
The Jackson Laboratory
The Mouseion at the JAXlibrary

Faculty Research 2019 Faculty Research

10-4-2019

Debutant iOS app and gene-disease complexities in
clinical genomics and precision medicine.
Zeeshan Ahmed

Saman Zeeshan

Ruoyun Xiong

Bruce T Liang

Follow this and additional works at: https://mouseion.jax.org/stfb2019
Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons

https://mouseion.jax.org/?utm_source=mouseion.jax.org%2Fstfb2019%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mouseion.jax.org/stfb2019?utm_source=mouseion.jax.org%2Fstfb2019%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mouseion.jax.org/fac_research?utm_source=mouseion.jax.org%2Fstfb2019%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mouseion.jax.org/stfb2019?utm_source=mouseion.jax.org%2Fstfb2019%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=mouseion.jax.org%2Fstfb2019%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=mouseion.jax.org%2Fstfb2019%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages


Ahmed et al. Clin Trans Med            (2019) 8:26  
https://doi.org/10.1186/s40169-019-0243-8

SHORT REPORT

Debutant iOS app and gene-disease 
complexities in clinical genomics and precision 
medicine
Zeeshan Ahmed1,2* , Saman Zeeshan3, Ruoyun Xiong1,3 and Bruce T. Liang4

Abstract 

Background: The last decade has seen a dramatic increase in the availability of scientific data, where human-related 
biological databases have grown not only in count but also in volume, posing unprecedented challenges in data stor-
age, processing, analysis, exchange, and curation. Next generation sequencing (NGS) advancements have facilitated 
and accelerated the process of identifying genetic variations. Adopting NGS with Whole-Genome and RNA sequenc-
ing in a diagnostic context has the potential to improve disease-risk detection in support of precision medicine 
and drug discovery. Several bioinformatics pipelines have been developed to strengthen variant interpretation by 
efficiently processing and analyzing sequence data, whereas many published results show how genomics data can be 
proactively incorporated into medical practices and improve utilization of clinical information. To utilize the wealth of 
genomics and health, there is a crucial need to generate appropriate gene-disease annotation repositories accessed 
through modern technology.

Results: Our focus here is to create a comprehensive database with mobile access to actionable genes and classified 
diseases, considered the foundation for clinical genomics and precision medicine. We present a publicly available iOS 
app, PAS-Gen, which invites global users to freely download it on iPhone and iPad devices, quickly adopt its easy to 
use interface, and search for genes and related diseases. PAS-Gen was developed using Swift, XCODE, and PHP script-
ing that uses Web and MySQL database servers, which includes over 59,000 protein-coding and non-coding genes, 
and over 90,000 classified gene-disease associations. PAS-Gen is founded on the clinical and scientific premise that 
easier healthcare and genomics data sharing will accelerate future medical discoveries.

Conclusions: We present a cutting-edge gene-disease database with a smart phone application, integrating infor-
mation on classified diseases and related genes. The PAS-Gen app will assist researchers, medical practitioners, and 
pharmacists by providing a broad and view of genes that may be implicated in the likelihood of developing certain 
diseases. This tool with accelerate users’ abilities to understand the genetic basis of human complex diseases and by 
assimilating genomic and phenotypic data will support future work to identify gene-specific designer drugs, target 
precise molecular fingerprints for tumors, suggest appropriate drug therapies, predict individual susceptibility to 
disease, and diagnose and treat rare illnesses.
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Background
From the beginning of scientific discoveries, it has been 
central to understand the causes of disease, pain, and 
senescence. Over the centuries, quests for the answers 
have led us to take giant leaps. It was only in the last cen-
tury that the discovery of antibiotics freed us from many 
of the dreaded diseases of the past. Today, we stand on 
the threshold of a new medical revolution, just as big and 
far-reaching. Despite all our scientific knowledge, medi-
cine still faces several critical and conflicting challenges. 
One of the challenges is the transition from a disease-
based model to a patient-oriented approach as much 
of medicine is still based on symptomatic treatments. 
Disease classification is routinely derived from different 
streams of healthcare unit data, which includes imag-
ing, pathology, genomics, electrophysiology, and others 
[1]. Incorporating genetic information assists in pro-
ducing individual treatment solutions, rather than what 
works for the average person, and understanding who is 
at risk for critical diseases like diabetes, high blood pres-
sure, or cancer. This allows for rapid disease at an early 
stage, accurate characterization of disease, and preven-
tive measures needed before the disease even appears. 
Also, timely discovery and association of genetic variants 
with diseases can help develop a more effective therapy 
tailored to an individual’s precise genetic makeup and 
reduces adverse drug reactions. Occasionally, technologi-
cal advancements in genomics have revolutionized the 
field with gene number proposition, genetic mapping, 
data banks, gene-disease maps, catalogues of human 
genes and genetic disorders, big data, and next generation 
sequencing (NGS) [2]. As biological data accumulates 
at larger scales and at exponential rates, with higher-
throughput and lower-cost DNA sequencing technolo-
gies, it has become essential to develop innovative, smart, 
and modern bioinformatics applications to help improve 
research quality. New tools provide a progressive under-
standing of heterogeneous genomics and clinical findings 
and facilitate increased clinical utilization of information 
in these databases and translation to healthcare.

