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This study is based on an extension of the concept of joint entropy of two random variables to

continuous functions, such as backscattered ultrasound. For two continuous random variables, X
and Y, the joint probability density pðx; yÞ is ordinarily a continuous function of x and y that takes

on values in a two dimensional region of the real plane. However, in the case where X ¼ f ðtÞ and

Y ¼ gðtÞ are both continuously differentiable functions, X and Y are concentrated exclusively on

a curve, cðtÞ ¼ ðf ðtÞ; gðtÞÞ, in the x; y plane. This concentration can only be represented using a

mathematically “singular” object such as a (Schwartz) distribution. Its use for imaging requires

a coarse-graining operation, which is described in this study. Subsequently, removal of the coarse-

graining parameter is accomplished using the ergodic theorem. The resulting expression for

joint entropy is applied to several data sets, showing the utility of the concept for both materials

characterization and detection of targeted liquid nanoparticle ultrasonic contrast agents. In all cases,

the sensitivity of these techniques matches or exceeds, sometimes by a factor of two, that demon-

strated in previous studies that employed signal energy or alternate entropic quantities.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4770245]

PACS number(s): 43.60.Bf [SAF] Pages: 283–300

I. INTRODUCTION

Previous studies have demonstrated the utility of several

different entropies for detection of subresolution backscatter-

ing structures in both materials characterization and medical

ultrasonics in situations where other approaches fail. These

include detection of unresolvable near-surface defects,1–5

diffuse accumulation of subresolution-sized nanoparticle-

based ultrasound contrast agents,6–10 characterization of

smooth muscle pathologies,11–13 and monitoring of ultra-

sonically induced temperature rise in tissue.14

In the first of these studies, entropy images were

applied to detect defects in advanced aerospace materials.1

In particular, detection and imaging of “near-surface”

defects in graphite-epoxy composite plates was accom-

plished using a 5 MHz center frequency transducer.1–5 In

this application, it is not possible to separate the front wall

echo from the defect reflection. This presents a significant

challenge to conventional approaches for defect detection

and imaging. In fact, the case presented in the following

text is nearly impossible to discern using the traditional

approach. However, the joint entropy image permits

visualization of the defect, its boundary, and certain sub-

structures contained in the defect that were not visible to

conventional detection methods or even the previously pub-

lished entropic images.

The bulk of our investigations have focused on medi-

cal imaging. These studies have demonstrated the utility of

several different entropies for detection of subresolution

structures of backscattering tissue: e.g., targeted accumula-

tion of weakly scattering perfluorocarbon nanoparticles in

tissues in vivo, and pathological changes in smooth muscle

structure arising from muscular dystrophy. These results

have been obtained in a variety of animal disease models

and in patients as shown in Table I. Several features

common to these studies deserve special emphasis at the

outset:

(a) Studies have been executed using several different

imaging systems (Philips HDI 5000, Philips IE33,

Vevo 660, Ardent Spark) with transducer arrays cover-

ing a frequency range from 2–34 MHz.

(b) In all cases but one,11 the entropic analysis demonstrated

greater sensitivity than did signal energy to subresolu-

tion features of scattering architecture. In the exceptional

case,11 sensitivities were essentially equivalent.

(c) The most recent version of entropy published8,15 is

amenable to real-time implementation.

a)Author to whom correspondence should be addressed. Electronic mail:

mshatctrain@gmail.com
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(d) All results pertaining to detection of targeted nanopar-

ticles were obtained without use of hand-drawn regions

of interest. In fact, the entire analysis chain from raw

data to image construction to image-based sensitivity

assessment was automated and thus objective.

(e) Image subtraction has not been required to detect changes

in scattering architecture.

All of these points suggest the clinical utility of this

approach, which might proceed along lines similar to that

employed in Doppler imaging systems, where the conven-

tional B-mode image is color-coded according to the blood

cell velocity to present a combined B-mode/velocity image;

similarly, a B-mode/entropy image could be made as well.9

All of these investigations required acquisition of

thousands of radio frequency (RF) signals, f ðtÞ. For each of

these captured waveforms, viewed as a sampled version of a

differentiable function, the probability density function of

values was computed using the digitized values of f ðtÞ.
Distributions of values (or densities of distributions of

values) are typically used for analysis of random variables,

and all differentiable functions are, in fact, legitimate ran-

dom variables. However, in the general case, it is not possi-

ble to compute the probability density function of a random

variable solely from its values. For example, to determine

the probability density function for noise in an amplifier, the

noise source must be sampled and the distribution of

sampled values subsequently fit to an assumed functional

form, e.g., Gaussian or Poisson. In our case, the knowledge

that the random variable f ðtÞ is differentiable permits direct

computation of its probability density function without the

need to assume and fit a model.2,5,7 While this can be a

mathematically and computationally demanding task, previ-

ous applications of this approach to analysis of acoustic sig-

nals have repeatedly demonstrated its utility. The present

study extends these results by developing joint entropy,

which we will denote by Hf ;g, to analyze the same type of

data. This approach requires computation of the joint proba-

bility density of two (differentiable) functions: y ¼ f ðtÞ,
representing a segment of backscattered radio frequency

ultrasound, and a reference signal, gðtÞ. After carefully

deriving a suitable expression for Hf ;g, we show that it pro-

vides further improvements in sensitivity over those obtained

in previous studies that were based on other entropies.

II. APPROACH

Our goal is to further improve the ability to detect weak

scatterers in strongly scattering environments, as in the case

where liquid nanoparticles are targeted to cancer molecular

epitopes or in material defects in advanced aerospace materi-

als. Although prior entropy measures have been proposed,

we expect the current approach to demonstrate significant

enhancement in detection in real-time applications that could

be ported to existing imaging systems.

A. Background

This study is based on an extension of the concept of

joint entropy of two random variables to continuous func-

tions, such as backscattered RF, and a reference signal, such

as a reflection from a weak reflector. For two continuous ran-

dom variables, X, Y with joint probability density function

pðx; yÞ, the joint entropy is

HðX; YÞ ¼
ð1
�1

ð1
�1

pðx; yÞ log pðx; yÞdxdy: (1)

Ordinarily pðx; yÞ is a continuous function of x and y that

takes non-zero values in a two dimensional region of the real

plane. However, in the case where X ¼ f ðtÞ and Y ¼ gðtÞ
are both continuously differentiable functions, the random

variables X and Y are concentrated exclusively on a curve,

cðtÞ ¼ ðf ðtÞ; gðtÞÞ, in the x; y plane as shown in Fig. 1. Thus

the densities of their values cannot be represented using

conventional functions as was done in previous studies of

only one differentiable random variable.1–5,7 Instead, this

concentration can only be represented using a mathematically

“singular” object like a series of Dirac Delta functions placed

on cðtÞ with infinitesimal spaces in between them. Techni-

cally, such an object is not a function; in precise terms,

pðx; yÞ must be represented as a Schwartz distribution.16 Its

use for imaging requires that the Schwartz distribution be

coarse-grained, i.e., integrated, on a fine grid of small cells as

shown in Fig. 2. The outcome of this course-graining, as

shown in Appendix B, is the conversion of the probability

density (which is a Schwartz distribution) into a bona fide
probability distribution function such that the probability of X
and Y being in a particular cell, which is the generalization of

TABLE I. Summary of studies based on different entropic signal receivers defined for waveform y ¼ f ðtÞ having density function wf ðyÞ: entropy, Hf , Renyi

entropy, If ðrÞ, and its asymptotic limiting form, If ;1. The joint entropy Hf ;g is frequently much more sensitive than any of these.

