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Early‑life DNA methylation profiles are 
indicative of age‑related transcriptome changes
Niran Hadad1,2,7  , Dustin R. Masser2,3, Laura Blanco‑Berdugo4, David R. Stanford2,3,5 
and Willard M. Freeman1,2,3,5,6* 

Abstract 

Background:  Alterations to cellular and molecular programs with brain aging result in cognitive impairment and 
susceptibility to neurodegenerative disease. Changes in DNA methylation patterns, an epigenetic modification 
required for various CNS functions are observed with brain aging and can be prevented by anti-aging interventions, 
but the relationship of altered methylation to gene expression is poorly understood.

Results:  Paired analysis of the hippocampal methylome and transcriptome with aging of male and female mice 
demonstrates that age-related differences in methylation and gene expression are anti-correlated within gene bod‑
ies and enhancers. Altered promoter methylation with aging was found to be generally un-related to altered gene 
expression. A more striking relationship was found between methylation levels at young age and differential gene 
expression with aging. Highly methylated gene bodies and promoters in early life were associated with age-related 
increases in gene expression even in the absence of significant methylation changes with aging. As well, low levels 
of methylation in early life were correlated to decreased expression with aging. This relationship was also observed in 
genes altered in two mouse Alzheimer’s models.

Conclusion:  DNA methylation patterns established in youth, in combination with other epigenetic marks, were able 
to accurately predict changes in transcript trajectories with aging. These findings are consistent with the develop‑
mental origins of disease hypothesis and indicate that epigenetic variability in early life may explain differences in 
aging trajectories and age-related disease.
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Introduction
Epigenetic modifications, chromatin, and direct DNA 
modifications are key genomic regulatory processes 
required for proper development [1], gene imprinting 
[2–4], X chromosome inactivation [5–7], gene expression 
regulation [8], and genomic organization [9–11]. Disrup-
tions to the epigenome can alter basic cellular regula-
tion leading to a wide range of dysfunctional molecular 
programs [10–12]. Dysregulated epigenetic control with 
aging has been proposed as an etiological factor com-
mon to age-related diseases ranging from diabetes to 

neurodegenerative diseases such as Alzheimer’s disease 
[13–18]. DNA methylation has been widely studied in 
geroscience research as methylation at specific loci is 
indicative of chronological age [19–22] and can poten-
tially be an indicator of ‘biological’ aging [23, 24]. DNA 
methylation primarily occurs in a CpG context; however, 
non-CpG methylation is abundant in the central nervous 
system (CNS) [1, 25] and has only been minimally exam-
ined with aging [26, 27]. With the growing understanding 
that DNA methylation is dynamic, the role of alterations 
in DNA methylation patterns in regulating gene expres-
sion changes during development, aging, and disease is of 
particular interest.

DNA methylation changes with aging demonstrate 
both tissue specificity and conservation across tissues 
depending on the specific genomic location [28–30]. 
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Conserved changes with aging across tissues in the 
form of epigenetic clocks have proved to be a powerful 
tool for estimating chronological age and are predictive 
of all-cause mortality [24, 31, 32]. Tissue-specific DNA 
methylation changes with aging on the other hand may 
underlie organ/cell-specific deficits. For example, in 
the liver, gene body hypermethylation occurs primarily 
in genes involved in lipid metabolism [33], while in the 
brain age-related methylation changes occur in genes 
involved in synaptic transmission and cellular integrity 
[26]. It is important to note that changes in methylation 
also occur in pathways implicated to be dysregulated 
with aging systemically, such as the insulin-signaling 
pathway and cellular senescence [34–37]. Recent studies 
show that age-related DNA methylation changes in blood 
[38, 39], kidney [40], liver [33, 37], and the hippocampus 
[26], can be partially prevented by dietary, genetic, and 
pharmacological pro-longevity interventions providing 
further support for the association between DNA meth-
ylation and aging.

In the CNS, DNA methylation plays an important role 
in cellular differentiation [41–43], synaptic formation and 
function [44, 45], and in molecular mechanisms underly-
ing learning and memory formation [46]. These processes 
are known to be impaired with aging [47]; however, 
whether age-related methylation differences contribute 
to the decline of these processes is unknown. Global lev-
els of DNA methylation have been proposed to decrease 
with aging [48], but this has not been observed in brain 
samples using modern sequencing techniques [49, 50]. 
Rather specific loci in the genome undergo hypermethyl-
ation and hypomethylation with aging [27]. In addition to 
differences in methylation, with aging there is increased 
variability in CpG methylation [51]. Similar findings are 
observed in Alzheimer’s disease (AD) patients, specifi-
cally in genes directly linked to AD [17]. Thus, epigenetic 
mechanisms may contribute to age-related impairments 
and disease through altering gene expression, but lit-
tle is known about the effects of age-related changes in 
methylation on gene expression regulation in the brain. 
Understanding the role age-related differential methyla-
tion plays in brain aging may allow for identification of 
regulatory processes contributing to the development of 
neuropathologies.

In previous studies we have characterized changes 
in methylation and transcription with aging in the hip-
pocampus of male and female mice, finding a core of 
sex common changes with the majority of age-related 
changes being sexually divergent [27, 52]. Here we sought 
to understand the effect of age-related differential meth-
ylation on gene expression using paired DNA methyla-
tion, by whole-genome bisulfite sequencing (WGBS), and 
transcriptome, by RNA-sequencing, data from the same 

samples. We find that differential methylation in gene 
body and enhancer elements inversely correlates with 
aging gene expression. This relationship is generally weak 
and accounts for a small fraction of the differentially 
expressed genes with aging. A stronger correlation was 
observed between age-related differential gene expres-
sion and early-life promoter and gene body methyla-
tion patterns, an association that was independent of 
age-related differential methylation. Furthermore, DNA 
methylation levels were able to predict whether tran-
scriptional changes with age will undergo up- or down-
regulation with aging. The predictive ability increased 
when combined with other epigenetic marks. The broad 
implication of our findings is that early programming of 
the epigenome during development and/or early adult-
hood may impact transcriptional trajectories late in life. 
Understanding epigenetic differences that occur dur-
ing development may help explain late-life molecular 
responses in the CNS and possibly differences in suscep-
tibility to adverse conditions between individuals.

Results
Characterization of differential methylation 
in the hippocampus using whole‑genome bisulfite 
sequencing
To assess the relationship between hippocampal age-
related differential methylation and age-related transcrip-
tional changes we first analyzed differential methylation 
with aging using WGBS in both male and female mice. 
Previous studies characterizing differential methylation 
in the hippocampus with aging focused on just global 
levels of methylation or used approaches that allowed 
for high-resolution analysis of portions (~ 10%) of the 
genome [27, 49]. Whole-genome bisulfite sequencing 
provides the most comprehensive analysis of gene meth-
ylation by covering the majority of CpG sites across the 
genome. Sequencing methods that examine smaller por-
tions of the genomic CpG sites provide a limited and 
incomplete view of genic methylation (Additional file 1: 
Figure S1).