The word “Gene” was introduced over 100  years ago 
[3], and its meaning has progressively evolved in sev-
eral scientific directions [4–6]. A gene is a segment of 
DNA sequence that carries genetic information defining 
a biological function and can be transferred from par-
ent to offspring [7, 8]. Most human genes have a discon-
tinuous structure, with the protein coding regions, or 
exons, interrupted by non-coding regions, or introns [9, 
10]. For some time, many researchers used a broad esti-
mate of gene count at more than 50,000 genes including 
21,000 protein-coding genes [11]. However, this number 
has repeatedly been overturned with advancements in 
genetics and genomics research. A major goal of medical 

genetics is to identify genes that when altered lead to 
human disease, but not all recognizable DNA sequence 
alterations result in disease [12]. Most alterations, or 
mutations, are simple differences called single nucleotide 
polymorphisms (SNPs) that may not change the expres-
sion or coding of a gene, but some specific mutations can 
change gene instructions, and ultimately create a protein 
malfunction, which may cause disease. If we can identify 
which genetic variations are associated with specific dis-
eases, we will be better equipped to find new treatments 
and even cures.

Today, scientists have identified genetic mutations 
responsible for thousands of conditions, such as cancer, 
hypertension, and heart disease that affect millions of 
people. These associations were not easily deciphered, 
because they are often impacted by interactions between 
dozens of different genes, many of which are caused by 
single gene elements or the environment. To identify the 
genetic signatures of these complex common elements, 
scientists may have to profile the genetic signatures of 
thousands of people, even multiple populations, and not 
just a few individuals. However, studying the genome 
and epigenome (chemically-modified genome) [13] has 
led to the fundamentals of development and progres-
sion of human diseases [14], which are characterized as 
multifactorial, mitochondrial [15], chromosomal [16], 
and monogenic [17] diseases. All human diseases are 
maintained by the World Health Organization (WHO) 
with the standard creation of International Classification 
of Diseases (ICD) codes. With the emergence of next-
generation gene sequencing, numerous databases have 
surfaced for gene annotation, which claim to provide 
information about genes and link them to related dis-
eases (e.g., Disease Ontology [18], DiseaseEnhancer [19], 
DISEASES [20], DisGeNET [21], eDGAR [22], GeneCard 
[23], GTR [24], MalaCard [25], OMIM [26], miR2Disease 
[27], HGMD [28], DNetDB [29], ClinVar [30], Orphanet, 
Gene2Function, etc.), and are accessed through web and 
desktop interfaces. These databases are useful, but none 
of them contain up-to-date genome and disease data in 
a standardized format and accessible through a single 
application platform.

One platform that has proven to be an efficient tool 
in several areas including healthcare, is the smartphone 
application. As smart devices have become increas-
ingly popular, there is still no iOS app publicly available 
that can provide unified access to genomic databases 
with easy navigation and free portable access to genes 
and related diseases for efficient and robust classifica-
tions. The reasons could be extensive heterogeneity of 
clinical and genomic data collection and management, 
and addressing complexities of implementing an Apple 
mobile app. Developing such a mobile repository, can 
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assist healthcare providers, researchers, and pharma-
ceutical companies to integrate their health information 
systems inter-organizationally, develop clinical decision-
support systems for disease state management, perform 
effective comparisons between studies, and enable the 
quick identification of patients for inclusion to inter-
vention and observational studies. The objectives of our 
research is to create a centralized gene-disease data-
base, which not only stores, organizes, and shares data 
in a structured and searchable manner but also facilitates 
data retrieval with a smartphone application.