“Entropic” receiver Heuristic meaning Scattering structure Experimental system

Hf ¼ �
Ð fmax

fmin
wf ðyÞlog½wf ðyÞ�dy “Information” contained Materials characterization, Graphite/epoxy laminates (Ref. 5)

Hf ¼ �
Ð 1

0
log½f 0"ðtÞ�dt “Information” contained in backscattered

RF f ðtÞ.
Targeted nanoparticles, smooth

muscle cells

MDA 435 (Ref. 16), B16

VX2,MDx mice (Ref. 11)

Precancer models (Ref. 7)

Humans (Ref. 12)

If ðrÞ ¼ 1=1� rlog
Ð fmax

fmin
wf ðyÞrdy “Weighted-information” contained in

backscattered RF: f ðtÞ (note: Hf ¼ If ð1Þ).
Targeted nanoparticles, smooth

muscle cells

MDA 435, B16 Precancer

models (Ref. 17)

If ;1 ¼ log½ftkjf 0ðtkÞ ¼ 0g1=jf 00ðtkÞj� Limiting form of If ðrÞ as r ! 2. More

sensitive than Hf , If ðrÞ.
Targeted nanoparticles, MDA 435 (Ref. 8), B16 (Ref. 10)

smooth muscle cells Humans

Precancer models (Ref. 15)

284 J. Acoust. Soc. Am., Vol. 133, No. 1, January 2013 Hughes et al.: Joint entropy of continuously differentiable ultrasonic waveforms

Downloaded 24 Jan 2013 to 128.252.66.80. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



pðx; yÞ that we seek, is given by the time that cðtÞ “spends” in

the cell [Eq. (B28) in the following text]. This is what we

would expect intuitively if we imagined a test particle tra-

versing the curve, cðtÞ, with velocity vðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0ðtÞ2 þ g0ðtÞ2

q
,

and wanted to know the probability of finding it in a particu-

lar cell. Having this result, it is possible to extract a well-

defined finite component from the coarse-grained version of

Eq. (1), which we will denote by Hf ;g, in terms of f 0ðtÞ and

g0ðtÞ.
As with the entropies previously investigated, Hf ;g is

applied in a moving window analysis. However, its computa-

tion requires two input waveforms. The first, f ðtÞ, is exactly

the same as in previous investigations. However, choice of

the second reference waveform, gðtÞ, constitutes an additional

degree of freedom that may be exploited to increase sensitiv-

ity of the entropic analysis. Discovery of strategies for identi-

fication of the optimum reference waveform is one of the

eventual goals of our research. In this study, we present the

results of preliminary investigations that indicate a reflection

of the imaging system’s interrogating pulse from a weak

reflector, such as a water-agarose interface, constitutes a good

initial guess for the optimum. To summarize our findings:

(a) Hf ;g analysis may be applied in the same situations as

previous entropies, Hf , IðrÞ, If ;1. In fact, all of the data

for this study have been analyzed previously with the

use of at least one of these entropies. In this study, we

repeat several of these analyses using Hf ;g images.

(b) Hf ;g analysis is amenable to real-time implementation,

as was If ;1 analysis.

(c) In all cases studied so far, Hf ;g analysis has proven to

be more sensitive than the best previous results

obtained by other entropies. For example, preliminary

application of this new entropy to the MDA 435 data

shown in Figs. 7 and 8 shows a roughly twofold

increase in peak confidence ratios.

B. Conventions and calculation

To fix terminology, suppose that we are given two func-

tions, f ðtÞ and gðtÞ, assumed to map ½0; 1� into ð�1; 1Þ (i.e.,

j fmaxj, jfminj, jgmaxj, jgminj are all strictly less than one). We

are interested in computing the joint entropy,

Hðf ; gÞ ¼
ð1

�1

dx

ð1

�1

dy wðx; yÞlog½wðx; yÞ�; (2)

where wðx; yÞ is their joint density, defined on the domain

X ¼ ð�1; 1Þ � ð�1; 1Þ. It turns out that for the types of

FIG. 1. (Color online) Left panel: A

plot of the curve cðtÞ used to visual-

ize the joint cumulative density func-

tion, Wðx; yÞ, of values of the

functions f ðtÞ and gðtÞ. The probabil-

ity density is non-zero only on the

curve cðtÞ because the random varia-

bles X ¼ f ðtÞ, Y ¼ gðtÞ are concen-

trated exclusively on cðtÞ. On the

right is an graphical calculation of

Wðx; yÞ using the graphs of f ðtÞ and

gðtÞ. The exact definition of Wðx; yÞ
is given in Eq. (B1).

FIG. 2. Uniform partition of the xy-plane into e� e cells.
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functions f ðtÞ and gðtÞ that we will consider (intuitively

thought of as “well-behaved”), wðx; yÞ is not a real-valued

function but a (Schwartz) distribution so that Eq. (2) is not

well-defined.

To get around this difficulty, we employ a “coarse-

grained” approximation to Eq. (2) obtained, by dividing X
into e� e cells, where e ¼ 1 =N as shown in Fig. 2, and inte-

grating wðx; yÞ over each cell. We denote the e� e cells

intersecting cðtÞ at initial time ti by Ci and index them by

i ¼ 1;…;M (M will be discussed later). For subsequent dis-

cussion, we define the distance traversed along cðtÞ when it

enters the ith cell by si. Figure 9 illustrates our terminology.

The final step in the coarse-graining process is replacement

of Hðf; gÞ by the quantity Hf ;g defined by

Hf ;g ¼ lim
�!0
½HDðf ; gÞ � e�

¼ lim
�!0

X
j;k

pDðj; kÞ log½pDðj; kÞ� � e

" #
; (3)

where pDðj; kÞ ¼ 0 unless cðtÞ passes through the ðj; kÞth
cell, in which case (as mentioned in the preceding text and

as we shall show in the following text), pDðj; kÞ is equal to

the time cðtÞ spends in the ðj; kÞth cell.

Our ultimate goal is to obtain an expression for Hf ;g in

terms of f ðtÞ and gðtÞ because these quantities are experimen-

tally accessible. As is carefully shown in Appendixes A–C,

the following relation is true:

Hf ;g ��
1

2

ð1

0

dt
min½j f 0ðtÞ j; j g0ðtÞ j�
max½j f 0ðtÞ j; j g0ðtÞ j�

�
ð1

0

dt log½jmax½j f 0ðtÞ j; j g0ðtÞ j� j�: (4)

It is a remarkable fact that derivation of Eq. (4), which uses

the ergodic theorem, also requires the fact that the set of

points for which f 0ðtÞ=g0ðtÞ is rational comprises a set of

measure zero (in the set of real numbers). Thus the relation

is essentially derived in a noncomputable setting. Neverthe-

less, the end result, Eq. (4), may be evaluated numerically.

The full details are provided in the appendixes.

III. RESULTS

A. Noise simulation

The effect of noise on the input waveform f ðtÞ is shown

in Fig. 3. To produce this plot, Gaussian distributed noise of

different amplitude was added to f ðtÞ ¼ e�10ðt�0:4Þ2 sinð4ptÞ
and gðtÞ ¼ e�10ðt�0:4Þ2 sinð2ptÞ (simulations using uniformly

distributed noise have also been performed yielding essen-

tially similar results). The range of noise levels spans 20 to

120 dB. At each noise level, 1000 waveforms f ðtÞ and refer-

ence waveforms gðtÞ were created, Hf ;g computed, and the

average hHf ;gi and standard error computed. Each hHf ;gi is

shown in the plot, with its standard error bar, which in all

but one case is too small to see. We notice that for signal-to-

noise ratios above 80 dB, it is possible to obtain three-digit

agreement with the noise-free answer [which was obtained

using a separate MATHEMATICA implementation of Eq. (4) that

was also used to double check the correctness of our C pro-

gramming language implementation of the same equation].

However, for signal-to-noise ratios between 40 and 60 dB,

which is the relevant range for our experimental data, agree-

ment to at most one or two digits is achievable. This limita-

tion shows that the numerical precision of our composite

integrator is more than enough for analysis of experimental

data, which always contain noise.

B. Materials characterization: Defect detection

The first application of entropy imaging was to materials

characterization;17 in particular, to detection and sizing of

near-surface defects in graphite/epoxy aerospace struc-

tures.1–5 Figure 4 shows some previously published (top

row)5 and newer results (middle and bottom row) for imag-

ing of a near-surface “resin-rich” defect in a thin (4 mm

thick) graphite/epoxy composite. The bottom left corner

shows a schematic of the specimen, which was fabricated by

removing a 3.81 cm diameter circular section from the sec-

ond ply prior to fabrication. The specimen was then auto-

claved following standard manufacturing practice. This

forced excess epoxy into the circular void and created the

resin-rich region. During the fabrication procedure, addi-

tional resin penetrated the inter-laminar region bordering the

circular void. The result is an oval shaped defect centered on

the original circular cutout.

This specimen was scanned on a 101� 101 point grid

using a 5 MHz broadband transducer with the backscattered

RF acquired at 8-bit digital resolution and a 100 MHz sam-

pling rate. The width of the interrogating pulse was therefore

far too wide to permit gating of front-wall reflection from

that of the defect, which lay within one ply (0.25 mm) of the

surface. While the top row results5 were originally published

as part of a larger study of six different types of near-surface

defects, results in the resin-rich case were less conclusive

than hoped for because, as the top row shows, the best under-

stood images failed to detect the boundaries of the defect

FIG. 3. (Color online) Effect noise on the computation of Hf ;g using Eq. (4).

Each data point is the average of Hf ;g computed from N ¼ 1000 different

waveforms gðtÞ ¼ e�10ðt�0:4Þ2 sinð2ptÞ to which Gaussian noise has been

added. The signal-to-noise ratio simulated ranges from 20 to 120 dB. The

reference trace f ðtÞ ¼ e�10ðt�0:4Þ2 sinð4ptÞ did not have noise added. Standard

error bars are plotted with each point, most are too small to see on the scale

of the plot.
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region. While other thermodynamic receivers used in that

study5 did delineate the defect boundaries, their physical

meaning was not readily apparent.

