A remark on the multipliers on spaces of Weak Products of functions

Stefan Richter

Brett D. Wick

Washington University in St.Louis, bwick@wustl.edu

Follow this and additional works at: https:// openscholarship.wustl.edu/math_facpubs
Part of the Analysis Commons

Recommended Citation

Richter, Stefan and Wick, Brett D., "A remark on the multipliers on spaces of Weak Products of functions" (2016). Mathematics Faculty Publications. 33.
https://openscholarship.wustl.edu/math_facpubs/33

Concrete Operators
Open Access

Research Article

Stefan Richter* and Brett D. Wick

A remark on the multipliers on spaces of Weak Products of functions

DOI 10.1515/conop-2016-0004

Received October 30, 2015; accepted January 27, 2016.
Abstract: If \mathcal{H} denotes a Hilbert space of analytic functions on a region $\Omega \subseteq \mathbb{C}^{d}$, then the weak product is defined by

$$
\mathcal{H} \odot \mathcal{H}=\left\{h=\sum_{n=1}^{\infty} f_{n} g_{n}: \sum_{n=1}^{\infty}\left\|f_{n}\right\|_{\mathcal{H}}\left\|g_{n}\right\|_{\mathcal{H}}<\infty\right\} .
$$

We prove that if \mathcal{H} is a first order holomorphic Besov Hilbert space on the unit ball of \mathbb{C}^{d}, then the multiplier algebras of \mathcal{H} and of $\mathcal{H} \odot \mathcal{H}$ coincide.

Keywords: Dirichlet space, Drury-Arveson space, Weak product, Multiplier
MSC: 47B37

1 Introduction

Let d be a positive integer and let $R=\sum_{i=1}^{d} z_{i} \frac{\partial}{\partial z_{i}}$ denote the radial derivative operator. For $s \in \mathbb{R}$ the holomorphic Besov space B_{s} is defined to be the space of holomorphic functions f on the unit ball \mathbb{B}_{d} of \mathbb{C}^{d} such that for some nonnegative integer $k>s$

$$
\|f\|_{k, s}^{2}=\int_{\mathbb{B}_{d}}\left|(I+R)^{k} f(z)\right|^{2}\left(1-|z|^{2}\right)^{2(k-s)-1} d V(z)<\infty
$$

Here $d V$ denotes Lebesgue measure on \mathbb{B}_{d}. It is well-known that for any $f \in \operatorname{Hol}\left(\mathbb{B}_{d}\right)$ and any $s \in \mathbb{R}$ the quantity $\|f\|_{k, s}$ is finite for some nonnegative integer $k>s$ if and only if it is finite for all nonnegative integers $k>s$, and that for each $k>s\|\cdot\|_{k, s}$ defines a norm on B_{s}, and that all these norms are equivalent to one another, see [2]. For $s<0$ one can take $k=0$ and these spaces are weighted Bergman spaces. In particular, $B_{-1 / 2}=L_{a}^{2}\left(\mathbb{B}_{d}\right)$ is the unweighted Bergman space. For $s=0$ one obtains the Hardy space of \mathbb{B}_{d} and one has that for each $k \geq 1\|f\|_{k, 0}^{2}$ is equivalent to $\int_{\partial \mathbb{B}_{d}}|f|^{2} d \sigma$, where σ is the rotationally invariant probability measure on $\partial \mathbb{B}_{d}$. We also note that for $s=(d-1) / 2$ we have $B_{s}=H_{d}^{2}$, the Drury-Arveson space. If $d=1$ and $s=1 / 2$, then $B_{s}=D$, the classical Dirichlet space of the unit disc.

Let $\mathcal{H} \subseteq \operatorname{Hol}\left(\mathbb{B}_{d}\right)$ be a reproducing kernel Hilbert space such that $1 \in \mathcal{H}$. The weak product of \mathcal{H} is denoted by $\mathcal{H} \odot \mathcal{H}$ and it is defined to be the collection of all functions $h \in \operatorname{Hol}\left(\mathbb{B}_{d}\right)$ such that there are sequences $\left\{f_{i}\right\}_{i \geq 1},\left\{g_{i}\right\}_{i \geq 1} \subseteq \mathcal{H}$ with $\sum_{i=1}^{\infty}\left\|f_{i}\right\|_{\mathcal{H}}\left\|g_{i}\right\|_{\mathcal{H}}<\infty$ and for all $z \in \mathbb{B}_{d}, h(z)=\sum_{i=1}^{\infty} f_{i}(z) g_{i}(z)$.

