the parameters shown in Table

2. We used the proposed method in three configuration Pop10, Pop100, and Pop200. Pop10 is

used with 10 solutions per population, Pop100 is 100 solution per population, and Pop200 is

200 solution per population (Figure 5).

The compared algorithm (LastToFirst, DiffOp, and RandomMix) generates second-order

mutant (SOM) by combining a pre-generated first-order mutant (FOM) with a certain

arrangement. LastToFirst combines FOM according to its index in the FOM-list (Figure 6), so

FOM with index 1 combined with last-index FOM, FOM index 2 with FOM index last-1, and

so on. DiffOp combines FOM but only FOM that generated using a different mutation operator

(Table 1), for example, ROR with ABS, ROR with UOI, but never ROR with ROR even when

the ROR is used in separates line of code. RandomMix combines a randomly selected FOM.

All this second-order mutant generating algorithm minimizes total HOM by only use each FOM

once for generating SOM.

The comparative evaluation is measured by using average mutant (undetected, detected, etc.),

and the number of unique undetected/detected mutant exist in the population. The average

undetected/detected mutant can only measures for each solution (chromosome) qualities, while

the unique mutant can be used to measures search-diversity of all the mutants in the population

(Figure 4). If a population have a high average undetected mutant with a low unique undetected

14 Exploring a Better Search-Based Implementation on

Second–Order Mutant Generation

P-ISSN 2656-467X

mutant, it means that the search process has reach convergence, and the search process cannot

further improve the solution.

Table 2. Genetic Algorithm parameters

Parameter Value Description

PopSize 10, 100, and 200 Population size

MaxEval 100000 Stopping condition, a condition when the

evolution stopped.

Variabel 60 Variable in each solution candidate (chromosome/

individual).

Crossover Probabilities 90% The Probability of one solution candidates to be

recombined with other solution candidate.

Mutation Probabilities 10% Number of gen (variable) that mutated

Undetected +2 Fitness value for every undetected mutant found

in the solution candidates.

Detected 0 A Penalty for fitness value for every detected,

non-exist-subcode, unmutated-line-of-code, and

redundant mutant exist in the solution candidate

NASubKode -2

Unmutated -2

Redundant -2

SubCodeUpper 12 The Upper limit of the subcode mutant, this set in

accord with the case being used.

The result shows that our proposed approach is able to generate more mutant than the general

second-order mutant algorithm (Figure 5). The LastToFirst can only generate 3 undetected-

mutant, DiffOp cannot generate any undetected-mutant, and RandomMix only generate one

undetected-mutant, this is very few compared with total possible of undetected mutant 151

undetected-mutant (Table 3).

Table 3. The result of generating all Second Order-Mutant for BubbleSort case

Measurement Value

Total First-Order Mutant 89

Total Second-Order Mutant 3916

Undetected-SOM 151

Detected-SOM 3442

Sub-Code-Mutant not exist 10

Unmutated-Line 313

Duration (millisecond) 451130

The population-size parameter proven to significantly affect the resulting undetected-mutant,

this effect cannot be detected by measuring average-undetected-mutant but must be measured

by unique-undetected-mutant in the population (Figure 5). The average-undetected-mutant

cannot detect the difference between pop100 and pop200 performances, this is because the

improvement of the population size (from 100 to 200) increase the variety of the undetected-

mutant without increasing undetected-mutant/solution ratio, this makes the average-undetected-

mutant does not increase (Figure 5). The unique-undetected-mutant on the other hand measure

variety of the undetected-mutant, that makes the unique-undetected-mutant are a better

indicator in measuring the effect of the population-size parameter.

Tuloli, et all 15

P-ISSN 2656-467X

No Chromosome/

Solution

1 E A B D

2 F D C A

For example A, B, C is undetected mutant, then to

evaluate the population is:

 Average Undetected-Mutant for the population is

population_total_undetected_mutant /

total_chromosome = (2+2) / 2 = 2

 Unique Undetected Mutant is 3, which is A, B, and C

Figure 4. Illustration of population evaluation using average-undetected-mutant and unique-

undetected-mutant

Figure 5. Comparison of average undetected-mutant and unique undetected mutant of proposed

algorithm vs other second-order mutant generation algorithms

Comparison of Different Implementation of Proposed Method

The proposed Search-based method used in the previous experiment was using a solution

structure that consists of pairs of mutation-position as illustrates in Figure 3. Later we found

that this structure can cause:

1. undetected mutant,

2. detected mutant,

3. un-mutated line of code, unmutated by mutation first operator or second operator,

4. non-existing sub-code mutant, for mutation operator 1 or mutation operator 2.