The middle and bottom rows of Fig. 4 show that this sit-

uation has been rectified by the newer signal processing

algorithms described in the preceding text. One reason for

the improvement is the use of optimal smoothing splines,

which are used for global noise suppression.18 Additionally,

only a gated portion of the backscattered RF (128 points

long for this figure) was used. Gating enables exclusion of

baseline regions that contain no useful data. While log½Ef �
and If ;1 images show the defect with relatively good con-

trast, the boundary between defect and surrounding plate

“fades-out” at the “3 o’clock” position. This can be signifi-

cant, for instance, if the images are to be used as input for

automatic feature extraction software. On the other hand, at

all points on its perimeter, the Hf ;g image has greater contrast

between defect boundary and surrounding “defect-free” plate

(matching the clarity of the less understood images shown in

earlier work (e.g., those labeled Z, CV , Eth, in Fig. 6 of that

work5). We also observe a circular outline within the defect

region. This is the diameter of the circular region removed

from the second ply to produce the resin-rich region during

the curing process used to fabricate the graphite/epoxy lami-

nate. During that process, resin accumulated not only in the

circular region but was also pushed out around its boundaries

to create the oblong appearance of the defect. We note that

the outline of the original circle is less evident in log½Ef � and

If ;1 images and is not visible in any of the images from the

previous study.5 The reference gðtÞ was a reflection from a

stainless steel reflector placed at the 4-in. focal plane of the

transducer. Because the experimental system used for data

acquisition has been verified to be stable to at least the �40

decibel level, this reference was acquired once, prior to scan-

ning of the entire collection of graphite/epoxy specimens.

We observe that this is equivalent to the use of a reference

acquired from the weak reflector that we use in biological

studies. The operational criterion for choice of reflector is

that it roughly matches the reflection coefficient of the scat-

terers in the specimen trace f ðtÞ.

C. Medical imaging: Targeted tumor imaging

Previously, we reported on application of entropic

quantifies Hf and If ;1 for detection of subtle changes in RF

backscatter induced by accumulation of targeted nanoscale

contrast enhancers in tumor neovasculature6,8 or pre-

cancerous tissue.7 We have used the same raw RF from these

studies to prepare Hf ;g images, which were then analyzed for

evidence of nanoparticle accumulation. As the materials and

methods for these studies are described in previous publica-

tions,8 we provide only a brief summary of data acquisition

and analysis in each case and then present a comparison of

the Hf ;g and If ;1 analyses.

D. MDA 435 tumors implanted in athymic nude mice

Human MDA 435 cancer cells were implanted in the in-

guinal fat pads of 15 athymic nude mice between 19 and 20

days prior to acquisition of data. Five of these animals were

injected with avb3-targeted nanoparticles, five were injected

with nontargeted nanoparticles, and five were injected with

saline at a whole body dose of 1 ml/kg. In addition, 15 athy-

mic nude mice not implanted with tumors were imaged in

the same region following the same imaging protocol: five

were injected with avb3-targeted nanoparticles, five were

injected with nontargeted nanoparticles, and five were

injected with saline.

RF data were acquired with a research ultrasound sys-

tem (Vevo 660, Visualsonics, Toronto, Canada) at 0 through

60 min in 5-min intervals after injection. The tumor was

imaged with a 35-MHz center frequency single element

“wobbler” probe, and the digitized RF data corresponding to

single frames were stored on a hard disk for later off-line

analysis. The frames consisted of 384 lines of 2048 12-bit

words acquired at a sampling rate of 200 MHz using a Gage

12400 digitizer card (connected to the analog-out and sync

ports of the Vevo) in a controller PC. Each frame corre-

sponds spatially to a region 1.5 cm wide and 0.8 cm deep.

Further description of materials and methods may be found

FIG. 4. Five different types of images made using RF backscattered from a

graphite/epoxy plate with a near-surface defect. Top row contains previously

published results (Ref. 5). These were obtained using the full 512-point digi-

tized waveform and without optimal smoothing splines. The next two rows

show the results obtained using optimal smoothing splines on a 128-point

subset of the full digitized waveform. A schematic of the experimental spec-

imen is shown in the lower left corner of the figure. The Hf ;g image shows

the clearest delineation of defect boundaries.
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in previous publications.8 The reference trace gðtÞ was

obtained by digitizing a reflection of the imaging system’s

interrogating pulse from a water-agarose interface using the

same acquisition parameters. As for the materials study, the

long-term stability of the system electronics has been veri-

fied better than the 40 dB level. Consequently, one reference

trace was acquired prior to beginning the study and used for

all subsequent Hf ;g analysis.

A moving window analysis was performed on each

waveform by moving a rectangular window (128 points

long, 0.64 ls) in 0.08 ls steps (16 points), resulting in 121

window positions within the output data set. A smoothing

spline was fit to each window. Issues surrounding signal-to-

noise (SNR) ratio, SNR estimation, and robust noise sup-

pression for these data have been discussed in a previous

publication.8 The fitting routine also returned an array of first

and second derivatives at the locations of any critical points

in the window. The arrays were used to compute Hf ;g (or

If ;1). This produced an image for each time point in the

experiment (i.e., 0, 5,…, 60 min).

The segment of RF within the boxcar, or moving win-

dow, is processed to produce a pixel value for an Hf ;g (or

If ;1) image. For each mouse used in this study, this is done

using RF data acquired at 0, 5,…, 60 min post-injection to

produce an image at each time point. For this study, in which

the same portion of the anatomy was imaged at successive

intervals, our goal was to identify and quantify the accumu-

lation of targeted nanoparticles, which occurs preferentially

at targeting sites. This suggests that segmenting the image

into “targeted” and “non-targeted” regions will be required

as part of the analysis.

One of the chief goals of our research has been to

develop objective segmentation algorithms that do not

require user selection (e.g., hand drawn regions of interest).

Figure 5, displays the steps of such an algorithm graphically.

For each mouse used in this study, a histogram of the image

pixel values appearing over the entire time course (i.e., 0, 5,

10,…, 60 min) was constructed and normalized to obtain the

probability density function (PDF) of these values and then

integrated to obtain the cumulative distribution function

(CDF). This is shown in the top panel of the figure. Next,

pixel values corresponding to “analysis-thresholds” at the

lower 2%, 4%, …, 98% of the CDF were then used to seg-

ment the images at each time point into two regions corre-

sponding to targeted and nontargeted tissue. The figure

shows the segmentation for an example analysis-threshold of

FIG. 5. Analysis steps for Hf ;g images from a

single mouse. Step 1: The cumulative distribu-

tion function (CDF) of all 12 images acquired

from the animal are computed. Step 2: The CDF

is used to segment the image into “targeted”

(inside the blue boundaries) and “non-targeted”

(outside) segments according to pixel value

being above or below the threshold level (44%

in this case). Step 3: the mean value, hHf ;gii, of

Hf ;g is computed for each targeted region. Step

4: These are used to calculate DHf ;gi
¼ hHf ;gii

�hHf ;gi0 for each time point in the study. This

procedure is repeated for all mice in each group.
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44%. The blue lines, shown in the second panel of the figure,

indicate the boundary between targeted (inside the blue

boundaries) and non-targeted (outside the blue boundaries)

regions. Subsequently, the mean value of pixels in the tar-

geted region were computed as a function of time post-

injection. This is indicated in the bottom panel of the figure,

in which the mean value of Hf ;g found at each time, denoted

in the figure by hHf ;gii, i¼ 1,…, 12, is shown immediately

below the thresholded image. Subsequently, the change in

these mean values,

DHf ;g ¼ hHf ;gii � hHf ;gi0; (5)

is computed (DHf ;g0
¼ 0). The analysis diagrammed in

Fig. 5 was performed for all animals in all groups and the

results averaged by group. We will drop the subscript i in the

remaining discussion and refer only to the DHf ;g.

DHf ;g, corresponding to a 98% analysis-threshold is

plotted in Fig. 6, in panel number one. For the purposes of

detection, it is actually the ratio of the mean value to the

standard error that is significant. We have plotted an exam-

ple of these ratios (for the MDA 435 implanted group

injected with avb3-targeted nanoparticles) in panel two of

Fig. 6. To shorten subsequent discussion of our results, we

will define this ratio (confidence) as19

c ¼ mean

standard error
: (6)

As this panel shows, for an analysis-threshold of 98%, the

mean value of DHf ;g is at all times at least four standard

deviations or more from zero and peaks at 16 standard devia-

tions from the mean Hf ;g at zero time. We have mapped each

confidence value to a color scale shown along the x axis of

the plot. Panel three of the figure shows the aggregate of all

color maps resulting from analysis thresholds between 0%

and 98%. These aggregated color maps, or confidence pan-

els, may be used to quickly identify analysis thresholds at

which accumulation of targeted nanoparticles is successfully

detected by either Hf ;g or If ;1 imaging and to quantify the

sensitivity of each image type.

