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 This paper provides a roughness correction to the latest version of Wall-Distance-Free Wray-

Agarwal (WA) one equation turbulence model (WA2018). The results from WA 2018 rough wall 

model are compared to Spalart-Allmaras model and the previous version of WA roughness model 

(WA2017). The results from WA2018-Rough model for flow over a flat plate show substantial 

improvement from the previous version WA2017-Rough and a good agreement with a semi-

empirical formula based on experimental results. For flow past a S809 airfoil with surface 

roughness, WA2018-Rough model performs quite well compared to SA-Rough model. 

 

 

Nomenclature 
 

AOA    =    angle of attack 

𝐶𝑓  =    skin friction coefficient 

𝐶𝑙  =    lift coefficient   

k   =    turbulence kinetic energy 

𝑘𝑠         =  sand grain roughness height 

𝑙  =    length of the plate 

Ma  =    Mach number 

Re  =    Reynolds number 

S  =    mean strain 

𝑢+  =    mean velocity normalized by the friction velocity 

W   =  vorticity magnitude 

y  =    Cartesian coordinate 

κ  =    Karman constant 

ν  =    kinematic viscosity 

𝜇𝑡  =    turbulent eddy viscosity 

ρ  =    density 

𝜔  =    dissipation rate per unit turbulent kinetic energy 

 

 

I. Introduction  
 

omputational Fluid Dynamics (CFD) is widely utilized in aerospace , turbomachinery, automobiles and a 

multitude of industrial applications. The analysis of the effect of surface roughness due to manufacturing, 

erosion or cavitation is very important in the real-world applications since roughness can significantly affect the 

performance of industrial products. The accurate roughness modification to a turbulence model is especially important 

since they affect the computational simulation results of all industrial products influenced by fluid flow; these results 

are important in the design and optimization of products. 

 This paper extends the Wall-Distance-Free (WDF) one equation Wray-Agarwal (WA) model to rough wall flows. 

As shown by Han et al. [1], WA-WDF (WA2018) model has several advantages compared to WA2017 model [2]: (a) 

it is accurate and robust in nearly zero-strain rate flow field encountered in some applications and (b) the wall distance 

free nature of the WA model enhances its accuracy near curved surfaces [1]. Hence, to take advantage of WA2018 
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model, a new version WA model that includes the effect of surface roughness is developed in this paper. The validation 

and verification of WA2018-Rough includes two cases: (a) flow past a rough flat plate with various roughness heights 

and flow over rough S809 airfoil. It is shown that WA2018-Rough can accurately predict the flow past objects with 

surface roughness.  

 

II. Wall Roughness Extension of Original Wray-Agarwal WA2017 Turbulence Model  
 

A. The Original Model – WA2017 

 The original WA2017 turbulence model is also used in this study; it is the listed on the NASA Turbulence Modeling 

Resource (TMR) website [3]. The WA one-equation model solves for the variable R= k/ω. 

        

𝜕𝑅

𝜕𝑡
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𝜕𝑥𝑗
=

𝜕
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𝜕𝑅
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𝑅

𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆
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The turbulent eddy viscosity is given by: 

                                               

                                                                                 𝜇𝑡 = 𝜌𝑓𝜇𝑅                                                                     (2)  

                        

where 𝜌 is the density. S is the main strain given by: 

 

                                                𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗  , 𝑆𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)                                                         (3)  

                           

To ensure there is no division by zero, S is bounded by: 

                                                             

                                                         𝑆 = max(𝑆, 10−16𝑠−1)                                                                      (4)  

                                                    

The damping function 𝑓𝜇 is used to account wall for blocking: 

 

                                                        𝑓𝜇 =
𝜒3

𝜒3+𝐶𝜔
3  ,     𝜒 =

𝑅

𝜈
                                                                          (5)  

          

The kinematic viscosity ν is defined as 𝜇/𝜌. The switching function 𝑓1 is defined by: 

 

                𝑓1 = min(tanh(𝑎𝑟𝑔1
4) , 0.9) ,    arg1 =

1+
𝑑√𝑅𝑆 

𝜈

1+[
max(𝑑√𝑅𝑆,1.5𝑅)

20𝜈
]

2                                                     (6)  