The average methylation level across all CpGs in young 
(3  months) and old (24  months) animals demonstrate 
no differences with aging (FY 74% ± 0.2, FO 73.5% ± 0.4, 
MY 74.1% ± 0.5, MO 72.5% ± 1.4, Additional file 2: Figure 
S2). Similarly, no difference in transposable element CpG 
methylation with age was evident. No differences in aver-
age methylation levels between males and females were 
observed. These agree with previous findings that there is 
no hypomethylation with aging in the murine hippocam-
pus [49, 50].

To determine regions of differential methylation, the 
genome was binned to 500  bp non-overlapping win-
dows. Windows with ≥ 10 CpGs and at least 3× coverage 
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per CpG were retained yielding 979,603 regions ana-
lyzed for differential methylation with aging. Both 
males and females had roughly similar numbers of age-
related differentially methylated regions (age-DMRs: 
7702 in females vs 7029 in males) and showed a slight 
bias towards hypomethylation (Fig.  1a–d). Only 2% of 
all age-DMRs were common to both males and females 
(Fig. 1b). Of these sex-common changes, 68% were com-
monly regulated, e.g., hypermethylated in both males and 
females (χ2 test of independence p value = 1.3 × 10−6). 
These results demonstrate that genome-wide, age-related 
changes in DNA methylation are predominately sex-spe-
cific, in agreement with prior findings [27].

Functional enrichment of genes containing age-DMRs 
revealed that although age-DMRs in males and females 
occurred in different genomic locations, genes contain-
ing age-related differential methylation are enriched in 
pathways with functional similarities, for example, genes 
containing age-DMRs in females are enriched in inosi-
tol phosphate metabolism, while genes containing age-
DMRs in males are enriched in phospholipid metabolism 
and phosphoinositol metabolism (Fig.  1e, f, Additional 
file  3: Table  S1, Additional file  4: Table  S2). Gener-
ally, pathways common to both males and females are 
involved in glucose and lipid metabolism, neuronal inter-
actions, and cellular integrity. These results suggest that 
while sex-divergence occurs at the level of the genome, 
the pathways affected by aging may still be functionally 
similar.

Age-DMRs were assessed for their enrichment across 
genomic features and gene regulatory elements. Over-
representation of age-DMRs was observed in CpG islands 
and shelves, and within gene bodies (Fig. 1g, h). Gener-
ally, DMRs were not enriched in promoter regions, but 
when separated according whether the promoter con-
tained a CpG island, significant enrichment of age-DMRs 
is observed in promoters without a CpG island. This is 
consistent with previous studies indicating that methyla-
tion of promoter CpG islands generally does not change 
with aging [53, 54]. Age-DMRs were over-represented in 
active and poised distal gene regulatory regions, namely 
active enhancers and promoter flanks. This was also 
evident by enrichment of age-DMRs in hippocampal 
H3K27ac and H3K4me1 peaks, both indicators of active 
and poised enhancers [55, 56] (Fig. 1e). Hypomethylated 
age-DMRs were also over-represented in H3K36me3, a 
marker of exons and transcriptional elongation [57, 58] 
shown to be altered with aging and associated with lon-
gevity [59, 60], and in H3K27me3, a marker associated 
with gene repression (Fig. 1g, h). Overall, enrichment of 
age-DMRs in genomic regions suggest that methylation 
of certain genomic regions is more susceptible to change 
with age as compared with others.

Association between differential gene expression 
and differential methylation with aging
DNA methylation functions to modulate genomic archi-
tecture and regulate gene expression. However, the rela-
tionship of differential methylation to altered steady state 
gene expression with aging has not been comprehen-
sively addressed. We used RNA-sequencing to analyze 
transcriptional differences with aging in the same sam-
ples used for methylation analysis and correlated age-
DMRs with age-related differentially expressed genes 
(age-DEGs) in the hippocampus. With aging 781 genes 
were differentially expressed with aging in males and 
433 in females (multiple linear regressions, fdr < 0.05 and 
|FC| > 1.25) (Fig.  2a, b). Approximately 1/3 of the genes 
upregulated with aging were common between males 
and females (Fig. 2b), and only 22 downregulated genes 
were common between the sexes (χ2 test of independence 
p value < 2.2 × 10−16). This is consistent with previous 
findings reporting sexual divergence in transcriptional 
profiles in addition to a common core set of genes with 
aging [52].

In both males and females, only a small number 
of age-DEGs contained an age-DMR in their pro-
moter region (± 1  kb of the TSS). The association 
between age-DMRs and differentially expressed genes 
with aging in promoters was not significant in both 
males and females (Fig. 2c, f ). When assessing all age-
DMRs independent of their location in the gene body 
(TSS to TES), a weak negative correlation is observed 
in both males (r = − 0.13, p = 0.039) and females 
(r = − 0.25, p = 0.01) (Fig.  2d, g). On average, differ-
entially expressed genes and those not changing in 
expression with aging had similar methylation values 
across their gene bodies (Additional file  5: Figure S3). 
Given that DNA methylation can regulate gene tran-
scription through changes in enhancer regions we 
examined the correlation between age-DMRs mapped 
to enhancer regions (determined by H3K27ac ChIP 
data from cortex) and transcriptional changes of their 
nearby genes. A significant negative correlation was 
observed between age-DMRs in enhancer regions and 
age-DEGs in both males (r = − 0.21, p = 0.018) and 
females (r = − 0.25, p = 0.04) (Fig.  2e, h). Age-DMRs 
mapped to gene bodies or enhancers associated with 
genes that were not differentially expressed with aging 
resulted in significant, but very weak negative correla-
tion (r < 0.1) in both males and females (Fig. 2d, e, g, h). 
Taken together, age-DMRs may explain a small portion 
of the transcriptional changes that occur with age, and 
generally this effect is observed in enhancers and gene 
bodies, but not promoters. These findings are in agree-
ment with recent studies in the liver showing a limited 
inverse association between gene body methylation 



Page 4 of 18Hadad et al. Epigenetics & Chromatin           (2019) 12:58 

Female 
DMRs

Male
DMRs

3244
4458

3252
3777

281
51

140
90

0.06

LGI−ADAM interactions

Cell death signalling via 
NRAGE, NRIF and NADE

p75 NTR receptor−mediated signalling

Signaling by Rho GTPases

Neuronal System

Synthesis of IP3 and IP4 in the cytosol

NRAGE signals death through JNK

Death Receptor Signalling

Inositol phosphate metabolism

Rho GTPase cycle

02468 0.02 0.04 0.06
Gene Ratio-Log10(FDR)

