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ABSTRACT 

 

A dynamic inflow based induced power model for a lifting rotor with an infinite number of blades is analyzed to reveal 

efficiency of a rotorcraft in forward flight. The model starts from first principals to relate the acceleration potential of 

an actuator disk to pressure on the lifting blade. Peters and He Ref [3] note that this model provides “overall good 

correlation with recent measurement data” (xix). This model is extended with the addition of harmonic control, radial 

control, and root cut out (rco). The addition of these three factors reveal ways to approach the minimum induced power 

as predicted by Glauert. 

 

NOTATION 

 

[𝐴̅] effect of control input 

{𝐶} rotor loading constraints 

{𝐶̅} normalized loading constraints, {𝐶}/CT  

CL roll moment coefficient 

CM pitch moment coefficient 

CP induced power coefficient 

CT thrust coefficient 

𝐷            maximum order of blade radial twist control 

               polynomial 

[𝐷̅]         matrix relating pressure states to rotor loads  

𝐻 maximum harmonic of blade pitch control 

[𝐼] identity matrix 

[𝐿̅𝑒]        matrix relating pressure state to inflow state 

[𝐿̅𝑒]𝑠𝑦𝑚 symmetric part of [𝐿̅𝑒] 

𝛥P   non-dimensional pressure difference 

P𝑛
𝑚(𝜈)   normalized Legendre function 

[𝑃̅]          matrix relating pressure states to control 

                  variables 

R    blade radius 

𝑟𝑐𝑜     root cutout, fraction of blade radius 

𝑟̅    non-dimensional radial position 

t    time 

[𝑈]    flipping matrix 

𝑉     √𝜇2 + 𝜆2 

ω(𝑟̅, 𝜓)    non-dimensional induced flow 

𝛼𝑠    nose up shaft angle 

{𝛾}     inflow state 

𝜃(𝑟̅, 𝜓)    blade pitch angle 

{𝜃̅}     rotor control 

𝜆     inflow due to shaft tilt = −𝜇𝛼 

{𝛬̅}     Lagrange multiplier 

𝜇     advance ratio =  𝑉𝑠𝑖𝑛(𝜒) 

      ellipsoidal coordinate 

𝜌     air density 

𝜎     solidity 

{𝜏̅}     pressure states 

𝜙𝑛
𝑚(𝑟̅)     inflow expansion function  

𝜓       azimuth angle 

 

INTRODUCTION 

 

Harris, ref. [1], explains that a rotorcraft in high speed, 

forward flight uses six to eight times Glauert’s ideal 

minimum induced power. This paper addresses these 

inefficiencies using a method developed by Peters and 

He, Refs. [2], [3], [4], called dynamic inflow theory. 

Dynamic inflow applies potential flow to a rotorcraft 

lifting blade. The theory is more robust and accurate 

than uniform inflow theories yet computationally 

faster than modern vortex based computational fluid 

dynamic technics. Therefore, it can account for the 

radial and azimuthal nonuniformities in the induced 

velocity inflow distribution that contribute to 

inefficiency while leaving run time in the reasonable 

domain. Throughout the development of dynamic 

inflow theory, Ormiston Refs. [2-5] shows that the 

inefficiency of a rotorcraft is due to the inability of the 

blade to trim through non-uniform inflow. In further 

developments, Ormiston found an infinite power peak 

at the critical advance ratio, while Hall and Hall Ref. 

[6] found a finite peak using a vortex lattice method. 

After the work of Hall and Hall, Ormiston suggests 

that the induced power can be directly obtained 

through analytical derivation. Peters and File Refs [7-

8] explored this claim with the use of a quadratic 

optimization to find the induced power. Their results 



mimic that of Hall and Hall in that they find a finite 

peak in induced power around the advance ratio 0.8.  

