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Weak Factorizations of the Hardy space H1(Rn) in
terms of Multilinear Riesz Transforms

Ji Li and Brett D. Wick

Abstract

This paper provides a constructive proof of the weak factorizations of the clas-
sical Hardy space H

1(Rn) in terms of multilinear Riesz transforms. As a direct
application, we obtain a new proof of the characterization of BMO(Rn) (the dual
of H1(Rn)) via commutators of the multilinear Riesz transforms.

Keywords: Hardy space, BMO space, multilinear Riesz transform, weak factorization.

Mathematics Subject Classification 2010: 42B35, 42B20, 42B35

1 Introduction and Statement of Main Results

The real-variable Hardy space theory on n-dimensional Euclidean space R
n (n ≥ 1)

plays an important role in harmonic analysis and has been systematically developed. An
important result about the Hardy space is the weak factorization obtained by Coifman,
Rochberg andWeiss [2]. This factorization proves that allH1(Rn) can be written in terms
of bilinear forms associated to the Riesz transforms, with the basic building blocks being:

Πj(f, g) = fRjg + gRjf,

with Rj the jth Riesz transform Rjf(x) =

ˆ

Rn

f(y)
xj − yj

|x− y|n+1 dy. This result follows

as a corollary of the characterization of the function space BMO(Rn) in terms of the
boundedness of the commutators [b, Rj ](f) = bRjf −Rj(bf).

The main goals of this paper are to provide a constructive proof of the weak factor-
izations of the classical Hardy space H1(Rn) in terms of multilinear Riesz transforms.
As a direct corollary, we obtain a full characterization of BMO(Rn) (the dual of H1(Rn))
via commutators of the multilinear Riesz transforms. Our strategy and approach will be
to modify the direct constructive proof of Uchiyama in [10] for the weak factorization of
the Hardy spaces.

We now recall the multilinear Calderón–Zygmund operators (see for example the
statements in [5]). Let K(y0, y1, . . . , ym) be a locally integrable function defined away

1
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from the diagonal {y0 = y1 = · · · = ym}. K is said to be an m-linear Calderón–Zygmund
kernel if there exist positive constants A and ǫ such that

|K(y0, y1, . . . , ym)| ≤
A

(
∑

k,l=0 |yk − yl|
)mn (1.1)

and

|K(y0, y1, . . . , yj, . . . , ym)−K(y0, y1, . . . , y
′
j, . . . , ym)| ≤

A|yj − y′j|
ǫ

(
∑

k,l=0 |yk − yl|
)mn+ǫ (1.2)

for all 0 ≤ j ≤ m and |yj − y′j| ≤
1
2
max0≤k≤m |yj − yk|.

Suppose T is an m-linear operator defined on Lp1(Rn) × · · · × Lpm(Rn) associated
with the m-linear Calderón–Zygmund kernel K, i.e.,

T (f1, . . . , fm)(x) :=

ˆ

Rmn

K(x, y1, . . . , ym)

m
∏

j=1

fj(yj) dy1 · · · dym, (1.3)

for all x 6∈ ∩m
j=1supp(fj), where f1, . . . , fm are m functions on R

n with ∩m
j=1supp(fj) 6= ∅.

If

T : Lp1(Rn)× · · · × Lpm(Rn) → Lp(Rn)

for some 1 < p1, . . . , pm and p with p−1 =
∑m

j=1 p
−1
j , then we say T is an m-linear

Calderón–Zygmund operator. According to [5, Theorem 3], T can be extended to a
bounded operator from Lp1(Rn)×· · ·×Lpm(Rn) to Lp(Rn) for all for 1 < p1, . . . , pm and
p with p−1 =

∑m

j=1 p
−1
j .

We also define that T is mn-homogeneous if T satisfies

|T (χB0, . . . , χBm
)(x)| ≥

C

Mmn

for m + 1 balls B0 = B0(x0, r), . . . , Bm = Bm(xm, r) satisfying |y0 − yl| ≈ Mr for
l = 1, 2, . . . , m and for all x ∈ B0, where r > 0 and M > 10 a positive number.