Negative regulation of the PI3K/AKT network

RET signaling

MET promotes cell motility

Protein−protein interactions at synapses

Neuronal System

PI Metabolism

Rho GTPase cycle

Phospholipid metabolism

Axon guidance

Signaling by Receptor Tyrosine Kinases

024 0.02 0.04

FY FO MY MO

Fe
m

al
e 

DM
Rs

M
al

e 
DM

Rs
Co

m
m

on
 

DM
Rs

Male

Female

a d

e

f

g

−1

0

1

M
al

e 
H

yp
o−

D
M

R
s

−1

0

1

M
al

e 
H

yp
er

−D
M

R
s

Po
lII

H
3K

9m
e3

H
3K

4m
e3

H
3K

4m
e1

H
3K

36
m

e3
H

3K
27

m
e3

H
3K

27
ac

D
N

as
e1

R
ep

re
ss

ed
_T

FB
in

di
ng

S
ite

R
ep

re
ss

ed
_P

ro
m

ot
er

Fl
an

k
R

ep
re

ss
ed

_P
ro

m
ot

er
R

ep
re

ss
ed

_O
pe

nC
hr

om
R

ep
re

ss
ed

_E
nh

an
ce

r
R

ep
re

ss
ed

_C
TC

FB
in

di
ng

S
it e

Po
is

ed
_T

FB
in

di
ng

S
ite

Po
is

ed
_P

ro
m

ot
er

Fl
an

k
Po

is
ed

_P
ro

m
ot

er
Po

is
ed

_O
pe

nC
hr

om
Po

is
ed

_E
nh

an
ce

r
Po

is
ed

_C
TC

FB
in

di
ng

S
ite

In
ac

tiv
e_

TF
B

in
di

ng
S

ite
In

ac
tiv

e_
P

ro
m

ot
er

Fl
an

k
In

ac
tiv

e_
P

ro
m

ot
er

In
ac

tiv
e_

O
pe

nC
hr

om
In

ac
tiv

e_
E

nh
an

ce
r

In
ac

tiv
e_

C
TC

FB
in

di
ng

S
ite

A
ct

iv
e_

TF
B

in
di

ng
S

ite
A

ct
iv

e_
P

ro
m

ot
er

Fl
an

k
A

ct
iv

e_
P

ro
m

ot
er

A
ct

iv
e_

O
pe

nC
hr

om
A

ct
iv

e_
E

nh
an

ce
r

A
ct

iv
e_

C
TC

FB
in

di
ng

S
ite

P
ro

m
ot

er
s−

no
nC

G
I

P
ro

m
ot

er
s−

C
G

I
P

ro
m

ot
er

s
In

tro
ns

E
xo

ns
C

G
IS

ho
re

C
G

IS
he

lf
C

G
I

Genic Regulatory Regions Epigenetic

Lo
g(

O
dd

s 
Ra

tio
)

Po
lII

H
3K

9m
e3

H
3K

4m
e3

H
3K

4m
e1

H
3K

36
m

e3
H

3K
27

m
e3

H
3K

27
ac

D
N

as
e1

R
ep

re
ss

ed
_T

FB
in

di
ng

S
ite

R
ep

re
ss

ed
_P

ro
m

ot
er

Fl
an

k
R

ep
re

ss
ed

_P
ro

m
ot

er
R

ep
re

ss
ed

_O
pe

nC
hr

o m
R

ep
re

ss
ed

_E
nh

an
ce

r
R

ep
re

ss
ed

_C
TC

FB
in

di
ng

S
it e

Po
is

ed
_T

FB
in

di
ng

S
ite

Po
is

ed
_P

ro
m

ot
er

Fl
an

k
Po

is
ed

_P
ro

m
ot

er
Po

is
ed

_O
pe

nC
hr

om
Po

is
ed

_E
nh

an
ce

r
P o

is
ed

_C
TC

FB
in

di
ng

S
ite

In
ac

tiv
e_

TF
B

in
di

ng
S

ite
In

ac
tiv

e_
P

ro
m

ot
er

Fl
an

k
In

ac
tiv

e_
P

ro
m

ot
er

In
ac

tiv
e_

O
pe

nC
hr

om
In

ac
tiv

e_
E

nh
an

ce
r

In
ac

tiv
e_

C
TC

FB
in

di
ng

S
ite

A
ct

iv
e_

TF
B

in
di

ng
S

ite
A

ct
iv

e_
P

ro
m

ot
er

Fl
an

k
A

ct
iv

e_
P

ro
m

ot
er

A
ct

iv
e_

O
pe

nC
hr

om
A

ct
iv

e_
E

nh
an

ce
r

A
ct

iv
e_

C
TC

FB
in

di
ng

S
ite

P
ro

m
ot

er
s−

no
nC

G
I

P
ro

m
ot

er
s−

C
G

I
P

ro
m

ot
er

s
In

tro
ns

E
xo

ns
C

G
IS

ho
re

C
G

IS
he

lf
C

G
I

−1

0

1

Fe
m

al
e 

H
yp

o−
D

M
R

s 

−1

0

1

Fe
m

al
e 

H
yp

er
−D

M
R

s

Genic Regulatory Regions Epigenetic

NonSig

Sig

Lo
g(

O
dd

s 
Ra

tio
)

h

−0.2

0.0

0.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Young Methylation

M
et

hy
la

tio
n 

D
iff

er
en

ce
 (Y

 −
 O

)

Hyper Hypo

−0.2

0.0

0.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Young Methylation

M
et

hy
la

tio
n 

D
iff

er
en

ce
 (Y

 −
 O

)

Hyper Hypo

b

c

Female

Male

Fig. 1  Whole-genome analysis of age-related differential methylation in males and females. a Heatmap of age-related differentially methylated 
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with aging and gene repression of genes involved in 
lipid metabolism and growth hormone signaling [33]. 
Additionally, DNA methylation changes poorly cor-
respond with transcriptional changes in the CNS dur-
ing neuronal maturation [41] or following induction of 

methylation in culture [61]. Therefore, while the canon-
ical regulation of gene transcription by DNA methyla-
tion is likely to explain a portion of the age-associated 
differential gene expression, age-related differential 
methylation may potentially serve a more complex role 
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in transcriptional regulation than simply induction and 
suppression of steady-state gene expression.

