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BMP signaling mediates glioma 
stem cell quiescence and 
confers treatment resistance in 
glioblastoma
Rohit Sachdeva1, Megan Wu1, Kevin Johnson   2, Hyunsoo Kim   2, Angela Celebre1,3, 
Uswa Shahzad1,4, Maya Srikanth Graham5,6, John A. Kessler6, Jeffrey H. Chuang   2, 
Jason Karamchandani7, Markus Bredel8, Roel Verhaak   2 & Sunit Das   1,3,4,9

Despite advances in therapy, glioblastoma remains an incurable disease with a dismal prognosis. 
Recent studies have implicated cancer stem cells within glioblastoma (glioma stem cells, GSCs) as 
mediators of therapeutic resistance and tumor progression. In this study, we investigated the role of 
the transforming growth factor-β (TGF-β) superfamily, which has been found to play an integral role in 
the maintenance of stem cell homeostasis within multiple stem cell systems, as a mediator of stem-like 
cells in glioblastoma. We find that BMP and TGF-β signaling define divergent molecular and functional 
identities in glioblastoma, and mark relatively quiescent and proliferative GSCs, respectively. Treatment 
of GSCs with BMP inhibits cell proliferation, but does not abrogate their stem-ness, as measured by self-
renewal and tumorigencity. Further, BMP pathway activation confers relative resistance to radiation 
and temozolomide chemotherapy. Our findings define a quiescent cancer stem cell population in 
glioblastoma that may be a cellular reservoir for tumor recurrence following cytotoxic therapy.

Glioblastoma is the most prevalent and aggressive malignant brain tumour in adults, with a median survival 
following multi-modality therapy of 14.6 months1. Recent studies have implicated cancer stem cells within glio-
blastoma (glioma stem-like cells, GSCs) as mediators of tumor growth, therapeutic resistance and tumor progres-
sion2–5. GSCs also retain the genetic features of parental tumors, suggesting they are a faithful model system for 
human glioblastoma6,7.

Examination of other physiologic and cancer stem cell systems has shown that these cells are phenotypically 
dynamic, and that the functional plasticity of these cells is modulated by both cell-intrinsic and cell-extrinsic fac-
tors, including signaling within the stem cell microenvironment8,9. For example, neural stem cells (NSCs) within 
the subventricular zone and hair follicle stem cells (HFSCs) within the hair follicle bulge have been shown to 
transition between quiescent and activated states10,11. Further, transcriptional heterogeneity has been proposed as 
a mechanism to balance self-renewal and differentiation in NSCs, HFSCs, and hematopoietic stem cells12–18. The 
epigenetic processes underlying cell fate specification in GSCs are less well understood.

One primary agent of cell fate specification in multiple developing and adult stem cell systems is the family of 
inhibitor of DNA-binding genes, ID1-ID4. During development, the ID genes are actively expressed in stem and 
progenitor cells to support proliferation and inhibit differentiation, whereas the ID genes are repressed upon lin-
eage commitment and differentiation19,20. In addition to its role in hair follicle stem cell physiology, ID1 has been 
postulated to mark the bona fide adult neural stem cell21,22. The ID family member ID1 has also been found to be 
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dysregulated in cancer and to direct multiple hallmarks of cancer, such as cell growth and survival, invasion and 
migration, and angiogenesis23–26. In glioblastoma, ID1 knockdown in a mouse xenograft model impairs cell inva-
sion and thereby results in increased overall survival27,28. In colon cancer, knockdown of ID1 and ID3 have been 
shown to impair self-renewal of colon cancer tumor initiating cells, reduce tumor growth and enhance sensitivity 
to chemotherapy26. Interestingly, ID1 ablation in a mouse transgenic glioblastoma model failed to render these 
cells non-tumorigenic; in fact, ID1 loss appeared to enhance tumor growth and shorten latency to end point29.

There is growing evidence to suggest that the superfamily of transforming growth factor-βs (TGF-βs) play an 
integral role in the maintenance of stem cell homeostasis through their effects on ID1 expression within multiple 
stem cell systems30. In the hair follicle stem cell niche, dampening of a repressive bone morphogenetic protein 
(BMP) signal by TGF-β2 is necessary for hair follicle stem cells to transition from the telogen (quiescent) to ana-
gen (activated) state31, a process that requires the suppression of BMP-mediated expression of ID132. Similarly, 
ID1 expression restrains proliferation and fate commitment in hematopoietic stem cells (HSCs), and is required 
for HSC repopulation and maintenance33,34.

We postulated that BMP and TGF-β signaling could have an analogous role for human GSCs through their 
effect on ID1. Here, we report that BMP and TGF-β signaling define divergent molecular and functional identities 
in glioblastoma, and mark relatively quiescent and proliferative GSCs, respectively. Treatment of GSCs with BMP 
inhibits cell proliferation, but does not abrogate their stem-ness, as measured by self-renewal and tumorigencity. 
Further, BMP pathway activation confers relative resistance to radiation and temozolomide chemotherapy. The 
development of temozolomide resistance results in selection of cells with prolonged cell-cycle time and latency of 
tumor formation. Finally, we find that p21 mediates the effect of BMP signaling on glioma cell proliferation and 
chemotherapeutic resistance. Our findings define a quiescent cancer stem cell population in glioblastoma that 
may be a potentially targetable cellular reservoir for tumor recurrence following cytotoxic therapy.