Implementation
Developing an iOS app is an unorthodox bioinformat-
ics application development process, especially when it 
is expected to be installed in all models of the available 
iPhone and iPad devices working with timely and latest 
versions of operating systems installed. It is even more 
complex when it needs to connect to the external web-
based database servers for data acquisitions utilizing 
internet resources, with imposed stringent security con-
ditions by the host organization. One of the most difficult 
and complex tasks of implementing an iOS app connect-
ing a mobile interface via web programmed modules to 

the database server for data exchange is the integration 
of all modules developed using different programming 
languages and processed through different compilers/
interpreters on a single platform. This often leads to com-
plicated logical errors that are hard to resolve.

PROMIS-APP-SUITE (PAS)—Gen (Fig.  1) is an iOS 
app developed with Swift programming language, using 
the XCODE (Version 10.2.1 (10E1001)) integrated 
development environment for MacOS. We designed 
the human interface of PAS-Gen following Apple’s rec-
ommended design principles, which include Aesthetic 
Integrity, Consistency, Direct Manipulation, Feedback, 
Metaphors, and User Control. The front end of all the 
graphical user interfaces (scenes) were designed and con-
nected using XCODE’s built-in Storyboard. The backend 
of all the screens were programmed in Swift program-
ming language, mainly importing UIKit. The database 
of PAS-Gen was modelled and implemented within the 
MySQL database management system, which was pub-
licly hosted via Apache HTTP Server. PAS-Gen data-
base includes human reference genomes collected from 
different genomics databases worldwide, including 
ClinVar [30], GeneCards [23], DISEASES [20], HGMD 
[28], OMIM [26], GTR [24], CNVD [31], Ensembl [32], 

Fig. 1 PAS-Gen navigating graphical user interfaces with examples of searched Gene, Gene to Disease, and Disease to Gene results. PAS-Gen 
(iPhone XS and 8) screen display includes About, Register User, Reset Password, Main, Menu, Genomics, Clinical Genomics, Genes, and Genes and 
Disease interfaces. Example 1 shows a search by entering an incomplete gene name “BRCA” (BReast CAncer gene) that reveals the for protein 
coding genes “BRCA1” and “BRCA2” and related details. Example 2 is a search using keyword “cancer” that presents 6443 genes known to be 
involved in different kinds of cancers. In example 3, a search for a specific disease “lung cancer” resulted in a total of 11 genes and related diseases. 
Example 4 demonstrates a search for the gene “RFWD2”, and results revealed 17 disease matches including a protein coding gene with Ensembl ID 
“ENSG00000143207” at Chromosome 1 associated with the disease “Autism”. Detailed results are attached in Additional file 1
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GenCode [33], Novoseek, Swiss-Prot, LncRNADisease, 
and Orphanet. None of these databases provide a mobile 
interface for usage. PAS-Gen design is very flexible, and 
can accommodate new releases and updates of genes and 
diseases without requiring its users to install a new ver-
sion (Fig. 1). Dynamic web-based modules (pages) were 
developed using the PHP scripting language to facilitate 
data migration between the iOS app screens and MySQL 
database server (Fig.  2). The design is based on prod-
uct line architecture (PLA) [34–36], modelled on the 
Butterfly model [37, 38], with all major modules imple-
mented following software engineering principles, which 
are capable of performing individual key roles and can 
assimilate in a large-scale project. During development, 
the performance of PAS-Gen was tested using built-
in virtual iPhone and iPad kits, and real time iPhone (8 
and XS with pre-installed iOS 12.4) and  3rd generation 
iPad devices. The released, currently available version of 
PAS-Gen was tested and approved by Apple for meeting 
expected international standards, which include architec-
ture, user interaction, system capabilities, visual design, 
icon and images, windows and views, extensions etc.

PAS-Gen graphical interface provides user profile, 
login, and password management modules, requir-
ing new users to first register by creating an account 
and login with valid credentials. The major reason for 
requesting users to create a profile, is to apply security 