In this paper, the work of Peters and File has been 

extended to include added harmonic control, added 

radial control, and root cut-out. I assume a rotorcraft 

with an infinite amount of control will generate the 

induced power as predicted by Glauert and I 

hypothesize that there exists a minimum finite amount 

of control paired with root cut out that will yield the 

same result. 

 

THEORY 

 

Peters and He model inflow and pressure distribution 

across the rotor disk with inflow and pressure states 

{γ̅} and {𝜏̅} respectively Ref [9]. They found inflow 

and pressure difference to be: 

 

 

(𝟏)        𝜔(𝑟̅, 𝜓) =  ∑ ∑ 𝜙𝑗
𝑟(𝑟̅)𝛾𝑗

𝑟𝑒𝑖𝑟𝜓

∞

𝑗=|𝑟|+1,   |𝑟|+3…

∞

𝑟=−∞   

 

 

(𝟐)     𝛥𝑃(𝑟̅, 𝜓) = ∑

+∞

𝑚=−∞

∑ 𝑃̅𝑛
𝑚(𝜈)𝜏̅𝑛

𝑚𝑒𝑖𝑚𝜓

+∞

𝑛=|𝑚|+1, |𝑚|+3, ...

 

 

 

 

where 

 

(𝟑)                          𝑣 =  √1 − 𝑟̅2 

 

Ormiston develops the inflow-pressure relationship, 

Ref [4]. In complex form, it is: 

 

(1) {𝛾𝑛
𝑚} = (1 2𝑉⁄ ) ⋅ [𝐿̅𝑒]{𝜏𝑛̅

𝑚} 

 

The induced power is calculated using Equation 2, to 

multiply pressure by the rotor disk area. 

 

(2) 𝐶𝑃 =
1

𝜋
∫

2𝜋

0

∫
1

𝑟𝑐𝑜

𝑤𝛥𝑃 ⋅ 𝑟̅ ⋅ 𝑑𝑟̅𝑑𝜓  

 

Hong Ref [10] expands this derivation further to 

obtain Equations 6 and 7 by substituting Eqs. (1) and 

(2) into Eq. (5) and solving the double integral  

 

(3) 𝐶𝑃 = 2∑

𝑚

∑{𝜏𝑛̅
−𝑚}𝑇{𝛾𝑛

𝑚}

𝑛

  

 

He further substitutes Equation 4 to obtain 

 

(4) 
𝐶𝑃 = (1 𝑉⁄ )∑

𝑚

∑{𝜏𝑛̅
−𝑚}𝑇[𝐿̅𝑒]{𝜏𝑛̅

𝑚}

𝑛

= (1 𝑉⁄ ){𝜏̅}𝑇[𝑈][𝐿̅𝑒]{𝜏̅}               

  

 

With the skew angle close to 90° a small angle 

approximation reveals that the mass flow, V, is 

approximately equal to the advance ratio. Therefore, 

induced power is a function of pressure states. 

 

Hong extends the induced power derivation to specify 

thrust, roll, and pitch.  

 

(5) 

𝐶𝑇   =      1 𝜋⁄ ∫
2𝜋

0

∫
1

0

𝛥𝑃 ⋅ 𝑟̅ ⋅ 𝑑𝑟̅ ⋅ 𝑑𝜓                        

𝐶𝐿   = −1
𝜋⁄ ∫

2𝜋

0

∫
1

0

𝛥𝑃 ⋅ (𝑟̅ ⋅ sin(𝜓)) ⋅ 𝑟̅ ⋅ 𝑑𝑟̅ ⋅ 𝑑𝜓

𝐶𝑀  = −1
𝜋⁄ ∫

2𝜋

0

∫
1

0

𝛥𝑃 ⋅ (𝑟̅ ⋅ cos(𝜓))𝑟̅ ⋅ 𝑑𝑟̅ ⋅ 𝑑𝜓

 

 

To simplify he uses: 

 

(6) {𝐶} =

[
 
 
 
 
 0 2

√3
⁄ 0

𝑖√2
15⁄ 0 −𝑖√2

15⁄

−√2
15⁄ 0 −√2

15⁄
]
 