Age‑related gene expression changes are associated 
with methylation profiles in early life
DNA methylation can play multiple roles in regulat-
ing gene transcription by altering protein binding occu-
pancy [62], regulation of alternative splicing [63–67], 
and through interactions with histone marks [11, 68]. 
To examine relationships between DNA methylation 
patterns and gene expression with aging and gene body 
methylation levels (mean methylation from TSS to TES) 
(Fig. 3a, b) in early and late life were examined. Intrigu-
ingly, genes differentially expressed with aging show a 
moderate positive association between age-related dif-
ferential mRNA expression and gene body methylation 
levels at both young and old age (Fig. 3a, b). Genes whose 

expression does not change with aging do not show a 
consistent positive association as observed for differen-
tially expressed genes. That is, genes that were down-
regulated with aging have lower gene body methylation 
levels in early life, and remained lower to old age as com-
pared to genes that were upregulated with aging (Fig. 3c, 
d). This relationship was consistent in both young and old 
animals and was not influenced by age-related changes in 
CpG methylation (Fig. 3c, d). This analysis was repeated 
for CH methylation to examine whether the relation-
ship between early-life methylation and gene expression 
persists for non-CpGs. Unlike CpGs, CH methylation 
was comparable between upregulated genes and down-
regulated genes (Additional file  6: Figure S4A, B). The 
lack of interaction between CH methylation and changes 
in transcription may stem from the differences in func-
tions between CpG and CH methylation in transcription 
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Fig. 3  Age-related differentially expressed genes are positively associated with gene body methylation. Genes downregulated with aging have 
lower gene body methylation at young age (Y, blue regression line) in both males (a) and females (b) compared to genes upregulated with aging. 
This relationship is maintained in old age (O, red regression line). Curve corresponds to polynomial regression curve across significant (red and 
blue) and non-significant (N.S., black) differentially expressed genes, 95% confidence intervals are shaded by the grey area. Gene body methylation 
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gene methylation grouped by genes upregulated, non-differentially expressed, and downregulated genes in males (c) and females (d) *p < 0.001 
(Kruskal–Wallis Test). Heatmaps illustrating the per-gene gene body methylation patterns of genes upregulated and downregulated with aging in 
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regulation. Although transcriptional changes with aging 
are predominately sex-specific, this association was evi-
dent in both males and females (Fig. 3), with males show-
ing a stronger association as compared to females.

Qualitative assessment of the DNA methylation 
landscape of up- and downregulated genes with aging 
revealed that the main difference between up- and down-
regulated genes occurs primarily around the transcription 
start site (Fig. 3e, f ). Therefore, we repeated the analysis 
focusing on promoter methylation defined as ± 1  kb of 
the TSS. The positive association between differentially 
expressed genes and baseline DNA methylation was 
recapitulated when examining only the promoter region 

(Fig. 4a, b), and was comparable in both sexes (Fig. 4c–
f, Additional file  6: Figure S4C, D). Genes that do not 
change in expression with aging showed a weaker associ-
ation that was not consistent between males and females 
(Fig. 4a, b). The correlation between promoter methyla-
tion levels and gene expression changes was greater com-
pared to observed with gene body methylation and was 
independent of apparent age changes in methylation. Our 
observation reveals a relationship between age-related 
gene expression changes and DNA methylation that 
depends on the methylation patterns established early 
in life rather than differential methylation with aging. 
To determine whether the positive association between 
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Fig. 4  Age-related differentially expressed genes are positively associated with promoter methylation. Genes downregulated with aging have 
lower promoter methylation at young age (Y, blue) in both males (a) and females (b) compared to genes upregulated with aging. This relationship 
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DNA methylation patterns and transcriptional changes 
with aging is observed in other tissues, we performed 
our analysis using paired WGBS and RNA-sequencing 
in the liver [33] (data obtained from GEO:GSE92486). A 
positive relationship between fold change and gene body 
methylation was observed with the liver data similar to 
that observed in the hippocampus (Additional file 7: Fig-
ure S5). The lack of whole-genome bisulfite sequencing 
data with aging in other tissues prevents further exten-
sion and validation of relationship at this time.

Association of methylation patterns with transcriptional 
changes with aging is not random
Differentially expressed genes with aging appear to have 
a different DNA methylation profile compared to genes 
that are stably expressed across the lifespan (Figs.  3, 4). 
To determine whether this observation is unique to genes 
that are differentially regulated with aging, we used a 
random sampling approach to correlate gene body DNA 

methylation values with their corresponding mRNA fold 
change with aging. Randomly sampled sets of 500 genes 
(n = 10,000) showed weak correlation (r < 0.1) similar to 
that of genes not differentially expressed with aging and 
much less compared to that observed for genes differen-
tially expressed with aging (r > 0.4) (Fig. 5a).

Next we asked whether genes sets that belong to 
the same pathway present a similar positive associa-
tion. Pathways were extracted from the Reactome path-
way database [69], and used as gene sets for correlation 
between methylation levels at young age and mRNA 
fold change with aging. After filtering pathways contain-
ing <  50 genes, 368 pathways remained for the analysis 
(Fig. 5b). Out of all the pathways analyzed, 35 pathways 
showed a correlation coefficient that met or exceeded 
the correlation coefficient of r > 0.4 (Fig.  5c) observed 
between promoter methylation and genes differentially 
expressed with aging. For gene body methylation 32 
pathways met or exceeded the correlation coefficient 
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cutoff (Fig.  5d) and were observed only in males. Path-
ways that showed the highest correlation between DNA 
methylation patterns and transcriptional change with 
age were pathways previously shown to be involved with 
aging included inflammatory pathways (transcriptional 
regulation by RUNX1, MHC II signaling, interferon sign-
aling), oxidative stress, proteolysis, cell senescence, epi-
genetic regulation, and estrogen signaling (Additional 
file 8: Table S3, Additional file 9: Table S4).

A central geroscience concept is that age-related 
changes intersect with those involved with disease patho-
genesis, including Alzheimer’s disease [18, 70]. Therefore, 
we hypothesized that a positive correlation between tran-
scriptional changes with neurodegeneration and DNA 

methylation profiles would be observed. To identify genes 
altered following neurodegeneration in the hippocampus, 
we used published RNA-sequencing data from two mod-
els of AD (APP and Ck-p25) and examined whether gene 
body and promoter DNA methylation levels in young and 
old animals are associated with differential gene expres-
sion observed in a neurodegenerative disease model. 
A significant number of genes were unique to each of 
the models; however, significant overlap was observed 
between both AD models and with genes altered with 
aging (APP:Aging χ2 p < 2.2 × 10−16; CK-p25:Aging χ2 
p < 2.0 × 10−14; APP:CK-p25 χ2 p < 2.2 × 10−16) (Fig.  6a). 
As observed with genes differentially regulated with 
aging, upregulated genes with both APP and CK-p25 
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had significantly higher mean methylation in early life 
compared to downregulated genes (Fig. 6b, c). This was 
observed for gene body (Fig. 6d, f ) and promoter meth-
ylation (Fig. 6e, g) as well. Differences in methylation in 
these models were not examined, therefore a potential 
difference in methylation due to AD pathology as a driv-
ing mechanism of differential gene regulation cannot be 
excluded; however, our findings suggest that genes differ-
entially regulated with neurodegeneration may be more 
susceptible to change due to their methylation profile in 
a manner similar to that observed for genes differentially 
expressed with aging.