Another stronger version of mn-homogeneous is as follows.

K(x0, . . . , xm) ≥
C

Mmn

or

K(x0, . . . , xm) ≤ −
C

Mmn

for m + 1 pairwisely disjoint balls B0 = B0(x0, r), . . . , Bm = Bm(xm, r) satisfying |y0 −
yl| ≈ Mr and for all xl ∈ Bl for l = 1, 2, . . . , m, where r > 0 and M > 10 is a positive
number. It is easy to see that this stronger version implies the version above.

In analogy with the linear case, we define the lth possible multilinear commutators
of the mth multilinear Calderón–Zygmund operator T as follows.
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Definition 1.1. Suppose T is an m-linear Calderón–Zygmund operator as defined above.
For l = 1, 2, . . . , m, we set

[b, T ]l(f1, . . . , fm)(x) := T (f1, . . . , bfl, . . . , fm)(x)− bT (f1, . . . , fm)(x). (1.4)

This is simply measuring the commutation properties in each linear coordinate sep-
arately.

Dual to the multilinear commutator, in both language and via a formal computation,
we define the multilinear “multiplication” operators Πl:

Definition 1.2. Suppose T is an m-linear Calderón–Zygmund operator as defined above.
For l = 1, 2, . . . , m,

Πl(g, h1, . . . , hm)(x) := hlT
∗
l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x)− gT (h1, . . . , hm)(x),

(1.5)

where T ∗
l is the lth partial adjoint of T , defined as

T ∗
l (h1, . . . , hm)(x) :=

ˆ

Rmn

K(yl, y1, . . . , yl−1, x, yl+1, . . . , ym)

m
∏

j=1

hj(yj) dy1 · · ·dym.

(1.6)

Our main result is then the following factorization result for H1(Rn) in terms of the
multilinear operators Πl. Again, this is in direct analogy with the rest in the linear case
obtained by Coifman, Rochberg, and Weiss in [2].

Theorem 1.3. Suppose 1 ≤ l ≤ m, and 1 < p1, . . . , pm < ∞ and 1 ≤ p < ∞ with

1

p1
+ · · ·+

1

pm
=

1

p
.

And suppose that T is an m-linear Calderón–Zygmund operator, which is mn-homogeneous
in the lth component. Then for every f ∈ H1(Rn), there exists sequences {λk

s} ∈ ℓ1 and
functions gks ∈ Lp′(Rn), hk

s,1 ∈ Lp1(Rn),. . . , hk
s,m ∈ Lpm(Rn) such that

f =
∞
∑

k=1

∞
∑

s=1

λk
s Πl(g

k
s , h

k
s,1, . . . , h

k
s,m) (1.7)

in the sense of H1(Rn). Moreover, we have that:

‖f‖H1(Rn) ≈ inf

{ ∞
∑

k=1

∞
∑

s=1

∣

∣λk
s

∣

∣

∥

∥gks
∥

∥

Lp′ (Rn)

∥

∥hk
s,1

∥

∥

Lp1 (Rn)
· · ·

∥

∥hk
s,m

∥

∥

Lpm (Rn)

}

,

where the infimum above is taken over all possible representations of f that satisfy (1.7).

We then obtain the following new characterization of BMO(Rn) in terms of the
commutators with the multilinear Riesz transforms; again in analogy with the main
results in [2].
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Theorem 1.4. Let 1 ≤ l ≤ m. Suppose that T is an m-linear Calderón–Zygmund
operator. If b is in BMO(Rn), then the commutator [b, T ]l(f1, . . . , fm)(x) is a bounded
map from Lp1(Rn)×· · ·×Lpm(Rn) to Lp(Rn) for all 1 < p1, . . . , pm < ∞ and 1 ≤ p < ∞,
with

1

p1
+ · · ·+

1

pm
=

1

p

and with the operator norm

‖[b, T ]l : L
p1(Rn)× · · · × Lpm(Rn) → Lp(Rn)‖ ≤ C‖b‖BMO(Rn).