The (1) and (2) condition is expected to happen and is useful to measure the method

performances, but condition (3) and (4) can cause a decrease in evolution performance.

To address this problem, we designed an alternative approach, by adopting the second-order

mutant approach (LastToFirst, etc) by using a different solution structure as shown in Figure 6.

This structure uses an already generated FOM, this limit the search space only to the already

generated FOM, and reduced the probability of condition (3) and (4) to emerge. The

improvement is proven by the improvement of undetected-mutant and detected-mutant of the

algorithm_2 (Pop10v.2, Pop100v.2, Pop200v.2) than our previous algorithm (Pop10, Pop100,

Pop200) that shown in Figure 7 and Figure 8. In this experiment also shows once again the

effective usage of unique-undetected-mutant indicator in the measurement, the average-

undetected-mutant only show some improvement of the algorithm_2 (Figure 7), while the

unique-undetected-mutant shows a significant improvement of the algorithm_2 both compared

to algorithm_1, also in different population size (Figure 8).

16 Exploring a Better Search-Based Implementation on

Second–Order Mutant Generation

P-ISSN 2656-467X

Indices FOM Mutation Operator Subcode mutant Line Numbers

1 UOI 3 14

2 SDL 5 10

…

a. Pre-generated FOM list

Index

FOM_1

Index

FOM_2

….

b. Solution Structure

Figure 6. Solution structure for algorithm 2

Figure 7. Comparison of average undetected-mutant, average detected mutant, and duration

between algorithm 1 and algorithm 2

Figure 8. Comparison of unique undetected-mutant, unique detected mutant, and duration

between algorithm 1 and algorithm 2

Comparison with Other Evolutionary Mutation Testing

To get a fair comparison, we took a Delgado et al approach (Delgado-Perez, et al., 2017), to

compare with our proposed method, from this will be referred to as Delgado method. Delgado

defines a strong mutant consist as:

1. potentially equivalent mutant: mutant that undetected from the current/existing test case,

2. difficult-to-kill: mutant that can be detected by only one test case, and this test case does not

detect other mutants.

Tuloli, et all 17

P-ISSN 2656-467X

A potentially equivalent mutant can be associated with our undetected-mutant definition, even

though there is no guarantee that our undetected mutant is not an equivalent mutant. A difficult-

to-kill mutant can be associated with our detected-mutant, but of course, it needs to be

analyzed, because the mutant must be exclusively detected by only one test case, and the test-

case cannot detect other mutants.

Delgado method and implemented and further combined with using indexed of pre-generated

FOM, we named this DelgadoVersi2. At first experiment, DelgadoVersi2 was executed

normally, but since the running time is much longer than our proposed method (Pop200v.2), it

gives a rather unfair advantage to the DelgadoVersi2 method. To give a better comparison, we

also experiment with a Delgado method but with a limited time that matches the Pop200v.2

duration, we called this Delgado(Timed).

Because of the earlier experiment shows Delgado method has better performance, and we

suspect one of the factors is the Delgado choice of parameters, we adapt Delgado parameters to

the proposed method and named this experiment Pop200v.2 Param Delgado. We also

compared to all possible combination of FOM, we named the experiment GenerateAll.

As shown in Figure 9, the result shows that the DelgadoVersi2 method is able to generate a

higher number of undetected mutant that proposed mutant (Pop200v.2) but it needs a longer

duration. The duration even longer than the generation of all possible mutant (GenerateAll), but

this is as expected because the DelgadoVersi2 method needs overhead processing for the

evolution.

Figure 9. Comparison proposed algorithm with other search-based approaches

In the same duration, the Delgado method (DelgadoTimed) has a better performance than the

proposed method (Pop200v.2). One of the determining factors is the parameter used by

Delgado method, it is proven by the improvement of the proposed method after adapting the

parameter used by Delgado (Pop200v.2 param Delgado). We analyze that the cause of this

improvement is because of the parameter in the Delgado method is more emphasized on

exploration than exploitation. This shows on its higher value of crossover probability and

mutation probability (Table 2).