features to the app to track usage and backtrack in 
case of any trouble, such as a breach or violation. In 
the future, we plan to implement artificial intelligence 
and machine learning-based features to help users 
search data of their interest based on their search his-
tory, and having their profile will be extremely useful in 
such cases. Moreover, a user email address is required 
to inform on major updates to the app and database. 
At successful login, users will be directed to the main 
menu leading to the “Genomics” and “Clinical Genom-
ics” interfaces, with two similarly designed interfaces: 
“Genes” and “Gene & Disease”. The “Genomics” but-
ton leads to the “Genes” interface, which allows users 
to search for only genes and related information, which 
includes Gene Name, Ensembl ID, Type, and Chro-
mosome. The “Clinical Genomics” button leads to the 
“Gene & Disease” interface, which lets users search for 
related diseases by complete or partial word matching. 
One important thing to remember while searching for 
any disease leading to genes is, if the name of the dis-
ease consists of multiple words then using underscore 
“_” instead of space or hyphen is required (e.g., type 
“Down_Syndrome” for “Down Syndrome” or “Tay_
Sachs” for “Tay-Sachs”). PAS-Gen is for non-commer-
cial research and educational use only. It is freely and 
only available on the App Store for iOS devices, tested 
and recommended for the iPhone 6, 8, X (XS, MAX), 

Fig. 2 PAS-Gen components design, development, and data flow. PAS-Gen is an iOS app developed with Swift programming language, XCODE 
integrated development environment for MacOS, MySQL database management system, PHP scripting language, and UNIX-based web and 
database servers
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and iPad (2nd and 3rd Generation) mobile devices with 
iOS version 12.1 or above (Fig. 1).

Further download and project-related details are avail-
able at the following web site: https ://itune s.apple .com/
us/app/pas-gen/id144 77661 64?ls=1&mt=8.

Results
PAS-Gen is an easy-to-use application designed to sim-
plify navigation across the landscape of gene annotation 
resources by an efficient mobile record search engine, 
which is based on standardized genes and related dis-
eases to help explore multi-purpose clinical and genom-
ics concepts in meaningful ways (Fig.  1). The PAS-Gen 
database includes a total of 59,293 genes, where 19,989 
are protein-coding and 39,304 are non-protein-coding 
(processed transcript, lincRNA, antisense, IG C gene, 
bidirectional promoter lncRNA, polymorphic pseu-
dogene, transcribed unitary pseudogene, transcribed 
unprocessed pseudogene, transcribed processed pseudo-
gene, sense overlapping, scRNA, noncoding, unprocessed 
pseudogene, IG V gene, unitary pseudogene, vaultRNA, 
TR C gene, sense intronic, snRNA, processed pseudo-
gene, TEC, TR V pseudogene, TR V gene, and macro 
lncRNA) (Table 1). The PAS-Gen database is composed 
of 98,064 gene-disease combinations reported from 809 
distinct sources (combinations of sources for individ-
ual gene-disease relationship) and based on 26 types of 
genes, located at 23 pairs of genomic chromosomes and 
mitochondrial DNA, and 13,216 genes (including aliases), 
10,598 genes with distinct Ensembl identifiers, 12,257 
distinct diseases, 32,089 combinations with actionable 
genes, and 8063 cancer-causing genes (Table 2). Here, we 
present results to help users better understand the data 
search capabilities of PAS-Gen (Figs. 3, 4, 5, 6), detailed 
results are included in Additional file 2.

A combination of various genetic and environmental 
factors leads to the most common diseases [39], e.g., 
Diabetes [40], Obesity [41], Schizophrenia [42, 43], 
Autism [44], Heart disease [45, 46], Polydactyly [47, 48], 
Spina Bifida [49], and Cancer [50]. The most common 
genetic diseases are Thalassemia [51], Down Syndrome 
[52], Cystic Fibrosis [53], Sickle Cell Anemia [54], Tay-
Sachs disease [55], Fragile X Syndrome [56], Hemo-
philia [57], and Huntington [58]. Examples of gene 
search results for some of the most common diseases 
are shown in Figs.  3, 4 and the most common genetic 
diseases are shown in Figs.  5, 6. We present search 
results for gene-disease associations for the most com-
mon diseases, which includes 931 results for Diabetes, 
60 results for Obesity, 391 results for Schizophrenia, 
313 results for Autism, 512 Heart and related diseases, 
168 results for Polydactyly, 79 results for Spina Bifida, 
and 6443 results for Cancer (Figs. 3, 4). Search results 

Table 1 PAS-Gen database description: type and  sub-
types of genes

PAS-Gen database includes protein coding and 25 non-coding gene types 
(processed transcript, lincRNA, antisense, IG C gene, bidirectional promoter 
lncRNA, polymorphic pseudogene, transcribed unitary pseudogene, 
transcribed unprocessed pseudogene, transcribed processed pseudogene, 
sense overlapping, scRNA, non coding, unprocessed pseudogene, IG V gene, 
unitary pseudogene, vaultRNA, TR C gene, sense intronic, snRNA, processed 
pseudogene, TEC, TR V pseudogene, TR V gene, macro lncRNA)