[^0]We define a norm on $\mathcal{H} \odot \mathcal{H}$ by

$$
\|h\|_{*}=\inf \left\{\sum_{i=1}^{\infty}\left\|f_{i}\right\|_{\mathcal{H}}\left\|g_{i}\right\|_{\mathcal{H}}: h(z)=\sum_{i=1}^{\infty} f_{i}(z) g_{i}(z) \text { for all } z \in \mathbb{B}_{d}\right\} .
$$

In what appears below we will frequently take $\mathcal{H}=B_{s}$, and will use the same notation for this weak product.
Weak products have their origin in the work of Coifman, Rochberg, and Weiss [5]. In the frame work of the Hilbert space \mathcal{H} one may consider the weak product to be an analogue of the Hardy H^{1}-space. For example, one has $H^{2}\left(\partial \mathbb{B}_{d}\right) \odot H^{2}\left(\partial \mathbb{B}_{d}\right)=H^{1}\left(\partial \mathbb{B}_{d}\right)$ and $L_{a}^{2}\left(\mathbb{B}_{d}\right) \odot L_{a}^{2}\left(\mathbb{B}_{d}\right)=L_{a}^{1}\left(\mathbb{B}_{d}\right)$, see [5]. For the Dirichlet space D the weak product $D \odot D$ has recently been considered in [1, 3, 6, 7, 9]. The space $H_{d}^{2} \odot H_{d}^{2}$ was used in [10]. For further motivation and general background on weak products we refer the reader to [1] and [9].

Let \mathcal{B} be a Banach space of analytic functions on \mathbb{B}_{d} such that point evaluations are continuous and such that $1 \in \mathcal{B}$. We use $M(\mathcal{B})$ to denote the multiplier algebra of \mathcal{B},

$$
M(\mathcal{B})=\{\varphi: \varphi f \in \mathcal{B} \text { for all } f \in \mathcal{B}\}
$$

The multiplier norm $\|\varphi\|_{M}$ is defined to be the norm of the associated multiplication operator $M_{\varphi}: \mathcal{B} \rightarrow \mathcal{B}$. It is easy to check and is well-known that $M(\mathcal{B}) \subseteq H^{\infty}\left(\mathbb{B}_{d}\right)$, and that for $s \leq 0$ we have $M\left(B_{s}\right)=H^{\infty}\left(\mathbb{B}_{d}\right)$. For $s>d / 2$ the space B_{s} is an algebra [2], hence $B_{s}=M\left(B_{s}\right)$, but for $0<s \leq d / 2$ one has $M\left(B_{s}\right) \subsetneq B_{s} \cap H^{\infty}\left(\partial \mathbb{B}_{d}\right)$. For those cases $M\left(B_{S}\right)$ has been described by a certain Carleson measure condition, see [4, 8].

It is easy to see that $M(\mathcal{H}) \subseteq M(\mathcal{H} \odot \mathcal{H}) \subseteq H^{\infty}$ (see Proposition 3.1). Thus, if $s \leq 0$, then $M\left(B_{s}\right)=$ $M\left(B_{s} \odot B_{s}\right)=H^{\infty}$. Furthermore, if $s>d / 2$, then $B_{s}=B_{s} \odot B_{s}=M\left(B_{s}\right)$ since B_{S} is an algebra. This raises the question whether $M\left(B_{S}\right)$ and $M\left(B_{S} \odot B_{S}\right)$ always agree. We prove the following:

Theorem 1.1. Let $s \in \mathbb{R}$ and $d \in \mathbb{N}$. If $s \leq 1$ or $d \leq 2$, then $M\left(B_{S}\right)=M\left(B_{S} \odot B_{S}\right)$.

Note that when $d \leq 2$, then B_{s} is an algebra for all $s>1$. Thus for each $d \in \mathbb{N}$ the nontrivial range of the Theorem is $0<s \leq 1$. If $d=1$ then the theorem applies to the classical Dirichlet space of the unit disc and for $d \leq 3$ it applies to the Drury-Arveson space.