Results
BMP and TGF-β signaling define divergent molecular identities in glioblastoma.  To determine if 
the BMP and TGF-β pathways are activated in glioblastoma cells in the tumor microenvironment, we performed 
immunohistochemistry on human glioblastoma specimens (n = 9) for the activated nuclear R-SMADs, pSmad1 
(BMP) and pSmad2 (TGF-β). We found evidence of nuclear pSmad1 and pSmad2 staining in all molecular sub-
types that we examined (Fig. 1A). To confirm that BMP and TGF-β activation was present in glioma cells rather 
than stromal non-neoplastic cells35, we repeated these studies in a glioblastoma possessing an R132H IDH1 muta-
tion, in which glioma cells can be differentiated from non-glioma cells by the presence of the IDH1 R132H muta-
tion. Both pSmad1-positive and pSmad2-positive cell populations were IDH1-mutant, confirming their identity 
as glioma cells (Supplementary Fig. 1A,B).

As previous reports have shown that BMP signaling directs astroglial differentiation in GSCs36–38, we expected 
that pSmad2-positive glioma cells would be enriched in stem cell markers, such as Sox2 and nestin, compared to 
pSmad1-positive glioma cells. Surprisingly, single-cell qRT-PCR analysis of pSmad1- and pSmad2-positive cells 
isolated by laser capture microscopy showed that both populations of cells expressed markers of stem-ness, such 
as OLIG1, SALL2, OCT3/4, and SOX2, compared to normal brain. pSmad1-positive cells expressed high levels of 
SAT1 and ID1, while pSmad2-positive cells expressed high levels of EGFR (Fig. 1B).

We then sought to determine the phenotypic identity of pSmad1-positive and pSmad2-positive glioma cells 
using publicly available single-cell glioblastoma RNA-seq (scRNAseq) data39,40. First, we performed unsuper-
vised clustering of the scRNAseq dataset (n = 430 single cells, 5 patients) to define single-cell clusters. We then 
ascribed cell identity to these clusters using the marker gene information identified by our single-cell qRT-PCR 
analysis described above. This analysis identified two SMAD1(+) and two SMAD2(+) cell populations, as well 
as one “mixed” cell population (Fig. 1C). Overall, we observed 956 genes differentially expressed between the 
SMAD1(+) and SMAD2(+) glioma cell populations (Bonferroni-adjusted P < 0.05); 671 genes were upregulated 
in SMAD2+ cells, while 285 were upregulated in SMAD1(+) cells. Gene set enrichment analysis identified gene 
pathways involved in cell replication and metabolism as active in SMAD2(+) glioma cells, while SMAD1(+) gli-
oma cells showed upregulation of gene associated with cellular immune response, developmental processes, and 
exocytosis, suggestive of a drug-resistant population (Fig. 1D). SMAD2+ glioma cells were highly enriched for 
the DNA polymerase factor, PCNA, consistent with the conclusion that this cell population housed the majority 
of dividing cells (Fig. 1E).

To interrogate the conclusion that SMAD2(+) identified the proliferation fraction of glioblastoma cells, we 
performed double-label immunohistochemistry for pSmad1 or pSmad2 and PCNA in human glioblastoma surgi-
cal specimens (n = 4, 15 HPF/specimen). Consistent with our scRNAseq analysis, we found that only 10.1 ± 8.9% 
of pSmad1-positive cells were also PCNA-positive, compared to 37.6 ± 8.9% of pSmad2-positive cells, which also 
labeled for PCNA (Fig. 1F; p < 0.05).

Glioma stem cell phenotype is modulated by treatment with BMP4 or TGF-β1.  To determine 
if differences in cytokine signaling could in themselves account for the phenotypic divergence seen in situ, we 
examined the effect of TGF-β and BMP signaling on cell phenotype in three GSC lines in vitro. Treatment of 
GSCs with recombinant BMP4 or TGF-β1 resulted in a highly stereotypical and reproducible expression profile 
(Supplementary Fig. 2). BMP4-treated GSCs showed a greater than 2-fold decrease in cell proliferation (Fig. 2A; 
n = 3, p < 0.01), an effect that was significantly amplified by concomitant exposure to the TGF-β inhibitor, 
LY364947. Treatment with LY36494 alone had no significant effect on cell proliferation. Conversely, exposure of 
GSCs to TGF-β1 resulted in an increase in cell proliferation, with minimal amplification following concomitant 
exposure to the BMP antagonist, noggin (Fig. 2B; n = 3, p < 0.05). Our findings suggest that GSCs in prolifera-
tive culture secrete TGF-β. Indeed, analysis of the culture media using ELISA showed high levels of TGF-β1 and 
TGF-β2, but not BMP1, BMP2, BMP4, or BMP7, under baseline culture conditions (Supplementary Fig. 3A–F).