Conversely, for b ∈ ∪q>1L
q
loc(R

n), if T is mn-homogeneous in the lth component, and
[b, T ]l is bounded from Lp1(Rn)× · · · ×Lpm(Rn) to Lp(Rn) for some 1 < p1, . . . , pm < ∞
and 1 ≤ p < ∞, with

1

p1
+ · · ·+

1

pm
=

1

p
,

then b is in BMO(Rn) and ‖b‖BMO(Rn) ≤ C‖[b, T ]l : L
p1(Rn)×· · ·×Lpm(Rn) → Lp(Rn)‖.

As a specific example of such operator T which is an m-linear Calderón–Zygmund
operator and is mn-homogeneous, we now recall the multilinear Riesz transforms, see [5,
Page 162] for example.

Definition 1.5. Suppose f1, . . . , fm are m functions on R
n. For j = 1, 2, . . . , m,

~Rj(f1, . . . , fm)(x) :=

ˆ

Rmn

~Kj(x, y1, . . . , ym)

m
∏

s=1

fs(ys) dy1 · · · dym, (1.8)

where the kernel ~Kj(x, y1, . . . , ym) is defined as

~Kj(x, y1, . . . , ym) :=
x− yj

|(x− y1, . . . , x− ym)|mn+1
. (1.9)

To be more specific,
~Rj = (R

(1)
j , . . . , R

(n)
j ),

where for each i = 1, 2, . . . , n, R
(i)
j is the multilinear operator with the kernel

K
(i)
j (x, y1, . . . , ym) :=

xi − yij

|(x− y1, . . . , x− ym)|mn+1
.

Here x = (x1, . . . , xm) and yj = (y1j , . . . , y
m
j ). According to [5, Corollary 2], ~Rj is an

m-linear Calderón–Zygmund operator for j = 1, 2, . . . , m. Moreover, we have that

|~Rj(χB0 , . . . , χBm
)(x)| =

∣

∣

∣

∣

ˆ

B1

· · ·

ˆ

Bm

x− yj

|(x− y1, . . . , x− ym)|mn+1
dy1 · · ·dym

∣

∣

∣

∣

≥
C

Mmn

for m + 1 pairwisely disjoint balls B0 = B0(x0, r), . . . , Bm = Bm(xm, r) satisfying |y0 −
yl| ≈ Mr for l = 1, 2, . . . , m, x ∈ B0, r > 0, and M > 10 a positive number.

Thus, ~Rj is mn-homogeneous.
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Remark 1.6. As in Corollary 2 in [5, Page 162], they listed a specific multilinear
Calderón–Zygmund kernel of the form

K(x1, . . . , xm) =
Ω
(

(x1,...,xm)
|(x1,...,xm)|

)

|(x1, . . . , xm)|mn
,

where Ω is an integrable function with mean value zero on the sphere S
mn−1 which is

Lipschitz of order ǫ > 0. We point out that it is possible to choose kernels of this type
that satisfy the mn-homogeneous condition as we stated above. The Riesz transforms ~Rj

are special examples of this form.

Remark 1.7. We remark that Theorem 1.4 was obtained by Chaffee in [1]. His proof uses
a technique applied by Janson [6], which is different than that used here. One advantage
of the approach taken in this paper is that it provides for a constructive algorithm to
produce the weak factorization of H1(Rn). As mentioned in [1] it would be interesting
to show the equivalence between BMO(Rn) and the commutators when p < 1. Both the
methods used there and in this paper hinge upon duality, which won’t be a viable strategy
when p < 1.

2 Weak Factorization of the Hardy space H1(Rn)

In this section we turn to proving Theorem 1.3. We collect some facts that will be useful
in proving the main result.

