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Abstract

In previous study, we developed finite element models of flagella that show wavelike oscillation above
certainload threshold. However, these baseline models were highly simplified and had inevitable
limitations. Inthe current study, inter-doublet components have been meshed with finer setting to give
more accurate results, multibody dynamics (translational joints) has introduced to allow more deflection,
and inter-doublet materials have included viscoelasticity. Nondimensional waveform equations have

been developedtofind parametervalues thatallow larger deflection and frequencies close to actual
ciliaandflagella.
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1 Introduction

Ciliaandflagellaare slender organelles that show propulsive, wavelike oscillations to propel cell and
move fluid. Previous work (1) has been done to develop finite element models of flagellausing a
commercial software package called ABAQUS (Dassault Systemes). In previous models (Fig. 1), flagella
model was composed entirely of linear, elasticbeam elementsin ABAQUS, and all beams were welded.
On each pair of coupled beams, opposing, distributed axial loads and counter-moments wereapplied to
representdyneinloads, such thatabove certain threshold, the flagella model would show wavelike
oscillation (Fig. 2) due to dynamicinstability.

Figure 1. Previous finite element models of flagella.
(Left) Wireframe structure of the model.

(Right) Rendered model. Distributed axial loads are applied on coupled beams 2,3, 5, 6
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Figure 2. Wavelike oscillations in previous models. (A) Snapshots at six evenly spaced
phasesduring one period of oscillation. (B) Time marching waveforms over one period of
oscillation. (C) Displacementin y-direction at midpoint with steady, uniformly distributed
dyneinload of increasing magnitude.



However, the previous models are intentionally simplified to isolate instability and reduce
computational cost—they have inevitable limitations.

A global mesh was applied on the entire model, and each inter-doublet link was meshed into two
elements —such a coarse meshresultedininaccurate simulation. Therefore, in Section 2.3, re-seeding
and re-meshing processes were performed on the old modelsto achieve afiner mesh and get more
accurate results.

All beams were welded together —displacement and rotation were restricted with a presetrelative
tolerance of 1e-14 (2), which did not represent the actual structure of flagellawell. Asdiscussedin
Section 2.4, new models use different connectors to representinter-doublet flagella behavior.

All beams were purely elastic, neitherviscoelasticity nor hyperelasticity were included as part of the
material property, thus the simulation did not take theminto consideration. In Section 2.5, new models
introduce viscoelasticity of inter-doublet components.

Material properties of inter-doublet components were estimated. Plus, higher modulus was used to
compensate forthe missing hyperelasticity; there was no guarantee that the model shows similar
realisticbehavior of flagella. Nondimensionalization (Section 2.6) can be used to calculate new material
properties given adjusted parameters, and the non-dimensional waveform will remain unchanged.

2 Modeling

2.1 Model Reuvisit
The structure of ciliaand flagellais well-known: the underlying cytoskeleton, known as the “9+2”
axoneme, consists of 9slender, microtubule doublets (resembling elasticbeams), arrangedinacircular

array about a central pair of 2 microtubules. These beam-like components are connected by radial
spokes and circumferential nexin links, and drive n by the motor proteins dynein.

In the viscoelasticflutter model (3), dynein activity is modeled as opposing steady, distributed tangential
forcesactingon coupled doublets (Fig. 3). Outer doublets are numbered from 1 through 9. Doublet 1, 5
and 6 are modeled asidle doublets which do not experienceany force ortorque. Doublet 2&3, 3&4,

788, and 8&9 are coupled doublets wherethe dynein force drives d oublet N+1tip-ward relative to
doubletN.

A microtubule A
microtubule B
central pair

central sheath

nexin link
radial spoke
outer dynein arm

inner dynein arm

Figure 3. (A) Schematicdiagram of cross-section of the flagellar axoneme showing key
components: outerdoublets (numbered clockwise from 1through 9), a central pair, nexin

links and dynein arms. (B) Simplified cross-sectional frame of a flagella.
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To capture the oscillatory feature of the entire model, the cytoskeletal structure is simplified to
minimize computational cost (Fig. 3): doublet5 and doublet 6 are combined as one doubletsince both
are idle doublets; doublet 3and doublet8are excluded sincethey experience both base -ward and tip-
ward dynein forces; the central pairistreated the same as outer doublets. Material properties and
geometric parameters of this baseline model are summarized in Table 1.