          

where d is the minimum distance to the nearest wall. The constants are defined as: 

 

𝐶1𝑘𝜔 = 0.0829,    𝐶1𝑘𝜀 = 0.1127  

    

𝐶1 = 𝑓1(𝐶1𝑘𝜔 − 𝐶1𝑘𝜀) + 𝐶1𝑘𝜀  

 
𝜎𝑘𝑤 = 0.72,    𝜎𝑘𝜀 = 1.0  

       (7) 

𝜎𝑅 = 𝑓1(𝜎𝑘𝑤 − 𝜎𝑘𝜀) + 𝜎𝑘𝜀  

  

𝐶2𝑘𝜔 =
𝐶1𝑘𝜔

𝜅2
+ 𝜎𝑘𝑤,    𝐶2𝑘𝜀 =

𝐶1𝑘𝜀

𝜅2
+ 𝜎𝑘𝜀  

    
𝜅 = 0.41,    𝐶𝜔 = 8.54  
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B. Modified Roughness Version of WA2017 Model 

     Nikuradse has shown that the idealized physical roughness can be represented by the equivalent sand grain 

approach with empirical correlations [4]. The basic idea to get the roughness effect is to increase the eddy viscosity as 

a function of the roughness height near the wall. The velocity will have a shift in boundary layer under fully rough 

condition. The velocity profile is given by: 

 

                                                                 𝑢+ =
1

𝜅
ln

𝑦

𝑘𝑠
+ 8.5                                                                    (8)  

  
 The WA2017-Rough model follows the approach of SA-Rough model. The wall distance d is replaced by 𝑑𝑛𝑒𝑤  

at all occurrences of the distance d in the original WA2017 model. 𝑑𝑛𝑒𝑤  is given by: 

 

                                                          𝑑𝑛𝑒𝑤 = 𝑑 + 0.03𝑘𝑠                                                                          (9)  
 

 The viscous damping function, Eq. (5), must also be modified to get the accurate representation of viscous 

sublayer and buffer layer profiles. The modification is given by: 

 

                                     𝑓𝜇 =
𝜒3

𝜒3 + 𝐶𝜔
3  ,     𝜒 =

𝑅

𝜈
+ 𝐶𝑟1

𝑘𝑠

𝑑𝑛𝑒𝑤
                                                                    (10)  

 

where𝐶𝑟1 = 0.5, and 𝐶𝜔 remains 8.54.  

 

 Since the modification of boundary condition does not give a large enough eddy viscosity near the wall, the 

coefficient 𝐶2𝑘𝜔 of destruction term in 𝑘 − 𝜔 is modified based on Wray and Agarwal’s work [5]. It is given by: 

 

                                                          (𝐶2𝑘𝜔)𝑛𝑒𝑤 = 𝐶2𝑘𝜔

𝑑

𝑑𝑛𝑒𝑤
                                                                     (11)  

 

Eq (16) is used to replace the 𝐶2𝑘𝜔 coefficient in the original WA equation in Eq. (1).  

 

III. The New Wall Roughness Extension to Wray-Agarwal Turbulence Model - WA2018 

 

A. The Original Wall Distance Free WA Model – WA2018 

 Based on Han et al.’s paper, WA2018 is similar to WA2017 model except for several additional terms [1]. In 

WA2018 model, Eq. (1) is modified to Eq. (12) shown below: 
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𝜕𝑆
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 In WA2018 model, Eq. (6) is replaced by Eq. (13) shown below: 

 

                                      𝑓1 = tanh(𝑎𝑟𝑔1
4),   arg1 = 

𝜈 + 𝑅

2

𝜂2

𝐶𝜇𝑘𝜔
                                                                (13)  

 

and,  

𝑘 =
𝜈𝑇𝑆

√𝐶𝜇
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𝜔 =
𝑆

√𝐶𝜇

  

                                         

𝜂 = 𝑆 max (1, |
𝑊

𝑆
|) 

 

         𝑊 = √2𝑊𝑖𝑗𝑊𝑖𝑗,    𝑊𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

 

 Most of constants are remain the same as in WA2017, except for the constants shown below: 

 

𝐶1𝑘𝜀 = 0.1284 

 
𝐶𝜇 = 0.09  

 