2 Preliminaries

For $z=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{C}^{d}$ and $t \in \mathbb{R}$ we write $e^{i t} z=\left(e^{i t} z_{1}, \ldots, e^{i t} z_{d}\right)$ and we write $\langle z, w\rangle$ for the inner product in \mathbb{C}^{d}. Furthermore, if h is a function on \mathbb{B}_{d}, then we define $T_{t} f$ by $\left(T_{t} f\right)(z)=f\left(e^{i t} z\right)$. We say that a space $\mathcal{H} \subseteq \operatorname{Hol}\left(\mathbb{B}_{d}\right)$ is radially symmetric, if each T_{t} acts isometrically on \mathcal{H} and if for all $t_{0} \in \mathbb{R}, T_{t} \rightarrow T_{t_{0}}$ in the strong operator topology as $t \rightarrow t_{0}$, i.e. if $\left\|T_{t} f\right\|_{\mathcal{H}}=\|f\|_{\mathcal{H}}$ and $\left\|T_{t} f-T_{t_{0}} f\right\|_{\mathcal{H}} \rightarrow 0$ for all $f \in \mathcal{H}$. For example, for each $s \in \mathbb{R}$ the holomorphic Besov space B_{S} is radially symmetric when equipped with any of the norms $\|\cdot\|_{k, s}$, $k>s$.

It is elementary to verify the following lemma.
Lemma 2.1. If $\mathcal{H} \subseteq \operatorname{Hol}\left(\mathbb{B}_{d}\right)$ is radially symmetric, then so is $\mathcal{H} \odot \mathcal{H}$.

Note that if h and φ are functions on \mathbb{B}_{d}, then for every $t \in \mathbb{R}$ we have $\left(T_{t} \varphi\right) h=T_{t}\left(\varphi T_{-t} h\right)$, hence if a space is radially symmetric, then T_{t} acts isometrically on the multiplier algebra. For $0<r<1$ we write $f_{r}(z)=f(r z)$.

Lemma 2.2. If $\mathcal{H} \subseteq \operatorname{Hol}\left(\mathbb{B}_{d}\right)$ is radially symmetric, and if $\varphi \in M(\mathcal{H} \odot \mathcal{H})$, then for all $0<r<1$ we have $\left\|\varphi_{r}\right\|_{M(\mathcal{H} \odot \mathcal{H})} \leq\|\varphi\|_{M(\mathcal{H} \odot \mathcal{H})}$.

Proof. Let $\varphi \in M(\mathcal{H} \odot \mathcal{H})$ and $h \in \mathcal{H} \odot \mathcal{H}$, then for $0<r<1$ we have

$$
\varphi_{r} h=\int_{-\pi}^{\pi} \frac{1-r^{2}}{\left|1-r e^{i t}\right|^{2}}\left(T_{t} \varphi\right) h \frac{d t}{2 \pi} .
$$

This implies

$$
\left\|\varphi_{r} h\right\|_{*} \leq \int_{-\pi}^{\pi} \frac{1-r^{2}}{\left|1-r e^{i t}\right|^{2}}\left\|\left(T_{t} \varphi\right) h\right\|_{*} \frac{d t}{2 \pi} \leq\|\varphi\|_{M(\mathcal{H} \odot \mathcal{H})}\|h\|_{*}
$$

Thus, $\left\|\varphi_{r}\right\|_{M(\mathcal{H} \odot \mathcal{H})} \leq\|\varphi\|_{M(\mathcal{H} \odot \mathcal{H})}$.

3 Multipliers

The following Proposition is elementary.
Proposition 3.1. We have $M(\mathcal{H}) \subseteq M(\mathcal{H} \odot \mathcal{H}) \subseteq H^{\infty}$ and if $\varphi \in M(\mathcal{H}),\|\varphi\|_{M(\mathcal{H} \odot \mathcal{H})} \leq\|\varphi\|_{M(\mathcal{H})}$.
As explained in the Introduction, the following will establish Theorem 1.1.
Theorem 3.2. Let $0<s \leq 1$. Then $M\left(B_{s}\right)=M\left(B_{s} \odot B_{s}\right)$ and there is a $C_{s}>0$ such that

$$
\|\varphi\|_{M\left(B_{s} \odot B_{s}\right)} \leq\|\varphi\|_{M\left(B_{s}\right)} \leq C_{S}\|\varphi\|_{M\left(B_{s} \odot B_{s}\right)}
$$