Table 1. Summary of key parameter values of the baseline model

Parameter Value for Units Description
6-doublet model
N 6 Nondim. Number of doublets
Ly 12 pm Length of doublet
rq 0.02 pum Cross-sectional radius of doublet
Eq 8x 108 Pa (pN/um?) Young’s modulus of doublet
Vd 0.4 Nondim. Poisson’s ratio of doublet
d 0.5 Mm Separation between each cross-section
as 0.1 pum Length of spoke
rs 0.001118 pum Cross-sectional radius of spoke
Es 4x 1010 Pa (pN/um?) Young’s modulus of spoke
Vs 0.4 Nondim. Poisson’s ratio of spoke
an 0.1 pm Length of nexin link
rn 0.001118 pm Cross-sectional radius of nexin link
En 4x108 Pa (pN/um?) Young’s modulus of nexin link
Vi 0.4 Nondim. Poisson’s ratio of nexin link
D(s) 1or 1-e¥0 Nondim. distribution of dynein force
o 73766 Nondim. Mass proportional Rayleigh damping coefficient (all)
p 1x 10* pN-s2/pum? Density (all)*

2.2 Re-meshing

In ABAQUS, by default, integration pointsinthe same partare connected by weld joint. Asaresult, the
baseline model was constructed as a single part so that all connections were weld. However, in ABAQUS,
onlya global algorithm can be selected as a single-part-model, therefore the mesh ssize islargerthe size
of inter-doublet beams, resultingin a coarse mesh on inter-doublet beams. As shownin Fig. 4A, each
inter-doublet beam was meshed into one element, which led toinaccurate simulation result.

A : £ B

A A

Figure 4. Seed and mesh settingfor (A) baseline model. (B) new model.

To improve the coarse mesh settingoninter-doublet beams, the flagellamodel hasto be separatedinto
multiple parts. A part separation process was performed on the flagellamodel, and the model has been
dividedintothree modules: doublet, nexin links, and radial spokes.
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Each module was copied with alinear pattern to construct a flagellamodel with the same geometry as
the baseline model, and same boundary conditions and loads were applied. In ABAQUS, whenthe
assembly contains more than one part, local seeding algorithms can be modified, and afiner mesh was
created for inter-doublet components (radial spokes and nexin links) with a seed size of 0.02. Fig. 4B
showsthe resulting finer seeding setting.

2.3 Multibody Dynamics
Alljointsinthe baseline modelare weld. In ABAQUS, connection type WELD providesafully bonded
connection between two nodes (Fig. 5).

e
1

7

-
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i, b qe B

A i
11e.

Figure 5. Schematicof connection type WELD

Displacementin all translational and rotational directions are constrainedinajoint type WELD, whichiis
not the case inreal flagella. Itis believed that radial spokes and circumferential nexin links have one end
anchored at the doublet, and the otherend climbing —sliding back and forth periodically. Since
translation along the longitudinal direction of doublets and central pair was restricted in the baseline
model, the sliding mechanism of inter-doublet components was completed ignored.

A differentjointtype TRANSLATORis usedinthe new model. Connection type TRANSLATOR providesa
slot constraint between two nodes and aligns theirlocal directions ( Fig. 6).

e e,
A A
..___.-"' el.
P 1
|- - - —
L W [ f
EZ: ﬁ;j

Figure 6. Schematicof connectiontype TRANSLATOR

Predefined Coulomb-like friction in the TRANSLATOR connection relates the kinematic constraint forces
and momentsinthe connectortofrictionforce inthe translation alongthe slot (4). The frictional effect
isformally written as

®=P(f) —uFy <0 (1)

where the potential P(f) represents the magnitude of the frictional tangential tractionin the
connectorinthe local 1-direction, Fy is the friction-producing normal (contact) force in the direction
normal to the slot, and pisthe friction coefficient. Frictional stick occursif @ < 0; and sliding occurs if
® = 0, inwhich case the friction force is uFy.



Fig. 7 shows the new model configuration after using TRANSLATOR as connection type between inter-
doubletbeamand outerdoubletbeam. Forradial spokes, they are welded onto the outerdoublet and
sliding alongthe central pair. For nexin links, they are welded onto the N;j outerdoubletand sliding
alongthe (N + 1), outerdoublet.