https://doi.org/10.1038/s41598-019-51270-1
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Consistent with our in situ findings, neither BMP4 nor TGF-β1 significantly affected expression of the neural 
stem cell markers, Sox2 and Bmi1, in GSCs (Fig. 2C). Of note, we found that ID1 expression in GSCs was induced 
by treatment with BMP4 rather than TGF-β, in contrast to indirect evidence from others that ID1 is a down-
stream effector of TGF-β1 in glioblastoma41. We found no difference in expression of the core GSC transcription 
factors Oct3/4, Sox2, Sall2, and Olig1, between GSCs treated with BMP4 or TGF-β1 (Fig. 2D). Further, BMP- 
and TGF-β1-treated GSCs could not be discriminated on the basis of expression of the Bernstein GSC panel of 
nineteen tumor-propagating cell (TPC)-specific transcription factors (Supplementary Fig. 4A)39,40. Consistently, 
TPCs share a BMP- and TGF-β-responsive target gene expression profile that is distinct from that of differentiated 
glioma cells (DGCs; Supplementary Fig. 4B). These findings suggested to us that BMP and TGF-β1 both modulate 
but do not abolish the GSC phenotype, and might instead control the transition of GSCs from a quiescent to a 
proliferative state.
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Figure 1.  BMP and TGF-β signaling define divergent molecular identities in glioblastoma. (A) H&E and 
IHC for pSmad1 (BMP) and pSmad2 (TGF-β) in human glioblastoma surgical specimens (n = 9). (B) Single-
cell analysis of pSmad1- and pSmad2-positive cells isolated by laser capture microscopy. (C) Unsupervised 
clustering of single-cell glioblastoma RNA-seq data using the most variable genes. Cell identity was determined 
using cell markers for pSmad1 and pSmad2-positive glioma cells. (D) Log-normalized gene expression for 
selected genes is shown for the SMAD1(+) and SMAD2(+) glioma cell populations defined in 1 C. (E) Gene set 
enrichment analysis for genes upregulated in SMAD1(+) (left) and SMAD2(+) (right) glioma cell populations 
identified by analysis of single-cell glioblastoma RNA-seq data. (F) Quantification of PCNA-expression in 
pSmad1- and pSmad2-positive cells in human glioblastoma surgical specimens (n = 4, 15 HPF/specimen; 
*p < 0.05).

https://doi.org/10.1038/s41598-019-51270-1


4Scientific Reports |         (2019) 9:14569  | https://doi.org/10.1038/s41598-019-51270-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

BMP4 inhibits but does not abrogate GSC self- renewal and tumorigenicity.  To test the hypothe-
sis that BMP modulates but does not abolish the GSC phenotype, we examined the effect of BMP or TGF-β expo-
sure on GSC self-renewal using the neurosphere assay system. Exposure of GSCs to TGF-β1 resulted in increased 
sphere formation by GSCs grown at clonal density (Fig. 2E; n = 3, p < 0.05), consistent with a positive effect on 
self-renewal, and also resulted in an increase in average sphere diameter, consistent with an increase in cell pro-
liferation (Fig. 2F; n = 3, p < 0.01). BMP4 exposure diminished but did not abrogate sphere formation (Fig. 2E, 
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Figure 2.  Glioma stem cell phenotype is modulated by treatment with BMP4 or TGF-β1. (A) Relative BrdU 
incorporation in G144, G179, and BT046 cells, treated with BMP4 or BMP and LY364947, compared to control 
(n = 3, *p < 0.01). (B) Relative BrdU incorporation in G144, G179, and BT046 cells, treated with TGF-β1 or 
TGF-β1 and noggin, compared to control (n = 3, *p < 0.05). (C) Western blot analysis for the stem cell markers 
ID1, Bmi1, Sox2, and nestin, following treatment of BT046 with BMP4, LY364947, TGF-β1, or noggin. (D) 
Western blot analysis for POU3F2, Sall2, Sox2, and Olig2, in BT046 cells following treatment with BMP4, 
LY364947, TGF-β1, or noggin. (E) Sphere formation by BT046 following treatment with BMP4 and LY364947 
or TGF-β1 and noggin, compared to control (n = 3, *p < 0.05). (F) Average diameter of spheres formed by 
BT046 following treatment with BMP4 and LY364947 or TGF-β1 and noggin, compared to control (n = 3, 
*p < 0.01). (G) Serial passaging of G144, G179, and BT046 cells treated with BMP4 (n = 3, N.S.).
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n = 3, N.S.), and resulted in attenuation in gliomasphere size (Fig. 2F; n = 3, p < 0.05. Further, BMP4-treated 
GSCs continued to form spheres with serial passaging (Fig. 2G; n = 3, N.S.), indicating that these cells remained 
capable of self-renewal.

We then sought to determine if BMP exposure affected GSC tumourigenic potential following orthotopic 
transplantation. GSCs were cultured in normal media supplemented with EGF and FGF (BT062508, BT051010, 
BT030909) or in media without factors and with BMP4 (BT062508-BMP4, BT051010-BMP4, BT030909-BMP4) 
for five days. As would be predicted by our prior studies in other GSC lines, BMP4-treated cells showed a signifi-
cant decrease in proliferation, as determined by BrdU incorporation (Fig. 3A; n = 3, p < 0.01), and increased ID1 
expression, with no significant change in Sox2 or nestin expression. Control and BMP4-treated GSCs were then 
dissociated and transplanted into the right frontal striatum of immunocompromised (NOD scid) mice (n = 5/
group). As in mice transplanted with control GSCs, mice transplanted with BMP4-treated GSCs developed 
high-grade gliomas, though with prolonged latencies to tumour formation, compared to control cells (Fig. 3B; 
p < 0.01). Tumors formed by GSCs with or without BMP4 pre-treatment were histologically indistinguishable on 
analysis by a neuropathologist (J.K., Fig. 3C). These findings are consistent with a previous report using a trans-
genic mouse model that ablation of ID1 does not result in loss of tumorigenicity, but actually leads to shortened 
tumor latency following transplantation29.

ID1 identifies a long-term label retaining cell in glioblastoma.  Our in vitro findings that BMP sign-
aling induces quiescence in GSCs are in conflict with previous reports that BMP directs GSCs toward a terminally 
differentiated astroglial cell fate36. To distinguish between these two opposing hypotheses, we performed two 
long-term label retaining cell (LRC) assay studies in a glioblastoma xenograft model42. The LRC assay exploits the 
dynamics of integration and retention of a tagged synthetic nucleoside into the DNA through the cell cycle. The 
tag will only be found in cells that have undergone DNA replication during a period overlapping that of delivery 
of the synthetic nucleoside. Further, the signal will diminish as that cell undergoes further cell divisions. For 
our experiments, we employed the nucleoside analog 5-ethynyl-2′-deoxyuridine, marked with a fluorescent tag 
(EdU-FITC; Invitrogen).