We first provide the following estimate of the multilinear operator Πl, which is defined
in Definition 1.2.

Proposition 2.1. Suppose 1 ≤ l ≤ m. Let 1 < p1, . . . , pm < ∞ and 1 ≤ p < ∞ with

1

p
=

1

p1
+ · · ·+

1

pm
.

There exists a positive constant C such that for any g ∈ Lp′(Rn) and hi ∈ Lpi(Rn),
i = 1, . . . , m,

‖Πl(g, h1, . . . , hm)‖H1(Rn) ≤ C‖g‖Lp′(Rn)‖h1‖Lp1(Rn) · · · ‖hm‖Lpm(Rn).

Proof. Note that for p1, . . . , pm ∈ (1,∞), p ∈ [1,∞) with 1
p
= 1

p1
+ · · ·+ 1

pm
, and for any

g ∈ Lp′(Rn) and hi ∈ Lpi(Rn), i = 1, . . . , m, we have Πl(g, h1, . . . , hm)(x) ∈ L1(Rn) by
Hölder duality. Moreover, we have

ˆ

Rn

Πl(g, h1, . . . , hm)(x) dx = 0.

Hence, for b ∈ BMO(Rn), we have
∣

∣

∣

∣

ˆ

Rn

b(x)Πl(g, h1, . . . , hm)(x)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

Rn

g(x)[b, T ]l(h1, . . . , hm)(x)dx

∣

∣

∣

∣
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≤C‖h1‖Lp1(Rn) · · · ‖hm‖Lpm(Rn)‖g‖Lp′(Rn)‖b‖BMO(Rn).

Here in the last equality we use [7, Theore 3.18] which provides an estimate for the
multilinear commutator in terms of BMO. Therefore, Πl(g, h1, . . . , hm) is in H1(Rn),
with

‖Πl(g, h1, . . . , hm)‖H1(Rn) ≤ C‖g‖Lp′(Rn)‖h1‖Lp1(Rn) · · · ‖hm‖Lpm(Rn).

The proof of Proposition 2.1 is completed.

Next, we recall a technical lemma about certain H1(Rn) functions.

Lemma 2.2. Suppose f is a function defined on R
n satisfying:

´

Rn f(x) dx = 0, and
|f(x)| ≤ χB(x0,1)(x) + χB(y0,1)(x), where |x0 − y0| := M > 10. Then we have

‖f‖H1(Rn) ≤ Cn logM. (2.1)

We can obtain this lemma using the maximal function characterization of H1(Rn),
as well as the atomic decomposition characterization of H1(Rn). For details of the proof,
we refer to similar versions of this lemma in [3] and [8].

Suppose 1 ≤ l ≤ m. Ideally, given an H1(Rn)-atom a, we would like to find functions
g ∈ Lp′(Rn), h1 ∈ Lp1(Rn), . . . , hm ∈ Lpm(Rn) such that Πl(g, h1, . . . , hm) = a pointwise.
While this can not be accomplished in general, the Theorem below shows that it is
“almost” true.

Theorem 2.3. Suppose 1 ≤ l ≤ m. Suppose that T is an m-linear Calderón–Zygmund
operator, which is mn-homogeneous in the lth component. For every H1(Rn)-atom a(x)
and for all ε > 0 and for all 1 < p1, . . . , pm < ∞ and 1 ≤ p < ∞, with

1

p1
+ · · ·+

1

pm
=

1

p
,

there exists g ∈ Lp′(Rn), h1 ∈ Lp1(Rn),. . ., hm ∈ Lpm(Rn) and a large positive number
M (depending only on ε) such that:

‖a− Πl(g, h1, . . . , hm)‖H1(Rn) < ε

and that ‖g‖Lp′(Rn) ‖h1‖Lp1 (Rn) · · · ‖hm‖Lpm (Rn) ≤ CMmn, where C is an absolute positive
constant.