An inter-receiver comparison is shown in Fig. 7, which

is a five-dimensional presentation having three dimensions

within each confidence panel (i.e., post-injection time in the

vertical direction, analysis-threshold in the horizontal direc-

tion, and confidence c in the out-of-plane or color direction),

another dimension for animal group (the vertical direction

within the array), and a fifth dimension being the masking

level for the absolute value of confidence ratio c (the horizon-

tal direction within the array). In the left column are DHf ;g

confidence panels for all six groups used in our study as indi-

cated in the figure caption. In the right-hand column are the

corresponding DIf ;1 confidence panels made using the same

RF data and smoothing spline processing parameters.

In spite of the high dimensionality of the display, rapid

comparison of Hf ;g or If ;1 processing is possible, as well as

FIG. 6. Use of DHf ;g vs time plots to pre-

pare confidence, c, panels. Step 1: An analy-

sis threshold is set, and Hf ;g images are

analyzed to produce plots of DHf ;g; the time

plot for the 96% analysis threshold is

shown. Step 2: The confidence as a function

of time is computed according to Eq. (6)

and then converted to a color bar shown par-

allel to the x axis of the plot. Step 3: These

color bars are stacked vertically left-to-

right, in increasing order, to prepare a confi-

dence panel showing the confidence

obtained at all time points for all analysis

thresholds between 0% and100%. A color-

to-confidence calibration bar is shown to the

right of the confidence panel.
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inter-group comparison. For instance, in both columns of the

top row, we observe “extensive” (meaning contiguous, wider

than three columns over at least half the height of the confi-

dence panel) regions, corresponding to confidence values

greater than four in magnitude. The remaining confidence

panels (for the control groups), with one exception, have

much lower confidence value magnitudes in the same range

of analysis-thresholds. Comparison of the confidence panels

in the left column (DHf ;g) shows that the top confidence

panel, corresponding to the MDA 435-implanted group

injected with avb3-targeted nanoparticles, generally exhibits

confidence ratios with the greatest magnitude. There is an

anomalous region of high confidence ratio for the saline

group C appearing at 30 min post-injection. Because no

nanoparticles were injected into this group, it might be clas-

sified as a “false-positive” for the technique. Further

research, aimed at understanding and eliminating this effect,

e.g., by using different reference traces gðtÞ, is underway.

However, we remark that this region is contained in a range

of analysis thresholds that does not overlap the range of anal-

ysis thresholds for which the confidence ratio of the targeted

MDA435-implanted group (row A) is large. Consequently, it

possible to define a strategy for separating the groups that

eliminates false positives. Moreover, for the top row, the

DHf ;g images produce confidence values that are more than

twice those obtained using DIf ;1 images. Consequently, the

criteria: “j c j � 4,” with analysis threshold between 60%

and 98% for Hf ;g analysis (44%–62% for If ;1 analysis),

becomes a means of distinguishing the targeted/tumor-

implanted group from all others. We observe also that these

criteria exhibit the presence of targeted nanoparticles accu-

mulating within five minutes after injection. While the figure

shows that we may distinguish the targeted tumor-implanted

group from the control groups, the issue of single animal

“diagnosis” remains open due to the small cohort of animals

studied. The current study is a demonstration of feasibility

and suggests the utility of conducting a larger experiment

having a proper receiver operator curve analysis that would

permit quantification of true positives, true negatives, false

positives, and false negatives.

E. Transgenic K14-HPV16 mouse tumor model

The model used is the transgenic K14-HPV16 mouse that

contains human papilloma virus-16 oncoproteins driven by a

keratin promoter so that lesions develop in the skin, particu-

larly in the ear. Typically the ears exhibit squamous metapla-

sia, a pre-cancerous condition, associated with abundant

neovasculature that expresses the avb3 integrin. Eight trans-

genic mice20,21 were treated with 1.0 mg/kg i.v. of either avb3-

targeted nanoparticles (n¼ 4) or nontargeted nanoparticles

(n¼ 4) and imaged dynamically for 1 h using a research ultra-

sound imager (Vevo 660 40 MHz probe) modified to store digi-

tized RF waveforms acquired at 0, 15, 30, and 60 min. time

points. Further details may be found in reference 8. All RF

data were processed in the same manner as the MDA 435 data.

The results are shown in Fig. 8, which displays the three

confidence panels obtained using Hf ;g images on the left and

If ;1 images on the right. Broad, contiguous, regions of large

confidence ratio magnitude only occur in the right side of the

panels, corresponding to analysis thresholds of 78% to 98%.

Consequently, we have emphasized these portions by enclos-

ing them with dotted lines while placing a semi-transparent

layer over the complementary region (which has been dis-

played in this manner for completeness). Focusing attention

on the 78% to 98% confidence thresholds, we see that Hf ;g

analysis exhibits twice the sensitivity of If ;1 analysis for the

targeted group. Moreover, Hf ;g analysis, at these analysis

thresholds, exhibits greater separation between the targeted

group and the saline control group than does If ;1 analysis.

While separation between the targeted group and the non-

targeted control is greater for If ;1 analysis, the panels show

that Hf ;g analysis still yields several standard deviations of

separation between the two groups.

IV. DISCUSSION AND CONCLUSIONS

In all cases, the sensitivity afforded by analysis of Hf ;g

images exceeds that obtained in our best previous analyses

of the same data by roughly a factor of 2. The main differ-

ence between the previous approach and the current one is

employment of a reference trace. The results presented in

FIG. 7. Confidence, c, panels for DHf ;g (left column) and DIf ;1 (right col-

umn) for all groups used in our study. (A) MDA 435-implanted mice

injected with avb3-targeted nanoparticles (N ¼ 5), (B) MDA 435-implanted

mice injected with non-targeted nanoparticles (N ¼ 5), (C) MDA 435-

implanted mice injected with saline (N ¼ 5), (D)–(F), same injections into

N ¼ 5 tumor-free mice. The smoothing spline parameter S ¼ 1:0 in all

cases. A color-to-confidence calibration bar is shown to the right of the con-

fidence panels.

FIG. 8. Comparison DHf ;g (left) and DIf ;1 (right) for data acquired in a pre-

cancer model (Ref. 7) like that shown in Fig. 7. While analysis at all thresh-

olds between 0% and 100% was undertaken, we wish to focus attention on

the results obtained between 75% and 100% (results from lower analysis

thresholds have been “dimmed” by a translucent overlay). In both cases, a

broad region of confidence values above 2 is shown. While the extent of this

region is larger in the DIf ;1 confidence panel, the maximum height of the

DHf ;g confidence panel is more than twice as high (16.0 vs 6.8). A color-to-

confidence calibration bar is shown to the right of the confidence panels.
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this study employed a reference, water-path only reflection

from a weak reflector, which is the natural choice in many

conventional ultrasonic analyses that deconvolve the transfer

function of the experimental apparatus from the raw experi-

mental data. In our case, the rationale for application of this

reference is based on the relation between entropy, HðAÞ,
joint entropy, HðA;BÞ, and conditional entropy of B given A,

HðBjAÞ for discrete random variables A, and B, which is

HðB;AÞ ¼ HðA;BÞ ¼ HðAÞ þ HðBjAÞ: (7)

If A is taken as a reference variable and we compute

HðB0;AÞ where B0 is another random variable, then

HðB;AÞ � HðB0;AÞ ¼ HðBjAÞ � HðB0jAÞ. Because analysis

of entropy images described in the preceding text is based on

differences between joint entropies, the last equation shows

that they can be reinterpreted as differences between condi-

tional entropies, i.e., heuristically at least, we are looking at

the differences in information contained in backscattered RF

(e.g., either B, or B0) given that the tissue was interrogated

with a certain reference pulse (A).

The reference trace gðtÞ is also a “knob” that we can

“turn” to adjust the sensitivity of the image to specific attrib-

utes in the reference waveform. In our heuristic interpreta-

tion, we are examining the extent of differences between the

information in the reference trace and the backscatter. In

other words, we are estimating how much the information

content of the interrogating ultrasonic pulse has been

changed by the scattering events occurring in the tissue.

In spite of the fact that our choice of reference appears

natural, it is conceivable that in other circumstances, a dif-

ferent choice of reference waveform might be more compel-

ling. Thus the choice of reference is to some extent arbitrary.