DNA methylation‑based prediction of differential 
expression with aging
Given the distinction in early-life methylation patterns 
among age-related differentially expressed genes, we 
investigated the early-life patterns of other epigenetic 
marks known to interact with DNA methylation in 
genes that are up and downregulated with aging. Using 
publicly available data sets of histone marks maps gen-
erated from the young mouse hippocampus and cortex 
(H2Bac, H3K27ac, H3K27me3, H3K36me3, H3K4me3, 
H3K9me3, and H2A.Z), we profiled each age-related dif-
ferentially expressed gene’s epigenetic landscape using 
DNA methylation data and the gene’s calculated his-
tone breadth of coverage. A principal component analy-
sis (PCA) based on genes’ epigenetic profiles revealed a 
separation between upregulated genes and downregu-
lated genes. Combined PC1 and PC2 explained 90% of 
the variance between upregulated and downregulated 
genes (Fig. 7a). Correlation of the first component eigen-
vectors with the original epigenetic variables showed 
strong positive correlation with DNA methylation and 
negative correlation with active transcription marks such 
as H3K27ac, an active enhancer mark and H3K4me3, 
an active promoter mark (Fig.  7b). This suggests that 
at baseline (young age), genes that undergo expression 
changes with aging are under different epigenetic regu-
lation during earlier time-points. Interestingly, the sec-
ond principle component (variance explained 28.7%) 
shown the opposite correlation as the first components 
and was negatively correlated with gene body methyla-
tion and active transcription marks (Fig.  7b). Together 
this shows that genes differentially expressed with aging 
have different epigenetic patterns, starting in early life. 
This early-life epigenetic landscape may alter these genes’ 
responsivity to aging. As expected, not all genes differed 
according to their epigenetic profile. A subset of genes 
showed a similar epigenetic profile regardless of their 
expression trajectory.

Next, we set to investigate the associations between 
different epigenetic marks in age-related differentially 

expressed genes. Genes were separated by up and down-
regulation with aging and the interactions between the 
different epigenetic marks were investigated. While 
the baseline epigenetic profile of genes appear to differ 
between up and downregulated genes (Figs. 3, 4, 7a, b), 
the interactions between these epigenetic marks remain 
consistent between up and downregulated genes. Pro-
moter and gene body methylation were positively cor-
related with one another in both gene groups, and as 
expected were negatively correlated with active enhancer 
and promoter marks, H3K27ac and H3K4me3 (Addi-
tional file  10: Figure S6A, B). While the interactions 
between epigenetic marks did not change between dif-
ferentially expressed genes with aging, similar to DNA 
methylation levels, the baseline levels of different his-
tone marks were different between up and downregu-
lated genes. Genes that were downregulated with aging 
show higher breadth of coverage of active transcription 
marks compared to upregulated genes (Fig.  7c). This is 
consistent with the lower promoter methylation levels 
observed in these genes. Interestingly, the gene size of 
up and downregulated genes was also different between 
up- and down-age-related differentially expressed genes 
with upregulated genes significantly longer than down-
regulated genes (Fig. 7c). Together, these findings further 
demonstrate that altered epigenetic patterns may con-
tribute to the trajectory of change of genes changing with 
aging.

To strengthen the potential link between differences 
in epigenetic landscape in young age and differential 
expression observed late in life we used random forest 
(RF) modeling to find whether early-life epigenetic pat-
terns can predict gene expression changes with aging. 
The RF models were trained to predict the direction of 
transcriptional change with age (upregulated or down-
regulated) based on methylation data, gene size, relative 
expression in young age expressed by RPKM, and the epi-
genetic marks annotated in the hippocampus and cortex 
obtained from publicly available data sets (see methods).

The trained RF model was able to correctly classify 
transcriptional changes with high accuracy in both males 
(87%) and females (78%) (Fig.  7d, e). RF performance 
decreased slightly when trained based on DNA meth-
ylation means and RPKM alone, but still performed sig-
nificantly better than random in both males (78%) and 
females (71%) (Additional file 10: Figure S6C, D). Evalu-
ation of feature importance to each of the RF models 
revealed that DNA methylation and gene size are highly 
important for predicting gene expression in both sexes. 
In males, gene size, H2A.Z marks, H3K4me3, H3K27ac, 
and DNA methylation averages of both whole gene and 
promoters (Fig.  7f ) contributed the most to predictive 
accuracy. In females, high importance features for model 
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prediction included mean expression, DNA methylation 
levels and gene size (Fig. 7g). Feature importance meas-
ures of histone breadth of coverage were much lower in 
females compared to males. This is likely due to well-doc-
umented sex-differences in histone landscape observed 
in both mice and humans [71], which were not accounted 
for in the current analysis as most histone data available 

for hippocampus obtained for the analysis were collected 
from male animals.

It should be noted that these different epigenetic 
marks are not independent of each other as DNA meth-
ylation is closely associated with both H3K4me3, an 
active promoter mark [72], and H3K27ac, an enhancer 
mark [73]. Regions of H3K4me3 and H3K27ac often 
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act coordinately with DNA methylation during gene 
transcription regulation [74]. Local depletion of DNA 
methylation is a hallmark of H3K4me3 and H3K27ac 
[56], and thus these marks are considered to be regu-
lated by DNA methylation. Gene size was a significant 
contributor to the accuracy of the models (Fig.  7c, d), 
the relationship between gene length and DNA methyl-
ation is still not completely understood; however, tran-
scription of long genes may be partially regulated by 
DNA methylation. For example, in the CNS transcrip-
tional regulation of long genes is mediated through the 
DNA methylation binding protein MeCP2 [75]. The 
results presented here are in agreement with those of 
Benayoun et  al. [76] which examined some of these 
marks but not DNA methylation in the cerebellum and 
olfactory bulb. Taken together, these results put for-
ward the concept that epigenetic regulation at a young 
age may direct transcriptional change with aging.

Discussion
These studies reveal, by analyzing the methylation and 
transcriptional profiles in the hippocampus of young 
and old animals, evidence for a potentially novel role for 
DNA methylation in regulating transcriptional changes 
with age that is independent of age-related changes 
to the methylome. These data demonstrate a propen-
sity for genes to be upregulated or downregulated in 
expression with aging based on their methylation pro-
files established early in life. Additionally, differences 
in methylation with age are enriched in exonic and 
intronic regions, and showed a weak inverse correlation 
with differences in gene expression. The functional role 
of gene body methylation is not yet well defined but is 
associated with transcriptional elongation [77], splic-
ing [64, 65, 67, 78], regulation of alternative promoters 
[79], and modulation of expression levels through inter-
action with methyl-binding proteins such as MeCP2 
[80, 81]. In the CNS, in contrast to other tissues, gene 
body methylation is inversely correlated with expres-
sion levels [1, 82], a relationship observed here. The 
diverse functional roles of gene body methylation cre-
ate a challenge in interpreting the association between 
gene body age-DMRs and the altered transcriptional 
profile with aging. Nevertheless, age-related differen-
tial methylation within genes is common to various tis-
sues; therefore, improved knowledge on how gene body 
methylation regulates expression is required to under-
stand the potential functions age-DMRs play in regula-
tion of the aging transcriptome. Together these findings 
emphasize the importance of gene body methylation, 
in addition to promoter regions, as a gene expression 
regulatory mechanism.