for all $\varphi \in M\left(B_{S}\right)$.
Here for each s we have the norm on B_{s} to be $\|\cdot\|_{k, s}$, where k is the smallest natural number $>s$.
Proof. We first do the case $0<s<1$. Then $k=1$, and $\|f\|_{B_{s}}^{2}=\int_{\mathbb{B}_{d}}|(I+R) f(z)|^{2} d V_{s}(z)$, where $d V_{s}(z)=$ $\left(1-|z|^{2}\right)^{1-2 s} d V(z)$. For later reference we note that a short calculation shows that $\int_{\mathbb{B}_{d}}|R f|^{2} d V_{s} \leq\|f\|_{B_{s}}^{2}$.

We write $\|R \varphi\|_{C a\left(B_{s}\right)}$ for the Carleson measure norm of $|R \varphi|^{2}$, i.e.

$$
\|R \varphi\|_{C a\left(B_{s}\right)}^{2}=\inf \left\{C>0: \int_{\mathbb{B}_{d}}|f|^{2}|R \varphi|^{2} d V_{S} \leq C\|f\|_{B_{s}}^{2} \text { for all } f \in B_{S}\right\}
$$

Since $\|\varphi f\|_{B_{s}}^{2}=\int_{\mathbb{B}_{d}}|\varphi(z)(I+R) f(z)+f(z) R \varphi(z)|^{2} d V_{S}(z)$ it is clear that $\|\varphi\|_{M\left(B_{s}\right)}$ is equivalent to $\|\varphi\|_{\infty}+$ $\|R \varphi\|_{C a\left(B_{s}\right)}$. Thus, it suffices to show that there is a $c>0$ such that $\|R \varphi\|_{C a\left(B_{s}\right)} \leq c\|\varphi\|_{M\left(B_{s} \odot B_{s}\right)}$ for all $\varphi \in M\left(B_{s} \odot B_{s}\right)$.

First we note that if b is holomorphic in a neighborhood of $\overline{\mathbb{B}_{d}}$ and $h=\sum_{i=1}^{\infty} f_{i} g_{i} \in B_{s} \odot B_{s}$, then

$$
\begin{aligned}
\int_{\mathbb{B}_{d}}|(R h) R b| d V_{s} & \leq \sum_{i=1}^{\infty} \int_{\mathbb{B}_{d}}\left|\left(R f_{i}\right) g_{i} R b\right| d V_{s}+\int_{\mathbb{B}_{d}}\left|\left(R g_{i}\right) f_{i} R b\right| d V_{S} \\
& \leq \sum_{i=1}^{\infty}\left\|f_{i}\right\|_{B_{s}}\left(\int_{\mathbb{B}_{d}}\left|g_{i} R b\right|^{2} d V_{s}\right)^{1 / 2}+\left\|g_{i}\right\|_{B_{s}}\left(\int_{\mathbb{B}_{d}}\left|f_{i} R b\right|^{2} d V_{S}\right)^{1 / 2} \\
& \leq 2 \sum_{i=1}^{\infty}\left\|f_{i}\right\|_{B_{s}}\left\|g_{i}\right\|_{B_{s}}\|R b\|_{C a\left(B_{s}\right)}
\end{aligned}
$$

Hence

$$
\int_{\mathbb{B}_{d}}|(R h) R b| d V_{s} \leq 2\|h\|_{*}\|R b\|_{C a\left(B_{s}\right)}
$$

where we have continued to write $\|\cdot\|_{*}$ for $\|\cdot\|_{B_{s} \odot B_{s}}$.
Let $\varphi \in M\left(B_{s} \odot B_{S}\right)$ and let $0<r<1$. Then for all $f \in B_{S}$ we have $f^{2}, \varphi_{r} f^{2} \in B_{s} \odot B_{S}$, hence

$$
\int_{\mathbb{B}_{d}}|f|^{2}\left|R \varphi_{r}\right|^{2} d V_{S}=\int_{\mathbb{B}_{d}}\left|R\left(\varphi_{r} f^{2}\right)-\varphi_{r} R\left(f^{2}\right)\right|\left|R \varphi_{r}\right| d V_{S}
$$