We first sought to determine if BMP-activated glioma cells differ in their likelihood to enter the cell cycle com-
pared with the TGF-β-activated glioma cells that make up the most of the tumor bulk. To do so, mice harboring 
a mature glioblastoma xenograft were administered a single dose of EdU through intraperitoneal injection and 
then sacrificed at successive time points thereafter (Fig. 4A; n = 3/time point). In this paradigm, EdU labeling 
will be limited to cells entering or within the cell cycle at the time of its administration. The label will rapidly 
decay in cells that go on to re-enter the cell cycle. ID1 was used as a proxy for BMP activation, while we used 
phosphorylated Smad2 as a marker of TGF-β activation. At 1 hour following EdU administration, 13.4 ± 5.3% 
of ID1-positive cells were also EdU positive (Fig. 3B), compared to 78.8 ± 21.4% of pSmad2-positive cells 
(Fig. 4B; p < 0.001). By 14 days, 34.6 ± 3.7% of ID1-positive cells were EdU-positive, compared to 4.1 ± 0.5% of 
pSmad2-positive cells (p < 0.001). Time-point analysis showed rapid decay of EdU signal from pSmad2-positive 
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cells, with no significant loss of signal from ID1-positive cells, consistent with a divergence in cell cycle entry 
between BMP-activated and TGF-β-activated glioma cells.

We then sought to determine if BMP-activated glioma cells are LRCs. To do so, we employed a paradigm 
in which mice were administered EdU for 7 days, which should result in labeling of most if not all mitotically 
active cells within the tumour, followed by a long-term chase (Fig. 4C; n = 3/time point). Mice were sacrificed 
and brain tissues collected on days 7, 14, and 21, following completion of EdU administration, or at endpoint. 
The frequency of Edu/ID1 and Edu/pSmad2 double-positive cells was quantified from primary tumor sections 
throughout the labeling and chase. At the initial time-point, we found that 8.8 ± 4.1% of ID1-positive cells were 
EdU-positive, compared to 55.0 ± 5.5% of pSmad2-positive cells (Fig. 4D; p < 0.001)). By 21 days, 43.3 ± 10.8% 
of ID1-positive cells were EdU-positive, compared to 6.7 ± 0.4% of pSmad2-positive cells (p < 0.001). Time-point 
analysis demonstrated that EdU signal steadily reduced in the pSmad2-positive population. Surprisingly, the per-
centage of ID1-positive cells that were also EdU-positive increased during the chase, suggesting that some of the 
cells in this population may have transitioned to no longer express ID1. Taken together, these studies demonstrate 
that BMP pathway activation demarcates a slow cycling, long-term label retaining cell population in glioblastoma.

pSmad1 identifies a pool of treatment-resistant glioma cells.  LTR cells are thought to constitute a 
treatment-resistant cell population in multiple hematopoietic and solid cancer subtypes, including acute lymph-
oblastic leukemia43, pancreatic cancer44, colorectal cancer45, and breast cancer46. To determine if BMP-activated 
(pSmad1+) glioma cells could constitute a treatment-resistant cell population in glioblastoma, we performed 
IHC from paired human glioblastoma specimens harvested at initial diagnosis and immediately following radia-
tion and temozolomide chemotherapy. As clinical practice does not conventionally allow for harvest immediately 
following completion of adjuvant therapy, our analysis was limited to three patients in whom tissue harvest at this 
point was driven by concern of early relapse. At both time points, we analyzed regions corresponding to sites of 
Gadolinium contrast enhancement on magnetic resonance imaging (Supplementary Fig. 5A–C). At initial diag-
nosis, pSmad2+ cells constituted the majority of identified tumor cells, while pSmad1+ cells constituted a small 
minority, in all three patients (Fig. 5A; p < 0.01). Conversely, analysis of biopsy specimens harvested at the imme-
diate conclusion of radiation and temozolomide chemotherapy showed a significant increase in the pSmad1+ cell 
population, as well as a significant decrease in the pSmad2+ cell population (Fig. 5B; p < 0.01).

We were then able to identify one patient in whom paired tumor samples were available from the time of 
initial diagnosis, immediately following completion of adjuvant therapy, and at frank radiographic recurrence 
(Supplementary Fig. 6). In this single patient, analysis at initial diagnosis showed that the majority of glioma cells 
were marked by pSmad2, while only a minority of cells were found to be pSmad1-positive (Fig. 5C; p < 0.01). As 
found in our first cohort, analysis of analysis of biopsy specimens harvested at the immediate conclusion of radi-
ation and temozolomide chemotherapy showed a significant increase in the pSmad1+ cell population, as well as 
a significant decrease in the pSmad2+ cell population (Fig. 5D; p < 0.01). Interestingly, analysis of tumor tissue 
harvested at the time of frank recurrence once again showed an abundance of pSmad2+ cells (Fig. 5E; p < 0.01).

Finally, we analyzed publicly available scRNA data from a primary glioblastoma and matched recurrence 
(n = 43 single cells, 27 cells at initial diagnosis and 16 cells at recurrence)47. While the sample contained too 
few cells to allow for meaningful unsupervised clustering, differential expression of analysis of cells at recur-
rence revealed a trend toward enrichment of the SMAD1(+) glioma cells markers, ID1 and SAT1, and a statisti-
cally significant loss of the SMAD2(+) glioma cell markers, EGFR and SALL2 (Fig. 5F). These data suggest that 
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pSmad1+ cells are enriched by radiation and temozolomide chemotherapy, and could serve as a reservoir for 
tumor recurrence.

