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Abstract 

The overall goal of my work is to gain insight into how tooth shape relates to its function.  

As a step towards this, I undertook an independent study project to learn finite element analysis 

(FEA) this semester, and to lay a foundation for my future Master’s thesis project work.  After 

solving a series of problems on paper, reading through my supervisor’s work, and referring to a 

range of papers from the literature, I solved a series problems using FEA that helped me learn 

some specific methods that I believe will be useful to my research.  This report contains an 

overview of some literature that I studied, and a summary of several finite element output plots 

that I found to be particularly instructive. 

 

1. Introduction 

The context in which this study was undertaken is the attachment of tendon to bone, which 

is a major challenge from the surgical, mechanical engineering, and tissue engineering 

perspectives [1-3].  For surgery, up to 94% of rotator cuff reattachments fail [4].  From the 
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mechanical engineering perspective, the mechanisms of resilience at the insertion site are an area 

of ongoing research [5-11], and must overcome the free edge singularity problem [12-29].  From 

the tissue engineering perspective, the natural tendon to bone attachment does not grow back [4], 

and it is important to find ways to stabilize tissue without this attachment [20-23] and to guide 

regrowth of the transitional tissue [24-28].  Stabilization of tissue during healing is a topic that I 

am focusing on and have contributed to a conference paper on [29].  The question of resilience of 

tissues motivated my ongoing study of how carnivores capture and tear through flesh. 

As a step towards this, I studied some basic solid mechanics this semester, including some 

specialized problems from the textbook by Budynas [30], and studied an introduction to finite 

element analysis [31]. 

 In this report, I present a few simple finite element results that demonstrate the issues that I 

expect to have to overcome in my masters research. 

2. Methods 

The study was conducted by becoming familiar with Abaqus, a finite element analysis 

program, and by analyzing simple shapes that would be relevant to the Master’s thesis project. 

The steps involved in a finite element analysis are coming up with an idealized geometry, 

choosing boundary conditions, making a mesh, implementing the boundary conditions, solving 

the equations (equilibrium, strain displacement, and constitutive equations) by a matrix-based 

energy minimization method, and then validating results by mesh refinement [31]. 

The parts used for analysis were made by Solidworks CAD program, which will later 

become useful when creating more complex models. Also taking MEMS 202 CAD class during 

the semester greatly helped improving my proficiency in Solidworks. 
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The problems studied here were idealized teeth on elastic foundations (Figure 1).  A simple 

triangular model and a simple tooth shape with similar properties were used for analysis. The 

two models were created with a base of 4 cm and a height of 6 cm. The Young’s modulus and 

Poisson’s ratio were set to 14 GPa and 0.3, respectively. These values correspond to human 

cortical bone which I have used as a reference material that would allow me to gain insight [32-

36]. The values that were used can be changed easily which can be later analyzed when I have a 

firm idea on what the actual material will be used to create the model that would assist in the 

human rotator cuff repair.  

The teeth were placed on an elastic foundation that resisted load elastically in the vertical 

direction.  The foundation stiffness was set to be 6000 MN/m.  This represents the contribution 

of the periodontal ligament, the cells, and the fibrocartilage [37-39].  Although these are 

viscoelastic or nonlinearly viscoelastic [40-42], and teeth are highly responsive to temperature 

[43], simple linear elastic properties were used for my first tries at using Abaqus.  

The other boundary conditions were as follow.  The right hand side of the tooth was 

subjected to a unit load in the horizontal direction (towards the left), and was traction free in the 

vertical direction.  The right hand side was traction free.  The bottom was shear free, and, in the 

examples shown here, the lower left corner was restrained from moving.  This last condition 

highlights a challenge that I will have when creating more advanced models of teeth. 

The models were two dimensional, and plane strain, linear interpolation quadrilateral and 

triangular elements were used.  In the results displayed, the elements were used without 

hourglass control for the purpose of highlighting the challenges expected. 
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Abaqus was used to refine the mesh until the strain energy and peak stress did not change 

more than a few percent with additional refinement.  The corresponding plots of the maximum 

principal stress, strain tensor energy and the strain energy density will be attached.  

3. Results and Discussion 

The maximum tensile principal stress follows what would be expected in a cantilever beam 

with the boundary conditions used (Figure 1).  For the curved tooth, the tensile stresses were in 

general higher on the loaded face, and the principal stress was zero on the back face, consistent 

with what is expected for flexure of a beam [30].  Two artifacts appear.  The first is a stress 

concentration at the point that was fixed, in the lower left hand corner.  This arose because of the 

choice made to have rollers on the bottom boundary and one fixed point.  However, in other 

simulations where the bottom boundary was “encastre” [31], meaning that the displacement was 

fixed to zero, a stress concentration known as a Williams free-edge singularity appeared at that 

corner [44].  The stress concentrations or stress singularities can be suppressed by choosing 

different boundary conditions, such as a foundation that is elastic in shear or a cohesive zone 

model, which is used in fracture studies [31,46]. Although the understanding of these 

mechanisms falls under multi-scale modeling that is beyond the scope of what is needed for this 

study, phenomenological models can be used to account for how microstructure relates to 

continuum behavior [45-46]. The second is an hourglass effect [31].  Here, the oscillatory nature 

of the free edge singularity shows up as a series of errors in the estimation of displacements, 

which makes neighboring quadrilateral elements look like hourglasses [31]. The hourglass effect 

can be suppressed by choosing elements with “hourglass control” or by choosing triangular 

elements [31]. 
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The normal strain in the vertical direction also shows what would be expected from Euler-

Bernouli beam theory (Figure 2).  The strains are generally tensile on the loaded face and 

compressive on the free face.  A strain concentration is evident at the curve of the curved tooth.  

Both teeth also show the free edge singularity at the point that is fixed. 

The final plot is strain energy density.  The strain energy is particularly important because 

the finite element program uses the principle of minimum potential energy to estimate the 

displacement field.  The strain energy density is dominated by the Williams singularity.  

However, because it is elevated over only a few of the thousands of elements, it is possible for 

the program to estimate a reasonable solution far away from the singularity. 

4. Conclusions 

I am confident that I have become familiar and somewhat proficient in using Solidworks 

and in Abaqus in order to create and analyze models. This skill sets that I have acquired during 

the semester shall contribute to laying a foundation to a Master’s thesis project which is the 

learning objective of the study.  

5. Acknowledgments 

I thank my mentors Guy Genin, Victor Birman, and Stavros Thomopoulos, and also my 
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Figure 1. The maximum tensile principal stress in two simple models of teeth loaded by a 

horizontal unit distributed load on the right hand face. For the curved tooth, the 

tensile stresses were in general higher on the loaded face, and the principal stress was 

zero on the back face, consistent with what is expected for flexure of a beam.  Two 

artifacts appear: a stress concentration at the point that was fixed, in the lower left 

hand corner, and an hourglass effect, which makes neighboring quadrilateral elements 

look like hourglasses. 
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Figure 2. Normal engineering strain component in the vertical direction. The strains are 

generally tensile on the loaded face and compressive on the free face.  A strain 

concentration is evident at the curve of the curved tooth.  Both teeth also show the 

singularity at the point that is fixed. 
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Figure 3. Strain energy density. The strain energy density is highest at the singularity 

associated with the pinned node. 
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