Our response to this fact has been to post-process the result-

ing Hf ;g images using all analysis thresholds and to deter-

mine if there exists a rational set of criterion for

differentiating the targeted from control groups. The results

of the present study, as well as previous studies,8,15 advance

one strategy for doing so. The investigation of other strat-

egies for choice of an optimum reference given specific

detection requirements is the subject of ongoing research.
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APPENDIX A: CALCULATION OVERVIEW

In this subsection, we derive from Eq. (2) an expression

for Hf ;g in terms of the experimentally accessible quantities

f ðtÞ and gðtÞ. To do this, we claim the following assertions,

which will be established in subsequent sections:

(a) Claim i: pDðj; kÞ ¼ Dti ¼ tiþ1 � ti if cðtÞ enters the

ðj; kÞth cell at time ti and leaves it at tiþ1. Otherwise,

pDðj; kÞ ¼ 0. This is Eq. (B28) in the following text.

Consequently, evaluation of Eq. (3) comes down to

being able to compute the limiting behavior of

eDti log½Dti� as e! 0. We will see presently that what

we really need to compute is the limiting behavior of

eDsi log½Dsi�.

This leads us to our second assertion:

(b) Claim ii: there exists an expression for the limiting

behavior of eDsi log½Dsi� in terms of f 0ðtÞ and g0ðtÞ,
assuming that g0ðtÞ=f 0ðtÞ is irrational. This is essen-

tially Eq. (A9) in the following text. Subsequently, we

derive the expression for Hf ;g in terms of the experi-

mentally accessible quantities f 0ðtÞ and g0ðtÞ. The next

two subsections will justify claims i and ii. At this

point, we observe from Fig. 9 that the distance trav-

ersed, Dsi, in any member of Ci is given by

Dsi ¼ Dtivi; (A1)

where vi ¼ vðtiÞ, i ¼…;M. Using Eq. (A1), Eq. (3)

becomes the sum

XM

i¼1

Dti log½Dti�¼
XM

1

Dti log
Dsi

vi

� �

¼�
XM

i¼1

Dti log½vi�þ
XM

i¼1

Dti log½Dsi�: (A2)

The first term in the sum has the limiting behavior

�
XM

i¼1

Dti log½vi� ! �
ð1

0

dt log½vðtÞ�; (A3)

as e! 0. It remains to evaluate the sum

XM

i¼1

Dti log½Dsi�: (A4)

However, we do not know the coordinates of the entry

(or exit) points of cðtÞ into the ith cell, and thus it

appears that we lack the necessary information to

FIG. 9. A diagram of the computation of time spent by cðtÞ in an e� e cell

in the xy plane.
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calculate either Dti or Dsi. Nevertheless, if we assume

that the portion of the curve cðtÞ within each e� e cell

is a straight line segment that starts at the point ðf ðtiÞ;
gðtiÞÞ and has slope

ai � g0ðtiÞ = f 0ðtiÞ (A5)

so that it leaves the e� e cell near the point ðf ðtiþ1Þ;
gðtiþ1ÞÞ, we may then continue the limiting process by

sub-partitioning each cell further into es � es cells as

shown in Fig. 10. Given this subdivision, each term in

the sum, Eq. (A4), must now be replaced by the sum

XMSi

n¼1

Dti;nlog½Dsi;n�; (A6)

where the n indexes the es � es cells crossed by cðtÞ as

it traverses the larger e� e cell. Thus the sum appear-

ing in Eq. (A4) is replaced by a double sum

XM

i¼1

XMSi

n¼1

Dti;nlog½Dsi;n�: (A7)

We further assume that the velocity, vi, is constant

over the entire e� e square as we further subdivide it.

Thus the inner sum in Eq. (A6) becomes

XMS

n¼1

Dti;n log½Dsi;n� ¼
XMS

n¼1

1

vi
Dsi;n log½Dsi;n�

¼ 1

vi

XMS

n¼1

Dsi;n log½Dsi;n�

� Si: (A8)

While it remains true that we still do not know where

cðtÞ will enter each of these smaller cells, we have

nevertheless made progress because if we imagine

stacking all of the es � es cells crossed by cðtÞ on top

of each other, as shown in Fig. 11, we will observe

that, in almost every case (we will make this statement

precise presently), the entry/exit points will be uni-

formly distributed around the perimeter of the smaller

es � es cell. Given this picture, it is relatively easy to

see that Dsi may be obtained by summing the transit

lengths of cðtÞ over the smaller “stacked” es � es cell

and that in the limit where these crossings become infi-

nite (i.e., es ! 0), the sum may be obtained as the inte-

gral of the transit lengths, starting along the boundary

of the stacked cell.

The almost every case in the preceding text occurs when the

ratio g0ðtÞ = f 0ðtÞ is irrational. The reader might anticipate

this fact by considering first the case where the ratio is

rational (and the lengths of the sides of the es � es cell

is rational, which is the case with our conventions), then it is

easy to see that a small set of entry/exit points will be used

over and over again, i.e., the trajectory cell crossings will ex-

hibit periodic behavior. It is also relatively easy to see that

the number of these entry/exit points grows as the decimal

expansion of the g0ðtÞ = f 0ðtÞ grows in length. Consequently,

we might anticipate that for irrational g0ðtÞ = f 0ðtÞ, the num-

ber of these points is infinite. The ergodic theorem tells us

that this is, in fact, true and that they are also uniformly dis-

tributed around the perimeter of the es � es cell. Thus the

entry point into the original (larger) e� e cell becomes irrel-

evant because as the es � es cells are made smaller, all entry

values occur with equal probability. Actually, while applica-

tion of the ergodic theorem eliminates that we know where

cðtÞ enters a cell, it also introduces a cell dependent scaling

factor into our expression for Dsi. Consequently, we have

traded one missing piece of information for another.

FIG. 11. (Color online) Mapping of subgrids onto the “stacked” es � es

square. The shaded es � es sub-squares of the original e� e cell are all

stacked on top of each other. The corresponding points where cðtÞ crosses

boundaries of the sub-squares are lettered by capital or small letters.

Legends indicates their status as iterates of the mapping TyðyiÞ or TxðxiÞ
[Eqs. (C4) and (C6)]. For irrational ai ¼ g0ðtiÞ=f 0ðtiÞ, the ergodic theorem

guarantees that as the number of sub-squares is increased, the density of la-

beled points on vertical and horizontal sides becomes uniform.

FIG. 10. (Color online) Subdivision of an e� e cell into finer es � es cells

required for evaluation of Eq. (A6). We assume that e is small enough that

in the larger e� e cell cðtÞ is a straight line and vðtÞ is constant. Legends

indicate lengths of lettered segments.
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However, these scaling factors group together in the course

of the calculation can be eliminated from the final expression

for Si [see Eq. (C18)]. Moreover, if f ðtÞ, gðtÞ are continu-

ously differentiable over their range, then the set of points at

which f 0ðtÞ=g0ðtÞ is rational forms a set of measure zero,

which may be ignored in any integral, so that it is only the

cases where g0ðtÞ = f 0ðtÞ is irrational that matter. We provide

the precise details in a subsequent section, the end result is:

Si¼
1

vi

XMS

n¼1

Dsi;n log½Dsi;n�

¼�1

2

1

vi
Dsi

min½jf 0ðtiÞj;jg0ðtiÞj�
max½jf 0ðtiÞj;jg0ðtiÞj�

þ 1

vi
Dsi log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ min½jf 0ðtiÞj;jg0ðtiÞj�

max½jf 0ðtiÞj;jg0ðtiÞj�

� �2
s2
4

3
5

þ 1

vi
Dsi log½es�

¼�1

2
Dti

min½jf 0ðtiÞj;jg0ðtiÞj�
max½jf 0ðtiÞj;jg0ðtiÞj�

þDti log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ min½jf 0ðtiÞj;jg0ðtiÞj�

max½jf 0ðtiÞj;jg0ðtiÞj�

� �2
s2
4

3
5

þDti log½es�: (A9)

Summing these Si over i, we obtain

XM

i¼1

�1

2
Dti

min½j f 0ðtiÞj; jg0ðtiÞj�
max½jf 0ðtiÞj; jg0ðtiÞj�

� �

þ
XM

i¼1

Dti log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ min½jf 0ðtiÞj; jg0ðtiÞj�

max½jf 0ðtiÞj; jg0ðtiÞj�

� �2
s2
4

3
5

þ
XM

i¼1

Dti log½es�: (A10)

The last term sums to log½es� because the time required to

traverse the curve is one. The remaining terms become inte-

grals in the limit where e! 0. Collecting all terms

HDðf ;gÞ!�
ð1

0

dtlog½vðtÞ��1

2

ð1

0

dt
min½jf 0ðtÞj;jg0ðtÞj�
max½jf 0ðtÞj;jg0ðtÞj�

þ
ð1

0

dtlog

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ min½jf 0ðtiÞj;jg0ðtiÞj�

max½jf 0ðtiÞj;jg0ðtiÞj�

� �2
s2
4

3
5

þlog½es�;
(A11)

as es ! 0. Because the form of the singularity in this limit

log½es� is independent of f ðtÞ and gðtÞ, it makes sense to define

Hf ;g ��
ð1

0

dt log½vðtÞ� � 1

2

ð1

0

dt
min½j f 0ðtÞ j; j g0ðtÞ j�
max½j f 0ðtÞ j; j g0ðtÞ j�

þ
ð1

0

dt log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ min½j f 0ðtiÞ j; j g0ðtiÞ j�

max½j f 0ðtiÞ j; j g0ðtiÞ j�

� �2
s2
4

3
5:

(A12)

We observe that this expression is completely symmetric in

f ðtÞ and gðtÞ as expected.