Activation of the BMP signaling pathway protects glioma cells from cytotoxic injury.  To exam-
ine if BMP activation could account for treatment resistance in glioblastoma cells, we performed in vitro sur-
vival studies in three GSC lines (G144, G179, BT046) exposed to a five-day course of temozolomide (25 μM) 
and concomitant radiation (10 Gy/5 sessions) following treatment with BMP or TGF-b pathway agonists. As 
expected, treatment of GSCs with temozolomide and radiation resulted in substantial cell death. The cytotoxic 
effect of temozolomide and radiation was significantly attenuated by pre-treatment of GSCs with BMP4, while 
pre-treatment with TGF-β significantly increased the amount of cell death that occurred with cytotoxic therapy 
(Fig. 6A–C; n = 3, p < 0.05). Treatment of GSCs with BMP4 resulted in increased expression of the DNA repair 
protein, O6-methylguanine DNA methyltransferase (MGMT), as well as increased phospho-activation of the 
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Figure 5.  pSmad1 identifies a pool of treatment-resistant glioma cells. (A) Quantification of pSmad1- and 
pSmad2-immunopositivity in glioblastoma specimens harvested from patient 64, patient 223, and patient 286, 
at initial diagnosis (*p < 0.01). (B) Quantification of pSmad1- and pSmad2-immunopositivity in glioblastoma 
specimens harvested from patient 64, patient 223, and patient 286, during chemoradiation with temozolomide 
(*p < 0.01). (C–E) Quantification of pSmad1- and pSmad2-immunopositivity in glioblastoma specimens 
harvested from a single patient at initial diagnosis, during chemoradiation with temozolomide, and at frank 
recurrence (*p < 0.01). (F) Differential expression analysis (Wilcoxon-rank sum test) of single cell glioma RNA-
seq data from a single patient at initial diagnosis (T01) and tumor recurrence (T01.R) (n = 43 single cells, 27 
cells at initial diagnosis and 16 cells at recurrence).
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DNA repair modulator, ATM serine/threonine kinase (ATM) (Fig. 6D). Finally, treatment of GSCs with BMP4 
resulted in decreased expression of the DNA damage mark, gamma-H2AX phosphorylation (pH2AX), in GSCs 
following exposure to temozolomide and radiation (Fig. 6E).

Disease relapse in acute myeloid leukemia after conventional chemotherapy is thought to be caused by quies-
cent leukemic stem cells, which are able to survive cytotoxic therapy and drive disease recurrence48. We hypoth-
esized that treatment resistance in glioblastoma could also be mediated by relative cell quiescence. To test this 
hypothesis, we developed temozolomide-resistant cell lines using U251 and ID1−/−.U251.1/2 cells. The parental 
cells were cultured with a biweekly increasing dose of temozolomide, starting at 10 µM to a maximum dose of 
200 µM. A selected population of U251 cells survived this treatment (U251 temozolomide-resistant cell line; 
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viability following treatment of G144 cells with temozolomide and radiation, with BMP4 and LY364947 or 
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(n = 3, *p < 0.05). (C) Cell viability following treatment of BT046 cells with temozolomide and radiation, 
with BMP4 and LY364947 or TGF-β1 and noggin, compared to control (n = 3, *p < 0.05). (D) Western blot 
analysis for phosphorylated ATM (pATM), ATM, and MGMT, in BT046 cells treated with temozolomide and 
radiation, with BMP4 and LY364947 or TGF-β1 and noggin, compared to control. (E) Western blot analysis 
for phosphorylated H2αX in BT046 cells treated with temozolomide and radiation, with BMP4 and LY364947 
or TGF-β1 and noggin, compared to control. (F) Kaplan-Meier curve for survival in NSG mice following 
intracranial transplantation with U251 or U251-TR cells (*p < 0.01). (G) Circos plot of expression data 
generated by microarray analysis of U251 cells. (H) Circos plot of expression data generated by microarray 
analysis of U251-TR cells.
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U251.TR) and were definably temozolomide resistant, as determined by IC50 and TMZ sensitivity assay for via-
bility following treatment (Supplementary Fig. 7A,B). Compared to parental U251 cells, U251.TR cells had no 
significant change in proliferation rate in vitro (Supplementary Fig. 7C). However, while U251.TR tumors were 
histologically indistinguishable from tumors formed by their parental counterparts (Supplementary Fig. 7D,E), 
they had an increased latency of tumor formation following intracranial implantation in immunocompromised 
mice (Fig. 6F; p < 0.01). Further, expression analysis showed that U251.TR cells exhibit a BMP activation signa-
ture (Fig. 6G), in contrast to parental U251 cells, which exhibit a TGF-β activation signature (Fig. 6H).

p21 mediates the effects of BMP4 as an anti-proliferative and cytoprotective signal in glio-
blastoma.  To determine the mechanism by which GSCs transition from a quiescent to an activated state, 
we performed expression profiling of these two populations in vitro. Among the genes that showed a change in 
expression in the BMP- and TGF-β-treated groups was p21. We were particularly interested in this transcript 
because of its role in mediating activation states in NSCs. In adult mice, p21 has been shown to regulate NSC 
self-renewal and proliferation, and selected knockout of p21 results in NSC exhaustion49,50. Forced expression 
of p21 results in NSC quiescence, and protects NSCs from senescence51. First, using Western blot analysis, we 
found only minimal expression of p21 in U251 glioblastoma cells in resting-state culture. p21 expression begins 
to increase within 4 hours of treatment with BMP4, and peaks by 24 hours of BMP exposure (Fig. 7A). The effect 
of BMP4 on p21 appears to be through induction of transcription at the CDKN1A gene, as demonstrated by 
increased luciferase activity following U251 transfection with a full-length p21 promoter reporter and treatment 
with BMP4 (Fig. 7B; n = 3).