$$
\begin{aligned}
& \leq 2\left(\left\|\varphi_{r} f^{2}\right\|_{*}+\|\varphi\|_{\infty}\left\|f^{2}\right\|_{*}\right)\left\|R \varphi_{r}\right\|_{C a\left(B_{s}\right)} \\
& \leq 2\left(\|\varphi\|_{M\left(B_{s} \odot B_{s}\right)}\left\|f^{2}\right\|_{*}+\|\varphi\|_{\infty}\left\|f^{2}\right\|_{*}\right)\left\|R \varphi_{r}\right\|_{C a\left(B_{s}\right)} \\
& \leq 4\|\varphi\|_{M\left(B_{s} \odot B_{s}\right)}\|f\|_{B_{s}}^{2}\left\|R \varphi_{r}\right\|_{C a\left(B_{s}\right)} .
\end{aligned}
$$

Next we take the sup of the left hand side of this expression over all f with $\|f\|_{B_{s}}=1$ and we obtain $\left\|R \varphi_{r}\right\|_{\boldsymbol{C a (B _ { s })}}^{2} \leq 4\|\varphi\|_{M\left(B_{s} \odot B_{s}\right)}\left\|R \varphi_{r}\right\|_{\boldsymbol{C a (B _ { s })}}$ which implies that $\left\|R \varphi_{r}\right\|_{\boldsymbol{C a (B _ { s })}} \leq 4\|\varphi\|_{M\left(B_{s} \odot B_{s}\right)}$ holds for all $0<r<1$. Thus, for $0<s<1$ the result follows from Fatou's lemma as $r \rightarrow 1$.

If $s=1$, then $\|f\|_{2,1}^{2} \sim \int_{\partial \mathbb{B}_{d}}|(I+R) f(z)|^{2} d \sigma(z)$ and the argument proceeds as above.

Acknowledgement: B.D. Wick's research supported in part by National Science Foundation DMS grant \#1603246 and \#1560955.

This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

References

[1] Arcozzi, Nicola and Rochberg, Richard and Sawyer, Eric and Wick, Brett D., Bilinear forms on the Dirichlet space, Anal. PDE, 3, 2010, no. 1, 21-47.
[2] Beatrous, Frank and Burbea, Jacob, Holomorphic Sobolev spaces on the ball, Dissertationes Math. (Rozprawy Mat.), Polska Akademia Nauk. Instytut Matematyczny. Dissertationes Mathematicae. Rozprawy Matematyczne, 276, 1989.
[3] Cascante, Carme and Ortega, Joaquin M., On a characterization of bilinear forms on the Dirichlet space, Proc. Amer. Math. Soc., 140, 2012, no. 7, 2429-2440.
[4] Cascante, Carme and Fàbrega, Joan and Ortega, Joaquín M., On weighted Toeplitz, big Hankel operators and Carleson measures, Integral Equations Operator Theory, 66, 2010, no.4, 495-528.
[5] Coifman, R. R. and Rochberg, R. and Weiss, Guido, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) , 103, 1976, no. 3, 611-635.
[6] Luo, Shuaibing and Richter, Stefan, Hankel operators and invariant subspaces of the Dirichlet space, J. Lond. Math. Soc. (2), 91, 2015, no. 2, 423-438
[7] Luo, Shuaibing, On the Index of Invariant Subspaces in the Space of Weak Products of Dirichlet Functions, Complex Anal. Oper. Theory, 9, 2015, no. 6, 1311-1323
[8] Ortega, Joaquín and Fàbrega, Joan, Multipliers in Hardy-Sobolev spaces, Integral Equations Operator Theory, 55, 2006, no. 4, 535-560.
[9] Richter, Stefan and Sundberg, Carl, Weak products of Dirichlet functions, J. Funct. Anal., 266, 2014, no. 8, 5270-5299.
[10] Richter, Stefan and Sunkes, James, Hankel operators, Invariant subspaces, and cyclic vectors in the Drury-Arveson space, Proc Amer. Math. Soc., Proc. Amer. Math. Soc., to appear.

[^0]: *Corresponding Author: Stefan Richter: Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA,
 E-mail: richter@math.utk.edu
 Brett D. Wick: Department of Mathematics, Washington University - St. Louis, St. Louis, MO 63130, USA and School of Mathematics, Georgia Institute of Technology, Atlanta GA 30332-0160, USA, E-mail: wick @math.wustl.edu