Moreover, becauseffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ min½j f 0ðtÞ j; j g0ðtÞ j�

max½j f 0ðtÞ j; j g0ðtÞ j�

� �2
s

is equal to

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max½j f 0ðtÞ j; jg0ðtÞj�
max½j f 0ðtÞ j; jg0ðtÞj�

� �2

þ min½j f 0ðtÞ j; jg0ðtÞ j�
max½j f 0ðtÞ j; jg0ðtÞj�

� �2
s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min½j f 0ðtÞ j; jg0ðtÞj�2þmax½j f 0ðtÞ j; jg0ðtÞ j�2

max½j f 0ðtÞ j; jg0ðtÞ j�2

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0ðtÞ2þg0ðtÞ2

max½j f 0ðtÞ j; jg0ðtÞ j�2

s

¼ vðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max½j f 0ðtÞ j; jg0ðtÞ j�2

q ; (A13)

Eq. (A11) becomes

Hf ;g � �
1

2

ð1

0

dt
min½j f 0ðtÞ j; j g0ðtÞ j�
max½j f 0ðtÞ j; j g0ðtÞ j�

�
ð1

0

dt log ½jmax½j f 0ðtÞ j; j g0ðtÞ j� j� : (A14)

Before proceeding to the claims, we point out that in this

study, we consider only the case where self-intersections of

cðtÞ are isolated as shown in Figs. 1, 12, and 14. Inspection

of our experimental data shows that this assumption is valid

in all but a negligible number of cases, which have been

“masked” as described in the following text and excluded

from analysis. In the case of complete overlap, where

f ðtÞ ¼ gðtÞ, the joint entropy Hf ;g reduces effectively to Hf

entropy published previously.6,7 An intermediate case, of

total overlap for part of cðtÞ and isolated self-intersection on

other portions can be handled by breaking up the integrals

we will obtain into separate portions.

APPENDIX B: JUSTIFICATION OF CLAIM i

Webegin by establishing the joint density wðx; yÞ as

the (Schwartz) distribution obtained from the cumulative

joint density function, Wðx; yÞ, for x ¼ f ðtÞ and y ¼ gðtÞ,
While Wðx; yÞ is a conventional function of x and y, wðx; yÞ
is not, so that a course-graining operation on wðx; yÞ using

test functions must be defined. This leads to the main result

of this section, Eq. (B28). Although this permits computation

of the course-grained joint-entropy, we must also verify con-

sistency of this approach with that used to obtain previous

entropies, e.g., Hf , If ðrÞ, and If ;1, which were based on the

density function, wf ðyÞ for a single function y ¼ f ðtÞ.6–8,12,22

This is established by showing that the marginal density

functions obtained from wðx; yÞ are just the single function

densities employed previously. The same results are estab-

lished for the course-grained marginal probabilities.
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1. Calculating ›W ðx ;yÞ=›x›y using Schwartz
distributions

Typically, wðx; yÞ is defined as the second partial deriva-

tive (with respect to x and y) of the joint cumulative density

function Wðx; yÞ. However, for the types of random varia-

bles, we consider (assumed to be infinitely differentiable)

the joint density requires further discussion since, unlike

wf ðxÞ and wgðyÞ,7,12,22 it is not a regular function (and is

defined in the following text as a distribution in the sense of

L. Schwartz). So we must start with the joint cumulative

density function, Wðx; yÞ, for f ðtÞ ¼ x, gðtÞ ¼ y, an example

of which is shown in Fig. 1. This is a regular function

defined by

Wðx; yÞ ¼ jft 2 R : f ðtÞ � x and gðtÞ � ygj; (B1)

where j f�g j denotes the measure (“length”) of the set. The

right side of Fig. 1 has an example calculation of Wð0:5; 0:75Þ
directly from Eq. (B1).

On the left side of the figure, an alternative (and eventu-

ally more useful) way of looking at Wðx; yÞ is shown. The

trajectory defined by

cðtÞ ¼ f ðtÞ; gðtÞð Þ; (B2)

parameterized by time running from 0! 1, is shown. Also

shown is a red box having lower left corner at the point ðx; yÞ
¼ ð�1;�1Þ and its upper right corner at ðx; yÞ ¼ ð0:5; 0:75Þ.
The portions of the trajectory within this rectangular region

are colored red, and the entry and exit times of the red por-

tions are labeled to show their correspondence with times in

the right-hand side of the figure. The sum of these times is

Wð0:5; 0:75Þ, so that Wðx; yÞ measures the time that the tra-

jectory spends in the red box.

The figure also suggests that the derivative of Wðx; yÞ
will exhibit jump discontinuities for certain values of x and y
as the number of segments of cðtÞ contained in the red rectan-

gle changes discontinuously, for instance, as the height of the

red rectangle is adjusted so that its top moves from below to

just above the point labeled t0. This result may also be antici-

pated by formally differentiating the integral representation

of Wðx; yÞ given in Eq. (B4). Consequently, careful definition

of wðx; yÞ will require the use of Schwartz distributions.

If HðxÞ is the Heaviside function

HðxÞ ¼
0 x < 0;

1 x � 0;

�
(B3)

then

Wðx; yÞ ¼
ð1

0

H
�

x� f ðtÞ
	

Hðy� gðtÞÞ dt: (B4)

We note that the joint density wðx; yÞ ¼ ð@2=@x@yÞWðx; yÞ
appears only in expressions like

I ¼
ð1

�1

dx

ð1

�1

dy /ðx; yÞwðx; yÞ: (B5)

While wðx; yÞ is not a regular “point” function, we recognize

that it can be defined as a Schwartz distribution. Thus

we assume that we may freely interchange orders of integra-

tion and that if /ðx; yÞ 2 C1c ðXÞ [recall X ¼ ð�1; 1Þ
�ð�1;�1Þ], we obtain

I ¼
ð1

�1

dx

ð1

�1

dy /ðx; yÞwðx; yÞ

¼
ð1

�1

dx

ð1

�1

dy /ðx; yÞ @
2Wðx; yÞ
@x@y

¼
ð1

�1

dx

ð1

�1

dy
@2/ðx; yÞ
@x@y

Wðx; yÞ; (B6)

I ¼
ð1

�1

dx

ð1

�1

dy
@2f ðx; yÞ
@x@y

ð1

0

dtH ðx� f ðtÞÞ

� H ðy� gðtÞÞ (B7)

¼
ð1

0

dt

ð1

�1

dx

ð1

�1

dy
@2/ðx; yÞ
@x@y

Hðx� f ðtÞÞ

� Hðy� gðtÞÞ (B8)

¼
ð1

0

dt

ð1

�1

dxHðx� f ðtÞÞ

�

@/ðx; yÞ
@x

Hðy� gðtÞÞjy¼1
y¼�1

�
ð1

�1

dy
@/ðx; yÞ
@x

@

@y
Hðy� gðtÞÞ

2
664

3
775; (B9)

FIG. 12. Examples of two time-

domain functions, f ðtÞ ¼ x, gðtÞ ¼ y
(left side) and the path they define,

cðtÞ, in the x; y plane (right side).