We then wished to determine if p21 expression is sufficient and necessary for the anti-proliferative effect of 
BMP in glioblastoma. To do so, we first examined the effect of p21 inhibition on U251 cell proliferation, using 
siRNA-mediate knockdown of p21. Knockdown of p21 in U251 cells using siRNA resulted in a negligible increase 
in U251 proliferation, compared to control, but had a significant effect in mitigating the negative effects of treat-
ment with BMP4 on proliferation (Fig. 7C; n = 3). We then studied the effect of p21 expression on U251 cell pro-
liferation following transfection with a wild-type p21 overexpression vector. Exogenous p21 expression in U251 
cells resulted in decreased proliferation, an effect that was not significantly changed by subsequent treatment with 
BMP4 or TGF-β1 (Fig. 7D; n = 3).

We then sought to elucidate the mechanisms by which p21 inhibits proliferation in glioblastoma. p21 has been 
shown to bind to and inhibit the oncogenic transcription factor, Stat3, a known target of TGF-β in glioblastoma 
and driver of GSC self-renewal and proliferation52,53. As predicted, coimmunoprecipitation assays demonstrated 
evidence of p21-Stat3 complex formation in U251 cells treated with BMP4, but not in U251 cells in resting-state 
culture, which was inhibited by treatment with the chemical p21 inhibitor, sterigmatocystin (Fig. 7E). Our find-
ings demonstrate that p21 binds to Stat3 in U251 cells following activation of the BMP signaling pathway.

Finally, we wished to determine if p21 expression is necessary for BMP to protect glioma cells from temozolo-
mide cytotoxicity. To do so, we generated IC50 curves for temozolomide in U251 cells treated with BMP and 
scrambled siRNA or BMP and p21 siRNA, compared to scrambled siRNA alone (Fig. 7F; n = 3, p < 0.05). 
Treatment of U251 cells with BMP4 and scrambled siRNA resulted in a rightward shift of the temozolomide IC50 
curve, consistent with a protective effect of BMP4 against temozolomide cytotoxicity in glioma cells. This protec-
tive effect was negated by concomitant treatment of U251 cells with BMP4 and siRNA against p21. Our findings 
support the conclusion that p21 mediates the effect of BMP4 as an inhibitor of cell proliferation and a mediator of 
temozolomide resistance in glioblastoma.

Discussion
Taken together, our results demonstrate a subpopulation of quiescent GSCs in glioblastoma, and show that GSC 
quiescence and activation are mediated by BMP and TGF-β signaling, through the downstream targets, ID1 and 
p21. These findings speak to the functional heterogeneity of the cancer stem cell identity, and suggest that treat-
ments designed to target CSCs must negotiate differences between these two subpopulations. As in the adult NSC 
niche, BMP signaling in the glioblastoma microenvironment directs GSCs toward a quiescent state, rather than 
toward a differentiated, astroglial cell fate, in a process reproducible through expression of p21.

Current studies suggest that cell quiescence is not a passive state, but rather a reversible G0 phase functional 
phenotype that requires active maintenance and regulation, and from which cells may be activated to re-enter 
the cell cycle54. A study of the mouse adult NSC niche of the subgranular zone (SGZ), for example, revealed two 
groups of adult NSCs: active NSCs that express proliferating cell nuclear antigen (PCNA) and can be identified 
by a 1-day BrdU pulse, and BrdU-retaining quiescent adult NSCs55. The presence of two NSC populations within 
the NSC niche may speak to the physiologic need to maintain a viable NSC pool: in another study finding that 
NSC quiescence in the SGZ was maintained by the BMP receptor, BMPR1a, inhibition or ablation of BMP sign-
aling resulted in a temporal increase in progenitor proliferation and subsequent decrease of neurogenesis due to 
exhaustion of the stem cell pool56.

Whether there is a similar need for a quiescent stem-like cell pool to maintain the non-physiologic hierarchy 
of cancer systems is unclear. Quiescent CSCs have been identified in multiple tumors, including pancreatic ade-
nocarcinoma57, breast cancer58, liver cancer59, and melanoma60. Further, studies from multiple cancer systems 
give evidence to a role for quiescent cells in treatment resistance. Current studies suggest that cell quiescence is 
not a passive state, but rather a reversible G0 phase functional phenotype that requires active maintenance and 
regulation, and from which cells may be activated to re-enter the cell cycle54.

For example, targeting of S phase cells in an in vivo liver tumor model using concomitant treatment with 
a CD13 inhibitor and 5 fluorouracil (5-FU) resulted in a more significant decrease in tumor volume than was 
seen with treatment with either drug alone59. Similarly, JARID1B knockdown to target slow cycling cells in a 
melanoma animal model results in significant inhibition of tumor growth and progression of tumor metastases60. 
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Finally, in an animal model of glioblastoma, treatment with the chemotherapeutic agent, temozolomide, resulted 
in an enrichment of relatively quiescent stem-like cells, which were able to drive tumor recurrence2.