Proof. Let a(x) be an H1(Rn)-atom, supported in B(x0, r), satisfying that

ˆ

Rn

a(x)dx = 0 and ‖a‖L∞(Rn) ≤ r−n.

Fix 1 ≤ l ≤ m and fix ε > 0. Choose M sufficiently large so that

logM

M ǫ
< ε,
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where the constant ǫ appeared in the power of M is from the regularity condition (1.2) of
the multilinear Calderón–Zygmund kernel K. Now select yl ∈ R

n so that yl,i−x0,i =
Mr√
n
,

where x0,i (reps. yl,i) is the ith coordinate of x0 (reps. yl) for i = 1, 2, . . . , n. Note that
for this yl, we have |x0 − yl| = Mr. Similar to the relation of x0 and yl, we choose y1
such that y0 and y1 satisfies the same relationship as x0 and yl do. Then by induction
we choose y2, . . . , yl−1, yl+1, . . . , ym.

We then set

g(x) :=χB(yl,r)(x),

hj(x) :=χB(yj ,r)(x), j 6= l,

hl(x) :=
a(x)

T ∗
l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x0)

.

Since T is mn homogeneous, and so is T ∗
l , for the specific choice of the functions

h1, . . . , hl−1, g, hl+1, . . . , hm as above, we have that there exists a positive constant C

such that

|T ∗
l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x0)| ≥ CM−mn for 1 ≤ l ≤ m. (2.2)

From the definitions of the functions g and hj, we obtain that supp g = B(y0, r) and
supp hi = B(x0, r). Moreover,

‖g‖Lp′(Rn) ≈ r
n

p′ and ‖hi‖Lpi(Rn) ≈ r
n
pi

for i = 1, . . . , l − 1, l + 1, . . . , m. Also we have

‖hl‖Lpl(Rn) =
1

|T ∗
l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x0)|

‖a‖Lpl(Rn) ≤ CMmnr−nr
n
pl ,

where the last inequality follows from (2.2). Hence we obtain that

‖g‖Lp′(Rn)‖h1‖Lp1 (Rn) · · · ‖hm‖Lpm (Rn) ≤ CMmnr−nr
n( 1

p′
+ 1

p1
+···+ 1

pm
)

≤ CMmn.

Next, we have

a(x)−Πl(g, h1, . . . , hm)(x)

= a(x)−
(

hlT
∗
l (h1, . . . , hl−1, g, hl+1, . . . , hl,m)(x)− gT (h1, . . . , hm)(x)

)

= a(x)
T ∗
l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x0)− T ∗

l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x)

T ∗
l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x0)

+ g(x)T (h1, . . . , hm)(x)

=: W1(x) +W2(x).
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By definition, it is obvious that W1(x) is supported on B(x0, r) and W2(x) is sup-
ported on B(y0, r). We first estimate W1. For x ∈ B(x0, r), we have

|W1(x)|

= |a(x)|
|T ∗

l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x0)− T ∗
l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x)|

|T ∗
l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x0)|

≤ C
‖a‖L∞(Rn)

M−mn

ˆ

∏m
j=1 B(yj ,r)

|K(zl, z1, . . . , zl−1, x0, zl+1, . . . , zm)

−K(zl, z1, . . . , zl−1, x, zl+1, . . . , zm)| dz1 · · · dzm

≤ CMmnr−n

ˆ

∏m
j=1 B(yj ,r)

|x0 − x|ǫ
(
∑m

i=1, i 6=l |zl − zi|+ |zl − x0|
)mn+ǫ dz1 · · ·dzm

≤ CMmnr−nrmn rǫ

(Mr)mn+ǫ

≤ C
1

M ǫrn
,

where in the second inequality we use the regularity condition (1.2) of the multilinear
kernel K. Hence we obtain that

|W1(x)| ≤ C
1

M ǫrn
χB(x0,r)(x).