Association of promoter age‑DMRs with age‑DEGs 
is limited
The association between DNA methylation and gene 
expression is often derived from the inverse correlation 
between mRNA expression and DNA methylation in 
promoters under normal conditions [8]. While differ-
ences in promoter methylation in the hippocampus occur 
with aging, the genes associated with these promoters are 
generally not differentially expressed with age (Fig.  2). 
A potential explanation is that observed changes to the 
methylome with age are subtle and therefore insufficient 
to induce transcriptional differences, however, a weak 
correlation between gene expression changes and differ-
ential promoter methylation is also observed in studies of 
cancer and cellular differentiation [83, 84], which include 
disruption to- (cancer) or reprogramming of- (differen-
tiation) the methylome. The limited correlation between 
age-related differential promoter methylation and gene 
expression changes does not preclude differential pro-
moter methylation from altering expression of specific 
genes, but is insufficient to explain the majority of tran-
scriptional changes observed with age in the hippocam-
pus. It should also be noted that gene expression changes 
rapidly with stimuli and the expression levels here were 
collected to represent steady-state expression levels. As 
well, examination of specific call types or even single cells 
is needed as these data represent a mix of cell types pre-
sent in the hippocampus.

Enhancer age‑DMRs are related to age‑DEGs
Recent studies identified that altered DNA methyla-
tion patterns play a greater role in explaining transcrip-
tional changes when they occur in distal regulatory 
regions, namely enhancers, compared to gene promoters 
[84]. Age-related differential methylation is enriched in 
enhancer marks in various tissues [37, 85–87], including 
in the hippocampus [26]. With aging, altered methylation 
in differentiating cells, specifically hypomethylation, was 
shown to be enriched in regions marked by H3K4me1 
[88], a marker of active and poised enhancers [89], and 
is thought to activate gene expression. Consistent with 
these findings, we found enrichment of both hyper- and 
hypo-methylated age-DMRs in regions distal to gene 
promoters, specifically in annotated active and poised 
enhancers. These age-DMRs were inversely correlated 
with transcriptional differences with aging in both males 
and females.

Recent findings shed light on the interaction between 
the enhancer marks H3K27ac and H3K4me1 and DNA 
methylation and the functional role of this interaction on 
gene transcription regulation [90]. Enhancer activation 
can be both positively or negatively associated with DNA 
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methylation depending on the regulatory nature of the 
enhancer and the developmental stage of the organism 
[55, 56, 91]. Enhancers containing transcription factor 
binding motifs tend to be inversely correlated with DNA 
methylation late in life, but not during cellular differen-
tiation where DNA methylation increases in enhancers 
proximal to genes that involve cellular specification [74]. 
Methylation of super-enhancers is thought to contribute 
to the structural integrity of the genome at these regions 
[91, 92]. Although alterations in chromatin landscape 
with aging have been reported, few studies have mapped 
altered histone marks with age. H2A.Z, a histone variant 
needed for the acetylation of histone 3 lysine 27 [93], does 
change with aging in the hippocampus [94], and may be a 
contributing mechanism to enhancer mark changes with 
aging. Given these results we hypothesize that changes in 
methylation can potentially alter transcription through 
attenuation of enhancer strength rather than facilitat-
ing deposition of H3K27ac. Future studies will need to 
address this hypothesis by mapping the differences in 
enhancer landscape with age in both male and female 
and in different cell/tissue types.

A unique feature of genes that were differentially 
expressed with age was their association with DNA meth-
ylation patterns established in early life (i.e., methylation 
levels in young animals). Methylation levels of upregu-
lated genes were higher than levels of downregulated 
genes in young animals, this difference persists in old 
animals and therefore was generally independent of age-
related differential methylation. The association between 
methylation levels and expression was not observed 
for genes that were not altered with aging or randomly 
selected genes. Furthermore, gene expression changes 
with aging were generally different between males and 
females, yet a similar association was observed in both 
sexes. This finding supports the concept that, based on 
their epigenetic patterns established early in life, specific 
genes have a higher propensity to change with age than 
others and that their induction/reduction is dependent 
on the methylation status of the gene. Therefore, suppres-
sion or induction of genes with aging is likely to occur 
downstream of methylation by factors that interact with 
the methylome such as histone modifications or methyl-
binding protein dynamics. An additional finding was that 
genes that changed with age and correlated with early-life 
methylation occur in specific gene sets that function in 
similar pathways. This is consistent with the notion that 
genes with similar functions are regulated in similar ways 
[95, 96].

Using the predictive capabilities of machine learn-
ing we were able to show that baseline gene expression 
and DNA methylation levels alone can classify whether 
differentially expressed genes will be downregulated or 

upregulated. When other epigenetic marks from the 
young/adult brain are added to the model, the classifica-
tion accuracy of the model improves. This provides fur-
ther support to the idea of early epigenetic programming 
as a determining factor of expression changes with age. 
A recent study [76] showed similar results by predict-
ing age-related expression changes based on chromatin 
marks. The authors found that changes in the enhancer 
mark H3K27ac with age were among the highly impor-
tant features for accurate classification. This indicates 
that age-related alterations to the epigenome contribute 
to transcriptional changes with age. Although changes 
in chromatin predict gene expression changes well, we 
were able to achieve similar predictive capabilities based 
on early-life DNA methylation alone, and in both males 
and females. Future studies combining both baseline epi-
genetic profiles and age-related alteration to histones are 
needed to improve the classification accuracy of these 
models, and perhaps help identify the interplay between 
mechanisms that underlie epigenetic regulation of tran-
scriptional changes with aging.

Aging processes are thought to promote the develop-
ment of age-related neurodegenerations like AD and PD 
[47]. In our study we find that the association between 
early-life methylation patterns and differential gene 
expression is also observed in genes that are dysregulated 
in mouse-models of AD. That is, genes that were upregu-
lated in a model of neurodegenerative disease had higher 
gene body methylation at young age compared to those 
that were downregulated. Thus, it is plausible that DNA 
methylation patterns established at young age may facili-
tate transcriptional changes and more severe conditions 
in late life as well. Given that genetic differences are asso-
ciated with age-related transcriptional differences [97], 
and increased longevity in supercentenarians [98, 99] it is 
entirely plausible that early-life epigenetic patterns could 
have similar impacts. This raises the question of what 
may cause epigenetic differences in early life that have 
late-life outcomes.