D
bw

L.

Figure 7. Wireframe structure of the new model with dash lines representing connection
type TRANSLATOR

2.4 \Viscoelasticity

The baseline modelis purely elastic, and therefore viscoelasticbehavior of inter-doublet components
was nottakeninto consideration in simulation. However, creep and relaxation are important factors of
modelingviscoelastic materials. When subjected to a step constant stress, viscoelastic materials
experience atime-dependentincrease in strain (Fig. 8). Attime t,, a viscoelastic material is loaded with
a constant stressthatis maintained forasufficiently long time period. The material responds to the
stress with a strain that increases until the material ultimately fails. When the stressis maintained for a
shortertime period, the material undergoes aninitial strain until atime t; atwhichthe stressisrelieved,
at whichtime the strainimmediately decreases (discontinuity) then continues decreasing gradually toa
residual strain.

oA E A

I

> time f 1 > time
10 juk 10 tl

Figure 8. (Left) Applied stress and (Right) Induced strain as functions of time fora viscoelastic material



ABAQUS assumes that the time domain viscoelasticity is defined by a Prony series expansion ( 5).
Viscoelasticity of inter-doublet components has been defined by Prony creep model, with g‘f =05
shearrelaxation orshear traction relaxation modulus, and 7; = 0.01 relaxation time constant.

2.5 Nondimensionalization

Stability analysis of the linearized one dimensional (1D) partial differential equation (PDE) raised by
Bayly and Dutcher (6) describes small-amplitude motion about a straight, equilibrium configuration. In
the viscoelasticflutter model of flagella, the baseline tension (or compression) in the two doubletsis:

Doublet 1: Tio = p(L — s) (tension)
Doublet 2: To0 = —T1o (compression)

Beam equation of the coupled doublets:

Elpy ss55 — % (p(L - 5)1P1,s) +enre = —Mmgs — kn(Py —P2) — by(W1e — Par) (2)

Elpassss +o (0(L = SWhas) + enthae = —migs + ks — 3) + by @y — P50 (3)
m = —kra* — bra?, (4)

, where E isthe Young’s modulus of each doublet[Pa], I isthe area moment ofinertiaabout the
longitudinal direction of the doublet [m*], p is the distributed dyneinload [pN /um], L is the total length
of the doublet [m], m is the mass of doublet [pN - s2/um], k is the interdoublet normal stiffness

[pN /um?], and by isthe interdoublet normal viscous resistance. Following references (7, 8, 9, 10, 11)
separable solutions of the form

Yuls,t) = exp(at) P, (s) n=12 (5)

are sought. After definingacharacteristictime forthe system, T = cyL*/EI, and a normalized

eigenvalue, ¢ = o7, theresulting ordinary differential equations (ODEs) may be writtenin non-
dimensional form:

Br =l = DB + 5, = €@ WY + ) — d@) Py — ) (6)
U, —pl(A =)L)+ a¢, = c@ Wy +P,) +d(3) W1 — ¥3) (7)

, where the new non-dimensional parametersare p = pL3 /El, ¢(6) = (kra? + bra?6)L? /EI, and

To maintain the waveform, natural frequencies, and forced frequencies of the model, non-
dimensionalized Eq. 6 and 7 MUST hold at all times. In other words, non-dimensional parameters should
remain unchanged:

p=pL3/EI (8)
c(@) = (kpa® + bra?a)L? JEI (9)
d(@) = (ky + byd)L?/EI (10)



, where pisthe non-dimensional distributed load, ¢is the non-dimensional tangential resistance, and d
isthe non-dimensionalnormal resistance.

Non-dimensional parameters can be further simplified by substitutingin material properties of spokes
and nexin links, and because the flexural rigidity EI of doublets have been measured experimentally
with a high accuracy (12), we would like to keep EI unchanged as well:

pEI = pL3 (11)
3Esls 3Enln\ 2,2
_ ( L3 + L3 )a L 3Isa? L3
CEl = kpa?I? = n = (Lgdc) (Es+ 2 En)L2 (12)
dEI = k Lz_w—(i) (E _|_AnL5E )LZ (13)
- ONE T de T\ \7S T AL,

, where Egand E,, are Young’s moduli of spoke and nexin link, I and I, are area moment of inertia of
spoke and nexinlink, Lg and L,, are length of spoke and nexin link, respectively, and d. is the separation
between cross-sections alongthe longitudinal direction of doublet.