# Gene types Gene sub-types

1 Protein coding Coding

2 processed_transcript non_coding

4 lincRNA non_coding

5 Antisense non_coding

6 IG_C_gene non_coding

7 bidirectional_promoter_lncRNA non_coding

8 polymorphic_pseudogene non_coding

9 transcribed_unitary_pseudogene non_coding

10 transcribed_unprocessed_pseudogene non_coding

11 transcribed_processed_pseudogene non_coding

12 sense_overlapping non_coding

13 scRNA non_coding

14 non_coding non_coding

15 unprocessed_pseudogene non_coding

16 IG_V_gene non_coding

17 unitary_pseudogene non_coding

18 vaultRNA non_coding

19 TR_C_gene non_coding

20 sense_intronic non_coding

21 snRNA non_coding

22 processed_pseudogene non_coding

23 TEC non_coding

24 TR_V_pseudogene non_coding

25 TR_V_gene non_coding

26 macro_lncRNA non_coding

Table 2 PAS-Gen database description and statistics

PAS-Gen database includes genes-disease combinations, gene types, 
chromosomes, genes (including aliases), genes (Ensembl IDs), diseases, 
actionable, source combinations, and cancer leading genes

Categories Count

Genes-disease combinations 98,064

Gene types 26

Chromosomes 24

Genes (including aliases) 13,216

Genes (Ensembl IDs) 10,598

Unique diseases 12,257

Genes-disease combinations based on actionable genes 32,089

Distinguished genes-disease source combinations 809

Cancer leading genes 8063

https://itunes.apple.com/us/app/pas-gen/id1447766164%3fls%3d1%26mt%3d8
https://itunes.apple.com/us/app/pas-gen/id1447766164%3fls%3d1%26mt%3d8
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presenting gene-disease associations for most common 
genetic diseases include, 117 results for Thalassemia, 
49 results for Down Syndrome, 91 results for Cystic 
Fibrosis, 18 results for Sickle Cell Anemia, 16 results 

for Tay-Sachs disease (Tay-Sachs is generally hyphen-
ated, to search using PAS-Gen, its recommended to use 
underscore instead), 31 results for Fragile X Syndrome, 
64 results for Hemophilia, and 81 results for Hunting-
ton (Figs. 5 and 6).

Fig. 3 PAS-Gen (iPhone 8) screenshot examples of gene results (top two shown) from searches for the four most common diseases: a 931 results 
for Diabetes, b 60 results for Obesity, c 391 results for Schizophrenia, and d 313 results for Autism. Detailed results are attached in Additional file 1

Fig. 4 PAS-Gen screenshot examples of gene results (top two shown) from searches of the most common diseases: a 512 Heart and related 
diseases, b 168 results for Polydactyly, c 79 results for Spina Bifida, and d 6443 results for Cancer. Detailed results are attached in Additional file 1
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Discussion
We are entering the era of personalized medicine in 
which an individual’s genetic makeup will eventually 
determine how a doctor can tailor his or her therapy. 
Therefore, it is critical to understand the genetic basis of 
common diseases (e.g., which genes and genetic variants 

contribute to disease phenotypes). Human diseases are at 
the heart of extensive research encompassing genomics, 
bioinformatics, systems biology, and systems medicine. 
To gain new insight into disease taxonomy, etiology, and 
pathogenesis, it’s important to understand how diseases 
are related to each other [29]. In the past, various efforts 

Fig. 5 PAS-Gen screenshots examples of gene results (top two shown) for searches of common genetic diseases: a 117 results for Thalassemia, b 49 
results for Down syndrome, c 91 results for Cystic Fibrosis, and d 18 results for Sickle Cell Anemia. Detailed results are attached in Additional file 1