Early-life events such as differences in maternal care, 
nutrition, or adverse events can cause long-lasting altera-
tions to the neuroepigenome [100–102]. Therefore, epi-
genomic programming during developmental stages and 
early adulthood may serve as a potential mechanism for 
altered late-life outcomes, including aging and suscepti-
bility to disease. In addition, DNA methylation patterns 
are also altered with anti-aging therapies that have a ben-
eficial effect on molecular and cellular aging hallmarks 
[26, 37]. These therapies, for example calorie restriction, 
have been shown to be potent in a short window early in 
life and following life-long treatment [103, 104]. A point 
for further investigation is how these anti-aging therapies 
can alter methylation patterns both early and late in life 
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to prevent age-related transcriptional changes and pro-
mote a pro-longevity phenotype.

Conclusions
Age-related differences in epigenetic marks are likely to 
contribute to transcriptional alterations, however, these 
epigenetic differences account for a small subset of the 
gene expression changes with aging and are dependent 
on the genomic location, e.g., promoter vs. regulatory 
region. It is noteworthy that our current knowledge of 
the exact location of regulatory marks is far from com-
plete and is likely to vary between cell types, tissues, and 
sexes. It would be important to test predictive valid-
ity with improved and more complete data sets as well 
as refined locations of TSSs, alternative splice sites, and 
gene regulatory marks. Our current findings identify a 
potential new way in which DNA methylation can influ-
ence age-related transcriptional change. The early estab-
lishment of DNA methylation patterns of a gene appears 
to partially determine whether the gene will change with 
age and the directionality of the change. Interestingly, a 
recent manuscript identified a similar finding examin-
ing histone modifications in the cerebellum and olfactory 
bulb [76]. We also observed this association with aging 
in the liver and in Alzheimer’s disease models. Together, 
these findings indicate that the early-life epigenetic land-
scape of a gene may direct its gene expression trajectory 
with aging and age-related disease. These findings pro-
vide a potential mechanism for the developmental ori-
gins of disease concept [105].

Materials and methods
Animals and nucleic acid extraction
Male and female C57BL/6 mice were obtained from the 
NIA aging colony at 2 and 21 months of age. Mice were 
housed at the University of Oklahoma Health Sciences 
Center barrier animal facility and maintained under SPF 
conditions until 3 and 24 months of age. All experimen-
tal procedures were performed according to protocols 
approved by the OUHSC Institutional Animal Care and 
Use Committee. Mice were euthanized by decapitation 
and hippocampal tissue was dissected and snap-frozen 
until used for DNA and RNA extraction. DNA and RNA 
from young and old animals (n = 6/group) were isolated 
from hippocampal tissue using Zymo Duet DNA/RNA 
(Zymo research).

Whole‑genome bisulfite sequencing and DMR calling
Isolated genomic DNA from young and old animals 
(n = 3/group) was used for Whole-Genome Bisulfite 
Sequencing (WGBS). Bisulfite conversion was car-
ried out using EZ DNA methylation Lighting (Zymo 
Research, Irvine, CA) and library construction used Swift 

Accel-NGS methyl-seq kit reagents (Swift Bioscience, 
Ann Arbor, MI) following manufacturer’s instructions. 
Library size was assessed by Tapestation (Agilent Tech-
nologies, Santa Clara, CA) and quantified by quantita-
tive PCR (Kappa Biosystems, Wilmington, MA) prior to 
sequencing. BS-seq libraries were sequenced by 100  bp 
paired-end reads on the Illumina HiSeq-2500 (Illumina, 
San Diego, California, USA). Sequencing data will be 
made available upon manuscript submission.

Paired-end reads were trimmed using trimmomatic 
version 0.35 [106]. Reads were adapter-trimmed and fil-
tered based on quality. Bases with a Q-score < 30 were 
removed from the 5′ and 3′ ends. Reads were quality-fil-
tered using a sliding window approach (parameters were 
set to 5:30). Additionally, reads shorter < 25 bp post-trim-
ming were removed. Trimmed PE reads were aligned to 
the mouse reference genome (GRCm38/mm10) with Bis-
mark Bisulfite Mapper version 0.14.4 [107] using default 
settings. Methylation % and coverage of each CpG site 
were extracted with bismark methylation extractor. Mean 
coverage per sample was 5× (± 0.4 SD). For differentially 
methylated regions calling, sites with < 5× mean cover-
age per group were removed resulting based previous 
sequencing recommendations [108] in > 20 million CG 
sites analyzed (Additional file 11: Figure S7).

To determine differentially methylated regions (age-
DMRs), the genome was binned into consecutive, non-
overlapping 500 bp windows. Samples within each group 
were combined to achieve higher coverage per site, and 
windows with < 10 CpG sites were omitted from the anal-
ysis (Additional file 11: Figure S7). The number of CpGs 
per widow was determined based on approximation of 
CpG density, Statistical significance of differential meth-
ylation was determined using Fisher’s exact test followed 
by false-discovery multiple testing correction. Differen-
tially methylated regions were considered statistically dif-
ferent if FDR-adjusted p value < 0.05.

RNA sequencing and differential gene expression analysis
RNA integrity was quantified by TapeStation (Agilent 
Technologies, Frankfurt, Germany) and samples had 
RNA integrity numbers > 8. RNA-sequencing libraries 
were prepared using Illumina’s TruSeq RNA-seq library 
prep with a rRNA depletion step according to manu-
facturer’s instructions. Libraries were sequenced with 
150 bp paired-end (PE) reads on the Illumina HiSeq 4000 
platform (Illumina, San Diego, California, USA) (n = 6/
group). Sequence quality control was performed with 
fastQC. Following QC step PE reads were trimmed simi-
larly to the WGBS sequences using trimmomatic.

Following QC and trimming, reads were aligned to 
the mouse (mm10) reference genome using STAR [109]. 
For alignment, the genome was prepared based on 
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GENCODE M15 release. STAR Alignment parameters 
were set to: outFilterScoreMin 2, outFilterMultimapN-
max 5, outFilterMismatchNmax 10, outFilterMatchNmin 
20, outSJfilterReads Unique, outSJfilterOverhangMin 25 
10 10 10, alignSJoverhangMin 2, alignSJDBoverhangMin 
2, chimSegmentMin 25. Reads per gene were counted in 
R using the ‘summarizeOverlap’ function in the Genomi-
cAlignments package. Raw reads were normalized using 
DESeq  2 R package [110] and transformed using vari-
ance stabilized transformation. Differential expression 
between all groups was assessed using multiple linear 
regression (R package ‘glm’) using read counts as the 
dependent variable and age (young and old) and sex 
(male and female) as the independent variables. Genes 
with significant age main effect (p < 0.05) were then car-
ried on for pair-wise comparisons using Conover post-
hoc test followed by false discovery rate adjustment using 
‘fdr’ as implemented in the R package ‘lsmeans’.