CONCLUSION

The proposed test case generation method is proven to be able to generate a second-order

mutant, both to use by a general second-order generation algorithm (DiffOp, LastToFirst,

RandomMix) also can be used by a search-based optimization method. The proposed search-

based method can generate more mutant that the general second-order mutant algorithm.

18 Exploring a Better Search-Based Implementation on

Second–Order Mutant Generation

P-ISSN 2656-467X

The proposed search-based method performed worse than Delgado search-based method, but

this research discovers findings to help improve search-based performances. It shows a better

solution representation of the mutants that reduced the existence of uncompiled mutant, this can

improve the search by reducing the search-space into an only a valid mutant. Increasing

Population size also can improve performances, because it improves solution population

diversity. Another finding is about a better indicator to use in measuring performances, we

suggest the use of unique-undetected-mutant because it has proven to be able to reflect the

diversity of solution that cannot be detected using average-undetected-mutant.

In the future, we will use this finding to create a more efficient mutant generation method,

while maintaining a good undetected-mutant ratio (mutation score). There are also many

explorations can be made such as search-based method (e.g. Hill Climbing, A*, etc.) and or the

parameter/configuration of the method (e.g. selection, crossover, mutation technique in Genetic

Algorithm method), or other implementation related optimization.

REFERENSI

Delgado-Perez, P., Medina-Bulo, I., Segura, S., Garcia-Dominguez, A., & Dominguez-Jimenez,
J. J. (2017). GiGAn : Evolutionary Mutation Testing for C ++ Object-Oriented Systems.
32nd ACM SIGAPP Symposium On Applied Computing.

Deng, L., Offutt, J., & Li, N. (2013). Empirical evaluation of the statement deletion mutation
operator. Proceedings - IEEE 6th International Conference on Software Testing,
Verification and Validation, ICST 2013, 84–93. https://doi.org/10.1109/ICST.2013.20

Harman, M., Mansouri, S. A., & Zhang, Y. (2009). Search Based Software Engineering : A
Comprehensive Analysis and Review of Trends Techniques and Applications, 1–78.

Harman, M., McMinn, P., Souza, J. De, & Yoo, S. (2012). Search-based software engineering:
Techniques, taxonomy, tutorial. Empirical Software Engineering and Verification, 1–59.
Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-25231-0_1

Jia, Y., & Harman, M. (2008). Constructing Subtle Faults Using Higher Order Mutation
Testing. Retrieved from http://discovery.ucl.ac.uk/1302155/

Jia, Y., & Harman, M. (2011). An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering, 37(5), 649–678.
https://doi.org/10.1109/TSE.2010.62

Just, R., Jalali, D., Inozemtseva, L., & Ernst, M. (2014). Are mutants a valid substitute for real
faults in software testing?, 654–665. https://doi.org/10.1145/2635868.2635929

Mcminn, P. (2004). Search-based Software Test Data Generation : A Survey. Software Testing,
Verification & Reliability, 14(2), 105–156.

Nguyen, Q. V., & Madeyski, L. (2014). Problems of Mutation Testing and Higher Order
Mutation Testing. Advanced Computational Methods for Knowledge Engineering, 157–
172. https://doi.org/10.1007/978-3-319-06569-4_12

Offutt, a. J., Lee, A., Rothermel, G., Untch, R. H., & Zapf, C. (1996). An experimental
determination of sufficient mutant operators. ACM Transactions on Software Engineering
and Methodology, 5(2), 99–118. https://doi.org/10.1145/227607.227610

Orso, A., & Rothermel, G. (2014). Software testing: a research travelogue (2000–2014).
Proceedings of the on Future of Software Engineering - FOSE 2014, 117–132.
https://doi.org/10.1145/2593882.2593885

Polo, M., Piattini, M., & Garc, I. (2009). Decreasing the cost of mutation testing with second-
order mutants. Software: Testing, Verification, and Reliability, (June 2008), 111–131.

Tuloli, M. S., Sitohang, B., & Hendradjaya, B. (2016). Regex Based Mutation Testing Operator
Implementation. In International Conference on Data and Software Engineering.

Tuloli, M. S., Sitohang, B., & Hendradjaya, B. (2017). On the Implementation of Search-Based
Approach to Mutation Testing. In International Conference on Data and Software
Engineering (ICoDSE). in press.