Next we estimate W2(x). From the definition of g(x) and hl(x), we have

|W2(x)|

= χB(yl,r)(x)|T (h1, . . . , hm)(x)|

= χB(yl,r)(x)
1

|T ∗
l (h1, . . . , hl−1, g, hl+1, . . . , hm)(x0)|

∣

∣

∣

∣

ˆ

∏m
j=1,j 6=l B(yj ,r)×B(x0,r)

(

K(y1, . . . , yl−1, x0, yl+1, . . . , ym)

−K(y1, . . . , yl−1, x, yl+1, . . . , ym)
)

a(yl) dy1 · · ·dym

∣

∣

∣

∣

≤ CχB(yl,r)(x)M
mn

ˆ

∏m
j=1,j 6=l B(yj ,r)×B(x0,r)

‖a‖L∞(Rn)
|x0 − x|ǫ

(
∑m

s=1 |x0 − zs|
)mn+ǫ dz1 · · · dzm

≤ CχB(yl,r)(x)M
mnr−n rǫ · rmn

(Mr)mn+ǫ

=
C

M ǫrn
,

where in the second equality we use the cancelllation property of the atom a(yl) Hence
we have

|W2(x)| ≤
C

M ǫrn
χB(yl,r)(x).
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Combining the estimates of W1 and W2, we obtain that

∣

∣

∣
a(x)− Πl(g, h1, . . . , hm)(x)

)∣

∣

∣
≤

C

M ǫrn
(χB(x0,r)(x) + χB(yl,r)(x)). (2.3)

Next we point out that

ˆ

Rn

[

a(x)−Πl(g, h1, . . . , hm)(x)
)]

dx = 0 (2.4)

since the atom a(x) has cancellation and the second integral equals 0 just by the defini-
tions of Πl.

Then the size estimate (2.3) and the cancellation (2.4), together with Lemma 2.2,
imply that

∥

∥

∥
a(x)−Πl(g, h1, . . . , hm)(x)

∥

∥

∥

H1(Rn)
≤ C

logM

M ǫ
< Cε.

This proves the result.

With this approximation result, we can now prove the main Theorem 1.3.

Proof of Theorem 1.3. By Proposition 2.1, we have that

‖Πl(g, h1, . . . , hm)‖H1(Rn) ≤ C‖g‖Lp′(Rn)‖h1‖Lp1(Rn) · · · ‖hm‖Lpm(Rn).

It is immediate that for any representation of f as in (1.7), i.e.,

f =
∞
∑

k=1

∞
∑

s=1

λk
s Πl(g

k
s , h

k
s,1, . . . , h

k
s,m),

We have that ‖f‖H1(Rn) is bounded by

C inf

{ ∞
∑

k=1

∞
∑

s=1

|λk
s |‖h1‖Lp1(Rn) · · · ‖hm‖Lpm(Rn)‖g‖Lp′(Rn) : f satisfies (1.7)

}

.

We turn to show that the other inequality holds and that it is possible to obtain
such a decomposition for any f ∈ H1(Rn). Utilizing the atomic decomposition, for any
f ∈ H1(Rn) we can find a sequence {λ1

s} ∈ ℓ1 and sequence of H1(Rn)-atoms {a1s} so

that f =

∞
∑

s=1

λ1
sa

1
s and

∞
∑

s=1

∣

∣λ1
s

∣

∣ ≤ C ‖f‖H1(Rn).