The action of the Schwartz distribu-

tion wðx; yÞ in a two dimensional

integral is to collapse it into an

equivalent one dimensional integral

over time.
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I ¼�
ð1

0

dt

ð1

�1

dxHðx� f ðtÞÞ

�
ð1

�1

dy
@/ðx; yÞ
@x

@

@y
Hðy� gðtÞÞ; (B10)

where the boundary terms vanished because

/ðx; yÞ 2 C1c ðXÞ. Usingð1

�1

dyFðx; yÞ @
@y

Hðy� zÞ ¼ Fðx; zÞ; (B11)

with

Fðx; yÞ ¼ @/ðx; yÞ
@x

; (B12)

Eq. (B10) becomes

I ¼ �
ð1

0

dt

ð1

�1

dxHðx� f ðtÞÞ @/ðx; gðtÞÞ
@x

: (B13)

Integrating by parts again leads to

I ¼ �
ð1

0

dt
/ðx; gðtÞÞHðx� f ðtÞÞjx¼1

x¼�1

�
ð1

�1

dx
@

@x
Hðx� f ðtÞÞ/ðx; gðtÞÞ

2
4

3
5 (B14)

¼
ð1

0

dt

ð1

�1

dx
@

@x
Hðx� f ðtÞÞ/ðx; gðtÞÞ; (B15)

where once again the boundary terms vanish because

/ðx; yÞ 2 C1c ðXÞ. Using Eqs. (B11) and (B12), Eq. (B15)

becomes

I ¼
ð1

0

dt /ðf ðtÞ; gðtÞÞ: (B16)

Combining this result with Eq. (B5), we see that, as a

Schwartz distribution, wðx; yÞ obeys the relationð1

�1

dx

ð1

�1

dy /ðx; yÞwðx; yÞ ¼
ð1

0

dt /ðf ðtÞ; gðtÞÞ: (B17)

This generalizes the expression for single (differentiable)

random variable density functionð1

0

/ðyÞwf ðyÞdy ¼
ð1

0

/ðf ðtÞÞdt; (B18)

which we have employed in the definition of Hf as described

in previous studies.6–8,12,22

2. Where wðx ; yÞ “lives” in terms of f ðtÞ and gðtÞ

Equation (B16) can be visualized using the picture

shown on the right-hand panel of Fig. 12. The fact that

wðx; yÞ is represented by a Schwartz distribution means that

the “probability” is effectively concentrated on the curve

cðtÞ. Thus the current situation differs significantly from

typical applications of jointly distributed random variables,

which are usually distributed continuously over two-

dimensional regions of the real plane.

3. Marginal distributions

Consistency of the current approach with previous stud-

ies requires that the marginal density functions for wðx; yÞ
obtained using Eq. (B17) should be identical with the single

(differential) random variable density functions of Eq. (B18).

To check this, we let /ðxÞ 2 C1c ðXÞ and compute

I ¼
ðfmax

fmin

dx

ðgmax

gmin

dy /ðxÞwðx; yÞ

¼
ð1

0

dt /ðf ðtÞÞ

¼
ðfmax

fmin

dx /ðxÞwf ðxÞ: (B19)

But also

I ¼
ðfmax

fmin

dx

ðgmax

gmin

dy /ðxÞwðx; yÞ

¼
ðfmax

fmin

dx /ðxÞ
ðgmax

gmin

dy wðx; yÞ: (B20)

Equations (B19) and (B20) imply

wf ðxÞ ¼
ðgmax

gmin

dy wðx; yÞ; (B21)

and similarly

wgðyÞ ¼
ðfmax

fmin

dx wðx; yÞ; (B22)

as required.

4. Choices of /ðx ; yÞ for coarse-graining

The integral equations, Eqs. (B17) and (B18), defining

wðx; yÞ and wf ðyÞ are all we need to compute the coarse-

grained joint probabilities, pDðj; kÞ, and the associated

coarse-grained marginal probabilities, pDðjÞ and pDðkÞ,
which we will need as intermediate quantities to obtain Hf ;g.

This is accomplished by choosing an appropriate func-

tion /ðx; yÞ to use in Eq. (B17) [or for the marginal probabil-

ities: choosing an appropriate /ðyÞ to use in Eq. (B18)]. Let

0 < e	 1 and let 0 < s	 1 be a parameter used to control

the sharpness of the edges of test functions /ðx; yÞ, which

will be used to effect coarse-graining of the Schwartz distri-

bution wðx; yÞ and the density functions wf ðxÞ, and wgðyÞ.
We partition X into small square cells, e� e in size, over

which we will compute integrals of product of test functions

/ðx; yÞ and wðx; yÞ, wf ðxÞ, or wgðyÞ. The test function will be

chosen so that as s! 0, the coarse-graining test functions

approach unit height square waves that sample wðx; yÞ,
wf ðxÞ, or wgðyÞ over a small nonzero region. The aim is to

simulate the operation of a digitizer that is sampling a one or
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two-dimensional function. We begin by defining an infinitely

differentiable smooth function that “turns on” at x ¼ je as x
increases,

/L;jðxÞ ¼ e�1= sðx�jeÞð Þ2 ;
0;

x > je;
x � je;

�
(B23)

and a corresponding smooth function that turns off at x
¼ ðjþ 1Þe as x increases

/R;jðxÞ ¼
0;

e�1= s x�ðjþ1Þeð Þð Þ2;
x � ðjþ 1Þe;
x < ðjþ 1Þe:

�
(B24)

Their product defines an infinitely differentiable step function,

/jðxÞ ¼ /L;jðxÞ/R;jðxÞ; (B25)

which approaches a unit height square wave, turning on at

x ¼ je and turning off at x ¼ ðjþ 1Þe, as s! 0. This func-

tion may be used to “sample” a function of one variable,

e.g., f ðtÞ ¼ x. Similarly /kðyÞ is defined as an infinitely

smooth precursor to a square wave that turns on at y ¼ ke
and turns off at y ¼ ðk þ 1Þe. Their product may be used to

define the infinitely differentiable (in x and y) function

/j;kðx; yÞ ¼ /jðxÞ/kðyÞ; (B26)

which may be used to sample functions (or Schwartz distri-

butions) of two variables at x ¼ je, y ¼ ke. Example /jðxÞ,
/kðyÞ, /j;kðx; yÞ [which are all 2 C1c ðXÞ] are shown in

Fig. 13.

We will also allow the two indices, k associated with the

f ðtÞ ¼ x variable and j associated with the gðtÞ ¼ y variable

to run from �1 to1.

5. Course-grained probabilities pDðx ; yÞ, pDðxÞ, and
pDðyÞ from wðx ;yÞ, wf ðxÞ, and wgðyÞ

Now we have all we need to coarse-grain the densities

wðx; yÞ, wf ðxÞ and wgðyÞ. Suppose that cðtÞ passes only once

through the j; kth cell, which we will denote by Cj;k. To

coarse-grain wðx; yÞ over Cj;k, we compute,

pDðj; kÞ ¼ lim
s!1

ðfmax

fmin

dx

ðgmax

gmin

dy wðx; yÞ/j;kðx; yÞ

¼ lim
s!1

ð1

0

dt /j;kðf ðtÞ; gðtÞÞ

¼ lim
s!1

ðtf

ti

dt /j;kðf ðtÞ; gðtÞÞ

¼ lim
s!1

ðtf

ti

dt ¼ tf � ti; (B27)

FIG. 13. (Color online) Examples of course graining functions, /jðxÞ (top left), /kðyÞ (top right), and /j;kðx; yÞ (bottom).
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where /j;kðx; yÞ is defined by Eq. (B26). For cells that do not

intersect cðtÞ, we define pDðj; kÞ ¼ 0 for completeness.

Defining sðtiÞ to be the length along cðtÞ between t ¼ 0 and

t ¼ ti, Eq. (B27) may be rewritten as

pDðj; kÞ ¼ tf � ti ¼ Dt ¼ sðtf Þ � sðtiÞ
vðtiÞ

; (B28)

where vðtiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0ðtiÞ2 þ g0ðtiÞ2

q
is the velocity along the

curve at time ti. If more than one passage through occurs

Cj;k, then all traversal times ti such that ðf ðtiÞ; gðtiÞÞ 2 @ Cj;k

must be added, and we obtain

pDðj; kÞ ¼
X

fti2@ Ci;jg

sðtf Þ � sðtiÞ
vðtiÞ

: (B29)

6. Discrete marginal probabilities: From the standard
definition

The discrete marginal probabilities are defined by

pDðkÞ ¼
X

j

pDðj; kÞ: (B30)

For the course-grained marginal probabilities, we also set

pDðkÞ ¼ 0 if cðtÞ does not intersect any cell with index j
(Cj;k \ cðtÞ ¼ 0/ ; 8k). Similarly we define,

pDðjÞ ¼
X

k

pDðj; kÞ: (B31)

7. Discrete marginal probabilities: From Eqs. (B21),
(B22), and (B25)

Alternatively, we may start with Eq. (B21) and define

pDðjÞ ¼
ðfmax

fmin

dx wðx; yÞ/jðxÞ; (B32)

where /jðxÞ is given by Eq. (B25). Similarly, using

Eq. (B22),

pDðkÞ ¼
ðgmax

gmin

dy wðx; yÞ/kðyÞ; (B33)

where /kðyÞ is also given by Eq. (B25) and pDðjÞ, pDðjÞ are

zero in the same cases described after Eqs. (B30) and (B31).