 
 
 
 

{𝜏̅} 

 

or simply  

 

(7) {𝐶} = [𝐷̅]{𝜏̅} 
  

where 

(11) [𝐷̅] =

[
 
 
 
 
 0 2

√3
⁄ 0

𝑖√2
15⁄ 0 −𝑖√2

15⁄

−√2
15⁄ 0 −√2

15⁄
]
 
 
 
 
 

  

 

To factor in the effect of added control, Hong 

continues deriving to make equation 10 a function of 

control. This control can be modeled with the pitch 

angle: 

 

(12) 

  

𝜃(𝑟̅, 𝜓)   = ∑

+𝐻

ℎ=−H

∑ 𝑟̅𝑑𝜃̅𝑑
ℎ𝑒𝑖ℎ𝜓

𝐷

𝑑=0

 



 

where H ≥ 1 and D ≥ 0. He uses this equation to put 

the control into the vector form: 

 

(13) {𝜃̅} = {

⋮
𝜃̅𝑑

ℎ

⋮
𝛼𝑠

}  

 

 

He finally finds the new form of equation 10. 

 

(14)  {𝐶} = [𝐷̅][𝑃̅]{𝜃̅}   

 

where [𝑃̅] relates the control variables to pressure 

states. This equates equations 10 and 14 meaning  

 

(15)  {𝜏̅} = [𝑃̅]{𝜃̅}   

 

Using this, equation 7 becomes 

 

(16) 𝐶𝑃 =   (1 𝑉⁄ ){𝜃̅}𝑇[𝑃̅]𝑇{𝜃̅}𝑇[𝑈][𝐿̅𝑒][𝑃̅]{𝜃̅}  

 

After optimization using Lagrange multipliers, Hong 

finds the normalized induced power to be:  

 

(17) (
𝐶𝑃

𝐶𝑇
2) = (1 𝑉⁄ ){𝐶̅}𝑇[𝑄̅]−1{𝐶̅}   

 

Here, (1 𝑉⁄ ), [𝑄̅]−1, and {𝐶̅} are the Lagrange 

multiplier. 

 

(18) {𝛬̅}  = (1 𝑉⁄ )[𝑄]−1{𝐶}           

 

and 

 

(19) [𝑄̅] = ([𝐷̅][𝑃̅]([𝑃̅]𝑇[𝑈][𝐿̅𝑒]𝑠𝑦𝑚[𝑃̅])
−1

[𝑃̅]𝑇[𝐷̅]𝑇) 

 

Equation (17) is used throughout the entirety of this 

paper as it is compared to the minimum normalized 

induced power predicted by Glauert: 

 

(20)   (
𝐶𝑃

𝐶𝑇
2)

𝑖𝑑𝑒𝑎𝑙
=

1

2𝜇
  

 

TOOLS 

 

All calculations were done using MATLAB.  

 

ALGORITHMS 

 

The inflow expansion function needs to be used for 

each unique set of parameters H, D, rco, and blade 

element size in order to calculate the matrix that relates 

pressure states to inflow states. This matrix is needed 

to calculate the normalized induced power. The 

expansion function takes on the order of thousands of 

seconds to calculate for our project because our blade 

element cut size is 100. The math works out so that 

adding one more increment of harmonic control will 

add more rows to the matrix. However, when more 

harmonic control is added it works out that everything 

except for the new rows added is the same as the 

matrix with one less increment of harmonic control. 

Consider the simplified example: 

 

H = n H = n + 1 

a a 

b b 

*not calculated* c 

 

I noticed this trend and modified the calculation. If the 

program has already calculated the matrix with one 

less increment of harmonic control, it simply plugs in 

values from a previously saved matrix and skips to the 

calculations it hasn’t done. This improvement 

decreased run time on the order of two orders of 

magnitude in extreme cases. Once I noticed this trend, 

I searched for more redundant calculations to expedite 

the run time for future works. I found another 

redundancy in the matrix that relates pressures states 

to inflow states: [𝐿̅𝑒]. In this calculation, more 

harmonic control adds more calculations, however, the 

location of the redundancy in the matrix was much 

different. These matrices are square and the 

redundancies occur in the center. Consider the 

simplified example where X represents a new 

calculation. 