We explicitly track the implied absolute constant C appearing from the atomic de-
composition since it will play a role in the convergence of the algorithm. Fix ε > 0 so
that εC < 1. We apply Theorem 2.3 to each atom a1s. So there exists g1s ∈ Lp′(Rn),
h1
s,1 ∈ Lp1(Rn),. . . , h1

s,m ∈ Lpm(Rn) with

∥

∥a1s −Πj,l(g
1
s , h

1
s,1, . . . , h

1
s,m)

∥

∥

H1(Rn)
< ε, ∀s
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and ‖g1s‖Lp′ (Rn)‖h1‖Lp1(Rn) · · · ‖hm‖Lpm(Rn) ≤ C(ε), where C(ε) = CMnm is a constant
depending on ε which we can track from Theorem 2.3. Now note that we have

f =

∞
∑

s=1

λ1
sa

1
s =

∞
∑

s=1

λ1
s Πl(g

1
s , h

1
s,1, . . . , h

1
s,m) +

∞
∑

s=1

λ1
s

(

a1s − Πl(g
1
s , h

1
s,1, . . . , h

1
s,m)

)

=:M1 + E1.

Observe that we have

‖E1‖H1(Rn) ≤
∞
∑

s=1

∣

∣λ1
s

∣

∣

∥

∥a1s −Πl(g
1
s , h

1
s,1, . . . , h

1
s,m)

∥

∥

H1(Rn)
≤ ε

∞
∑

s=1

∣

∣λ1
s

∣

∣ ≤ εC ‖f‖H1(Rn) .

We now iterate the construction on the function E1. Since E1 ∈ H1(Rn), we can apply
the atomic decomposition in H1(Rn) to find a sequence {λ2

s} ∈ ℓ1 and a sequence of
H1(Rn)-atoms {a2s} so that E1 =

∑∞
s=1 λ

2
sa

2
s and

∞
∑

s=1

∣

∣λ2
s

∣

∣ ≤ C ‖E1‖H1(Rn) ≤ εC2 ‖f‖H1(Rn) .

Again, we will apply Theorem 2.3 to each atom a2s. So there exists g2s ∈ Lp′(Rn),
h2
s,1 ∈ Lp1(Rn),. . . , h2

s,m ∈ Lpm(Rn) with

∥

∥a2s − Πl(g
2
s , h

2
s,1, . . . , h

2
s,m)

∥

∥

H1(Rn)
< ε, ∀s.

We then have that:

E1 =

∞
∑

s=1

λ2
sa

2
s =

∞
∑

s=1

λ2
s Πl(g

2
s , h

2
s,1, . . . , h

2
s,m) +

∞
∑

s=1

λ2
s

(

a2s − Πl(g
2
s , h

2
s,1, . . . , h

2
s,m)

)

:=M2 + E2.

But, as before, observe that

‖E2‖H1(Rn)≤
∞
∑

s=1

∣

∣λ2
s

∣

∣

∥

∥a2s −Πl(g
2
s , h

2
s,1, . . . , h

2
s,m)

∥

∥

H1(Rn)
≤ ε

∞
∑

s=1

∣

∣λ2
s

∣

∣

≤ (εC)2 ‖f‖H1(Rn) .

And, this implies for f that we have:

f =

∞
∑

s=1

λ1
sa

1
s =

∞
∑

s=1

λ1
s Πl(g

1
s , h

1
s,1, . . . , h

1
s,m) +

∞
∑

s=1

λ1
s

(

a1s − Πl(g
1
s , h

1
s,1, . . . , h

1
s,m)

)

=M1 + E1 = M1 +M2 + E2

=
2

∑

k=1

∞
∑

s=1

λk
s Πl(g

k
s , h

k
s,1, . . . , h

k
s,m) + E2.
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Repeating this construction for each 1 ≤ k ≤ K produces functions gks ∈ Lp′(Rn),
hk
s,1 ∈ Lp1(Rn), . . . , hk

s,m ∈ Lpm(Rn) with
∥

∥gks
∥

∥

Lp′ (Rn)

∥

∥hk
s,1

∥

∥

Lp1 (Rn)
· · ·

∥

∥hk
s,m

∥

∥

Lpm (Rn)
≤

C(ε) for all s, sequences {λk
s} ∈ ℓ1 with

∥

∥{λk
s}
∥

∥

ℓ1
≤ εk−1Ck ‖f‖H1(Rn), and a function

EK ∈ H1(Rn) with ‖EK‖H1(Rn) ≤ (εC)K ‖f‖H1(Rn) so that

f =
K
∑

k=1

∞
∑

s=1

λk
s Πl(g

k
s , h

k
s,1, . . . , h

k
s,m) + EK .