𝐶𝑚 = 8.0 
 

B. Modified Roughness Version WA2018 Model 

 The current version of roughness modification to WA2018 is shown below: 

 

                                                                     𝑘𝑛𝑒𝑤 =
𝜈𝑇𝑆

√𝐶𝜇

𝐶𝑟1                                                                             (14)  

 

where 𝐶𝑟1 =
1

1+
𝑈𝑘𝑠

𝜈

. Note that the term 
𝑈𝑘𝑠

𝜈
 is a non-dimensional roughness height such that if ks →0, then 𝐶𝑟1 → 1, 

and roughness k keeps the original form as in the WA2018 model. Obviously, 𝐶𝑟1 is adapted to roughness condition; 

if the roughness height is infinitesimal, this roughness extension will perform as if the surface is smooth.  

 The boundary condition 𝑅𝑤𝑎𝑙𝑙 = 0 is replaced by an equation: 

 

                                       𝑅𝑤𝑎𝑙𝑙 = 18133𝑘𝑠
3 − 58.4𝑘𝑠

2 + 0.0999𝑘𝑠 + 0.0000354                                    (15)  

 

Note that Eq. (15) should be set at a fixed value on the boundary after substituting the value of 𝑘𝑠. 

 

IV. Tests Cases and Results 
 

The grids are generated using ANSYS ICEM. The maximum y+ is less than 1 to ensure that the near wall treatment 

for both WA and SA models is accurate. For the flat plate case, an alternative mesh from the NASA TMR website [3] 

was also employed to compare the results on several meshes. The simulations were conducted using the open source 

software OpenFOAM v3.1.0.  

A. Flow past a 2D flat plate in Zero pressure gradient 

      This case is a 2D flat plate verification and validation test case from NASA Turbulence Modeling Resource (TMR) 

website [3].  Figure 1 shows the boundary conditions and Fig, 2 shows the mesh in the computational domain around 

the flat plate. In this case, a two-meter-long flat plate is employed. The Mach number Ma= 0.2 and Reynolds number 

at x=1m is 𝑅𝑒𝐿 = 5 × 106.  A velocity boundary condition of 66.3 m/s at inlet and pressure boundary condition at the 

outlet are used in this case. 
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Fig. 1 Flat plate geometry and boundary conditions [3]. 

 

       Since Spalart-Allmaras (SA) model is also one of the most widely used one equation turbulence model in 

aerodynamics, computations from WA –Rough model are also compared with SA-Rough model.  The results from the 

two turbulence models are compared with a semi-empirical equation for the skin friction coefficient  𝐶𝑓 on a rough 

flat plate. Based on Mills and Hang’s work [6], the following equation is accurate within 1 percent of experimental 

values when 150 < 𝑥/𝑘𝑠 < 1.5 × 107: 

 

                                  𝐶𝑓 = (3.476 + 0.707 ln
𝑥

𝑘𝑠
)

−2.46

                                                                            (16)  

 

 Figure 3 shows the comparison of computed results obtained by WA2018 model, WA2017 model, SA model and 

Eq. (16). As the sand grain roughness height 𝑘𝑠 increases, the error I results obtained from each model increases. 

When 𝑘𝑠  is as small as 0.00025m, the flat plate has very small roughness, therefore the three turbulence models 

accurately predict the skin friction coefficient 𝐶𝑓. For 𝑘𝑠 = 0.0005m, the SA model’s predictions are more accurate 

compared to those from WA2017 and WA2018 models at the leading edge, especially in the range 0 ≤ 𝑥 ≤ 0.4m. 

When 𝑥 > 0.4m, the two WA models show a better agreement with Eq. (16). For 𝑘𝑠 = 0.0010m, WA2018 model 

shows the best agreement among the three models, while the SA model still has a better agreement in a very limited 

range near the leading edge (𝑥 ≤ 0.4m).  At this high level of roughness, it is obvious that WA2017 model has the 

same result as WA2018 model in the range 𝑥 ≤ 0.4m, and the similar result as SA model in the range 0.4 < 𝑥 ≤ 2, 

which makes the performance of WA2017 model the worst among the tree models. For 𝑘𝑠 = 0.0015m, WA2018 

model gives good result near the leading edge, and has the best agreement near the trailing edge. The overall results 

from WA2018 model are most accurate compared to the results from WA2017 and SA models.  