 

H = n H = n + 1 

 

a b 

c d 

X X X X 

X a b X 

X c d X 

X X X X 
 

 

Again, I modified the calculations so that nothing was 

calculated twice. This improved run time in extreme 

cases by a factor of 12. 

 

EFFECTS OF ADDED CONTROL 

 

We use equations (17) and (20) to investigate how 

much power will be saved at all advance ratios.  



 

Figure 1: Normalized induced power vs. advance 

ratio with fixed D = 0. 

 

At first, I experimented with only adding harmonic 

control to fixed radial control as seen in Figure 1. I 

found the trend of diminishing returns that we 

predicted at the start of the project. As it’s seen here, 

when the harmonic control approaches infinity added 

efficiency is zero. However, this convergence does 

not occur at Glauert’s minimum so I decided to 

repeat this process for different values of radial 

control to see where the efficiency converged. 

 

 
Figure 2: Normalized induced power vs. advance 

ratio with fixed D = 1.

 
Figure 3: Normalized induced power vs. advance 

ratio with fixed D = 2.

 
Figure 4: Normalized induced power vs. advance 

ratio with fixed D = 3. 

 
Figure 5: Normalized induced power vs. advance 

ratio with fixed D = 4. 

 

 



 
Figure 6: Normalized induced power vs. advance 

ratio with fixed D = 5. 

 

I developed an algorithm that calculated the relative 

error, E, between induced power curves at fixed radial 

control and varying harmonic control. When 

comparing a curve of control H = n to a curve with 

control H = n + 1, I called three different relative 

errors converged: E = 1, E = .5, E = .1. The H value 

at which maximum efficiency can be achieved with 

fixed D is seen in Figure 7.  

 
Figure 7: Converged (E < 1%) normalized induced 

power vs. advance ratio for varying H. 

 

This figure revealed another trend: as D increases, it 

requires less H for the induced power curve to 

converge. This trend was investigated to reveal the 

relationship needed between H and D to achieve 

maximum efficiency at a fixed D. This effectively 

shows when additional H is useless at a fixed D.  The 

results are seen in Figure 8 for varying amounts of 

desired convergence. 

 

 
Figure 8: H with maximum efficiency at a fixed D with 

varying convergence. 

 

With the ability to find where H converges for a fixed 

D, we used equation 11 to investigate the induced 

power at every azimuthal angle and radial position on 

the blade. 

 

 

 



 

 

 
Figure 9: Top view of pitch angle 

 

Notice that D = 5 is missing from these plots. This 

wasn’t calculated because there is no critical advance 

ratio when H  converges for this much of D. This 

paired with Figure 7 shows that a finite amount of 

control can effectively produce the Glauert’s 

minimum induced power. 

 

ROOT CUT OUT 

 

The concept of root cut out is simply to have an 

infinitesimally small nonlifting bade that connects a 

lifting blade to the rotation mast at some distance.  

 

 
Figure 10: Conventional blade (left) and root cut out 

blade (right). 

 

Hong finds that induced power can be reduced by rco. 

He proved this mathematically by using a modified 

version of equation 15 in the previously described 

methods. 

 

(18) {𝜏̅} =
𝜎𝑎

4
⋅ [[𝐴̅]{𝜃̅}]  

 

where 

 

(19) 

 

 

 

As seen in Figure 11, a fair amount of pressure 

difference occurs in the region near the rotaion mast. 

This causes a spike in induced power. Therefore, if we 

could simply avoid this region all together with an rco 

blade, we could improve efficiency. Notice from the 

figure below that rco is a normalized radius and 

therefore its value is simply the percent of the blade 

radius that is cut out from the middle outward.   