In our study, treatment of GSCs in vitro with BMP4 or TGF-β1 directed GSCs toward a quiescent or acti-
vated phenotype, respectively. Our in vitro studies show that the anti-proliferative effect of BMP4 on glioma 
cells in mediated by its downstream targets, ID1 and p21. In vivo, staining for ID1 identifies a label-retaining cell 
population in a glioblastoma patient-derived xenograft tumor, supporting the conclusion based on pSmad1 and 
PCNA co-staining studies in human glioblastoma surgical specimens, that the BMP signaling pathway main-
tains a quiescent cell population in glioblastoma. Further, BMP signaling exerts a protective effect on glioma 
cells from temozolomide chemotherapy and radiation, while inhibition of BMP signaling enhances the cyto-
toxic effects of temozolomide and radiation. Whether glioblastoma cells in vivo exhibit functional plasticity in 
response to cell extrinsic signals as they do in vitro, and whether quiescent cell populations contain critical pools 
of treatment-resistant cells, remains to be elucidated.

Ethics approval and consent to participate.  All studies involving human subjects or tissue were 
approved by the Research Ethics Board at St. Michael’s Hospital, the Hospital for Sick Kids, and the University of 
Toronto, or the Institutional Review Board of Northwestern University. All animal studies were performed within 
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the guidelines of an approved Animal Use Protocol at The Centre for Phenogenomics, University of Toronto or 
Northwestern University.

Consent for publication.  Deidentified patient imaging data have been included in study under the auspices 
of the Research Ethics Board at St. Michael’s Hospital.

Methods
Human samples and study approval.  Human glioblastoma specimens and clinical data (including radi-
ographic imaging) were obtained from St. Michael’s Hospital, the St. Michael’s Hospital Brain Tumour Biobank 
and Clinical Database, and Northwestern Memorial Hospital, following approval by the Institutional Research 
Ethics Boards of both institutions. Informed consent was obtained from all participants prior to the use of tissue 
samples or clinical data. All samples were de-identified before analysis. All methods were performed in accord-
ance with the guidelines and regulations of the Research Ethics Boards of St. Michael’s Hospital and Northwestern 
Memorial Hospital.

TCGA Analysis.  Normalized RNA-expression data on the Affymetrix U133A platform was downloaded from 
the TCGA data portal. Differentially expressed genes related to TGF and BMP signalling were compared to each 
subclass of GBM using ANOVA followed by a Post-Tukey analysis. Significance was established at p < 0.05.

Glioma stem cells and patient-derived xenografts.  The GSC lines BT818, BT062508, BT051010, and 
BT063008 were cultured as neurospheres in Neurocult NS-A Basal Medium (Human Stem Cell Technologies), 
supplemented with 2mM L-glutamine (Invitrogen), 1X antibiotic/antimycotic (Invitrogen), 1% N2 supplement 
(Gibco), 2% B27 supplement (Gibco), 75 ng/ml bovine serum albumin (BSA, Sigma), 20 ng/ml human epidermal 
growth factor (hEGF, Sigma) and 20 ng/ml human basic fibroblast growth factor (hFGF, Sigma).

The GSC lines BT2012035, BT2012087, 101007, 041507, G144, G179, and GliNS1 were cultured and main-
tained in stem-like media as an adherent monolayer as previously described (Pollard et al., Cell Stem Cell 2009). 
Briefly, these cell lines were cultured in Neurocult NS-A Basal Medium (Human Stem Cell Technologies), supple-
mented with 2mM L-glutamine (Invitrogen), 1X antibiotic/antimycotic (Invitrogen), 1% N2 supplement (Gibco), 
2% B27 supplement (Gibco), 75 ng/ml bovine serum albumin (BSA, Sigma), 20 ng/ml human epidermal growth 
factor (hEGF, Sigma) and 20 ng/ml human basic fibroblast growth factor (hFGF, Sigma).

NOD scid gamma (NSG) mice were purchased from the Jackson Laboratory and maintained in accordance 
with Toronto Centre for Phenogenomics (TCP) institutional animal protocol. All experimental protocols were 
approved by the animal utilization committee at TCP. NSG mice underwent stereotactic intracranial injections of 
1.5 × 105 BT818 cells into the right corpus striatum, at coordinates 1 mm lateral and 1 mm anterior of the bregma 
suture, at a depth of 2.5 mm. Following confirmation of tumor formation, mice were treated with EdU and sacri-
ficed at successive time points thereafter.

Single-cell RNA sequencing analyses.  Analysis of scRNA-seq datasets was performed using the 
R-package Seurat [PMID: 29608179]. The two single-cell datasets were separately analyzed. First, log-normalized 
single-cell gene expression data was downloaded from 5 patients with primary glioblastoma (n = 430 single 
cells) [PMID:24925914]. The 5,948 genes with highest expression were available for analysis. The most variably 
expressed genes were determined accounting for the average expression and dispersion of each gene (n = 585 
genes). Principal component analysis was performed using the most variable genes followed by t-distributed 
stochastic neighbor embedding (t-SNE) for dimensionality reduction and cluster identification. Assignment of 
cell type identity to clusters was determined using the genes defined in the single-cell qPCR analyses (OLIG1, 
BMI1, EGFR), cell cycle marker genes (TOP2A, PCNA), or pathway-related genes when expression for marker 
genes were unavailable (ID3, ID2, BMP5, NES). Enrichment analysis for gene ontology was performed using the 
Bioconductor package “topGO”.

A second dataset included scRNA-seq from the same patient at two separate timepoints, the primary tumor 
(T01, n = 27) and recurrent (T01.R, n = 16) [PMID: 28263318]. Data were processed as described above. 
Wilcoxon rank-sum tests were used to assess differential expression between the primary and recurrent tumor.