2.6 Optimization
Nondimensionalization can also be used to reduce computational cost. Here | would like to propose a

way to minimize computational cost by constraining the nondimensional waveform unchanged and
adjusting geometricand load parameters. The cost function should be in a similarform as follows:

pomin L Es En) (0)
Subject to:

pL3 = 933120 (c1)

(Es + E,)[? = 5.8176 x 1012 (c2)

ESZ-JI-LEn < 1.96 x 107 (C3)

where constraints Cland C2 result from nondimensional Eq. 11-13, and constraint C3 results from
stability constraint. Assuming the costfunction f(p, L, E, E;,) isa linear combination of cost functions of
each parameter, andisinthe form of

cost =Ap+ BL+ CE;+DE,+E =—(2.72 x 107*)p + (3.98 x 1072)L + (3.41 x 10~ 2)E, +
(4.67 x 10~19)E,, (14)

By using optimum parametervalues that minimize the cost function Eq. 14, simulation time can be
reduced.




3 Results

Simulation results of four representative models are displayed below. Table 2summarizes and
compares key parameter values of each model, Fig. 9 shows time-marching waveforms of each model.

Table 2. Summary of key parameter values of four representative models

Baseline model 1

Baseline model 2

New model 1

New model 2

Number of doublets 6 6 6 6

Length of doublet 12 12 6 12

Radius of doublet 0.02 0.02 0.02 0.02

Young’s modulus of doublet 8E8 8E8 8E8 8E8

Poisson’s ratio of doublet 0.4 0.4 0.4 0.4

Rayleigh damping 73766 73766 73766 73766

Mesh size of doublet 0.2 0.2 0.2 0.2

Longitudinal separation 0.4 0.4 0.4 0.4

Length of spoke 0.1 0.1 0.09 0.09

Radius of spoke 0.0001118 0.0001118 0.0001118 0.0001118

Young’s modulus of spoke 4E10 4E10 8E10 2E10

Poisson’s ratio of spoke 0.4 0.4 0.4 0.4

Shear relaxation modulus ratio of spoke NA NA 0.5 0.5

Relaxation time constant of spoke NA NA 0.01 0.01

Connector type at central pair WELD WELD TRANSLATOR TRANSLATOR

Friction coefficient of spoke NA NA 0.5 0.5

Mesh size of spoke 0.1 0.1 0.01 0.01

Length of nexin 0.1 0.1 0.09 0.09

Radius of nexin link 0.0001118 0.0001118 0.0001118 0.0001118

Young’s modulus of nexin link 4E8 4E8 4E8 1E8

Poisson’s ratio of nexin link 0.4 0.4 0.4 0.4

Shear relaxation modulus ratio of nexin link | NA NA 0.5 0.5

Relaxation time constant of nexin link NA NA 0.01 0.01

Connector type at lower doublet WELD WELD TRANSLATOR TRANSLATOR

Friction coefficient of nexin link NA NA 0.5 0.5

Mesh size of nexin link 0.1 0.1 0.01 0.01

Load distribution Pistally. Pistally. Pistally' Pistally-
increasing increasing increasing increasing

Load magnitude 540 600 2500 312.5
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Figure 9. Fourtime marchingwaveform plots (Red = Blue correspondsto Initial 2 End) of
(A) baseline model1(B) baseline model 2 (C) new model 1(D) new model 2.

4 Discussion and Conclusion

Baseline models 1and 2 are models developed previously with differentload magnitudes ( Fig. 9A-B).
New models 1and 2 are improved models using MBD joints and with viscoelasticity included (Fig. 9C-D).
Since the new models use connector type TRANSLATOR to represent sliding radial spokes and nexin links,
theirresulting waveforms have larger deflections than baseline models.

Accordingto Eq. 11-13, new model 1 and new model 2have same nondimensional load and resistive
coefficients, therefore they should have similar waveforms. However, itis observed that their

waveforms differ noticeably. Errors might have come from assumptions made in deriving
nondimensional equations.

Current models show waves at frequencies much higherthan practical values of real flagella. Future

workinvolves using Nondimensionalization to find the parametervalues resultingin frequenciesin the
rightrange.
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