 
Fig. 2(a) Comparison of  𝑪𝒇 for 𝒌𝒔 = 𝟎. 𝟎𝟎𝟎𝟐𝟓. 
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Fig. 2(b) Comparison of 𝑪𝒇  for 𝒌𝒔 = 𝟎. 𝟎𝟎𝟎𝟓. 

 
Fig. 2(c) Comparison of  𝑪𝒇  for 𝒌𝒔 = 𝟎. 𝟎𝟎𝟏𝟎. 

 

 
Fig. 2(d) Comparison  𝑪𝒇 for 𝒌𝒔 = 𝟎. 𝟎𝟎𝟏𝟓. 

Fig. 2 Comparison of  𝑪𝒇  for three turbulence models with roughness. 
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B. flow past a Rough S809 Airfoil 

     The second verification and validation case is that of flow over a rough S809 airfoil, which is commonly used on 

wind turbine blades. The working environment for a wind turbine may be harsh, and as a consequence the surface of 

the turbine blades may become rough due to erosion, sand grits and cavitation. The computation results are compared 

using the SA model, WA2018 model, WA2017 model and the experimental data collected by Ramsay of Ohio State 

University [7]. In this case, the chord length Reynolds number (x=c) is 1 million. Based on Ramsay’s work, the 

standard #40 lapidary grit is chosen to give a relationship between the roughness height and chord length of k/c=0.0019. 

 Figure 3 shows the comparison of experimental and computational data for rough S809 airfoil. The results using 

the three turbulence models depict very similar behavior for pressure coefficient prediction, showing a very small drop 

in Cp at the leading edge which may be improved by using a finer mesh or a better defined geometry of S809.  

  
Fig. 3 Comparison of computed and experimental Cp on rough S809 airfoil at α=6.1°. 

 Figure 4 shows the variation of computed lift coefficient with angle of attack for a smooth S809 airfoil and its 

comparison with experimental data. The results in Fig. 4 are quite reasonable since all of the three models show a 

quasi-linear relationship between the angles of attack (AOA) and lift coefficients when AOA is below 10°. White [8] 

has stated that an airfoil will have a stall when the AOA is about 10°, at which the flow separation occurs, and the 

theory fails to predict the lift coefficient. Figure 5 shows the variation of computed lift coefficient with angle of attack 

for a rough S809 airfoil and its comparison with experimental data. It can be seen that both WA2017 and WA2108 

model with roughness fail to predict the data while the SA model performs reasonably well.  According to Wray and 

Agarwal’s work [5], the WA models require a laminar-turbulent transition model to predict the Cl for AOA > 8°. The 

overall performance of the three models for rough S809 case is not as good as for the smooth S809.    

 
Fig. 4 Comparison of computations with three turbulence models and experimental data for smooth S809 airfoil. 
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Fig. 5 Comparison of computations with three turbulence models and experimental data for rough S809 airfoil. 

 

V. Conclusions  
 The roughness extensions for computing flows with surface roughness are developed for WA2017 and WA2018 

models and are successfully applied for computing flow past a rough flat plate with varying roughness heights and 

flow past a S809 smooth and rough airfoil. The roughness extension for wall distance free version of Wray-Agarwal 

turbulence model (WA2018) gives better results compared to original WA2017 model. Overall, the new WA2018 

performs even better than the SA model. The WA2018-Rough model can accurately predict the skin friction coefficient 

for any 𝑘𝑠 in the range of 0.00025𝑚 ≤ 𝑘𝑠 ≤ 0.0015𝑚. For the S809 airfoil, SA-Rough model gives the best results 

compared to both WA2017 and WA2018 models. Since stall occurs when AOA is greater than 10°, WA model is unable 

to predict flow for AOA greater than 8°.  A laminar to turbulent transitional flow model modification to WA model is 

needed to predict the flow separation on rough S809 airfoil. However, for small AOA below 8°, both WA2018 and SA 

models gives good results. The WA2018 model is an improvement over WA2017 model; it is demonstrated that 

WA2018-Rough model can be used to compute attached flows over objects with surface roughness quite accurately. 
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