Tissue culture.  Cells were treated with 20 ng/mL BMP4 (R&D System), 250 ng/mL noggin (R&D System), 
20 ng/mL TGF-β1 (R&D System), 3 μM LY364947 (Sigma), and 10 μM BrdU labeling solution (Roche), as 
described.

Neurosphere formation efficiency assay.  GSCs were plated at various densities (100–2000 cells/mL) 
in serum-free media and cultured for 7 days. Spheres were defined being of diameter greater than 100 µm. All 
experiments were performed in triplicate.

Cell proliferation assay.  Cell growth was assayed by plating 5000 cells per well in a TC-treated 96-well 
clear bottom plate (Corning). Plates were collected at the reported time points and assayed using Alamar Blue 
as per manufacturer’s protocol. Cell growth was assayed by plating 1 × 104 cells per well in a TC-treated 6-well 
plate (Corning). Plates were collected at the reported time points and cells were counted using ViCell cell counter.

Immunohistochemistry.  Human glioblastoma specimens and clinical data were obtained from the St. 
Michael Hospital Brain Tumour Biobank following approval by the Institutional Research Ethics Boards. All sam-
ples were de-identified before analysis. Tissue samples were preserved in 10% formalin, dehydrated and embed-
ded in paraffin. Five μm sections were immunostained for pSmad1/5 (Abcam; 1:100), pSmad2 (Cell Signaling; 
1:100), or PCNA (Abcam; 1:1000) with antigen retrieval using pressure cooking in 10uM citrate buffer at pH6.0, 
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secondary HRP anti-Rabbit IgG (Vector Laboratories; 1:250), and detection using DAB Substrate kit (Vector 
lab). Primary antibodies Nuclei were counterstained with DAPI (Sigma; 0.002 mg/ml) for 10 minutes, washed 
and mounted with Vectashield mounting medium (Vector Laboratories). Images were acquired with a Quorum 
Spinning Disk Confocal Microscope (Olympus) running Volocity software (Perkin Elmer).

Western blotting.  Cells were washed with cold PBS and lysed. Cell lysates were shaken at 4 °C for 10 min 
and centrifuged at 14,000 × g for 10 min. Protein concentrations in the supernatants were quantified using the 
BCA protein assay. Fifteen micrograms of protein were separated on 10% acrylamide/bisacrylamide gels and 
transferred to PVDF membranes. PVDF membranes and blocked with 5% (w/v) skim milk in PBS/0.1% Tween-
20 for 1 h at room temperature. Membranes were blotted with Sox2, Bmi1, nestin, GFAP, Oct3/4, Sall2, Olig1, 
p21, Stat3, or actin, at 4 °C overnight, then washed and incubated with secondary antibodies (Cell Signaling) for 
1 hr at room temperature. Bound antibodies were detected with horseradish peroxidase-linked anti-mouse or 
anti-rabbit IgG (Cell Signaling), followed by ECL (Amersham). Protein quantification was performed by densi-
tometry (Image Studio, LI-COR). Protein levels were normalized for β-actin.

Quantitative real-time PCR.  Total RNA was extracted from cells in culture using an RNAEasy Kit 
according to the manufacturer’s instructions (Qiagen), and cDNA synthesis was performed using SuperScript II 
(Invitrogen). Assays were performed using SYBR Green PCR Master Mix (Applied Biosystems) with a StepOne 
Real Time PCR System. Predesigned primers were purchased from IDT. Gene transcript levels were calculated 
using the ΔΔCt method.

Microarray analysis.  Gene expression profiles were measured by Affymetrix GeneChip Human 
Transcriptome Array 2.0, and RMA normalization was applied. The probe set profiles were summarized to gene 
level expression profiles by selecting a probe set with maximal IQR (interquartile range) when multiple probe 
sets were mapped to a gene. Discriminative genes for three groups (BMP4, GSC, and TGF-β1) were identified 
by Mann-Whitney U-test. The genes in the heat map were selected by Mann-Whitney U-test with a criteria of 
p-value < 0.05. Gene expression profile for each gene was normalized so that minimal value and maximal value 
could be converted to 0 and 1, respectively.

Short interfering RNA knockdown.  Predesigned short interfering (si)RNAs targeting human p21 and 
scrambled control siRNAs were purchased from Qiagen. Two separate siRNAs targeting different sequences 
within p21 were used to transfect U251 cells using Lipofectamine 2000 (Invitrogen) versus scrambled control 
siRNA. Cells were harvested 48 hours post-transfection for analysis of protein and RNA levels.

Statistical analysis.  GraphPad Prism 7 software was used to analyze results. Significance was determined 
by a 2-tailed Student’s t-test.

Statement of translation significance.  Glioblastoma is the most prevalent and aggressive malignant 
brain tumour in adults, with a median survival following multi-modality therapy of 14.6 months. Recent stud-
ies have implicated cancer stem cells within glioblastoma (glioma stem-like cells, GSCs) as mediators of tumor 
growth, therapeutic resistance and tumor progression. In our work, we characterize the role of the BMP and 
TGF-β signaling pathways as regulators of CSC state in glioblastoma. We find that BMP pathway activation con-
fers relative resistance to radiation and temozolomide chemotherapy, and defines a quiescent cell population in 
patients that is enriched by temozolomide chemoradiotherapy. Our study identifies a cellular reservoir for tumor 
recurrence in glioblastoma following cytotoxic therapy and provides a target to prolong treatment response.

Data Availability
Sequence data has been deposited at the European Genome-phenome Archive (EGA), which is hosted by the EBI 
and the CRG.
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