Focusing on Eq. (B29), we see from Fig. 14, that the integral

will reduce, in the limit where s!1, to the sum of times

spent in the cells lying between je and ðjþ 1Þe, so that we

again obtain

pDðjÞ ¼
X

k

pDðj; kÞ (B34)

and

pDðkÞ ¼
X

j

pDðj; kÞ: (B35)

We note based on previous work that as e! 0 these are

asymptotic to

pDðjÞ 
 ewf ð�1þ jeÞ ¼ ewf ðxÞ (B36)

and

pDðkÞ 
 ewgð�1þ keÞ ¼ ewgðyÞ: (B37)

These are just the coarse-grained versions of Eqs. (B21) and

(B22) and demonstrate the consistency of computing mar-

ginals and then coarse-graining with coarse-graining and

then computing marginals.

APPENDIX C: JUSTIFICATION OF CLAIM ii

While Eq. (B28) gives the probabilities needed to com-

pute joint entropies in terms of time, Dti, we must express it

in terms of experimentally accessible quantities, which

means quantities derived from the backscattered RF, f ðtÞ,
and the reference signal gðtÞ. The first step in this process is

Eq. (A1), which relates Dti, to Dsi using the velocity in the

cell vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0ðtÞ2 þ g0ðtÞ2

q
, However, as discussed in the pre-

ceding text, we are still faced by an apparently unsolvable

problem because we do not know where cðtÞ enters the e� e
cell. Moreover, we also must eliminate the coarse-graining

parameter, e from the final expressions for joint entropy,

which is accomplished by taking e! 0. In this section, we

provide the details of our approach beginning with the

“stacking” process used above which may be made rigorous

using the ergodic theorem23 as we now describe. Thus we

FIG. 14. (Color online) Computation

of pðj; kÞ (left). Computation of the

marginal probability pðkÞ (right).
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suppose that we are given a straight line segment, ‘, of slope

a ¼ g0ðtiÞ=f 0ðtiÞ, and length Dsi, contained in a cell of dimen-

sions e� e, such as that shown in Fig. 10. We wish to subdi-

vide the cell into es � es sub-cells as also shown in the

figure, and compute the limiting form of

Si �
XMS

n¼1

Dsi;n log½Dsi;n�; (C1)

where

Dsi ¼
XMS

n¼1

Dsi;n; (C2)

and the index n keeps track of the es � es cells crossed as

cðtÞ traverses the larger e� e cell. We begin, as shown in

Fig. 11, by imagining that we translate all the subsegments

of ‘, to the es � es square, as shown in the left hand side of

the figure (this is equivalent to the stacking procedure

described in the preceding text). The y coordinates of those

line segments that start out on the y axis are shown the fig-

ure. These are given by

TðrÞy ðyiÞ ¼ yi þ raes mod es; (C3)

where T
ðrÞ
y ðyiÞ is the rth iteration of the mapping

TyðyÞ ¼ yþ a mod es: (C4)

Similarly the x coordinates of those line segments that start

out on the x axis are given by

TðrÞx ðxiÞ ¼ xi þ r
1

a
es mod es; (C5)

where TðrÞx ðxiÞ is the rth iteration of the mapping

TxðxÞ ¼ xþ 1

a
mod es: (C6)

Thus the physical “stacking” procedure is implemented

mathematically by iterating the maps TxðxÞ and TyðyÞ.
Because g0ðtiÞ=f 0ðtiÞ is irrational, we know that both of these

mappings are ergodic.23 Hence we have the following rela-

tions between sums and integrals involving continuous func-

tions /ðxÞ, wðyÞ and iterates of TxðxÞ and TyðyÞ,

XMsx�1

r¼0

/
�

TðrÞx ðxiÞ
	
! Msx

ð1

0

dx /ðxÞ; (C7)

as Msx
!1 and,

XMsy�1

r¼0

w
�

TðrÞy ðyiÞ
	
! Msy

ð1

0

dy wðyÞ; (C8)

as Msy
!1. While it is possible to use Eqs. (C7) and (C8)

to obtain Eq. (A9), we will not do so. Instead, it is simpler to

refer back to Fig. 11 and observe that Msx
is the number of

times that the line segment y ¼ ax crosses the vertical lines

x ¼ mes, where m is a non-negative integer, and Msy
is the

number of times that the line segment y ¼ ax crosses the

horizontal lines x ¼ qes, where q is a non-negative integer.

Furthermore, we observe that the ergodic theorem tells us,

via Eqs. (C7) and (C8), that as s! 0, the crossing points

become uniformly distributed along the edges of the es � es

square in Fig. 11. This means that the random variable y
shown in Fig. 15 is uniformly distributed. Thus the variable

h, which is a linear function of y, is also uniformly distrib-

uted over its range (the interval ½0; 1�). We will use this

implication of the ergodic theorem to obtain Eq. (A9).

1. Relation between Msx
and Msy

Let sh be the horizontal distance traversed and sv ¼ jajsh

be the vertical distance traversed (so Dsi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

sh).

Then

Msx
2 fbsh=esc; dsh=eseg; (C9)

where bzc is the largest integer � z, and dze is the smallest

integer � z. Similarly

Msy
2 fbsv=esc; dsv=eseg: (C10)

As sv ¼ jajsh, we get Msy
! jajMsx

as es ! 0.

2. Calculation of Dsi

We have

Dsi ¼ sh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
¼ sv

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a2

r
(C11)

and

FIG. 15. The black circle is a point where cðtÞ crosses the vertical line in the

es � es sub-grid shown in Fig. (11). Because a is irrational, the values of y
are uniformly distributed along the vertical side of the es � es square by the

ergodic theorem. This also implies that the variable h is uniformly distrib-

uted over its range, the interval ½0; 1�, because it is a linear function of y, as

shown in the figure.
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sh ¼ esMsx
(C12)

with an error of at most es by Eq. (C9). Therefore

Dsi � Msx
es

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
¼ Msx

e0; (C13)

where we have defined the symbol e0 ¼ es

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

to sim-

plify calculations in the following text.

3. Calculation of Si

We are now ready to calculate

Si �
XMS

n¼1

Dsi;n log½Dsi;n�:

We break the calculation into two cases: jaj < 1 and jaj > 1.

Case jaj < 1: We note that MS ¼ Msx
þMsy

is the num-

ber of times that the trajectory, cðtÞ, crosses either a vertical

or a horizontal line of the es � es sub-grid. (Because a is irra-

tional, there is at most one occasion where it crosses both

simultaneously; we can ignore this event as es ! 0.)

If there are two successive vertical crossings, then

Dsi;n log½Dsi;n� ¼ es

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
log½es

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
�: (C14)

As jaj < 1, if this does not happen, then there is exactly one

horizontal crossing in between vertical crossings at n and

nþ 2, and

Dsi;n log½Dsi;n� þDsi;nþ1 log½Dsi;nþ1�

¼ hes

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
log hes

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

ph i
þð1� hÞes

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
log ð1� hÞes

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

ph i
(C15)

for some 0 < h < 1. By the ergodic theorem, h will tend to a

uniformly distributed random variable on ½0; 1� as shown in

Fig. 15. So letting e0 ¼ es

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

, the contribution from

Eq. (C15) is, on average,ð1

0

dh½he0 log½he0� þ ð1� hÞe0 log½ð1� hÞe0��; (C16)

or

e0 log e0 � e0

2
: (C17)

Of the Msx
vertical crossings, Msy

¼ jajMsx
of them will have

a horizontal crossing “sandwiched” in between and contrib-

ute the quantity shown in Eq. (C17) on average; the remain-

der will contribute e0log½e0�. Thus we obtain

Si¼ jajMsx
e0 loge0 � e0

2

� �
þð1�jajÞMsx

½e0 loge0�

¼Msx
e0 jaj loge0 �1

2

� �
þð1�jjajÞ loge0

� 


¼Dsi �
jaj
2
þ loge0

� 


¼Dsi �
jaj
2
þ log

ffiffiffiffiffiffiffiffiffiffiffiffi
1þa2

p
þ loges

� 

: (C18)

Case jaj > 1: If jaj > 1, we repeat the calculation with x
and y “switched.” The calculation proceeds exactly as before

although a must be replaced by 1=a.

Calculation summary: These results may be concisely

written as

Si ¼ Dsi

� 1
2
jaj þ log½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

�
� �

þ log½es� jaj � 1;

� 1
2

1

jaj þ log

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a2

r" # !
þ log½es� jaj � 1

8>><
>>:

(C19)

or, recalling that a ¼ g0ðtÞ=f 0ðtÞ,

Si ¼�
1

2
Dsi

min½jf 0ðtkÞj; jg0ðtkÞj�
max½jf 0ðtkÞj; jg0ðtkÞj�

þDsilog

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ min½jf 0ðtkÞj; jg0ðtkÞj�

max½jf 0ðtkÞj; jg0ðtkÞj�

� �2
s2
4

3
5

þDsilog½es�; (C20)

which is Eq. (A9). This completes the derivation of Hf ;g.
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