Enrichment analysis
For pathway enrichment age-DMRs were annotated 
using ChIPseeker [111], and enrichment analysis was 
performed using the R package ‘ReactomePA’ [112]. To 
determine over- and under-representation of DMRs in 
genomic features, annotated introns, exons, and CpG 
islands were obtained from UCSC Genome Browser. 
Promoters were defined as ± 1 kb from the transcription 
start site. CpG shores were defined as 2  kb upstream 
and downstream of the annotated CpG island board-
ers and CpG shelves were defined as 2 kb upstream and 
downstream from shores. Of the 18,000 genes identified 
to be expressed in our set, > 94% had a DMR mapped to 
their gene body, and > 85% had a DMR mapped to their 
promoter (Additional file  11: Figure S7). Gene-regu-
latory regions in the mouse brain were extracted from 
Ensemble open database [113]. DMRs were mapped to 
genomic features using ‘bedtools’ [114]. Statistical sig-
nificance of over- or under-representation of DMRs in 
genomic features was determined using hypergeometric 
test in R.

Differential expression prediction
Differentially expressed mRNAs with aging were classi-
fied based on the directionality of change (upregulated 
or downregulated) and divided into a training set and a 
validation set by randomly subsetting 70% of the genes 
to the training set, the remaining genes were used for 
model validation. Prediction of gene change direction-
ality with aging was performed separately for male and 
females. Random forest (RF) was used for prediction, 
and all analysis and cross-validation was performed in 
R using the ‘randomforest’ package. The RF model was 
trained based on selected epigenetic features including 

mean gene DNA methylation in young and old, mean 
promoter (± 1 kb of TSS) methylation in young and old, 
gene size, base expression at 3  months, and breadth of 
coverage of the following histone marks: H2A.Z from 
young and old animals, H3K27ac, H3K36me3, H3K4me3, 
H3K27me3, H2Bac, and H3K9me3. Breadth of coverage 
was calculated by the breadth sum of all peaks in a gene/
gene length.

Public data acquisition
Paired methylation and differential expression data for 
liver were obtained from GEO:GSE92486 [33]. Differen-
tial genes expression for age-related neurodegenerative 
disease APPswe/PS1ΔE9 (APP) and Ck-P25 models were 
obtained from GEO:GSE93678 [115] and GEO:GSE65159 
[116]. Only WT control and experimental groups were 
used. ChIP-sequencing data of hippocampal histone 
marks were obtained from GEO:GSE85873 (H3K4me3 
and H3K27me3) [117], GEO:GSE103358 (H2Bac), and 
GEO:GSE100039 (H2A.Z) [94]. Cortex epigenetic marks 
including H3K27ac, H3K36me3, and H3K9me3 were 
obtained from GEO: GSE103214 [118]. Peak calling was 
determined with MACS2 [119].

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1307​2-019-0306-5.

Additional file 1: Figure S1. Distribution of gene body methylation 
using RRBS and WGBS. A comparison of the distribution of gene body 
methylation across all genes in the liver measured by reduced representa‑
tion bisulfite sequencing (RRBS) and whole-genome bisulfite sequencing 
(WGBS) obtained from GEO:GSE92486. RRBS covers methylation over por‑
tions of 23,000 genes as compared to near complete coverage of 29,000 
genes by WGBS. The gene body methylation profiles obtained by RRBS do 
not represent the gene body methylation values observed by WGBS, likely 
in part due to the preference of RRBS for regions of high CG density which 
often have low levels of methylation (e.g., CpG Islands). 

Additional file 2: Figure S2. Global DNA methylation levels measures 
using WGBS. A) Box plots of whole-genome methylation in young and old 
males and females. Box plots showing the methylation levels of cytosines 
mapped to all transposable element regions (B) or to specific transposable 
element families. Long interspersed nuclear repeats, LINEs (C), small inter‑
spersed nuclear repeats, SINEs (D), DNA transposons (E), and long terminal 
repeats, LTRs (F), n = 3/group. 

Additional file 3: Table S1. List of Reactome pathways enriched with 
age-related DMRs. 

Additional file 4: Table S2. List of Reactome pathways enriched with 
age-related DMRs separated by hypermethylation and hypomethylation. 

Additional file 5: Figure S3. Baseline gene body methylation is not 
different in age-related differentially expressed genes from those who do 
not change with age. A-F) line plots representing the average methyla‑
tion across all genes that were not significantly differentially expressed 
with aging (A, D), downregulated with aging (B, E), and upregulated with 
aging (C,F) in females (A-C) and males (D-F). Black line represents young 
animals, red line represents old animals. Grey shading represents the 95% 
confidence intervals. 
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Additional file 6: Figure S4. Positive association between methylation 
and gene expression is limited for CH methylation. Box plots of whole 
gene (A, B) or promoter (C, D) CH methylation in females (A, C) and 
males (B, D) grouped by genes that are upregulated, downregulated, or 
unchanged with aging in the respective group. 

Additional file 7: Figure S5. Age-related differentially expressed genes 
are positively associated with gene body methylation in the Liver A) Genes 
downregulated with aging have lower gene body methylation at young 
age (blue regression line) compared to genes upregulated with aging in 
the liver. This relationship is maintained with aging (red regression line). 
Curve corresponds to the polynomial regression curve across significant 
(red and blue) and non-significant (black) differentially expressed genes. 
B) Box plot of whole gene methylation grouped by genes upregulated, 
non-differentially expressed, and downregulated genes in the liver. *p < 
0.001 (Kruskal–Wallis Test). 

Additional file 8: Table S3. Reactome pathways presenting high correla‑
tion between age-related expression fold change and early life gene body 
methylation patterns. 

Additional file 9: Table S4. Reactome pathways presenting high cor‑
relation between age-related expression fold change and early life gene 
promoter methylation patterns. 

Additional file 10: Figure S6. Direction of change of age-related dif‑
ferentially expressed genes can be predicted based on DNA methylation 
profiles. Correlation matrices of different epigenetic features in down‑
regulated genes with aging (A) and upregulated genes with aging (B). 
Area under the curve of the receive operating characteristics (ROC) curve 
showing the classification accuracy of age-related differentially expressed 
genes to upregulated and downregulated genes for Random Forest 
model in males (C) and females (D) trained based on baseline methylation 
and promoter and gene body DNA methylation. TRatio—gene ratio; wg—
whole gene; tss—transcription start site; my—male young; mo—male 
old. 

Additional file 11: Figure S7. Sequencing alignment and differentially 
methylated region calling summary statistics. A. Boxplots representing the 
mapping efficiency per group. B. Overall genomic sequencing coverage. 
C. Boxplots showing the number of CpGs covered. D. Boxplots represent‑
ing the average CpG coverage per group. E. Line plot of the number of 
DMRs mapped to genes (black and red) and gene promoters (green and 
blue) passed filtering from RNA-sequencing. F. Line plot showing the 
number of CpG in regions passed filtering for differential methylation.
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