Passing K → ∞ gives the desired decomposition of

f =

∞
∑

k=1

∞
∑

s=1

λk
s Πl(g

k
s , h

k
s,1, . . . , h

k
s,m).

We also have that:
∞
∑

k=1

∞
∑

s=1

∣

∣λk
s

∣

∣ ≤
∞
∑

k=1

ε−1(εC)k ‖f‖H1(Rn) =
C

1− εC
‖f‖H1(Rn) .

Finally, we dispense with the proof of Theorem 1.4.

Proof of Theorem 1.4. The upper bound in this theorem is contained in [7, Theorem
3.18]. For the lower bound, suppose that f ∈ H1(Rn) ∩ L∞

c (Rn), where L∞
c (Rn) is the

subspace of L∞(Rn) consisting of functions with compact support in R
n. Then using the

weak factorization in Theorem 1.3 we have that for every b ∈ ∪q>1L
q
loc(R

n),

〈b, f〉L2(Rn) =
∞
∑

k=1

∞
∑

s=1

λk
s〈b,Πl(g

k
s , h

k
s,1, . . . , h

k
s,m)〉L2(Rn)

=
∞
∑

k=1

∞
∑

s=1

λk
s〈g

k
s , [b, T ]l(h

k
s,1, . . . , h

k
s,m)〉L2(Rn).

Hence, we have that

∣

∣

∣
〈b, f〉L2(Rn)

∣

∣

∣
≤

∞
∑

k=1

∞
∑

s=1

∣

∣λk
s

∣

∣

∥

∥[b, T ]l(h
k
s,1, . . . , h

k
s,m)

∥

∥

Lp(Rn)

∥

∥gks
∥

∥

Lp′ (Rn)

≤‖[b, T ]l : L
p1(Rn)× · · · × Lpm(Rn) → Lp(Rn)‖

×
∞
∑

k=1

∞
∑

s=1

∣

∣λk
s

∣

∣

∥

∥gks
∥

∥

Lp′(Rn)

m
∏

j=1

∥

∥hk
s,j

∥

∥

L
pj (Rn)

≤C‖[b, T ]l : L
p1(Rn)× · · · × Lpm(Rn) → Lp(Rn)‖ ‖f‖H1(Rn) .

By the duality between BMO(Rn) and H1(Rn) we have that:

‖b‖BMO(Rn) ≈ sup
‖f‖

H1(Rn)≤1

∣

∣

∣
〈b, f〉L2(Rn)

∣

∣

∣
≤ C‖[b, T ]l : L

p1(Rn)× · · · × Lpm(Rn) → Lp(Rn)‖.



12 Ji Li and Brett D. Wick

Acknowledgments: J. Li’s research supported by ARC DP 160100153 and Mac-
quarie University New Staff Grant. B. D. Wick’s research supported in part by National
Science Foundation DMS grants #1603246 and # 1560955.

References

[1] L. Chaffee, Characterizations of BMO through commutators of bilinear singular
integral operators, arXiv:1410.4587.

[2] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces
in several variables, Ann. of Math., (2) 103 (1976), 611–635.

[3] X. T. Duong, J. Li, B. D. Wick and D. Yang, Factorization for Hardy spaces
and characterization for BMO spaces via commutators in the Bessel setting,
arXiv:1509.00079, accepted by Indiana University Mathematics Journal, 2016.

[4] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math., 129
(1972), 137–193.

[5] L. Grafakos, R. H. Torres, Multilinear Calderón–Zygmund theory, Adv. in Math.,
165 (2002), 124–164.

[6] S. Janson, Mean oscillation and commutators of singular integral operators, Ark.
Mat., 16 (1978), 263–270.
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