Fig. 6 PAS-Gen screenshots examples of gene results (top two shown) for searches of common genetic diseases: a 16 results for Tay-Sachs disease, 
b 31 results for Fragile X Syndrome, c 64 results for Hemophilia, and d 81 results for Huntington. Detailed results are attached in Additional file 1
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have been made in deciphering diseases to facilitate pre-
dictive diagnosis and thereby guide treatment factors 
[39], which includes drawing disease relationships using 
clinical manifestations [59–62], healthcare records [63–
66], images and data generated using wearable technol-
ogy and artificial intelligence [67–70], and information 
encapsulated within related genes [71, 72], proteins [73], 
signaling [74] and metabolic pathways [75], microRNA 
[76], chemo-centric views [77], phenotypic characteris-
tics, and microbes [78]. Multiomics approaches (genome, 
transcriptome, proteome, metabolome, microbiome, and 
epigenome) are becoming increasingly common with 
the advancement of high-throughput technologies. A 
key challenge in this realm is NGS interpretation. Sci-
entists are faced with the daunting challenge of identify-
ing candidate genes that are relevant to their biological 
system of interest. Most often, the researcher only has 
direct knowledge of a few, if any, candidate genes. The 
clinical interpretation of the significance of specific gene 
variants can be unique to a patient. Variability in inter-
pretation for sequence variants is due, in part, to the 
lack of standard curated information to support clinical 
decision-making.

The underlying assumption here is that creating a data-
base with smart distillation and abundant distribution 
of genes and SNPs linked to the classified diseases and 
drugs through their description and IDs (e.g., ICD and 
NDC) can support both clinical and research environ-
ments [6]. Currently, investigation of multiple databases 
is required to assess the potential significance of even 
one sequence variant, and that is a cumbersome, time-
consuming, and an increasingly unfeasible process with 
regard to identification and reports of variants in actiona-
ble genes because of the absence of a standard centralized 
platform for connecting genes to their disease phenotype 
[79]. Such a database must not be redundant and should 
only include human reference genome and disease-based 
information collected from valid sources available world-
wide. It’s very important to facilitate interested users with 
efficient, user friendly, easy navigation, and free portable 
access to the database using platforms that have proven 
to be efficient tools in several areas including healthcare. 
In this manuscript, we present design and development 
of an iOS application to explore genes and diseases to 
support medical research that will support implementa-
tion of precision medicine.

The greatest strength of our approach is unearthing the 
biological roots of complex and rare diseases by facilitat-
ing mobile search mechanism for known and authentic 
genes that have been associated with their respective dis-
eases. PAS-Gen aims to benefit every type of user (e.g., 
researchers, medical practitioners, life science students, 
and even patients) with easy one-touch browsing and 

saving time scanning through genes and developing gene-
disease lists for a research study [6]. To harness the power 
of reported genes, our presented solution can contribute 
as a state-of-the-art, leading mobile application. In the 
future, we are looking to extend the scope of this project 
by curating and adding more genes, classified diseases 
and their relationships in PAS-Gen database, implement-
ing data science and visualization features for analytics, 
and implementing actionable genes-based data classifi-
cation e.g., The American College of Medical Genetics 
and Genomics (ACMG) [80] and MSK-IMPACT [81] 
approved actionable genes. We are extending the scope 
of our project by adding germline and somatic muta-
tions, especially maintained by the Genome-Wide Asso-
ciation Studies (GWAS) [82] and Catalog of Somatic 
Mutations in Cancer (COSMIC) [83, 84]. We aim for the 
integration and annotation of our genomics (genes and 
variants) and clinical (diseases and drugs and their code 
sets) databases to assist clinicians to directly interpret a 
patient’s genomic profile and collaborate with scientists 
to translate variant data into therapy. Furthermore, we 
are interested in advancing the graphical user interface 
of PAS-Gen with the implementation of machine learn-
ing techniques to facilitate users in intelligently searching 
data of their interest based on their personal preferences 
and search history.

Conclusions
Gene-disease data are highly significant at every level of 
biological research and healthcare, but inconsistencies 
and inabilities in terms of gene annotation and speci-
ficity of disease classification terminologies add to the 
complexity and lack of an efficient integrative search-
able system make it difficult to comprehend the under-
lying implications. We offer PAS-Gen to the biomedical 
research community with a social pledge to educate indi-
viduals by providing them with an interactive app to 
query, easily explore, and access information on gene 
annotation and classified disease phenotypes with greater 
visibility and easy browsing. The gene-disease query-
ing ability offered by PAS-Gen provides the user with 
an important knowledge discovery tool, just a click away 
from any location. PAS-Gen is an exclusively academic 
application founded on genomics, clinical, scientific, and 
modern technology to support healthcare by enabling 
scientific data retrieval using efficient mobile-based tools.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s4016 9-019-0243-8.

Additional file 1. Additional data reported in Figs. 3, 4, 5, 6. 

https://doi.org/10.1186/s40169-019-0243-8
https://doi.org/10.1186/s40169-019-0243-8
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Additional file 2. PAS-Gen: Guide to iOS app with gene-disease 
classifications.
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