 
Figure 11: Pressure distributed across the disk with 

advance ratio = .9. Hong Ref. [10]. 

 

Hong notes that at moderate amount of root cut out 

causes the inflow velocity distribution to become more 

uniform.  

 

Initial calculations revealed two trends that needed 

investigation. As seen below, the optimal rco is 

dependent on the advance ratio. Also, in some 

situations, there is more than one optimal rco. 

 

 
 

 

Figure 12: Cp vs rco H = 4 D = 0. The top plot has 

advance ratio of 1.8 and the bottom has advance ratio 

of 1. 

 

To investigate these trends, I developed an algorithm 

that both found the optimal rco for each advance ratio 

while looking for two minimums. This algorithm 

turned out to have the longest run time of any part of 

the project. To make this more efficient, I extended the 

algorithm to have a broad initial search for the most 

efficient rco. It would start by calculating all the rco 

values in our domain in increments of .05. It would 

then up the precision of the rco search by an order of 

magnitude and restrict its domain to areas that were 

around the most efficient or areas where a second 

minimum was detected. It effectively zoomed in until 

the optimal rco was calculated to four significant 

digits. After this algorithm was perfected, it produced 

the exact same results as the conventional method 

where everything was calculated, but it cut run time 

down by two orders of magnitude. Figure 13 shows an 

example of the most complicated case that the 

algorithm had to tackle. There are two situations where 

two minimums are found. 

 

 
Figure 13: Most efficient rco for all advance ratios. H 

= 4 D = 0. 

 

We moved on to compare the normalized induced 

power to Glauert’s minimum when the rco was most 

efficient for all advance ratios with varying amounts 

of control. Figure 13 shows efficiency for arbitrary 

amounts of control. We included data for rco = 0 from 

previous analysis to derive how much more efficiency 

is gained with rco. 

 



 
             

   

 
Figure 13:  H = 2 P = 0. Normalized induced power 

at all advance ratios when the blade is at the optimal 

rco (top).  The bottom shows the same information as 

a percent efficiency.  
 

 
 

 
Figure 14:  H = 4 P = 0. Normalized induced power 

at all advance ratios when the blade is at the optimal 

rco (top).  The bottom shows the same information as 

a percent efficiency 

. 

 
 

  
Figure 15:  H = 4 P = 1. Normalized induced power 

at all advance ratios when the blade is at the optimal 

rco (top).  The bottom shows the same information as 

a percent efficiency.  
 

 

As Figures 13-15 show, rco drastically improves 

efficiency in the domain of the critical advance ratio. 

With the ability to determine when additional power 



becomes useless and the ability to find the most 

efficient rco at all advance ratios, I decided to put 

everything together to see just how efficient a 

rotorcraft would become if I could apply any 

conditions I wanted. I pulled the strongest control 

converged at E < .1% to find the results of Figure 16. 

 

.  

Figure 16: Efficiency H = 13, D = 5, and optimal rco 

at all advance ratios 

 

As seen, if this research can be taken to its extreme, a 

rotorcraft can attain above 94% efficiency at all 

advance ratios. 

 

CONCLUSION 

 

This research shows that a finite amount of control can 

be added to a rotorcraft and provide approximately all 

the efficiencies of that of infinite control. It shows 

where the addition of harmonic control becomes 

useless for each increment of radial control. This will 

be useful as a road map for research and development 

of future rotorcraft. Furthermore, this research shows 

that for a certain amount of radial control, the 

convergence point of added harmonic control is 

Glauert’s minimum induced power. I further 

continued the study of efficiency by investigating root 

cut out to show efficiency could be gained when 

additional control is minimal and when additional 

control is at an extreme. 

 

Future studies will include additional aerodynamic 

phenomenon that contribute to induced power such as 

inflow feedback, reverse flow, and wake generated by 

a finite number of blades. 
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